51
|
Dandel M, Englert A, Wallukat G, Riese A, Knosalla C, Stein J, Hetzer R. Immunoadsorption can improve cardiac function in transplant candidates with non-ischemic dilated cardiomyopathy associated with diabetes mellitus. ATHEROSCLEROSIS SUPP 2015; 18:124-33. [DOI: 10.1016/j.atherosclerosissup.2015.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
52
|
Trimetazidine protects cardiomyocytes against hypoxia-induced injury through ameliorates calcium homeostasis. Chem Biol Interact 2015; 236:47-56. [PMID: 25937560 DOI: 10.1016/j.cbi.2015.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/28/2015] [Accepted: 04/24/2015] [Indexed: 12/24/2022]
Abstract
Intracellular calcium (Ca(2+)i) overload induced by chronic hypoxia alters Ca(2+)i homeostasis, which plays an important role on mediating myocardial injury. We tested the hypothesis that treatment with trimetazidine (TMZ) would improve Ca(2+)i handling in hypoxic myocardial injury. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to chronic hypoxia (1% O2, 5% CO2, 37 °C). Intracellular calcium concentration ([Ca(2+)]i) was measured with Fura-2/AM. Perfusion of cardiomyocytes with a high concentration of caffeine (10 mM) was carried out to verify the function of the cardiac Na(+)/Ca(2+) exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca(2+)-ATPase (SERCA2a). For TMZ-treated cardiomyocytes exposured in hypoxia, we observed a decrease in mRNA expression of proapoptotic Bax, caspase-3 activation and enhanced expression of anti-apoptotic Bcl-2. The cardiomyocyte hypertrophy were also alleviated in hypoxic cardiomyocyte treated with TMZ. Moreover, we found that TMZ treatment cardiomyocytes enhanced "metabolic shift" from lipid oxidation to glucose oxidation. Compared with hypoxic cardiomyocyte, the diastolic [Ca(2+)]i was decreased, the amplitude of Ca(2+)i oscillations and sarcoplasmic reticulum Ca(2+) load were recovered, the activities of ryanodine receptor 2 (RyR2), NCX and SERCA2a were increased in cardiomyocytes treated with TMZ. TMZ attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes. In addition, cholinergic signaling are involved in hypoxic stress and the cardioprotective effects of TMZ. These results suggest that TMZ ameliorates Ca(2+)i homeostasis through switch of lipid to glucose metabolism, thereby producing the cardioprotective effect and reduction in hypoxic cardiomyocytes damage.
Collapse
|
53
|
Cardioprotective Activity of Pongamia pinnata in Streptozotocin-Nicotinamide Induced Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:403291. [PMID: 25954749 PMCID: PMC4411441 DOI: 10.1155/2015/403291] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
Abstract
Pongamia pinnata (L.) Pierre has been used in traditional medicine for the treatment for diabetes and metabolic disorder. The aim of this study was to investigate the effect of petroleum ether extract of the stem bark of P. pinnata (known as PPSB-PEE) on cardiomyopathy in diabetic rats. Diabetes was induced in overnight fasted Sprague-Dawley rats by using injection of streptozotocin (55 mg/kg, i.p.). Nicotinamide (100 mg/kg, i.p.) was administered 20 min before administration of streptozotocin. Rats were divided into group I: nondiabetic, group II: diabetic control (tween 80, 2%; 10 mL/kg, p.o.) as vehicle, and group III: PPSB-PEE (100 mg/kg, p.o.). The blood glucose level, ECG, hemodynamic parameters, cardiotoxic and antioxidant biomarkers, and histology of heart were carried out after 4 months after STZ with nicotinamide injection. PPSB-PEE treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters; and histological changes in STZ induced diabetic rats. PPSB-PEE (100 mg/kg, p.o.) decreased blood glucose level, improved electrocardiographic parameters (QRS, QT, and QTc intervals) and hemodynamic parameters (SBP, DBP, EDP, max dP/dt, contractility index, and heart rate), controlled levels of cardiac biomarkers (CK-MB, LDH, and AST), and improved oxidative stress (SOD, MDA, and GSH) in diabetic rats. PPSB-PEE is a promising remedy against cardiomyopathy in diabetic rats.
Collapse
|
54
|
Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH, Chen S, Klonisch T, Halayko AJ, Ambrose E, Singal R, Dixon IMC. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 2015; 6:e1696. [PMID: 25789971 PMCID: PMC4385916 DOI: 10.1038/cddis.2015.36] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/07/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) is an important regulator of fibrogenesis in heart disease. In many other cellular systems, TGF-β1 may also induce autophagy, but a link between its fibrogenic and autophagic effects is unknown. Thus we tested whether or not TGF-β1-induced autophagy has a regulatory function on fibrosis in human atrial myofibroblasts (hATMyofbs). Primary hATMyofbs were treated with TGF-β1 to assess for fibrogenic and autophagic responses. Using immunoblotting, immunofluorescence and transmission electron microscopic analyses, we found that TGF-β1 promoted collagen type Iα2 and fibronectin synthesis in hATMyofbs and that this was paralleled by an increase in autophagic activation in these cells. Pharmacological inhibition of autophagy by bafilomycin-A1 and 3-methyladenine decreased the fibrotic response in hATMyofb cells. ATG7 knockdown in hATMyofbs and ATG5 knockout (mouse embryonic fibroblast) fibroblasts decreased the fibrotic effect of TGF-β1 in experimental versus control cells. Furthermore, using a coronary artery ligation model of myocardial infarction in rats, we observed increases in the levels of protein markers of fibrosis, autophagy and Smad2 phosphorylation in whole scar tissue lysates. Immunohistochemistry for LC3β indicated the localization of punctate LC3β with vimentin (a mesenchymal-derived cell marker), ED-A fibronectin and phosphorylated Smad2. These results support the hypothesis that TGF-β1-induced autophagy is required for the fibrogenic response in hATMyofbs.
Collapse
Affiliation(s)
- S Ghavami
- 1] Department of Physiology, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [2] Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [3] Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada [4] Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - R H Cunnington
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S Gupta
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - B Yeganeh
- 1] Department of Physiology, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [2] Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [3] Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - K L Filomeno
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - D H Freed
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - S Chen
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - T Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - A J Halayko
- 1] Department of Physiology, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [2] Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada [3] Department of Internal Medicine, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - E Ambrose
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - R Singal
- Cardiac Sciences Program, St. Boniface General Hospital, Winnipeg, Manitoba, Canada
| | - I M C Dixon
- Department of Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
55
|
Keating E, Correia-Branco A, Araújo JR, Meireles M, Fernandes R, Guardão L, Guimarães JT, Martel F, Calhau C. Excess perigestational folic acid exposure induces metabolic dysfunction in post-natal life. J Endocrinol 2015; 224:245-59. [PMID: 25663705 DOI: 10.1530/joe-14-0448] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to understand whether high folic acid (HFA) exposure during the perigestational period induces metabolic dysfunction in the offspring, later in life. To do this, female Sprague-Dawley rats (G0) were administered a dose of folic acid (FA) recommended for pregnancy (control, C, 2 mg FA/kg of diet, n=5) or a high dose of FA (HFA, 40 mg FA/kg of diet, n=5). Supplementation began at mating and lasted throughout pregnancy and lactation. Body weight and food and fluid intake were monitored in G0 and their offspring (G1) till G1 were 13 months of age. Metabolic blood profiles were assessed in G1 at 3 and 13 months of age (3M and 13M respectively). Both G0 and G1 HFA females had increased body weight gain when compared with controls, particularly 22 (G0) and 10 (G1) weeks after FA supplementation had been stopped. G1 female offspring of HFA mothers had increased glycemia at 3M, and both female and male G1 offspring of HFA mothers had decreased glucose tolerance at 13M, when compared with matched controls. At 13M, G1 female offspring of HFA mothers had increased insulin and decreased adiponectin levels, and G1 male offspring of HFA mothers had increased levels of leptin, when compared with matched controls. In addition, feeding of fructose to adult offspring revealed that perigestational exposure to HFA renders female progeny more susceptible to developing metabolic unbalance upon such a challenge. The results of this work indicate that perigestational HFA exposure the affects long-term metabolic phenotype of the offspring, predisposing them to an insulin-resistant state.
Collapse
Affiliation(s)
- Elisa Keating
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - Ana Correia-Branco
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - João R Araújo
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - Manuela Meireles
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - Rita Fernandes
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - Luísa Guardão
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - João T Guimarães
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 420
| | - Fátima Martel
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| | - Conceição Calhau
- Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal Department of Biochemistry (U38-FCT)Faculty of Medicine, University of Porto, 4200-319 Porto, PortugalSchool of BiotechnologyCenter for Biotechnology and Fine Chemistry, Portuguese Catholic University, 4200-072 Porto, PortugalFaculty of Nutrition and Food SciencesUniversity of Porto, 4200-465 Porto, PortugalAnimal FacilityFaculty of Medicine, University of Porto, Porto, PortugalDepartment of Clinical PathologySão João Hospital Center, 4200-319 Porto, PortugalISPUP-EPIUnitInstitute of Public Health, University of Porto, 4050-600 Porto, PortugalCINTESIS - Center for Research in Health Technologies and Information SystemsUniversity of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
56
|
Melton KD, Foli KJ, Yehle KS, Griggs RR. Heart Failure in Hispanic Americans: Improving Cultural Awareness. J Nurse Pract 2015. [DOI: 10.1016/j.nurpra.2014.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
57
|
Abstract
Diabetic cardiomyopathy (DCM) is defined as cardiac disease independent of vascular complications during diabetes. The number of new cases of DCM is rising at epidemic rates in proportion to newly diagnosed cases of diabetes mellitus (DM) throughout the world. DCM is a heart failure syndrome found in diabetic patients that is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction, occurring in the absence of hypertension and coronary artery disease. DCM and other diabetic complications are caused in part by elevations in blood glucose and lipids, characteristic of DM. Although there are pathological consequences to hyperglycemia and hyperlipidemia, the combination of the two metabolic abnormalities potentiates the severity of diabetic complications. A natural competition exists between glucose and fatty acid metabolism in the heart that is regulated by allosteric and feedback control and transcriptional modulation of key limiting enzymes. Inhibition of these glycolytic enzymes not only controls flux of substrate through the glycolytic pathway, but also leads to the diversion of glycolytic intermediate substrate through pathological pathways, which mediate the onset of diabetic complications. The present review describes the limiting steps involved in the development of these pathological pathways and the factors involved in the regulation of these limiting steps. Additionally, therapeutic options with demonstrated or postulated effects on DCM are described.
Collapse
Affiliation(s)
- Michael Isfort
- The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
58
|
Abstract
Diabetes and insulin resistance have a variety of detrimental effects on cardiovascular health and outcomes. Cardiac magnetic resonance offers a non-invasive means to obtain many layers of information at a tissue level, including fibrosis, edema, intramyocardial motion, triglyceride content, and myocardial energetics. The role of cardiovascular magnetic resonance is particularly important in the evaluation of recognized and unrecognized coronary artery disease. In this review, we address the current state-of-the-art in cardiac magnetic resonance imaging - for both clinical and investigational use - as it applies to diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Ravi V Shah
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | | | |
Collapse
|
59
|
Pan J, Guleria RS, Zhu S, Baker KM. Molecular Mechanisms of Retinoid Receptors in Diabetes-Induced Cardiac Remodeling. J Clin Med 2014; 3:566-94. [PMID: 26237391 PMCID: PMC4449696 DOI: 10.3390/jcm3020566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a significant contributor to morbidity and mortality in diabetic patients, is characterized by ventricular dysfunction, in the absence of coronary atherosclerosis and hypertension. There is no specific therapeutic strategy to effectively treat patients with DCM, due to a lack of a mechanistic understanding of the disease process. Retinoic acid, the active metabolite of vitamin A, is involved in a wide range of biological processes, through binding and activation of nuclear receptors: retinoic acid receptors (RAR) and retinoid X receptors (RXR). RAR/RXR-mediated signaling has been implicated in the regulation of glucose and lipid metabolism. Recently, it has been reported that activation of RAR/RXR has an important role in preventing the development of diabetic cardiomyopathy, through improving cardiac insulin resistance, inhibition of intracellular oxidative stress, NF-κB-mediated inflammatory responses and the renin-angiotensin system. Moreover, downregulated RAR/RXR signaling has been demonstrated in diabetic myocardium, suggesting that impaired RAR/RXR signaling may be a trigger to accelerate diabetes-induced development of DCM. Understanding the molecular mechanisms of retinoid receptors in the regulation of cardiac metabolism and remodeling under diabetic conditions is important in providing the impetus for generating novel therapeutic approaches for the prevention and treatment of diabetes-induced cardiac complications and heart failure.
Collapse
Affiliation(s)
- Jing Pan
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Rakeshwar S Guleria
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Sen Zhu
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Kenneth M Baker
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| |
Collapse
|
60
|
Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens 2014; 29:1-6. [PMID: 24804791 DOI: 10.1038/jhh.2014.36] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
Left ventricular (LV) hypertrophy and remodeling are frequently seen in hypertensive subjects and result from a complex interaction of several hemodynamic and non-hemodynamic variables. Although increased blood pressure is considered the major determinant of LV structural alterations, ethnicity, gender, environmental factors, such as salt intake, obesity and diabetes mellitus, as well as neurohumoral and genetic factors might influence LV mass and geometry. The conventional concept of hypertensive LV remodeling has been that hypertension leads to concentric hypertrophy, as an adaptive response to normalize wall stress, which is then followed by chamber dilation and heart failure. However, several lines of evidence have challenged this dogma. Concentric hypertrophy is not the most frequent geometric pattern and is less usually seen than eccentric hypertrophy in hypertensive subjects. In addition, data from recent studies suggested that transition from LV concentric hypertrophy to dilation and systolic dysfunction is not a common finding, especially in the absence of coronary heart disease. LV hypertrophy is also consistently associated with increased cardiovascular morbidity and mortality, raising doubts whether this phenotype is an adaptive response. Experimental evidence exists that a blunting of load-induced cardiomyocyte hypertrophy does not necessarily result in LV dysfunction or failure. Furthermore, the hypertrophic myocardium shows fibrosis, alterations in the coronary circulation and cardiomyocyte apoptosis, which may result in heart failure, myocardial ischemia and arrhythmias. Overall, this body of evidence suggests that LV hypertrophy is a complex phenotype that predicts adverse cardiovascular outcomes and may not be necessarily considered as an adaptive response to systemic hypertension.
Collapse
Affiliation(s)
- W Nadruz
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
61
|
Segers VFM, De Keulenaer GW. Pathophysiology of diastolic dysfunction in chronic heart failure. Future Cardiol 2014; 9:711-20. [PMID: 24020672 DOI: 10.2217/fca.13.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic heart failure is a disease with high morbidity and mortality, and its incidence is increasing rapidly worldwide. New therapies are needed that can halt or even reverse the progression of heart failure, but little progress has been made in the last 20 years. This is partly due to the fact that chronic heart failure is a heterogeneous disease with many different etiologies and clinical phenotypes. At present, a pathophysiological concept to unify these different phenotypes is missing. A prominent pathophysiological feature of chronic heart failure is diastolic dysfunction, which is almost universally present in heart failure patients. This review will examine the role and mechanisms of diastolic dysfunction in heart failure. We will study diastolic dysfunction at different levels of complexity of organization: the cardiovascular system, the heart as an organ, the myocardium as a tissue, the myocyte as a cell and the molecular aspects of diastolic dysfunction.
Collapse
Affiliation(s)
- Vincent F M Segers
- University of Antwerp, Universiteitsplein 1, Campus Drie Eiken, Bldg T, 2nd Floor, 2610 Wilrijk, Belgium
| | | |
Collapse
|
62
|
Badole SL, Jangam GB, Chaudhari SM, Ghule AE, Zanwar AA. L-glutamine supplementation prevents the development of experimental diabetic cardiomyopathy in streptozotocin-nicotinamide induced diabetic rats. PLoS One 2014; 9:e92697. [PMID: 24651718 PMCID: PMC3961427 DOI: 10.1371/journal.pone.0092697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/25/2014] [Indexed: 01/14/2023] Open
Abstract
The objective of the present investigation was to evaluate the effect of L-glutamine on cardiac myopathy in streptozotocin-nicotinamide induced diabetic rats. Diabetes was induced in overnight fasted Sprague Dawely rats by using intraperitonial injection of streptozotocin (55 mg/kg). Nicotinamide (100 mg/kg, i.p.) was administered 20 min before administration of streptozotocin. Experimental rats were divided into Group I: non-diabetic control (distilled water; 10 ml/kg, p.o.), II: diabetic control (distilled water, 10 ml/kg, p.o.), III: L-glutamine (500 mg/kg, p.o.) and IV: L-glutamine (1000 mg/kg, p.o.). All groups were diabetic except group I. The plasma glucose level, body weight, electrocardiographic abnormalities, hemodynamic changes and left ventricular contractile function, biological markers of cardiotoxicity, antioxidant markers were determined after 4 months after STZ with nicotinamide injection. Histopathological changes of heart tissue were carried out by using H and E stain. L-glutamine treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters and histological changes in STZ induced diabetic rats. Results from the present investigation demonstrated that L-glutamine has seemed a cardioprotective activity.
Collapse
Affiliation(s)
- Sachin L. Badole
- Department of Pharmacology, PES's Modern College of Pharmacy, Yamuna Nagar, Nigadi, Pune, India
- * E-mail:
| | - Ganesh B. Jangam
- Department of Pharmacology, PES's Modern College of Pharmacy, Yamuna Nagar, Nigadi, Pune, India
| | - Swapnil M. Chaudhari
- Department of Pharmacology, PES's Modern College of Pharmacy, Yamuna Nagar, Nigadi, Pune, India
| | - Arvindkumar E. Ghule
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, India
| | - Anand A. Zanwar
- Center for Innovation in Nutrition Health Disease, Interactive Research School for Health Affairs, Medical college campus, Bharati Vidyapeeth Deemed University, Dhankawadi, Pune, India
| |
Collapse
|
63
|
Li H, Wang X, Mao Y, Hu R, Xu W, Lei Z, Zhou N, Jin L, Guo T, Li Z, Irwin DM, Niu G, Tan H. Long term liver specific glucokinase gene defect induced diabetic cardiomyopathy by up regulating NADPH oxidase and down regulating insulin receptor and p-AMPK. Cardiovasc Diabetol 2014; 13:24. [PMID: 24447392 PMCID: PMC3901845 DOI: 10.1186/1475-2840-13-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/17/2014] [Indexed: 01/12/2023] Open
Abstract
Background The liver-specific glucokinase knockout (gckw/–) mouse experiences long-term hyperglycemia and insulin resistance. This study was designed to evaluate the functional and structural changes in the myocardium of 60 week-old gckw/– mice, and to investigate the effect of rosiglitazone on the myocardium in this model. Methods 60 week-old gckw/– mice were randomly divided into 3 groups: gckw/–, gckw/– mice treated with insulin (1 U/kg) and gckw/– mice treated with rosiglitazone (18 mg/kg). Insulin or rosiglitazone treatment was for 4 weeks. Gckw/w litermates were used as controls. Echocardiography, electrocardiogram, biochemical, histopathological, ultrastructural, real time PCR and Western blot studies were performed to examine for structural and functional changes. Results Long-term liver-specific gck knockout in mice elicits hyperglycaemia and insulin resistance. Compared to age matched gckw/w mice, 60 week-old gckw/– mice showed decreased LV internal dimension, increased posterior wall thickness, lengthened PR and QRS intervals, up-regulated MLC2 protein expression, decreased SOD activity, increased MDA levels and up-regulated Cyba mRNA. Morphological studies revealed that there was an increase in the amount of PAS and Masson positively stained material, as did the number and proportion of the cell occupied by mitochondria in the gckw/– mice. Western blot analysis revealed that the levels of the insulin receptor, Akt, phosphorylated AMPK beta and phosphorylated ACC were reduced in gckw/– mice. These effects were partly attenuated or ablated by treatment with rosiglitazone. Conclusions Our results indicate that changes in the myocardium occur in the liver-specific glucokinase knockout mouse and suggest that reduced glucokinase expression in the liver may induce diabetic cardiomyopathy by up regulating NADPH oxidase and down regulating insulin receptor and p-AMPK protein levels. Rosiglitazone treatment may protect against diabetic cardiomyopathy by altering the levels of a set of proteins involved in cardiac damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Gang Niu
- Department of Pharmacology, Health Science Center, Peking University, 38 Xue Yuan Road, Beijing 100191, China.
| | | |
Collapse
|
64
|
Cheng Y, Feng Y, Zhu M, Yan B, Fu S, Guo J, Hu J, Song X, Guo S, Liu G. Synthetic liver X receptor agonist T0901317 attenuates high glucose-induced oxidative stress, mitochondrial damage and apoptosis in cardiomyocytes. Acta Histochem 2014; 116:214-21. [PMID: 23915475 DOI: 10.1016/j.acthis.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to investigate the protective effects of T0901317 (T0), a potent agonist of liver X receptors (LXRs), on high glucose-induced oxidative stress and apoptosis in H9c2 cardiac cells. Exposure of H9c2 cells to high glucose alone, not only caused a significant increase in apoptosis and reactive oxygen species (ROS) generation, but also led to a decrease in mitochondrial membrane potential (ΔΨm), release of cytochrome c, decrease in Bcl-2, increase in Bax expression and the activation of caspase-3, caspase-9, poly (ADP-ribose) polymerase (PARP) and nuclear factor (NF)-κB. However, pretreatment with T0 effectively decreased apoptosis, reduced the levels of ROS, abrogated ΔΨm, inhibited cytochrome c release and NF-κB activation, increased Bcl-2 and decreased Bax expression. In conclusion, our data suggest that T0 exerts protective effects against high glucose-induced apoptosis in H9C2 cardiac muscle cells via inhibition of ROS production, mitochondrial death and NF-κB activation.
Collapse
Affiliation(s)
- Yongxia Cheng
- Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China; Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province 150086, People's Republic of China
| | - Yukuan Feng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province 150086, People's Republic of China; Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Min Zhu
- Department of Medical Imaging, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Bin Yan
- Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang Province 150086, People's Republic of China
| | - Jin Guo
- Laboratory of Child Nerve Rehabilitation, Jiamusi University, Jiamusi, Heilongjiang Province 154003, People's Republic of China
| | - Jing Hu
- Department of Histology and Embryology, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Xiandong Song
- Department of Orthopaedic Surgery, Hongqi Hospital, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Sufen Guo
- Department of Pathology, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China
| | - Guibo Liu
- Department of Anatomy, Mudanjiang Medical College, Mudanjiang, Heilongjiang Province 157011, People's Republic of China.
| |
Collapse
|
65
|
Lopez-Izquierdo A, Pereira RO, Wende AR, Punske BB, Abel ED, Tristani-Firouzi M. The absence of insulin signaling in the heart induces changes in potassium channel expression and ventricular repolarization. Am J Physiol Heart Circ Physiol 2013; 306:H747-54. [PMID: 24375641 DOI: 10.1152/ajpheart.00849.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes mellitus increases the risk for cardiac dysfunction, heart failure, and sudden death. The wide array of neurohumoral changes associated with diabetes pose a challenge to understanding the roles of specific pathways that alter cardiac function. Here, we use a mouse model with cardiomyocyte-restricted deletion of insulin receptors (CIRKO, cardiac-specific insulin receptor knockout) to study the specific effects of impaired cardiac insulin signaling on ventricular repolarization, independent of the generalized metabolic derangements associated with diabetes. Impaired insulin action caused a reduction in mRNA and protein expression of several key K(+) channels that dominate ventricular repolarization. Specifically, components of transient outward K(+) current fast component (Ito,fast; Kv4.2 and KChiP2) were reduced, consistent with a reduction in the amplitude of Ito,fast in isolated left ventricular CIRKO myocytes, compared with littermate controls. The reduction in Ito,fast resulted in ventricular action potential prolongation and prolongation of the QT interval on the surface ECG. These results support the notion that the lack of insulin signaling in the heart is sufficient to cause the repolarization abnormalities described in other animal models of diabetes.
Collapse
Affiliation(s)
- Angelica Lopez-Izquierdo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | | | | | | | | | | |
Collapse
|
66
|
Roe ND, He EY, Wu Z, Ren J. Folic acid reverses nitric oxide synthase uncoupling and prevents cardiac dysfunction in insulin resistance: role of Ca2+/calmodulin-activated protein kinase II. Free Radic Biol Med 2013; 65:234-243. [PMID: 23820268 PMCID: PMC3859865 DOI: 10.1016/j.freeradbiomed.2013.06.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/18/2013] [Accepted: 06/24/2013] [Indexed: 12/13/2022]
Abstract
Nitric oxide synthase (NOS) may be uncoupled to produce superoxide rather than nitric oxide (NO) under pathological conditions such as diabetes mellitus and insulin resistance, leading to cardiac contractile anomalies. Nonetheless, the role of NOS uncoupling in insulin resistance-induced cardiac dysfunction remains elusive. Given that folic acid may produce beneficial effects for cardiac insufficiency partially through its NOS recoupling capacity, this study was designed to evaluate the effect of folic acid on insulin resistance-induced cardiac contractile dysfunction in a sucrose-induced insulin resistance model. Mice were fed a sucrose or starch diet for 8 weeks before administration of folic acid in drinking water for an additional 4 weeks. Cardiomyocyte contractile and Ca(2+) transient properties were evaluated and myocardial function was assessed using echocardiography. Our results revealed whole body insulin resistance after sucrose feeding associated with diminished NO production, elevated peroxynitrite (ONOO(-)) levels, and impaired echocardiographic and cardiomyocyte function along with a leaky ryanodine receptor (RYR) and intracellular Ca(2+) handling derangement. Western blot analysis showed that insulin resistance significantly promoted Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylation, which might be responsible for the leaky RYR and cardiac mechanical dysfunction. NOS recoupling using folic acid reversed insulin resistance-induced changes in NO and ONOO(-), CaMKII phosphorylation, and cardiac mechanical abnormalities. Taken together, these data demonstrated that treatment with folic acid may reverse cardiac contractile and intracellular Ca(2+) anomalies through ablation of CaMKII phosphorylation and RYR Ca(2+) leak.
Collapse
Affiliation(s)
- Nathan D Roe
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Emily Y He
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA; Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Zhenbiao Wu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
67
|
Leung M, Wong VW, Heritier S, Mihailidou AS, Leung DY. Rationale and design of a randomized trial on the impact of aldosterone antagonism on cardiac structure and function in diabetic cardiomyopathy. Cardiovasc Diabetol 2013; 12:139. [PMID: 24083804 PMCID: PMC3850740 DOI: 10.1186/1475-2840-12-139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/21/2013] [Indexed: 01/19/2023] Open
Abstract
Development of a cardiomyopathy in diabetes mellitus is independent of traditional risk factors, with no clinical trials targeting specific therapeutic interventions. Myocardial fibrosis is one of the key mechanisms and aldosterone is a key mediator of myocardial fibrosis. We propose that aldosterone antagonism will improve cardiac function. We aim to evaluate the efficacy of selective aldosterone receptor antagonism with eplerenone added to optimal medical treatment in improving cardiac structure and function in diabetic cardiomyopathy. We will randomize 130 patients with type 2 diabetes mellitus, stable metabolic control and impaired left ventricular (LV) systolic or diastolic function, to either eplerenone (target dose 50mg) or matching placebo, in addition to optimal medical therapy for 12 months. The primary endpoints are changes in LV systolic and diastolic function, measured by echocardiographic 2-dimensional speckle tracking strain and strain rate and tissue Doppler imaging. The secondary endpoints include changes in echocardiographic markers and plasma biomarkers of collagen turnover; left atrial dimensions and function, incidence of atrial fibrillation and changes in exercise capacity and dyspnea score. The present study will assess whether specific aldosterone antagonism with eplerenone in addition to standard therapy will prevent progression or reverse cardiac dysfunction in diabetic cardiomyopathy using sensitive, robust and quantifiable echocardiographic measures that allow early detection of change. The study may offer a new direction in the management of this condition.
Collapse
Affiliation(s)
- Melissa Leung
- Department of Cardiology, Liverpool Hospital, Locked Bag 7103, Liverpool BC, NSW 1871, Australia.
| | | | | | | | | |
Collapse
|
68
|
Leonardini A, Avogaro A. Abnormalities of the cardiac stem and progenitor cell compartment in experimental and human diabetes. Arch Physiol Biochem 2013; 119:179-87. [PMID: 23772700 DOI: 10.3109/13813455.2013.798334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetic cardiomyopathy consists of a series of structural and functional changes. Accumulating evidence supports the concept that a "cardiac stem cell compartment disease" plays an important role in the pathophysiology of diabetic cardiomyopathy. In diabetic hearts, human cardiac stem/progenitor cells (CSPC) are reduced and manifest defective proliferative capacity. Hyperglycaemia, hyperlipidemia, inflammation, and the consequent oxidative stress are enhanced in diabetes: these conditions can induce defects in both growth and survival of these cells with an imbalance between cell death and cell replacement, thus favouring the onset of diabetic cardiomyopathy and its progression towards heart failure. The preservation of CSPC compartment can contribute to counteract the negative impact of diabetes on the myocardium. The recent studies summarized in this review have improved our understanding of the development and stem cell biology within the cardiovascular system. However, several issues remain unsolved before cell therapy can become a clinical therapeutically relevant strategy.
Collapse
Affiliation(s)
- Anna Leonardini
- Department of Emergency and Organ Transplantation - Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro , Bari , Italy and
| | | |
Collapse
|
69
|
Shah RV, Abbasi SA, Neilan TG, Hulten E, Coelho-Filho O, Hoppin A, Levitsky L, de Ferranti S, Rhodes ET, Traum A, Goodman E, Feng H, Heydari B, Harris WS, Hoefner DM, McConnell JP, Seethamraju R, Rickers C, Kwong RY, Jerosch-Herold M. Myocardial tissue remodeling in adolescent obesity. J Am Heart Assoc 2013; 2:e000279. [PMID: 23963758 PMCID: PMC3828806 DOI: 10.1161/jaha.113.000279] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Childhood obesity is a significant risk factor for cardiovascular disease in adulthood. Although ventricular remodeling has been reported in obese youth, early tissue-level markers within the myocardium that precede organ-level alterations have not been described. METHODS AND RESULTS We studied 21 obese adolescents (mean age, 17.7±2.6 years; mean body mass index [BMI], 41.9±9.5 kg/m(2), including 11 patients with type 2 diabetes [T2D]) and 12 healthy volunteers (age, 15.1±4.5 years; BMI, 20.1±3.5 kg/m(2)) using biomarkers of cardiometabolic risk and cardiac magnetic resonance imaging (CMR) to phenotype cardiac structure, function, and interstitial matrix remodeling by standard techniques. Although left ventricular ejection fraction and left atrial volumes were similar in healthy volunteers and obese patients (and within normal body size-adjusted limits), interstitial matrix expansion by CMR extracellular volume fraction (ECV) was significantly different between healthy volunteers (median, 0.264; interquartile range [IQR], 0.253 to 0.271), obese adolescents without T2D (median, 0.328; IQR, 0.278 to 0.345), and obese adolescents with T2D (median, 0.376; IQR, 0.336 to 0.407; P=0.0001). ECV was associated with BMI for the entire population (r=0.58, P<0.001) and with high-sensitivity C-reactive protein (r=0.47, P<0.05), serum triglycerides (r=0.51, P<0.05), and hemoglobin A1c (r=0.76, P<0.0001) in the obese stratum. CONCLUSIONS Obese adolescents (particularly those with T2D) have subclinical alterations in myocardial tissue architecture associated with inflammation and insulin resistance. These alterations precede significant left ventricular hypertrophy or decreased cardiac function.
Collapse
Affiliation(s)
- Ravi V Shah
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Type 2 diabetes increases the risk of cardiovascular disease (CVD) from two- to four-fold. In our large Finnish population-based study published in 1998 subjects with medication for type 2 diabetes had as high a risk of fatal and nonfatal myocardial infarction (MI) during the 7- year follow-up as non-diabetic subjects with a prior MI, suggesting that type 2 diabetes is a CVD equivalent. In another large study, including all 3.3 million residents of Denmark, subjects requiring glucose-lowering therapy exhibited a CVD risk similar to that of non-diabetic subjects with a prior MI. Subsequent studies have not systematically replicated aforementioned results. Some studies have supported the concept that type 2 diabetes is a CVD equivalent only in some subgroups, and many studies have reported negative findings. This is likely to be due to many differences across the studies published, for example ethnicity, gender, age and other demographic factors of the populations involved, study design, validation of diabetes status and CVD events, statistical analyses (adjustments for confounding factors), duration of diabetes, and treatment of hyperglycemia among diabetic participants. Varying results reflect the fact that not all diabetic patients are at a similar risk for CVD. Therefore, CVD risk assessment and the tailoring of preventive measures should be done individually, taking into consideration each patient's long-term risk of developing cardiovascular events.
Collapse
Affiliation(s)
- Johanna Kuusisto
- Department of Medicine, Centre for Medicine and Clinical Research, Kuopio University Hospital and University of Eastern Finland, P.O.B. 1777, 70211 Kuopio, Finland.
| | | |
Collapse
|
71
|
Zhou X, Lu X. The role of oxidative stress in high glucose-induced apoptosis in neonatal rat cardiomyocytes. Exp Biol Med (Maywood) 2013; 238:898-902. [PMID: 23788170 DOI: 10.1177/1535370213493728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Accumulating evidence has demonstrated that apoptosis plays a critical role in the pathogenesis of diabetic cardiomyopathy. However, the exact molecular mechanisms by which hyperglycaemia induces cardiomyocyte apoptosis are not fully understood. The present study was designed to investigate the role of oxidative stress in high glucose-induced apoptosis in cultured neonatal rat cardiomyocytes. The MTT assay was used to detect the viability of cardiomyocytes exposed to different concentrations of glucose. Oxidative stress was evaluated by measuring intracellular reactive oxygen species with 2′,7′-dichlorofluoresce diacetate staining and by detecting malondialdehyde and superoxide dismutase in the supernatant of culture media. Cardiomyocyte apoptosis was determined by flow cytometry and confocal laser scanning microscopy with Annexin V/PI staining. Our results showed that high glucose can induce oxidative stress and promote apoptosis in neonatal rat cardiomyocytes and the antioxidant can protect against high glucose-induced apoptosis, which suggests that oxidative stress is involved in high glucose-induced cardiomyocyte apoptosis. Furthermore, caspase-3 was found to be activated in the process of high glucose-induced oxidative stress, which subsequently contributes to increased apoptosis in neonatal rat cardiomyocytes. In conclusion, our study demonstrates that oxidative stress is involved in high glucose-induced cardiomyocyte apoptosis via activation of caspase-3.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011 China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011 China
| |
Collapse
|
72
|
Ding F, Yu L, Wang M, Xu S, Xia Q, Fu G. O-GlcNAcylation involvement in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2. Amino Acids 2013; 45:339-49. [PMID: 23665912 DOI: 10.1007/s00726-013-1504-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/19/2013] [Indexed: 01/26/2023]
Abstract
Continuous hyperglycemia is considered to be the most significant pathogenesis of diabetic cardiomyopathy, which manifests as cardiac hypertrophy and subsequent heart failure. O-GlcNAcylation has attracted attention as a post-translational protein modification in the past decade. The role of O-GlcNAcylation in high glucose-induced cardiomyocyte hypertrophy remains unclear. We studied the effect of O-GlcNAcylation on neonatal rat cardiomyocytes that were exposed to high glucose and myocardium in diabetic rats induced by streptozocin. High glucose (30 mM) incubation induced a greater than twofold increase in cell size and increased hypertrophy marker gene expression accompanied by elevated O-GlcNAcylation protein levels. High glucose increased ERK1/2 but not p38 MAPK or JNK activity, and cyclin D2 expression was also increased. PUGNAc, an inhibitor of β-N-acetylglucosaminidase, enhanced O-GlcNAcylation and imitated the effects of high glucose. OGT siRNA and ERK1/2 inhibition with PD98059 treatment blunted the hypertrophic response and cyclin D2 upregulation. OGT inhibition also prevented ERK1/2 activation. We also observed concentric hypertrophy and similar changes of O-GlcNAcylation level, ERK1/2 activation and cyclin D2 expression in myocardium of diabetic rats induced by streptozocin. In conclusion, O-GlcNAcylation plays a role in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2.
Collapse
Affiliation(s)
- Fang Ding
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, China
| | | | | | | | | | | |
Collapse
|
73
|
Hegazy SK, Tolba OA, Mostafa TM, Eid MA, El-Afify DR. Alpha-lipoic acid improves subclinical left ventricular dysfunction in asymptomatic patients with type 1 diabetes. Rev Diabet Stud 2013; 10:58-67. [PMID: 24172699 PMCID: PMC3932072 DOI: 10.1900/rds.2013.10.58] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/27/2013] [Accepted: 04/15/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Oxidative stress plays an important role in the development of diabetic cardiomyopathy. Alpha-lipoic acid (ALA) is a powerful antioxidant that may have a protective role in diabetic cardiac dysfunction. AIM We investigated the possible beneficial effect of alpha-lipoic acid on diabetic left ventricular (LV) dysfunction in children and adolescents with asymptomatic type 1 diabetes (T1D). SUBJECTS AND METHODS Thirty T1D patients (aged 10-14) were randomized to receive insulin treatment (n = 15) or insulin plus alpha-lipoic acid 300 mg twice daily (n = 15) for four months. Age and sex matched healthy controls (n = 15) were also included. Patients were evaluated with conventional 2-dimensional echocardiographic examination (2D), pulsed tissue Doppler (PTD), and 2-dimensional longitudinal strain echocardiography (2DS) before and after therapy. Glutathione, malondialdhyde (MDA), nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), Fas ligand (Fas-L), matrix metalloproteinase 2 (MMP-2), and troponin-I were determined and correlated to echocardiographic parameters. RESULTS Diabetic patients had significantly lower levels of glutathione and significantly higher MDA, NO, TNF-alpha, Fas-L, MMP-2, and troponin-I levels than control subjects. The expression of transforming growth factor beta (TGF-beta) mRNA in peripheral blood mononuclear cells was also increased in diabetic patients. Significant correlations of mitral e'/a' ratio and left ventricular global peak systolic strain with glutathione, MDA, NO, TNF-alpha, and Fas-L were observed in diabetic patients. Alpha-lipoic acid significantly increased glutathione level and significantly decreased MDA, NO, TNF-alpha, Fas-L, MMP-2, troponin-I levels, and TGF-beta gene expression. Moreover, alpha-lipoic acid significantly increased mitral e'/a' ratio and left ventricular global peak systolic strain in diabetic patients. CONCLUSION These findings suggest that alpha-lipoic acid may have a role in preventing the development of diabetic cardiomyopathy in type 1 diabetes.
Collapse
Affiliation(s)
- Sahar K Hegazy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Egypt
| | | | | | | | | |
Collapse
|
74
|
Sun YM, Su Y, Li J, Wang LF. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochem Biophys Res Commun 2013; 433:359-61. [PMID: 23541575 DOI: 10.1016/j.bbrc.2013.02.120] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/26/2013] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a chronic disease characterized by proteinuria, glomerular hypertrophy, decreased glomerular filtration and renal fibrosis with loss of renal function. DN is the leading cause of end-stage renal disease, accounting for millions of deaths worldwide. Hyperglycemia is the driving force for the development of diabetic nephropathy. The exact cause of diabetic nephropathy is unknown, but various postulated mechanisms are: hyperglycemia (causing hyperfiltration and renal injury), advanced glycosylation products, activation of cytokines. In this review article, we have discussed a number of diabetes-induced metabolites such as glucose, advanced glycation end products, protein kinase C and oxidative stress and other related factors that are implicated in the pathophysiology of the DN. An understanding of the biochemical and molecular changes especially early in the DN may lead to new and effective therapies towards prevention and amelioration of DN.
Collapse
Affiliation(s)
- Yan-Ming Sun
- Department of Cardiac Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | | | | | | |
Collapse
|
75
|
Nunes S, Soares E, Fernandes J, Viana S, Carvalho E, Pereira FC, Reis F. Early cardiac changes in a rat model of prediabetes: brain natriuretic peptide overexpression seems to be the best marker. Cardiovasc Diabetol 2013; 12:44. [PMID: 23497124 PMCID: PMC3599663 DOI: 10.1186/1475-2840-12-44] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022] Open
Abstract
Background Diabetic cardiomyopathy (DCM) is defined as structural and functional changes in the myocardium due to metabolic and cellular abnormalities induced by diabetes mellitus (DM). The impact of prediabetic conditions on the cardiac tissue remains to be elucidated. The goal of this study was to elucidate whether cardiac dysfunction is already present in a state of prediabetes, in the presence of insulin resistance, and to unravel the underlying mechanisms, in a rat model without obesity and hypertension as confounding factors. Methods Two groups of 16-week-old Wistar rats were tested during a 9 week protocol: high sucrose (HSu) diet group (n = 7) – rats receiving 35% of sucrose in drinking water vs the vehicle control group (n = 7). The animal model was characterized in terms of body weight (BW) and the glycemic, insulinemic and lipidic profiles. The following parameters were assessed to evaluate possible early cardiac alterations and underlying mechanisms: blood pressure, heart rate, heart and left ventricle (LV) trophism indexes, as well as the serum and tissue protein and/or the mRNA expression of markers for fibrosis, hypertrophy, proliferation, apoptosis, angiogenesis, endothelial function, inflammation and oxidative stress. Results The HSu-treated rats presented normal fasting plasma glucose (FPG) but impaired glucose tolerance (IGT), accompanied by hyperinsulinemia and insulin resistance (P < 0.01), confirming this rat model as prediabetic. Furthermore, although hypertriglyceridemia (P < 0.05) was observed, obesity and hypertension were absent. Regarding the impact of the HSu diet on the cardiac tissue, our results indicated that 9 weeks of treatment might be associated with initial cardiac changes, as suggested by the increased LV weight/BW ratio (P < 0.01) and a remarkable brain natriuretic peptide (BNP) mRNA overexpression (P < 0.01), together with a marked trend for an upregulation of other important mediators of fibrosis, hypertrophy, angiogenesis and endothelial lesions, as well as oxidative stress. The inflammatory and apoptotic markers measured were unchanged. Conclusions This animal model of prediabetes/insulin resistance could be an important tool to evaluate the early cardiac impact of dysmetabolism (hyperinsulinemia and impaired glucose tolerance with fasting normoglycemia), without confounding factors such as obesity and hypertension. Left ventricle hypertrophy is already present and brain natriuretic peptide seems to be the best early marker for this condition.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Pharmacology and Experimental Therapeutics, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
76
|
Guleria RS, Singh AB, Nizamutdinova IT, Souslova T, Mohammad AA, Kendall JA, Baker KM, Pan J. Activation of retinoid receptor-mediated signaling ameliorates diabetes-induced cardiac dysfunction in Zucker diabetic rats. J Mol Cell Cardiol 2013; 57:106-18. [PMID: 23395853 DOI: 10.1016/j.yjmcc.2013.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/07/2013] [Accepted: 01/29/2013] [Indexed: 01/04/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a significant contributor to the morbidity and mortality associated with diabetes and metabolic syndrome. Retinoids, through activation of retinoic acid receptor (RAR) and retinoid x receptor (RXR), have been linked to control glucose and lipid homeostasis, with effects on obesity and diabetes. However, the functional role of RAR and RXR in the development of DCM remains unclear. Zucker diabetic fatty (ZDF) and lean rats were treated with Am580 (RARα agonist) or LGD1069 (RXR agonist) for 16 weeks, and cardiac function and metabolic alterations were determined. Hyperglycemia, hyperlipidemia and insulin resistance were observed in ZDF rats. Diabetic cardiomyopathy was characterized in ZDF rats by increased oxidative stress, apoptosis, fibrosis, inflammation, activation of MAP kinases and NF-κB signaling and diminished Akt phosphorylation, along with decreased glucose transport and increased cardiac lipid accumulation, and ultimately diastolic dysfunction. Am580 and LGD1069 attenuated diabetes-induced cardiac dysfunction and the pathological alterations, by improving glucose tolerance and insulin resistance; facilitating Akt activation and glucose utilization, and attenuating oxidative stress and interrelated MAP kinase and NF-κB signaling pathways. Am580 inhibited body weight gain, attenuated the increased cardiac fatty acid uptake, β-oxidation and lipid accumulation in the hearts of ZDF rats. However, LGD1069 promoted body weight gain, hyperlipidemia and cardiac lipid accumulation. In conclusion, our data suggest that activation of RAR and RXR may have therapeutic potential in the treatment of diabetic cardiomyopathy. However, further studies are necessary to clarify the role of RAR and RXR in the regulation of lipid metabolism and homeostasis.
Collapse
Affiliation(s)
- Rakeshwar S Guleria
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center, Central Texas Veterans Health Care System, Temple, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Nizamutdinova IT, Guleria RS, Singh AB, Kendall JA, Baker KM, Pan J. Retinoic acid protects cardiomyocytes from high glucose-induced apoptosis through inhibition of NF-κB signaling pathway. J Cell Physiol 2013; 228:380-92. [PMID: 22718360 DOI: 10.1002/jcp.24142] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously shown that retinoic acid (RA) has protective effects on high glucose (HG)-induced cardiomyocyte apoptosis. To further elucidate the molecular mechanisms of RA effects, we determined the interaction between nuclear factor (NF)-κB and RA signaling. HG induced a sustained phosphorylation of IKK/IκBα and transcriptional activation of NF-κB in cardiomyocytes. Activated NF-κB signaling has an important role in HG-induced cardiomyocyte apoptosis and gene expression of interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1). All-trans RA (ATRA) and LGD1069, through activation of RAR/RXR-mediated signaling, inhibited the HG-mediated effects in cardiomyocytes. The inhibitory effect of RA on NF-κB activation was mediated through inhibition of IKK/IκBα phosphorylation. ATRA and LGD1069 treatment promoted protein phosphatase 2A (PP2A) activity, which was significantly suppressed by HG stimulation. The RA effects on IKK and IκBα were blocked by okadaic acid or silencing the expression of PP2Ac-subunit, indicating that the inhibitory effect of RA on NF-κB is regulated through activation of PP2A and subsequent dephosphorylation of IKK/IκBα. Moreover, ATRA and LGD1069 reversed the decreased PP2A activity and inhibited the activation of IKK/IκBα and gene expression of MCP-1, IL-6, and TNF-α in the hearts of Zucker diabetic fatty rats. In summary, our findings suggest that the suppressed activation of PP2A contributed to sustained activation of NF-κB in HG-stimulated cardiomyocytes; and that the protective effect of RA on hyperglycemia-induced cardiomyocyte apoptosis and inflammatory responses is partially regulated through activation of PP2A and suppression of NF-κB-mediated signaling and downstream targets.
Collapse
Affiliation(s)
- Irina T Nizamutdinova
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center, Temple, Texas 76504, USA
| | | | | | | | | | | |
Collapse
|
78
|
Nielsen R, Nørrelund H, Kampmann U, Bøtker HE, Møller N, Wiggers H. Effect of acute hyperglycemia on left ventricular contractile function in diabetic patients with and without heart failure: two randomized cross-over studies. PLoS One 2013; 8:e53247. [PMID: 23308171 PMCID: PMC3540097 DOI: 10.1371/journal.pone.0053247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It is unknown whether changes in circulating glucose levels due to short-term insulin discontinuation affect left ventricular contractile function in type 2 diabetic patients with (T2D-HF) and without (T2D-nonHF) heart failure. MATERIALS AND METHODS In two randomized cross-over-designed trials, 18 insulin-treated type 2 diabetic patients with (Ejection Fraction (EF) 36 ± 6%, n = 10) (trial 2) and without systolic heart failure (EF 60 ± 3%, n = 8) (trial 1) were subjected to hyper- and normoglycemia for 9-12 hours on two different occasions. Advanced echocardiography, bicycle exercise tests and 6-minute hall walk distance were applied. RESULTS Plasma glucose levels differed between study arms (6.5 ± 0.8 mM vs 14.1 ± 2.6 mM (T2D-HF), 5.8 ± 0.4 mM vs 9.9 ± 2.1 mM (T2D-nonHF), p<0.001). Hyperglycemia was associated with an increase in several parameters: maximal global systolic tissue velocity (Vmax) (p<0.001), maximal mitral annulus velocity (S'max) (p<0.001), strain rate (p = 0.02) and strain (p = 0.05). Indices of increased myocardial systolic contractile function were significant in both T2D-HF (Vmax: 14%, p = 0.02; S'max: 10%, p = 0.04), T2D-nonHF (Vmax: 12%, p<0.01; S'max: 9%, p<0.001) and in post exercise S'max (7%, p = 0.049) during hyperglycemia as opposed to normoglycemia. LVEF did not differ between normo- and hyperglycemia (p = 0.17), and neither did peak exercise capacity nor catecholamine levels. Type 2 diabetic heart failure patients' 6-minute hall walk distance improved by 7% (p = 0.02) during hyperglycemia as compared with normoglycemia. CONCLUSIONS Short-term hyperglycemia by insulin discontinuation is associated with an increase in myocardial systolic contractile function in type 2 diabetic patients with and without heart failure and with a slightly prolonged walking distance in type 2 diabetic heart failure patients. (Clinicaltrials.gov identifier NCT00653510).
Collapse
Affiliation(s)
- Roni Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
79
|
Liu J, Liu Y, Chen L, Wang Y, Li J. Glucagon-Like Peptide-1 Analog Liraglutide Protects against Diabetic Cardiomyopathy by the Inhibition of the Endoplasmic Reticulum Stress Pathway. J Diabetes Res 2013; 2013:630537. [PMID: 23671882 PMCID: PMC3647568 DOI: 10.1155/2013/630537] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 12/29/2022] Open
Abstract
Aim. This study aimed to investigate whether the glucagon-like peptide-1 analog liraglutide (LIRA) can protect against diabetic cardiomyopathy and explore the related mechanism. Methods. Rats were divided into 6 groups: a nondiabetic group, diabetic cardiomyopathy rats without LIRA treatment, diabetic cardiomyopathy rats with LIRA treatment (with high-, medium-, and low-dose, resp.), and diabetic cardiomyopathy rats treated with insulin. Cardiac function was examined by echocardiography before and after treatment. The histopathology of the heart was examined with H&E staining. The mRNA levels of XBP1, ATF4, and TRAF2 were analyzed by RT-PCR, and the expression of glucose-regulated protein 78 (Grp78), enhancer-binding protein homologous protein (CHOP), caspase-3, and caspase-12 was detected by western blot. Results. LIRA strongly improved cardiac function from both echocardiographic and histopathologic analyses, but insulin only partly increased cardiac function by improving FS and LVPW values. LIRA treatment can significantly decrease the expression of XBP1, ATF4, and TRAF2 (P < 0.01). LIRA also significantly downregulates the expression of Grp78, caspase-3 (P < 0.01), CHOP, and caspase-12 (P < 0.05). Conclusions. LIRA can protect against diabetic cardiomyopathy by inactivating the ER stress pathway. The improvement in cardiac function by LIRA is independent of glucose control.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of the Endocrinology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Yu Liu
- Department of the Endocrinology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
- *Yu Liu:
| | - Li Chen
- Department of the Pharmacology, Norman Bethune Medical College, Jilin University, Changchun 130021, China
| | - Yuehui Wang
- Department of the Cardiovascular, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Junqi Li
- Department of the Endocrinology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| |
Collapse
|
80
|
Abstract
Despite our cognizance that diabetes can enhance the chances of heart failure, causes multiorgan failure,and contributes to morbidity and mortality, it is rapidly increasing menace worldwide. Less attention has been paid to alert prediabetics through determining the comprehensive predictors of diabetic cardiomyopathy (DCM) and ameliorating DCM using novel approaches. DCM is recognized as asymptomatic progressing structural and functional remodeling in the heart of diabetics, in the absence of coronary atherosclerosis and hypertension. The three major stages of DCM are: (1) early stage, where cellular and metabolic changes occur without obvious systolic dysfunction; (2) middle stage, which is characterized by increased apoptosis, a slight increase in left ventricular size, and diastolic dysfunction and where ejection fraction (EF) is <50%; and (3) late stage, which is characterized by alteration in microvasculature compliance, an increase in left ventricular size, and a decrease in cardiac performance leading to heart failure. Recent investigations have revealed that DCM is multifactorial in nature and cellular, molecular, and metabolic perturbations predisposed and contributed to DCM. Differential expression of microRNA (miRNA), signaling molecules involved in glucose metabolism, hyperlipidemia, advanced glycogen end products, cardiac extracellular matrix remodeling, and alteration in survival and differentiation of resident cardiac stem cells are manifested in DCM. A sedentary lifestyle and high fat diet causes obesity and this leads to type 2 diabetes and DCM. However, exercise training improves insulin sensitivity, contractility of cardiomyocytes, and cardiac performance in type 2 diabetes. These findings provide new clues to diagnose and mitigate DCM. This review embodies developments in the field of DCM with the aim of elucidating the future perspectives of predictors and prevention of DCM.
Collapse
Affiliation(s)
| | | | - Paras K Mishra
- Correspondence: Paras Kumar Mishra, Department of Physiology and Biophysics, School of Medicine, 500 S Preston Street, HSC-A Room 1216, University of Louisville, Louisville, KY 40202, USA, Tel +1 502 852 3627, Fax +1 502 852 6239, Email
| |
Collapse
|
81
|
Abstract
The term diabetic cardiomyopathy was initially introduced in the 1980s when evidence was found that diabetes leads to a distinct cardiomyopathy, independent of coronary artery disease or hypertension. The detection of diabetic cardiomyopathy using echocardiography is challenging because no pathognomonic signs exist; however, it is the merit especially of the newer echocardiographic techniques, such as deformation imaging, that it is now possible to describe the morphology and function of diabetic hearts. Unfortunately, no long-term echocardiography studies are available describing disease progression in detail. Therefore, staging and differential diagnosis of diabetic cardiomyopathy remains challenging. This review tries to fill this gap by presenting a possible echocardiographic staging algorithm. Early stages of diabetic cardiomyopathy are marked by a deterioration of longitudinal systolic function and a compensative elevated radial function. Diastolic dysfunction is another early sign. When the disease progresses the functional deterioration is accompanied by morphological changes, such as left ventricular concentric hypertrophy and fibrosis. End stage disease is characterized by reduced ejection fraction and ventricular dilatation. Very late stage can mimic dilative cardiomyopathy.
Collapse
|
82
|
|
83
|
Abstract
Diabetes mellitus (DM) and congestive heart failure (HF) commonly coexist in the same patient, and the presence of DM in HF patients is associated with increased adverse events compared with patients without DM. Recent guidelines regarding glycemic control stress individualization of glycemic therapy based on patient comorbid conditions and potential adverse effects of medical therapy. This balance in glycemic control may be particularly relevant in patients with DM and HF. In this review, we address data regarding the influence that certain HF medications may have on glycemic control. Despite potential modest changes in glycemic control, clinical benefits of proven pharmacologic HF therapies extend to patients with DM and HF. In addition, we review potential benefits and challenges associated with commonly used glycemic medications in HF patients. Finally, recent data and controversies on optimal glycemic targets in HF patients are discussed. Given the large number of patients with DM and HF and the health burden of these conditions, much needed future work is necessary to define the optimal glycemic treatment in HF patients with DM.
Collapse
Affiliation(s)
- Saifullah Nasir
- Winters Center for Heart Failure Research, and Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
84
|
Mohammed SF, Borlaug BA, Roger VL, Mirzoyev SA, Rodeheffer RJ, Chirinos JA, Redfield MM. Comorbidity and ventricular and vascular structure and function in heart failure with preserved ejection fraction: a community-based study. Circ Heart Fail 2012; 5:710-9. [PMID: 23076838 DOI: 10.1161/circheartfailure.112.968594] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients with heart failure and preserved ejection fraction (HFpEF) display increased adiposity and multiple comorbidities, factors that in themselves may influence cardiovascular structure and function. This has sparked debate as to whether HFpEF represents a distinct disease or an amalgamation of comorbidities. We hypothesized that fundamental cardiovascular structural and functional alterations are characteristic of HFpEF, even after accounting for body size and comorbidities. METHODS AND RESULTS Comorbidity-adjusted cardiovascular structural and functional parameters scaled to independently generated and age-appropriate allometric powers were compared in community-based cohorts of HFpEF patients (n=386) and age/sex-matched healthy n=193 and hypertensive, n=386 controls. Within HFpEF patients, body size and concomitant comorbidity-adjusted cardiovascular structural and functional parameters and survival were compared in those with and without individual comorbidities. Among HFpEF patients, comorbidities (obesity, anemia, diabetes mellitus, and renal dysfunction) were each associated with unique clinical, structural, functional, and prognostic profiles. However, after accounting for age, sex, body size, and comorbidities, greater concentric hypertrophy, atrial enlargement and systolic, diastolic, and vascular dysfunction were consistently observed in HFpEF compared with age/sex-matched normotensive and hypertensive. CONCLUSIONS Comorbidities influence ventricular-vascular properties and outcomes in HFpEF, yet fundamental disease-specific changes in cardiovascular structure and function underlie this disorder. These data support the search for mechanistically targeted therapies in this disease.
Collapse
Affiliation(s)
- Selma F Mohammed
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Liu JW, Liu D, Cui KZ, Xu Y, Li YB, Sun YM, Su Y. Recent advances in understanding the biochemical and molecular mechanism of diabetic cardiomyopathy. Biochem Biophys Res Commun 2012; 427:441-3. [PMID: 22995317 DOI: 10.1016/j.bbrc.2012.09.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/08/2012] [Indexed: 02/01/2023]
Abstract
Cardiovascular complications account for significant morbidity and mortality in the diabetic population. Diabetic cardiomyopathy (DCM), a prominent cardiovascular complication, has been recognized as a microvascular disease that may lead to heart failure. During the past few decades, research progress has been made in investigating the pathophysiology of the disease; however, the exact molecular mechanism has not been elucidated, making therapeutic a difficult task. In this review article, we have discussed a number of diabetes-induced metabolites such as glucose, advanced glycation end products, protein kinase C, free fatty acid and oxidative stress and other related factors that are implicated in the pathophysiology of the DCM. An understanding of the biochemical and molecular changes especially early in the DCM may lead to new and effective therapies toward prevention and amelioration of DCM, which is important for the millions of individuals who already have or are likely to develop the disease before a cure becomes available.
Collapse
Affiliation(s)
- Jiang-Wen Liu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | | | |
Collapse
|
86
|
He X, Ma Q. Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. Mol Pharmacol 2012; 82:887-97. [PMID: 22869588 DOI: 10.1124/mol.112.081133] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor activated by a range of oxidants and electrophiles. The transcriptional response to endogenous oxidative cues by Nrf2 plays an important role in mammalian redox physiology and oxidative pathology. Hyperglycemia induces oxidative stress in the heart where it leads to apoptosis and ultimately cardiomyopathy. Here we investigated the mechanism by which Nrf2 suppresses oxidative stress in diabetic mouse heart. Knockout (KO) of Nrf2 induced oxidative stress and apoptosis in KO heart; diabetes further increased oxidative damage. A pathway-focused gene array revealed that Nrf2 controls the expression of 24 genes in the heart, including the gene encoding thioredoxin-interacting protein (TXNIP). Nrf2 suppressed the basal expression of Txnip in the heart and blocked induction of Txnip by high glucose by binding to an antioxidant response element (ARE) (-1286 to -1276) of the Txnip promoter. Binding of Nrf2 to ARE also suppressed the binding of MondoA to the carbohydrate response element with or without high glucose. TXNIP promoted reactive oxygen species production and apoptosis by inhibiting thioredoxin. On the other hand, Nrf2 boosted thioredoxin activity by inhibiting Txnip. The findings revealed, for the first time, that Nrf2 is a key gatekeeper of Txnip transcription, suppressing both its basal expression and MondoA-driven induction to control the thioredoxin redox signaling in diabetes.
Collapse
Affiliation(s)
- Xiaoqing He
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | |
Collapse
|
87
|
Zhang M, Chen L. Berberine in type 2 diabetes therapy: a new perspective for an old antidiarrheal drug? Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
88
|
Abstract
Diabetes mellitus is a risk factor for the development of coronary artery disease and chronic heart failure. When carefully screened for, diabetes or prediabetic disorders, are present in the majority of patients with clinically manifest ischaemic heart disease, and confer a major adverse impact upon morbidity and mortality. Important therapeutic modifications are required in the management of coronary artery disease and chronic heart failure associated with diabetes, and vice versa. However, despite optimal management, aided by recent landmark trials solely recruiting patients with diabetes, outcomes for patients with diabetes and heart disease remain poor. This review outlines the epidemiology, pathogenesis and management of diabetic heart disease, along with highlighting the many gaps in the evidence-base and suggesting future research priorities.
Collapse
Affiliation(s)
- B N Mercer
- Multidisciplinary Cardiovascular Research Centre, The University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
89
|
Abstract
Diabetes causes cardiomyopathy, both directly and by potentiating the effect of its common comorbidities, coronary artery disease and hypertension, on its development. With the common and growing prevalence of diabetes worldwide, diabetic cardiomyopathy is a significant public health problem. Recent research identifies both mitochondrial dysfunction and epigenetic effects as newly recognized factors in the complex pathogenesis of diabetic cardiomyopathy. Diagnostically, specialized echocardiography techniques, cardiac magnetic resonance imaging, and serologic biomarkers all appear to have promise in detecting the early stages of diabetic cardiomyopathy. Research into treatments includes both traditional diabetes and heart failure therapies, but also explores the potential of newer metabolic and anti-inflammatory agents. These recent insights provide important additions to our knowledge about diabetic cardiomyopathy, but much remains unknown.
Collapse
|
90
|
Singh AB, Guleria RS, Nizamutdinova IT, Baker KM, Pan J. High glucose-induced repression of RAR/RXR in cardiomyocytes is mediated through oxidative stress/JNK signaling. J Cell Physiol 2012; 227:2632-44. [PMID: 21882190 DOI: 10.1002/jcp.23005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biological actions of retinoids are mediated by nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). We have recently reported that decreased expression of RARα and RXRα has an important role in high glucose (HG)-induced cardiomyocyte apoptosis. However, the regulatory mechanisms of HG effects on RARα and RXRα remain unclear. Using neonatal cardiomyocytes, we found that ligand-induced promoter activity of RAR and RXR was significantly suppressed by HG. HG promoted protein destabilization and serine-phosphorylation of RARα and RXRα. Proteasome inhibitor MG132 blocked the inhibitory effect of HG on RARα and RXRα. Inhibition of intracellular reactive oxidative species (ROS) abolished the HG effect. In contrast, H(2)O(2) stimulation suppressed the expression and ligand-induced promoter activity of RARα and RXRα. HG promoted phosphorylation of ERK1/2, JNK and p38 MAP kinases, which was abrogated by an ROS inhibitor. Inhibition of JNK, but not ERK and p38 activity, reversed HG effects on RARα and RXRα. Activation of JNK by over expressing MKK7 and MEKK1, resulted in significant downregulation of RARα and RXRα. Ligand-induced promoter activity of RARα and RXRα was also suppressed by overexpression of MEKK1. HG-induced cardiomyocyte apoptosis was potentiated by activation of JNK, and prevented by all-trans retinoic acid and inhibition of JNK. Silencing the expression of RARα and RXRα activated the JNK pathway. In conclusion, HG-induced oxidative stress and activation of the JNK pathway negatively regulated expression/activation of RAR and RXR. The impaired RAR/RXR signaling and oxidative stress/JNK pathway forms a vicious circle, which significantly contributes to hyperglycemia induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Amar B Singh
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | | | | | | | | |
Collapse
|
91
|
|
92
|
He X, Ma Q. Disruption of Nrf2 Synergizes with High Glucose to Cause Heightened Myocardial Oxidative Stress and Severe Cardiomyopathy in Diabetic Mice. ACTA ACUST UNITED AC 2012; Suppl 7. [PMID: 26691239 DOI: 10.4172/2155-6156.s7-002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High glucose-induced oxidative stress is a major contributing mechanism to the development of diabetic cardiomyopathy. Nrf2 is an emerging critical regulator of cellular defense against oxidative damage. The role of Nrf2 in diabetic cardiomyopathy was investigated in vivo. Streptozotocin (STZ) induced diabetes in Nrf2 knockout (KO) mice that rapidly progressed to severe conditions with high mortality within two weeks of injection; whereas, in wild type (WT) mice, diabetes was less severe with no death. Severe myocardial lesions were observed in diabetic KO mice that had high, sublethal levels of blood glucose including: (a) irregular myocardial arrangements, myofibrillar discontinuation, and cell death; (b) reduced electron density, discontinuation of myocardial fibers, and mitochondrial damage; and (c) markedly reduced contractility of the cardiomyocytes to β-agonist stimulation. Parallel to severe cardiomyopathy, the diabetic KO hearts showed: (a) increased apoptosis as revealed by TUNEL and PARP1 cleavage assays; (b) infiltration of granulocytes and macrophages as well as fibrosis indicating robust inflammatory response; and (c) heightened oxidative stress as evidenced by increased levels of 8-hydroxydeoxyquanine, free malondialdehyde, and 3-nitrotyrosine. Increased oxidative stress in the KO hearts was attributed to decrease or loss of the basal and induced expression of Nrf2-dependent cytoprotective genes. Our findings demonstrate that loss of Nrf2 function synergizes with high glucose to cause heightened oxidative stress in the heart leading to severe diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoqing He
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA
| |
Collapse
|
93
|
Dirkx E, Schwenk RW, Glatz JFC, Luiken JJFP, van Eys GJJM. High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids 2011; 85:219-25. [PMID: 21571515 DOI: 10.1016/j.plefa.2011.04.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In response to a chronic high plasma concentration of long-chain fatty acids (FAs), the heart is forced to increase the uptake of FA at the cost of glucose. This switch in metabolic substrate uptake is accompanied by an increased presence of the FA transporter CD36 at the cardiac plasma membrane and over time results in the development of cardiac insulin resistance and ultimately diabetic cardiomyopathy. FA can interact with peroxisome proliferator-activated receptors (PPARs), which induce upregulation of the expression of enzymes necessary for their disposal through mitochondrial β-oxidation, but also stimulate FA uptake. This then leads to a further increase in FA concentration in the cytoplasm of cardiomyocytes. These metabolic changes are supposed to play an important role in the development of cardiomyopathy. Although the onset of this pathology is an increased FA utilization by the heart, the subsequent lipid overload results in an increased production of reactive oxygen species (ROS) and accumulation of lipid intermediates such as diacylglycerols (DAG) and ceramide. These compounds have a profound impact on signaling pathways, in particular insulin signaling. Over time the metabolic changes will introduce structural changes that affect cardiac contractile characteristics. The present mini-review will focus on the lipid-induced changes that link metabolic perturbation, characteristic for type 2 diabetes, with cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Ellen Dirkx
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
94
|
|
95
|
Sakakibara M, Hirashiki A, Cheng XW, Bando Y, Ohshima K, Okumura T, Funahashi H, Ohshima S, Murohara T. Association of diabetes mellitus with myocardial collagen accumulation and relaxation impairment in patients with dilated cardiomyopathy. Diabetes Res Clin Pract 2011; 92:348-55. [PMID: 21414680 DOI: 10.1016/j.diabres.2011.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 01/30/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
AIMS To assess the effects of diabetes mellitus (DM) on myocardial collagen accumulation, myocardial relaxation, and prognosis in patients with dilated cardiomyopathy (DCM). METHODS A total of 102 consecutive DCM patients with a New York Heart Association functional class of I or II were enrolled. Patients were allocated to two groups on the basis of the presence (DCM+DM group, n = 30) or absence (DCM-DM group, n = 72) of DM. Cardiac catheterization performed and left ventricular pressure were measured in all patients. The pressure half-time (T(1/2)) was determined as an index of myocardial relaxation function. Endomyocardial specimens were subjected to histological analysis. RESULTS The T(1/2) was significantly longer (P < 0.001) and the collagen volume fraction was significantly greater (P = 0.018) in the DCM + DM group than in the DCM-DM group. Multivariate analysis showed that DM was significantly associated with increased incidence of cardiac events (hazard ratio, 3.7; 95% confidence interval, 1.05 to 13.16; P = 0.03). CONCLUSIONS The prognosis of DCM patients with DM was worse than that of those without DM. Impairment of myocardial relaxation, increased myocardial fibrosis, and mitochondrial degeneration associated with DM may underlie this difference.
Collapse
Affiliation(s)
- Masaki Sakakibara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Shouwa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|