51
|
Crozier L, Foy R, Adib R, Kar A, Holt JA, Pareri AU, Valverde JM, Rivera R, Weston WA, Wilson R, Regnault C, Whitfield P, Badonyi M, Bennett LG, Vernon EG, Gamble A, Marsh JA, Staples CJ, Saurin AT, Barr AR, Ly T. CDK4/6 inhibitor-mediated cell overgrowth triggers osmotic and replication stress to promote senescence. Mol Cell 2023; 83:4062-4077.e5. [PMID: 37977118 DOI: 10.1016/j.molcel.2023.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.
Collapse
Affiliation(s)
- Lisa Crozier
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Rozita Adib
- MRC Laboratory of Medical Sciences, London, UK
| | - Ananya Kar
- Molecular Cell and Developmental Biology, School of Life Sciences, Dundee, UK
| | | | - Aanchal U Pareri
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Juan M Valverde
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Rene Rivera
- Molecular Cell and Developmental Biology, School of Life Sciences, Dundee, UK
| | | | - Rona Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Clement Regnault
- Glasgow Polyomics College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| | - Phil Whitfield
- Glasgow Polyomics College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Laura G Bennett
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Ellen G Vernon
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Amelia Gamble
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Christopher J Staples
- North West Cancer Research Institute, School of Medical and Health Sciences, Brambell Building, Deiniol Rd, Bangor LL57 2UW, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK.
| | - Alexis R Barr
- MRC Laboratory of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Tony Ly
- Molecular Cell and Developmental Biology, School of Life Sciences, Dundee, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Glasgow Polyomics College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
52
|
Foy R, Crozier L, Pareri AU, Valverde JM, Park BH, Ly T, Saurin AT. Oncogenic signals prime cancer cells for toxic cell overgrowth during a G1 cell cycle arrest. Mol Cell 2023; 83:4047-4061.e6. [PMID: 37977117 DOI: 10.1016/j.molcel.2023.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
CDK4/6 inhibitors are remarkable anti-cancer drugs that can arrest tumor cells in G1 and induce their senescence while causing only relatively mild toxicities in healthy tissues. How they achieve this mechanistically is unclear. We show here that tumor cells are specifically vulnerable to CDK4/6 inhibition because during the G1 arrest, oncogenic signals drive toxic cell overgrowth. This overgrowth causes permanent cell cycle withdrawal by either preventing progression from G1 or inducing genotoxic damage during the subsequent S-phase and mitosis. Inhibiting or reverting oncogenic signals that converge onto mTOR can rescue this excessive growth, DNA damage, and cell cycle exit in cancer cells. Conversely, inducing oncogenic signals in non-transformed cells can drive these toxic phenotypes and sensitize the cells to CDK4/6 inhibition. Together, this demonstrates that cell cycle arrest and oncogenic cell growth is a synthetic lethal combination that is exploited by CDK4/6 inhibitors to induce tumor-specific toxicity.
Collapse
Affiliation(s)
- Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Lisa Crozier
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Aanchal U Pareri
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Juan Manuel Valverde
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tony Ly
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
53
|
Nelli F, Fabbri A, Botticelli A, Giannarelli D, Marrucci E, Fiore C, Virtuoso A, Berrios JRG, Scagnoli S, Pisegna S, Cirillo A, Panichi V, Massari A, Silvestri MA, Ruggeri EM. Immune responses and clinical outcomes following the third dose of SARS-CoV-2 mRNA-BNT162b2 vaccine in advanced breast cancer patients receiving targeted therapies: a prospective study. Front Oncol 2023; 13:1280416. [PMID: 38023235 PMCID: PMC10662103 DOI: 10.3389/fonc.2023.1280416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Metastatic breast cancer patients are the most prevalent oncology population with advanced disease facing COVID-19 pandemic. Immune responses after mRNA-based vaccination during treatment with CDK4/6 inhibitors or HER2-directed agents remain unclear. We conducted a prospective analysis to elucidate changes in antibody titers and lymphocyte counts following full course of mRNA-BNT162b2 (tozinameran) vaccination in recipients undergoing these targeted therapies. Methods Patients who had received a booster dosing and had been treated for at least 6 months were eligible. Antibody titers against SARS-CoV-2 spike protein were measured at four subsequent time points. Immunophenotyping of circulating lymphocytes was performed before the third dose of tozinameran and four weeks later to quantify the absolute counts of CD3+CD4+ T-helper cells, CD3+CD8+ T-cytotoxic cells, CD19+ B cells, and CD56+CD16+ NK cells. We also assessed the incidence of breakthrough infections and investigated whether immune changes affect time-to-treatment failure (TTF) after booster vaccination. Results The current analysis included 69 patients, of whom 38 (55%) and 31 (45%) were being treated with CDK4/6 inhibitors and HER2-targeted therapies, respectively. All participants received a third dose of tozinameran between September 23 and October 7, 2021. Multivariate analysis revealed that CDK4/6 inhibition predicted a significantly impaired humoral response after the booster dose. This detrimental effect was also evident for T-helper cell counts before the third immunization, but it disappeared in the subsequent evaluation. After a median follow-up of 22.3 months, we observed 19 (26%) cases of COVID-19 outbreaks, all experiencing favorable clinical outcomes. Univariate analysis showed a significant association between the onset of SARS-CoV-2 infections and the use of CDK4/6 inhibitors, as well as with an impaired antibody and T-helper cell response. Only the last two covariates remained independent predictors after multivariate testing. Dynamic variations in antibody titers and T-helper cell counts did not affect TTF in multivariate regression analysis. Conclusions Our results confirm that the immune response to tozinameran is impaired by CDK4/6 inhibitors, increasing the odds of breakthrough infections despite the third vaccine dose. Current evidence recommends maintaining efforts to provide booster immunizations to the most vulnerable cancer patients, including those with advanced breast cancer undergoing CDK4/6 inhibition.
Collapse
Affiliation(s)
- Fabrizio Nelli
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Agnese Fabbri
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Diana Giannarelli
- Biostatistics Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Eleonora Marrucci
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Cristina Fiore
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Antonella Virtuoso
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Julio Rodrigo Giron Berrios
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Simone Scagnoli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Simona Pisegna
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Alessio Cirillo
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Valentina Panichi
- Department of Oncology and Hematology, Cytofluorimetry Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Annalisa Massari
- Department of Oncology and Hematology, Pathology Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Maria Assunta Silvestri
- Department of Oncology and Hematology, Microbiology and Virology Unit, Central Hospital of Belcolle, Viterbo, Italy
| | - Enzo Maria Ruggeri
- Department of Oncology and Hematology, Medical Oncology and Breast Unit, Central Hospital of Belcolle, Viterbo, Italy
| |
Collapse
|
54
|
Pita JM, Raspé E, Coulonval K, Decaussin-Petrucci M, Tarabichi M, Dom G, Libert F, Craciun L, Andry G, Wicquart L, Leteurtre E, Trésallet C, Marlow LA, Copland JA, Durante C, Maenhaut C, Cavaco BM, Dumont JE, Costante G, Roger PP. CDK4 phosphorylation status and rational use for combining CDK4/6 and BRAF/MEK inhibition in advanced thyroid carcinomas. Front Endocrinol (Lausanne) 2023; 14:1247542. [PMID: 37964967 PMCID: PMC10641312 DOI: 10.3389/fendo.2023.1247542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Background CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.
Collapse
Affiliation(s)
- Jaime M. Pita
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Katia Coulonval
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Geneviève Dom
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- BRIGHTCore, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Tumor Bank of the Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Andry
- Department of Head & Neck and Thoracic Surgery, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Wicquart
- Tumorothèque du Groupement de Coopération Sanitaire-Centre Régional de Référence en Cancérologie (C2RC) de Lille, Lille, France
| | - Emmanuelle Leteurtre
- Department of Pathology, Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Inserm, Centre Hospitalo-Universitaire (CHU) Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christophe Trésallet
- Department of General and Endocrine Surgery - Pitié-Salpêtrière Hospital, Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
- Department of Digestive, Bariatric and Endocrine Surgery - Avicenne University Hospital, Paris Nord - Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Laura A. Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Branca M. Cavaco
- Molecular Endocrinology Group, Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Costante
- Departments of Endocrinology and Medical Oncology, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
55
|
Zhu W, Zhang YI, Zhou S, Kai Y, Zhang YQ, Peng C, Li Z, Mughal M, Ma J, Li S, Ma C, Shen M, Hall M. O-GlcNAcylation of MITF regulates its activity and CDK4/6 inhibitor resistance in breast cancer. RESEARCH SQUARE 2023:rs.3.rs-3377962. [PMID: 37886470 PMCID: PMC10602086 DOI: 10.21203/rs.3.rs-3377962/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) play a pivotal role in cell cycle and cancer development. Targeting CDK4/6 has demonstrated promising effects against breast cancer. However, resistance to CDK4/6 inhibitors (CDK4/6i), such as palbociclib, remains a substantial challenge in clinical settings. Using high-throughput combinatorial drug screening and genomic sequencing, we found that the microphthalmia-associated transcription factor (MITF) is activated via O-GlcNAcylation by O-GlcNAc transferase (OGT) in palbociclib-resistant breast cancer cells and tumors; O-GlcNAcylation of MITF at Serine 49 enhanced its interaction with importin α/β, thus promoting its translocation to nuclei, where it suppressed palbociclib-induced senescence; inhibition of MITF or its O-GlcNAcylation re-sensitized resistant cells to palbociclib. Remarkably, clinical studies confirmed the activation of MITF in tumors from patients who are palbociclib-resistant or undergoing palbociclib treatment. Collectively, our studies shed light on a novel mechanism regulating palbociclib-resistance, and present clinical evidence for developing therapeutic approaches to treat CDK4/6i-resistant breast cancer patients.
Collapse
Affiliation(s)
- Wenge Zhu
- School of medicine and health science, George Washington University
| | | | - Shuyan Zhou
- School of medicine and health science, George Washington University
| | - Yan Kai
- School of medicine and health science, George Washington University
| | - Ya-Qin Zhang
- National Center for Advancing Translational Sciences
| | - Changmin Peng
- School of medicine and health science, George Washington University
| | | | - Muhammad Mughal
- School of medicine and health science, George Washington University
| | - Junfeng Ma
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center
| | | | | | | | - Matthew Hall
- National Center for Advancing Translational Sciences, National Institutes of Health
| |
Collapse
|
56
|
Wingate HF, Keyomarsi K. Distinct Mechanisms of Resistance to CDK4/6 Inhibitors Require Specific Subsequent Treatment Strategies: One Size Does Not Fit All. Cancer Res 2023; 83:3165-3167. [PMID: 37779425 DOI: 10.1158/0008-5472.can-23-2608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
Cyclin-dependent kinase (CDK) 4/6 inhibitors have transformed the treatment landscape of patients with hormone receptor-positive breast cancers. However, despite improvements in clinical outcomes, the approximately 70% of patients with tumors that are not intrinsically resistant to a CDK4/6 inhibitor still ultimately acquire resistance, which leads to a dilemma for clinicians when deciding which treatment to offer patients when they demonstrate disease progression on a CDK4/6 inhibitor. As such, many groups have sought to understand the mechanisms of resistance to CDK4/6 inhibitors, mostly focusing on genetic alterations associated with resistance. Though several recurrent mutations have been described, they are not consistent enough to guide clinical practice or generate novel rational treatment options. Two recent publications have used transcriptomic analysis to unravel distinct mechanisms driving resistance to individual CDK4/6 inhibitors and in doing so have identified biomarkers that could potentially help identify the next course of treatment for patients following disease progression.
Collapse
Affiliation(s)
- Hannah F Wingate
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
57
|
Gomes I, Abreu C, Costa L, Casimiro S. The Evolving Pathways of the Efficacy of and Resistance to CDK4/6 Inhibitors in Breast Cancer. Cancers (Basel) 2023; 15:4835. [PMID: 37835528 PMCID: PMC10571967 DOI: 10.3390/cancers15194835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
The approval of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) has remarkably improved the survival outcomes of patients with advanced hormone receptor-positive (HR+) breast cancer (BC), becoming the new standard of care treatment in these patients. Despite the efficacy of this therapeutic combination, intrinsic and acquired resistance inevitably occurs and represents a major clinical challenge. Several mechanisms associated with resistance to CDK4/6i have been identified, including both cell cycle-related and cell cycle-nonspecific mechanisms. This review discusses new insights underlying the mechanisms of action of CDK4/6i, which are more far-reaching than initially thought, and the currently available evidence of the mechanisms of resistance to CDK4/6i in BC. Finally, it highlights possible treatment strategies to improve CDK4/6i efficacy, summarizing the most relevant clinical data on novel combination therapies involving CDK4/6i.
Collapse
Affiliation(s)
- Inês Gomes
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Catarina Abreu
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Luis Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
58
|
Gureghian V, Herbst H, Kozar I, Mihajlovic K, Malod-Dognin N, Ceddia G, Angeli C, Margue C, Randic T, Philippidou D, Nomigni MT, Hemedan A, Tranchevent LC, Longworth J, Bauer M, Badkas A, Gaigneaux A, Muller A, Ostaszewski M, Tolle F, Pržulj N, Kreis S. A multi-omics integrative approach unravels novel genes and pathways associated with senescence escape after targeted therapy in NRAS mutant melanoma. Cancer Gene Ther 2023; 30:1330-1345. [PMID: 37420093 PMCID: PMC10581906 DOI: 10.1038/s41417-023-00640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Therapy Induced Senescence (TIS) leads to sustained growth arrest of cancer cells. The associated cytostasis has been shown to be reversible and cells escaping senescence further enhance the aggressiveness of cancers. Chemicals specifically targeting senescent cells, so-called senolytics, constitute a promising avenue for improved cancer treatment in combination with targeted therapies. Understanding how cancer cells evade senescence is needed to optimise the clinical benefits of this therapeutic approach. Here we characterised the response of three different NRAS mutant melanoma cell lines to a combination of CDK4/6 and MEK inhibitors over 33 days. Transcriptomic data show that all cell lines trigger a senescence programme coupled with strong induction of interferons. Kinome profiling revealed the activation of Receptor Tyrosine Kinases (RTKs) and enriched downstream signaling of neurotrophin, ErbB and insulin pathways. Characterisation of the miRNA interactome associates miR-211-5p with resistant phenotypes. Finally, iCell-based integration of bulk and single-cell RNA-seq data identifies biological processes perturbed during senescence and predicts 90 new genes involved in its escape. Overall, our data associate insulin signaling with persistence of a senescent phenotype and suggest a new role for interferon gamma in senescence escape through the induction of EMT and the activation of ERK5 signaling.
Collapse
Affiliation(s)
- Vincent Gureghian
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Hailee Herbst
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Ines Kozar
- Laboratoire National de Santé, Dudelange, Luxembourg
| | | | | | - Gaia Ceddia
- Barcelona Supercomputing Center, 08034, Barcelona, Spain
| | - Cristian Angeli
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Tijana Randic
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Milène Tetsi Nomigni
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Ahmed Hemedan
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Leon-Charles Tranchevent
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mark Bauer
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Apurva Badkas
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Arnaud Muller
- LuxGen, TMOH and Bioinformatics platform, Data Integration and Analysis unit, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Fabrice Tolle
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Nataša Pržulj
- Barcelona Supercomputing Center, 08034, Barcelona, Spain
- Department of Computer Science, University College London, London, WC1E 6BT, UK
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg.
| |
Collapse
|
59
|
Wang X, Shi W, Wang X, Lu JJ, He P, Zhang H, Chen X. Nifuroxazide boosts the anticancer efficacy of palbociclib-induced senescence by dual inhibition of STAT3 and CDK2 in triple-negative breast cancer. Cell Death Discov 2023; 9:355. [PMID: 37752122 PMCID: PMC10522654 DOI: 10.1038/s41420-023-01658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Though palbociclib, a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor has been approved for treating breast cancer, two major clinical challenges remain: (i) Triple-negative breast cancer (TNBC) appears to be more resistant to palbociclib, and (ii) Palbociclib-induced senescence-associated secretory phenotype (SASP) has a pro-tumorigenic function. Here we report that combining palbociclib with the STAT3 inhibitor nifuroxazide uncouples SASP production from senescence-associated cell cycle exit. Moreover, we identified nifuroxazide as a CDK2 inhibitor that synergistically promotes palbociclib-induced growth arrest and senescence in TNBC cells. In vitro, the combination of nifuroxazide with palbociclib further inhibited the TNBC cell proliferation and enhanced palbociclib-induced cell cycle arrest and senescence. The modulation of palbociclib-induced SASP by nifuroxazide was associated with the reduction of phosphorylated-STAT3. Nifuroxazide also blocks SASP-dependent cancer cell migration. Furthermore, thermal shift assay and molecular docking of nifuroxazide with STAT3 and CDK2 revealed that it binds to their active sites and acts as a potent dual inhibitor. In vivo, the combination of nifuroxazide with palbociclib suppressed 4T1 tumor growth and lung metastasis. Our data suggest that nifuroxazide enhances the anticancer effects of palbociclib in TNBC by uncoupling SASP production from senescence-associated cell cycle exit and inhibiting CDK2 to promote tumor senescence.
Collapse
Affiliation(s)
- Xianzhe Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ping He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongjie Zhang
- Biological Imaging and Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
60
|
Tangudu NK, Buj R, Wang H, Wang J, Cole AR, Uboveja A, Fang R, Amalric A, Sajjakulnukit P, Lyons MA, Cooper K, Hempel N, Snyder NW, Lyssiotis CA, Chandran UR, Aird KM. De novo purine metabolism is a metabolic vulnerability of cancers with low p16 expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549149. [PMID: 37503050 PMCID: PMC10369956 DOI: 10.1101/2023.07.15.549149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. Whether other nucleotide metabolic genes and pathways are affected by p16/CDKN2A loss and if these can be specifically targeted in p16/CDKN2A-low tumors has not been previously explored. Using CRISPR KO libraries in multiple isogenic human and mouse melanoma cell lines, we determined that many nucleotide metabolism genes are negatively enriched in p16/CDKN2A knockdown cells compared to controls. Indeed, many of the genes that are required for survival in the context of low p16/CDKN2A expression based on our CRISPR screens are upregulated in p16 knockdown melanoma cells and those with endogenously low CDKN2A expression. We determined that cells with low p16/Cdkn2a expression are sensitive to multiple inhibitors of de novo purine synthesis, including anti-folates. Tumors with p16 knockdown were more sensitive to the anti-folate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2A-low tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Raquel Buj
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hui Wang
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jiefei Wang
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Aidan R. Cole
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Apoorva Uboveja
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Richard Fang
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Amandine Amalric
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Maureen A. Lyons
- Genomics Facility UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kristine Cooper
- Biostatistics Facility UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Uma R. Chandran
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
61
|
Martins V, Jesus M, Pereira L, Monteiro C, Duarte AP, Morgado M. Hematological Events Potentially Associated with CDK4/6 Inhibitors: An Analysis from the European Spontaneous Adverse Event Reporting System. Pharmaceuticals (Basel) 2023; 16:1340. [PMID: 37895811 PMCID: PMC10610381 DOI: 10.3390/ph16101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors are a recent targeted therapy approved for patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2 negative (HER2-) advanced breast cancer. Abemaciclib, palbociclib and ribociclib demonstrated great efficacy and safety during clinical studies. However, differences in their adverse-event profiles have been observed. This work aims to describe the suspected adverse drug reactions (ADRs), such as leukopenia and thrombocytopenia, reported for each CDK4/6 inhibitor in the EudraVigilance (EV) database. Data on individual case safety reports (ICSRs) were obtained by accessing the European spontaneous reporting system via the EV website. Information on concomitant drug therapy, including fulvestrant, letrozole, anastrozole and exemestane, was also analyzed. A total of 1611 ICSRs were collected from the EV database. Most reports of palbociclib and ribociclib were classified as serious cases for both suspected leukopenia and thrombocytopenia ADRs. However, most patients had their leukopenia and thrombocytopenia recovered/resolved. On the contrary, reports of abemaciclib were mostly characterized as non-serious cases. Abemaciclib and palbociclib were often combined with fulvestrant, while ribociclib was generally associated with letrozole. Pharmacovigilance studies are crucial for the early identification of potential ADRs and to better differentiate the toxicity profile of the different CDK4/6 inhibitors, particularly in a real-world setting.
Collapse
Affiliation(s)
- Vera Martins
- Health Sciences Faculty, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal; (V.M.); (M.J.); (C.M.); (A.P.D.)
| | - Mafalda Jesus
- Health Sciences Faculty, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal; (V.M.); (M.J.); (C.M.); (A.P.D.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
| | - Luísa Pereira
- CMA-UBI, Centre of Mathematics and Applications, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal;
| | - Cristina Monteiro
- Health Sciences Faculty, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal; (V.M.); (M.J.); (C.M.); (A.P.D.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- UFBI—Pharmacovigilance Unit of Beira Interior, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Ana Paula Duarte
- Health Sciences Faculty, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal; (V.M.); (M.J.); (C.M.); (A.P.D.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- UFBI—Pharmacovigilance Unit of Beira Interior, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Manuel Morgado
- Health Sciences Faculty, University of Beira Interior (FCS-UBI), 6200-506 Covilhã, Portugal; (V.M.); (M.J.); (C.M.); (A.P.D.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Pharmaceutical Services, University Hospital Center of Cova da Beira, 6200-251 Covilhã, Portugal
| |
Collapse
|
62
|
Stanciu IM, Parosanu AI, Nitipir C. An Overview of the Safety Profile and Clinical Impact of CDK4/6 Inhibitors in Breast Cancer-A Systematic Review of Randomized Phase II and III Clinical Trials. Biomolecules 2023; 13:1422. [PMID: 37759823 PMCID: PMC10526227 DOI: 10.3390/biom13091422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6is) have transformed the treatment of hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer over the last decade. These inhibitors are currently established as first- and second-line systemic treatment choices for both endocrine-sensitive and -resistant breast cancer populations alongside endocrine therapy (ET) or monotherapy. Data on targeted therapy continue to mature, and the number of publications has been constantly rising. Although these drugs have been demonstrated to prolong overall survival (as well as progression-free survival (PFS) in breast cancer patients), changing the paradigm of all current knowledge, they also cause important adverse events (AEs). This review provides the latest summary and update on the safety profile of the three CDK4/6 inhibitors, as it appears from all major phase II and III randomized clinical trials regarding palbociclib, ribociclib, and abemaciclib, including the most relevant 15 clinical trials.
Collapse
Affiliation(s)
- Ioana-Miruna Stanciu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (I.-M.S.)
- Department of Medical Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Andreea Ioana Parosanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (I.-M.S.)
- Department of Medical Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cornelia Nitipir
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (I.-M.S.)
- Department of Medical Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
63
|
Lee JS, Hackbart H, Cui X, Yuan Y. CDK4/6 Inhibitor Resistance in Hormone Receptor-Positive Metastatic Breast Cancer: Translational Research, Clinical Trials, and Future Directions. Int J Mol Sci 2023; 24:11791. [PMID: 37511548 PMCID: PMC10380517 DOI: 10.3390/ijms241411791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of CDK4/6 inhibitors, such as palbociclib, ribociclib, and abemaciclib, has revolutionized the treatment landscape for hormone receptor-positive breast cancer. These agents have demonstrated significant clinical benefits in terms of both progression-free survival and overall survival. However, resistance to CDK4/6 inhibitors remains a challenge, limiting their long-term efficacy. Understanding the complex mechanisms driving resistance is crucial for the development of novel therapeutic strategies and the improvement of patient outcomes. Translational research efforts, such as preclinical models and biomarker studies, offer valuable insight into resistance mechanisms and may guide the identification of novel combination therapies. This review paper aims to outline the reported mechanisms underlying CDK4/6 inhibitor resistance, drawing insights from both clinical data and translational research in order to help direct the future of treatment for hormone receptor-positive metastatic breast cancer.
Collapse
Affiliation(s)
- Jin Sun Lee
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hannah Hackbart
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yuan Yuan
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
64
|
Zhang S, Xu Q, Sun W, Zhou J, Zhou J. Immunomodulatory effects of CDK4/6 inhibitors. Biochim Biophys Acta Rev Cancer 2023; 1878:188912. [PMID: 37182667 DOI: 10.1016/j.bbcan.2023.188912] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
The dysregulation of the cell cycle is one of the hallmarks of cancer. Cyclin-dependent kinase 4 (CDK4) and CDK6 play crucial roles in regulating cell cycle and other cellular functions. CDK4/6 inhibitors have achieved great success in treating breast cancers and are currently being tested extensively in other tumor types as well. Accumulating evidence suggests that CDK4/6 inhibitors exert antitumor effects through immunomodulation aside from cell cycle arrest. Here we outline the immunomodulatory activities of CDK4/6 inhibitors, discuss the immune mechanisms of drug resistance and explore avenues to harness their immunotherapeutic potential when combined with immune checkpoint inhibitors (ICIs) or chimeric antigen receptor (CAR) T-cell therapy to improve the clinical outcomes.
Collapse
Affiliation(s)
- Shumeng Zhang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjia Sun
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
65
|
Schlam I, Giordano A, Tolaney SM. Interstitial lung disease and CDK4/6 inhibitors in the treatment of breast cancer. Expert Opin Drug Saf 2023; 22:1149-1156. [PMID: 37994878 DOI: 10.1080/14740338.2023.2288147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION CDK4/6 inhibitors have changed the treatment paradigm of many patients living with metastatic and early-stage high-risk hormone receptor (HR)-positive breast cancer. Even though patients and clinicians are aware and learning how to manage common adverse events, such as bone marrow suppression and gastrointestinal toxicities, there are less common and potentially severe adverse events, such as interstitial lung disease (ILD), that require special consideration. AREAS COVERED In this narrative review, we discuss the incidence, mechanism, and treatment of CDK4/6 inhibitor associated ILD. EXPERT OPINION CDK4/6 inhibitors in combination with endocrine therapy (ET) are standard treatment for HR-positive, HER2-negative metastatic breast cancer and for selected patients with early stage HR-positive breast cancer. Common toxicities of these medications are often controlled with dose reductions, dose interruptions, and/or prophylactic medications, such as antidiarrheals. However, there are a small subset of patients at risk for less common and potentially severe toxicities, such as ILD. Individualized risk should be considered, including underlying lung disease, thrombosis risk and drug-drug interactions, in order to counsel patients about the risk of ILD.
Collapse
Affiliation(s)
- Ilana Schlam
- Department of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Antonio Giordano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
66
|
Husseiny EM, Abulkhair HS, El-Hddad SS, Osama N, El-Zoghbi MS. Aminopyridone-linked benzimidazoles: a fragment-based drug design for the development of CDK9 inhibitors. Future Med Chem 2023; 15:1213-1232. [PMID: 37584185 DOI: 10.4155/fmc-2023-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Aim: A fragment-based design and synthesis of three novel series of aminopyridone-linked benzimidazoles as potential anticancer candidates with significant CDK9 inhibition was implemented. Materials & methods: All synthesized compounds were submitted to National Cancer Institute, 60 cell lines and seven-dose cytotoxicity toward three cancer cells. Results: Compounds 2, 4a, 4c, 4d, 6a and 8a exhibited significant cytotoxicity and selectivity with IC50 range of 7.61-57.75 μM. Regarding the mechanism either in vitro or in silico, 4a, 6a and 8a displayed potent CDK9 inhibition with IC50 value of 0.424-8.461 μM. Compound 6a arrested the cell cycle at S phase and induced apoptosis in MCF-7 cells. Conclusion: Compound 6a is a promising CDK9 inhibitor that warrants additional research for cancer treatment.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11754, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, New Damietta, 34518, Egypt
| | - Sanadelaslam Sa El-Hddad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Omar Almukhtar University, Al Bayda, 102345, Libya
| | - Nada Osama
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shibin Elkom, Menoufia, 32511, Egypt
| | - Mona S El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Koum, 32511, Egypt
| |
Collapse
|
67
|
Zeng T, Jiang S, Wang Y, Sun G, Cao J, Hu D, Wang G, Liang X, Ding J, Du J. Identification and validation of a cellular senescence-related lncRNA signature for prognostic prediction in patients with multiple myeloma. Cell Cycle 2023; 22:1434-1449. [PMID: 37227248 PMCID: PMC10281485 DOI: 10.1080/15384101.2023.2213926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, which primarily occurs in the elderly. Cellular senescence is considered to be closely associated with the occurrence and progression of malignant tumors including MM, and lncRNA can mediate the process of cellular senescence by regulating key signaling pathways such as p53/p21 and p16/RB. However, the role of cellular senescence related lncRNAs (CSRLs) in MM development has never been reported. Herein, we identified 11 CSRLs (AC004918.5, AC103858.1, AC245100.4, ACBD3-AS1, AL441992.2, ATP2A1-AS1, CCDC18-AS1, LINC00996, TMEM161B-AS1, RP11-706O15.1, and SMURF2P1) to build the CSRLs risk model, which was confirmed to be highly associated with overall survival (OS) of MM patients. We further demonstrated the strong prognostic value of the risk model in MM patients receiving different regimens, especially for those with three-drug combination of bortezomib, lenalidomide, and dexamethasone (VRd) as first-line therapy. Not only that, our risk model also excels in predicting the OS of MM patients at 1, 2, and 3 years. In order to verify the function of these CSRLs in MM, we selected the lncRNA ATP2A1-AS1 which presented the largest expression difference between high-risk groups and low-risk groups for subsequent analysis and validation. Finally, we found that down-regulation of ATP2A1-AS1 can promote cellular senescence in MM cell lines. In conclusion, the CSRLs risk model established in present study provides a novel and more accurate method for predicting MM patients' prognosis and identifies a new target for MM therapeutic intervention.
Collapse
Affiliation(s)
- Tanlun Zeng
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Sihan Jiang
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yichuan Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guanqun Sun
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jinjin Cao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guang Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Xijun Liang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Juan Du
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
68
|
Alimardan Z, Abbasi M, Hasanzadeh F, Aghaei M, Khodarahmi G, Kashfi K. Heat shock proteins and cancer: The FoxM1 connection. Biochem Pharmacol 2023; 211:115505. [PMID: 36931349 PMCID: PMC10134075 DOI: 10.1016/j.bcp.2023.115505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Heat shock proteins (Hsp) and FoxM1 have significant roles in carcinogenesis. According to their relative molecular weight, Hsps are divided into Hsp110, Hsp90, Hsp70, Hsp60, Hsp40, and small Hsps. Hsp70 can play essential functions in cancer initiation and is overexpressed in several human cancers. Hsp70, in combination with cochaperones HIP and HOP, refolds partially denatured proteins and acts as a cochaperone for Hsp90. Also, Hsp70, in combination with BAG3, regulates the FoxM1 signaling pathway. FoxM1 protein is a transcription factor of the Forkhead family that is overexpressed in most human cancers and is involved in many cancers' development features, including proliferation, migration, invasion, angiogenesis, metastasis, and resistance to apoptosis. This review discusses the Hsp70, Hsp90, and FoxM1 structure and function, the known Hsp70 cochaperones, and Hsp70, Hsp90, and FoxM1 inhibitors.
Collapse
Affiliation(s)
- Zahra Alimardan
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pharmacology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshid Hasanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmud Aghaei
- Department of Biochemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
69
|
LeVee A, Mortimer J. The Challenges of Treating Patients with Breast Cancer and Obesity. Cancers (Basel) 2023; 15:2526. [PMID: 37173991 PMCID: PMC10177120 DOI: 10.3390/cancers15092526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is defined as a body mass index (BMI) of 30 kg/m2 or more and is associated with worse outcomes in patients with breast cancer, resulting in an increased incidence of breast cancer, recurrence, and death. The incidence of obesity is increasing, with almost half of all individuals in the United States classified as obese. Patients with obesity present with unique pharmacokinetics and physiology and are at increased risk of developing diabetes mellitus and cardiovascular disease, which leads to specific challenges when treating these patients. The aim of this review is to summarize the impact of obesity on the efficacy and toxicity of systemic therapies used for breast cancer patients, describe the molecular mechanisms through which obesity can affect systemic therapies, outline the existing American Society of Clinical Oncology (ASCO) guidelines for treating patients with cancer and obesity, and highlight additional clinical considerations for treating patients with obesity and breast cancer. We conclude that further research on the biological mechanisms underlying the obesity-breast cancer link may offer new treatment strategies, and clinicals trials that focus on the treatment and outcomes of patients with obesity and all stages of breast cancer are needed to inform future treatment guidelines.
Collapse
Affiliation(s)
- Alexis LeVee
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | | |
Collapse
|
70
|
Fang YT, Yang WW, Niu YR, Sun YK. Recent advances in targeted therapy for pancreatic adenocarcinoma. World J Gastrointest Oncol 2023; 15:571-595. [PMID: 37123059 PMCID: PMC10134207 DOI: 10.4251/wjgo.v15.i4.571] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a fatal disease with a 5-year survival rate of 8% and a median survival of 6 mo. In PDAC, several mutations in the genes are involved, with Kirsten rat sarcoma oncogene (90%), cyclin-dependent kinase inhibitor 2A (90%), and tumor suppressor 53 (75%–90%) being the most common. Mothers against decapentaplegic homolog 4 represents 50%. In addition, the self-preserving cancer stem cells, dense tumor microenvironment (fibrous accounting for 90% of the tumor volume), and suppressive and relatively depleted immune niche of PDAC are also constitutive and relevant elements of PDAC. Molecular targeted therapy is widely utilized and effective in several solid tumors. In PDAC, targeted therapy has been extensively evaluated; however, survival improvement of this aggressive disease using a targeted strategy has been minimal. There is currently only one United States Food and Drug Administration-approved targeted therapy for PDAC – erlotinib, but the absolute benefit of erlotinib in combination with gemcitabine is also minimal (2 wk). In this review, we summarize current targeted therapies and clinical trials targeting dysregulated signaling pathways and components of the PDAC oncogenic process, analyze possible reasons for the lack of positive results in clinical trials, and suggest ways to improve them. We also discuss emerging trends in targeted therapies for PDAC: combining targeted inhibitors of multiple pathways. The PubMed database and National Center for Biotechnology Information clinical trial website (www.clinicaltrials.gov) were queried to identify completed and published (PubMed) and ongoing (clinicaltrials.gov) clinical trials (from 2003-2022) using the keywords pancreatic cancer and targeted therapy. The PubMed database was also queried to search for information about the pathogenesis and molecular pathways of pancreatic cancer using the keywords pancreatic cancer and molecular pathways.
Collapse
Affiliation(s)
- Yu-Ting Fang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen-Wei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ya-Ru Niu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Kun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang 065001, Hebei Province, China
| |
Collapse
|
71
|
Zhou FH, Downton T, Freelander A, Hurwitz J, Caldon CE, Lim E. CDK4/6 inhibitor resistance in estrogen receptor positive breast cancer, a 2023 perspective. Front Cell Dev Biol 2023; 11:1148792. [PMID: 37035239 PMCID: PMC10073728 DOI: 10.3389/fcell.2023.1148792] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
CDK4/6 inhibitors have become game-changers in the treatment of estrogen receptor-positive (ER+) breast cancer, and in combination with endocrine therapy are the standard of care first-line treatment for ER+/HER2-negative advanced breast cancer. Although CDK4/6 inhibitors prolong survival for these patients, resistance is inevitable and there is currently no clear standard next-line treatment. There is an urgent unmet need to dissect the mechanisms which drive intrinsic and acquired resistance to CDK4/6 inhibitors and endocrine therapy to guide the subsequent therapeutic decisions. We will review the insights gained from preclinical studies and clinical cohorts into the diverse mechanisms of CDK4/6 inhibitor action and resistance, and highlight potential therapeutic strategies in the context of CDK4/6 inhibitor resistance.
Collapse
Affiliation(s)
- Fiona H. Zhou
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Teesha Downton
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Allegra Freelander
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Joshua Hurwitz
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - C. Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
72
|
Rational design of poly-L-glutamic acid-palbociclib conjugates for pediatric glioma treatment. J Control Release 2023; 355:385-394. [PMID: 36746338 DOI: 10.1016/j.jconrel.2023.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Brain tumors represent the second most common cause of pediatric cancer death, with malignant gliomas accounting for ∼75% of pediatric deaths. Palbociclib, a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has shown promise in phase I clinical trials of pediatric patients with progressive/refractory brain tumors using the oral administration route; however, pharmacokinetic limitations and toxicity issues remain. We synthesized a family of well-defined linear and star-shaped polyglutamate (PGA)-palbociclib conjugates using redox-sensitive self-immolative linkers to overcome limitations associated with free palbociclib. Exhaustive characterization of this conjugate family provided evidence for a transition towards the formation of more organized conformational structures upon increased drug loading. We evaluated the activity of conjugates in patient-derived glioblastoma and diffuse intrinsic pontine glioma cells, which display differing reducing environments due to differential glutathione expression levels. We discovered that microenvironmental parameters and the identified conformational changes determined palbociclib release kinetics and therapeutic output; furthermore, we identified a star-shaped PGA-palbociclib conjugate with low drug loading as an optimal therapeutic approach in diffuse intrinsic pontine glioma cells.
Collapse
|
73
|
Tong J, Tan X, Hao S, Ermine K, Lu X, Liu Z, Jha A, Yu J, Zhang L. Inhibition of multiple CDKs potentiates colon cancer chemotherapy via p73-mediated DR5 induction. Oncogene 2023; 42:869-880. [PMID: 36721000 PMCID: PMC10364554 DOI: 10.1038/s41388-023-02598-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Targeting cyclin-dependent kinases (CDKs) has recently emerged as a promising therapeutic approach against cancer. However, the anticancer mechanisms of different CDK inhibitors (CDKIs) are not well understood. Our recent study revealed that selective CDK4/6 inhibitors sensitize colorectal cancer (CRC) cells to therapy-induced apoptosis by inducing Death Receptor 5 (DR5) via the p53 family member p73. In this study, we investigated if this pathway is involved in anticancer effects of different CDKIs. We found that less-selective CDKIs, including flavopiridol, roscovitine, dinaciclib, and SNS-032, induced DR5 via p73-mediated transcriptional activation. The induction of DR5 by these CDKIs was mediated by dephosphorylation of p73 at Threonine 86 and p73 nuclear translocation. Knockdown of a common target of these CDKIs, including CDK1, 2, or 9, recapitulated p73-mediated DR5 induction. CDKIs strongly synergized with 5-fluorouracil (5-FU), the most commonly used CRC chemotherapy agent, in vitro and in vivo to promote growth suppression and apoptosis, which required DR5 and p73. Together, these findings indicate p73-mediated DR5 induction as a potential tumor suppressive mechanism and a critical target engaged by different CDKIs in potentiating therapy-induced apoptosis in CRC cells. These findings help better understand the anticancer mechanisms of CDKIs and may help facilitate their clinical development and applications in CRC.
Collapse
Affiliation(s)
- Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xiao Tan
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Suisui Hao
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kaylee Ermine
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Xinyan Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Zhaojin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Anupma Jha
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
74
|
Kositza J, Nguyen J, Hong T, Mantwill K, Nawroth R. Identification of the KIF and MCM protein families as novel targets for combination therapy with CDK4/6 inhibitors in bladder cancer. Urol Oncol 2023; 41:253.e11-253.e20. [PMID: 36813612 DOI: 10.1016/j.urolonc.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023]
Abstract
CDK4/6 inhibitors have proven their potency for the treatment of cancer but only in combination with hormone or targeted therapies. The aim of this study was the identification of molecules that are involved in response mechanisms to CDK4/6 inhibitors and the development of novel combination therapies with corresponding inhibitors in bladder cancer. Genes of response to therapy and genes that confer resistance to the CDK4/6 inhibitor palbociclib were identified by performing an analysis of published literature and own published data using a CRISPR-dCas9 genome wide gain of function screen. Genes that were down-regulated upon treatment were compared with genes that confer resistance when up-regulated. Two of the top 5 genes were validated by quantitative PCR and western blotting upon treatment with palbociclib in the bladder cancer cell lines T24, RT112 and UMUC3. As inhibitors for combination therapy, we used ciprofloxacin, paprotrain, ispinesib and SR31527. Analysis of synergy was done using the "zero interaction potency" model. Cell growth was examined using sulforhodamine B staining. A list of genes that met the requirements for inclusion in the study was generated from 7 publications. Of the 5 most relevant genes, MCM6 and KIFC1 were chosen and their down-regulation upon treatment with palbociclib was confirmed by qPCR and immunoblotting. The combination of inhibitors against both, KIFC1 and MCM6 with PD resulted in a synergistic inhibition of cell growth. We have identified 2 molecular targets whose inhibition has promising potential for effective combination therapies with the CDK4/6 inhibitor palbociclib.
Collapse
Affiliation(s)
- Julian Kositza
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Nguyen
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ting Hong
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Klaus Mantwill
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
75
|
Deregulated E2F Activity as a Cancer-Cell Specific Therapeutic Tool. Genes (Basel) 2023; 14:genes14020393. [PMID: 36833320 PMCID: PMC9956157 DOI: 10.3390/genes14020393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The transcription factor E2F, the principal target of the tumor suppressor pRB, plays crucial roles in cell proliferation and tumor suppression. In almost all cancers, pRB function is disabled, and E2F activity is enhanced. To specifically target cancer cells, trials have been undertaken to suppress enhanced E2F activity to restrain cell proliferation or selectively kill cancer cells, utilizing enhanced E2F activity. However, these approaches may also impact normal growing cells, since growth stimulation also inactivates pRB and enhances E2F activity. E2F activated upon the loss of pRB control (deregulated E2F) activates tumor suppressor genes, which are not activated by E2F induced by growth stimulation, inducing cellular senescence or apoptosis to protect cells from tumorigenesis. Deregulated E2F activity is tolerated in cancer cells due to inactivation of the ARF-p53 pathway, thus representing a feature unique to cancer cells. Deregulated E2F activity, which activates tumor suppressor genes, is distinct from enhanced E2F activity, which activates growth-related genes, in that deregulated E2F activity does not depend on the heterodimeric partner DP. Indeed, the ARF promoter, which is specifically activated by deregulated E2F, showed higher cancer-cell specific activity, compared to the E2F1 promoter, which is also activated by E2F induced by growth stimulation. Thus, deregulated E2F activity is an attractive potential therapeutic tool to specifically target cancer cells.
Collapse
|
76
|
Hu Y, Li Y, Yao Z, Huang F, Cai H, Liu H, Zhang X, Zhang J. Immunotherapy: Review of the Existing Evidence and Challenges in Breast Cancer. Cancers (Basel) 2023; 15:563. [PMID: 36765522 PMCID: PMC9913569 DOI: 10.3390/cancers15030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Breast cancer (BC) is a representative malignant tumor that affects women across the world, and it is the main cause of cancer-related deaths in women. Although a large number of treatment methods have been developed for BC in recent years, the results are sometimes unsatisfying. In recent years, treatments of BC have been expanded with immunotherapy. In our article, we list some tumor markers related to immunotherapy for BC. Moreover, we introduce the existing relatively mature immunotherapy and the markers' pathogenesis are involved. The combination of immunotherapy and other therapies for BC are introduced in detail, including the combination of immunotherapy and chemotherapy, the combined use of immunosuppressants and chemotherapy drugs, immunotherapy and molecular targeted therapy. We summarize the clinical effects of these methods. In addition, this paper also makes a preliminary exploration of the combination of immunotherapy, radiotherapy, and nanotechnology for BC.
Collapse
Affiliation(s)
- Yun Hu
- Department of Breast Cancer, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yan Li
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Zhangcheng Yao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Fenglin Huang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Hongzhou Cai
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China
| | - Xiaoyi Zhang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Junying Zhang
- Department of Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
77
|
Selvaraj C. Therapeutic targets in cancer treatment: Cell cycle proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:313-342. [PMID: 37061336 DOI: 10.1016/bs.apcsb.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cancer has been linked to the uncontrolled proliferation of cells and the overexpression of cell-cycle genes. The cell cycle machinery plays a crucial role in the regulation of the apoptosis to mitosis to growth phase progression. The mechanisms of the cell cycle also play an important role in preventing DNA damage. There are multiple members of the protein kinase family that are involved in the activities of the cell cycle. Essential cyclins effectively regulate cyclin-dependent kinases (CDKs), which are themselves adversely regulated by naturally occurring CDK inhibitors. Despite the fact that various compounds can effectively block the cell cycle kinases and being investigated for their potential to fight cancer. This chapter explains the detail of cell cycle and checkpoint regulators, that are crucial to the malignant cellular process. The known CDKs inhibitors and their mechanism of action in various cancers have also been addressed as a step toward the development of a possibly novel technique for the design of new drugs against cell cycle kinase proteins.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
78
|
Mounika P, Gurupadayya B, Kumar HY, Namitha B. An Overview of CDK Enzyme Inhibitors in Cancer Therapy. Curr Cancer Drug Targets 2023; 23:603-619. [PMID: 36959160 DOI: 10.2174/1568009623666230320144713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 03/25/2023]
Abstract
The ability to address the cell cycle in cancer therapy brings up new medication development possibilities. Cyclin-dependent kinases are a group of proteins that control the progression of the cell cycle. The CDK/cyclin complexes are activated when specific CDK sites are phosphorylated. Because of their non-selectivity and severe toxicity, most first-generation CDK inhibitors (also known as pan-CDK inhibitors) have not been authorized for clinical usage. Despite this, significant progress has been made in allowing pan-CDK inhibitors to be employed in clinical settings. Pan-CDK inhibitors' toxicity and side effects have been lowered in recent years because of the introduction of combination therapy techniques. As a result of this, pan-CDK inhibitors have regained a lot of clinical potential as a combination therapy approach. The CDK family members have been introduced in this overview, and their important roles in cell cycle control have been discussed. Then, we have described the current state of CDK inhibitor research, with a focus on inhibitors other than CDK4/6. We have mentioned first-generation pan-CDKIs, flavopiridol and roscovitine, as well as second-generation CDKIs, dinaciclib, P276-00, AT7519, TG02, roniciclib, and RGB-286638, based on their research phases, clinical trials, and cancer targeting. CDKIs are CDK4/6, CDK7, CDK9, and CDK12 inhibitors. Finally, we have looked into the efficacy of CDK inhibitors and PD1/PDL1 antibodies when used together, which could lead to the development of a viable cancer treatment strategy.
Collapse
Affiliation(s)
- Peddaguravagari Mounika
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Namitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
79
|
Gupta A, Dagar G, Chauhan R, Sadida HQ, Almarzooqi SK, Hashem S, Uddin S, Macha MA, Akil ASAS, Pandita TK, Bhat AA, Singh M. Cyclin-dependent kinases in cancer: Role, regulation, and therapeutic targeting. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:21-55. [PMID: 37061333 DOI: 10.1016/bs.apcsb.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Regulated cell division is one of the fundamental phenomena which is the basis of all life on earth. Even a single base pair mutation in DNA leads to the production of the dysregulated protein that can have catastrophic consequences. Cell division is tightly controlled and orchestrated by proteins called cyclins and cyclin-dependent kinase (CDKs), which serve as licensing factors during different phases of cell division. Dysregulated cell division is one of the most important hallmarks of cancer and is commonly associated with a mutation in cyclins and CDKs along with tumor suppressor proteins. Therefore, targeting the component of the cell cycle which leads to these characteristics would be an effective strategy for treating cancers. Specifically, Cyclin-dependent kinases (CDKs) involved in cell cycle regulation have been identified to be overexpressed in many cancers. Many studies indicate that oncogenesis occurs in cancerous cells by the overactivity of different CDKs, which impact cell cycle progression and checkpoint dysregulation which is responsible for development of tumor. The development of CDK inhibitors has emerged as a promising and novel approach for cancer treatment in both solid and hematological malignancies. Some of the novel CDK inhibitors have shown remarkable results in clinical trials, such as-Ribociclib®, Palbociclib® and Abemaciclib®, which are CDK4/6 inhibitors and have received FDA approval for the treatment of breast cancer. In this chapter, we discuss the molecular mechanism through which cyclins and CDKs regulate cell cycle progression and the emergence of cyclins and CDKs as rational targets in cancer. We also discuss recent advances in developing CDK inhibitors, which have emerged as a novel class of inhibitors, and their associated toxicities in recent years.
Collapse
Affiliation(s)
- Ashna Gupta
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Gunjan Dagar
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sara K Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, United States
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
80
|
Yan C, Gao R, Gao C, Hong K, Cheng M, Liu X, Zhang Q, Zhang J. FDXR drives primary and endocrine-resistant tumor cell growth in ER+ breast cancer via CPT1A-mediated fatty acid oxidation. Front Oncol 2023; 13:1105117. [PMID: 37207154 PMCID: PMC10189134 DOI: 10.3389/fonc.2023.1105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Background The majority of breast cancers (BCs) expressing estrogen receptor (ER) have shown endocrine resistance. Our previous study demonstrated that ferredoxin reductase (FDXR) promoted mitochondrial function and ER+ breast tumorigenesis. But the underlying mechanism is not clear. Methods Liquid chromatography (LC) tandem mass spectrometry (MS/MS)-based metabolite profiling was utilized to reveal the metabolites regulated by FDXR. RNA microarray was utilized to determine the potential downstream targets of FDXR. Seahorse XF24 analyzer was performed to analyze the FAO-mediated oxygen consumption rate (OCR). Q-PCR and western blotting assays were used to measure expression levels of FDXR and CPT1A. MTS, 2D colony formation and anchorage-independent growth assays were used to evaluate the effects of FDXR or drug treatments on tumor cell growth of primary or endocrine-resistant breast cancer cells. Results We found that depletion of FDXR inhibited fatty acid oxidation (FAO) by suppressing CPT1A expression. Endocrine treatment increased the expression levels of both FDXR and CPT1A. Further, we showed that depletion of FDXR or FAO inhibitor etomoxir treatment reduced primary and endocrine-resistant breast cancer cell growth. Therapeutically, combining endocrine therapy with FAO inhibitor etomoxir synergistically inhibits primary and endocrine-resistant breast cancer cell growth. Discussion We reveal that the FDXR-CPT1A-FAO signaling axis is essential for primary and endocrine-resistant breast cancer cell growth, thus providing a potential combinatory therapy against endocrine resistance in ER+ breast cancer.
Collapse
Affiliation(s)
- Chaojun Yan
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ronghui Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chuan Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Kai Hong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Jing Zhang, ; Qing Zhang,
| | - Jing Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Jing Zhang, ; Qing Zhang,
| |
Collapse
|
81
|
Kim CG, Kim MH, Kim JH, Kim SG, Kim GM, Kim TY, Ryu WJ, Kim JY, Park HS, Park S, Cho YU, Park BW, Kim SI, Jeong J, Sohn J. On-treatment derived neutrophil-to-lymphocyte ratio and survival with palbociclib and endocrine treatment: analysis of a multicenter retrospective cohort and the PALOMA-2/3 study with immune correlates. Breast Cancer Res 2023; 25:4. [PMID: 36635767 PMCID: PMC9838072 DOI: 10.1186/s13058-022-01601-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have been established as a standard treatment for hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer (ABC); however, predictive biomarkers with translational relevance have not yet been elucidated. METHODS Data from postmenopausal women who received the CDK4/6 inhibitor palbociclib and letrozole for HR-positive, HER2-negative ABC from tertiary referral centers were analyzed (N = 221; exploratory cohort). Pre- and on-treatment neutrophil-to-lymphocyte ratio (NLR) and derived NLR (dNLR; neutrophil/[leukocyte-neutrophil]) were correlated with survival outcomes. Data from the PALOMA-2 (NCT01740427) and PALOMA-3 studies (NCT01942135) involving patients treated with endocrine treatment with or without palbociclib were also analyzed (validation cohort). Prospectively enrolled patients (N = 20) were subjected to immunophenotyping with circulating immune cells to explore the biological implications of immune cell dynamics. RESULTS In the exploratory cohort, palbociclib administration significantly reduced leukocyte, neutrophil, and lymphocyte counts on day 1 of cycle 2. Although the baseline dNLR was not significantly associated with progression-free survival (PFS), higher on-treatment dNLRs were associated with worse PFS (hazard ratio = 3.337, P < 0.001). In the PALOMA-2 validation cohort, higher on-treatment dNLRs were associated with inferior PFS in patients treated with palbociclib and letrozole (hazard ratio = 1.498, P = 0.009), and reduction in the dNLR after treatment was predictive of a survival benefit (hazard ratio = 1.555, P = 0.026). On-treatment dNLRs were also predictive of PFS following palbociclib and fulvestrant treatment in the PALOMA-3 validation cohort. Using flow cytometry analysis, we found that the CDK4/6 inhibitor prevented T cell exhaustion and diminished myeloid-derived suppressor cell frequency. CONCLUSIONS On-treatment dNLR significantly predicted PFS in patients with HR-positive, HER2-negative ABC receiving palbociclib and endocrine treatment. Additionally, we observed putative systemic immune responses elicited by palbociclib, suggesting immunologic changes upon CDK4/6 inhibitor treatment.
Collapse
Affiliation(s)
- Chang Gon Kim
- grid.15444.300000 0004 0470 5454Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Min Hwan Kim
- grid.15444.300000 0004 0470 5454Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Jee Hung Kim
- grid.15444.300000 0004 0470 5454Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea ,grid.15444.300000 0004 0470 5454Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul-Gi Kim
- grid.15444.300000 0004 0470 5454Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Gun Min Kim
- grid.15444.300000 0004 0470 5454Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Tae Yeong Kim
- grid.15444.300000 0004 0470 5454Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won-Ji Ryu
- grid.15444.300000 0004 0470 5454Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Ye Kim
- grid.15444.300000 0004 0470 5454Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Seok Park
- grid.15444.300000 0004 0470 5454Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seho Park
- grid.15444.300000 0004 0470 5454Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Up Cho
- grid.15444.300000 0004 0470 5454Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byeong Woo Park
- grid.15444.300000 0004 0470 5454Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Il Kim
- grid.15444.300000 0004 0470 5454Division of Breast Surgery, Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Jeong
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Division of Breast Surgery, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 712 Eonjuro, Gangnam-Gu, Seoul, 06273, Republic of Korea.
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
82
|
Salewski I, Henne J, Engster L, Krone P, Schneider B, Redwanz C, Lemcke H, Henze L, Junghanss C, Maletzki C. CDK4/6 blockade provides an alternative approach for treatment of mismatch-repair deficient tumors. Oncoimmunology 2022; 11:2094583. [PMID: 35845723 PMCID: PMC9278458 DOI: 10.1080/2162402x.2022.2094583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mismatch repair-deficient (dMMR) tumors show a good response toward immune checkpoint inhibitors (ICI), but developing resistance impairs patients’ outcomes. Here, we compared the therapeutic potential of an α-PD-L1 antibody with the CDK4/6 inhibitor abemaciclib in two preclinical mouse models of dMMR cancer, focusing on immune-modulatory effects of either treatment. Abemaciclib monotherapy significantly prolonged overall survival of Mlh1−/− and Msh2loxP/loxP;TgTg(Vil1-cre) mice (Mlh1−/−: 14.5 wks vs. 9.0 wks (α-PD-L1), and 3.5 wks (control); Msh2loxP/loxP;TgTg(Vil1-cre): 11.7 wks vs. 9.6 wks (α-PD-L1), and 2.0 wks (control)). The combination was not superior to either monotherapy. PET/CT imaging revealed individual response profiles, with best clinical responses seen with abemaciclib mono- and combination therapy. Therapeutic effects were accompanied by increasing numbers of tumor-infiltrating CD4+/CD8+ T-cells and lower numbers of M2-macrophages. Levels of T cell exhaustion markers and regulatory T cell counts declined. Expression analysis identified higher numbers of dendritic cells and neutrophils within tumors together with high expression of DNA damage repair genes as part of the global stress response. In Mlh1−/− tumors, abemaciclib suppressed the PI3K/Akt pathway and led to induction of Mxd4/Myc. The immune-modulatory potential of abemaciclib renders this compound ideal for dMMR patients not eligible for ICI treatment.
Collapse
Affiliation(s)
- Inken Salewski
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Julia Henne
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Leonie Engster
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Paula Krone
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Bjoern Schneider
- Institute of Pathology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Caterina Redwanz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, University of Rostock, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, Department of Cardiology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Larissa Henze
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Christian Junghanss
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Claudia Maletzki
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| |
Collapse
|
83
|
Llaurado Fernandez M, Hijmans EM, Gennissen AM, Wong NK, Li S, Wisman GBA, Hamilton A, Hoenisch J, Dawson A, Lee CH, Bittner M, Kim H, DiMattia GE, Lok CA, Lieftink C, Beijersbergen RL, de Jong S, Carey MS, Bernards R, Berns K. NOTCH Signaling Limits the Response of Low-Grade Serous Ovarian Cancers to MEK Inhibition. Mol Cancer Ther 2022; 21:1862-1874. [PMID: 36198031 PMCID: PMC9716250 DOI: 10.1158/1535-7163.mct-22-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/30/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
Low-grade serous ovarian cancer (LGSOC) is a rare subtype of epithelial ovarian cancer with high fatality rates in advanced stages due to its chemoresistant properties. LGSOC is characterized by activation of MAPK signaling, and recent clinical trials indicate that the MEK inhibitor (MEKi) trametinib may be a good treatment option for a subset of patients. Understanding MEKi-resistance mechanisms and subsequent identification of rational drug combinations to suppress resistance may greatly improve LGSOC treatment strategies. Both gain-of-function and loss-of-function CRISPR-Cas9 genome-wide libraries were used to screen LGSOC cell lines to identify genes that modulate the response to MEKi. Overexpression of MAML2 and loss of MAP3K1 were identified, both leading to overexpression of the NOTCH target HES1, which has a causal role in this process as its knockdown reversed MEKi resistance. Interestingly, increased HES1 expression was also observed in selected spontaneous trametinib-resistant clones, next to activating MAP2K1 (MEK1) mutations. Subsequent trametinib synthetic lethality screens identified SHOC2 downregulation as being synthetic lethal with MEKis. Targeting SHOC2 with pan-RAF inhibitors (pan-RAFis) in combination with MEKi was effective in parental LGSOC cell lines, in MEKi-resistant derivatives, in primary ascites cultures from patients with LGSOC, and in LGSOC (cell line-derived and patient-derived) xenograft mouse models. We found that the combination of pan-RAFi with MEKi downregulated HES1 levels in trametinib-resistant cells, providing an explanation for the synergy that was observed. Combining MEKis with pan-RAFis may provide a promising treatment strategy for patients with LGSOC, which warrants further clinical validation.
Collapse
Affiliation(s)
- Marta Llaurado Fernandez
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - E. Marielle Hijmans
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annemiek M.C. Gennissen
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nelson K.Y. Wong
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Shang Li
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - G. Bea A. Wisman
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aleksandra Hamilton
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Joshua Hoenisch
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Amy Dawson
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Cheng-Han Lee
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Madison Bittner
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Hannah Kim
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Gabriel E. DiMattia
- Mary and John Knight Translational Ovarian Cancer Research Unit, London Health Sciences Center
| | - Christianne A.R. Lok
- Center for Gynecologic Oncology Amsterdam, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mark S. Carey
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada.,Corresponding Authors: Katrien Berns, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121955. E-mail: ; and Mark S. Carey, Vancouver, British Columbia V6Z 2K8, Canada. Phone: 160-4875-4268; E-mail: ; René Bernards, Plesmanlaan 121,1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121952; E-mail:
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Corresponding Authors: Katrien Berns, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121955. E-mail: ; and Mark S. Carey, Vancouver, British Columbia V6Z 2K8, Canada. Phone: 160-4875-4268; E-mail: ; René Bernards, Plesmanlaan 121,1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121952; E-mail:
| | - Katrien Berns
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Corresponding Authors: Katrien Berns, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121955. E-mail: ; and Mark S. Carey, Vancouver, British Columbia V6Z 2K8, Canada. Phone: 160-4875-4268; E-mail: ; René Bernards, Plesmanlaan 121,1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121952; E-mail:
| |
Collapse
|
84
|
Pang J, Li H, Sheng Y. CDK4/6 inhibitor resistance: A bibliometric analysis. Front Oncol 2022; 12:917707. [PMID: 36530984 PMCID: PMC9752919 DOI: 10.3389/fonc.2022.917707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/17/2022] [Indexed: 07/22/2023] Open
Abstract
Background Cyclin-dependent kinases (CDKs) 4/6 inhibitors are a type of cell cycle regulation that prevents cell proliferation by blocking retinoblastoma protein (Rb) phosphorylation in the G1 to S phase transition. CDK 4/6 inhibitors are currently used mainly in patients with hormone receptor-positive/human epidermal growth factor receptor 2 (HER2) negative breast cancer in combination with endocrine therapy. However, primary or acquired resistance to drugs severely affect drug efficacy. Our study aims at summarizing and visualizing the current research direction and development trend of CDK4/6 inhibitor resistance to provide clinicians and research power with a summary of the past and ideas for the future. Methods The Web of Science Core Collection and PubMed was searched for all included articles on CDK4/6 inhibitor resistance for bibliometric statistics and graph plotting. The metrological software and graphing tools used were R language version 4.2.0, Bibliometrix 4.0.0, Vosviewer 1.6.18, GraphPad Prism 9, and Microsoft Excel 2019. Results A total of 1278 English-language articles related to CDK4/6 inhibitor resistance were included in the Web of Science core dataset from 1996-2022, with an annual growth rate of14.56%. In PubMed, a total of 1123 articles were counted in the statistics, with an annual growth rate of 17.41% Cancer Research is the most included journal (102/1278, 7.98%) with an impact factor of 13.312 and is the Q1 of the Oncology category of the Journal Citation Reports. Professor Malorni Luca from Italy is probably the most contributing author in the current field (Publications 21/1278, 1.64%), while Prof. Turner Nicholas C from the USA is perhaps the most authoritative new author in the field of CDK4/6 inhibitor resistance (Total Citations2584, M-index 1.429). The main research efforts in this field are currently focused on Palbociclib and Abemaciclib. Studies on drug resistance mechanisms or post-drug resistance therapies focus on MEK inhibitors and related pathways, PI3K-AKT-MTOR pathways or inhibitors, EGFR-related pathways, EGFR inhibitors, TKI inhibitors, MAPK pathways and inhibitors, and so on. Conclusion This study provides researchers with a reliable basis and guidance for finding authoritative references, understanding research trends, and mining research neglect directions.
Collapse
Affiliation(s)
| | | | - Yuan Sheng
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
85
|
Cui CH, Wu Q, Zhou HM, He H, Wang Y, Tang Z, Zhang Y, Wang X, Xiao J, Zhang H. High tyrosine threonine kinase expression predicts a poor prognosis: a potential therapeutic target for endometrial carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1352. [PMID: 36660721 PMCID: PMC9843307 DOI: 10.21037/atm-22-5783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Background As the most common female malignancy, the incidence and mortality of endometrial carcinoma (EC) continue to increase worldwide. The effects of traditional standard therapy are limited; thus, novel therapeutic strategies urgently need to be developed. We sought to provide prospective targeting insights into EC therapeutics by comprehensively examining and confirming the biological molecular characterization of EC genes. Methods The molecular characterization of EC genes was integrated and analyzed using data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) databases. The differentially expressed genes (DEGs) were identified, and the abnormal expression of some core cell-cycle proteins in the EC specimens was determined by examining and integrating the TCGA and GTEx data. The enriched signaling pathways involved in tumor progression were also examined. Results Immunohistochemical staining data from the Human Protein Atlas database showed that the differential expression levels of the cyclin dependent kinase inhibitor 2A (CDKN2A) and tyrosine threonine kinase (TTK) molecules, and the high messenger ribonucleic acid (RNA) levels of CDKN2A and TTK were associated with a poor prognosis in EC patients. High TTK expression was also significantly correlated with the tumor progression associated signaling pathways, such as the cell-cycle, nucleolus, and RNA processing pathways. The inhibition of TTK expression by a TTK inhibitor (NTRC0066-0) significantly suppressed the proliferation of the EC cells and synergistically increased the sensitivity of the EN and AN3-CA EC cell lines. Conclusions The findings suggest that the TTK inhibitor could be used in EC therapy. This study highlighted the potential predictive role of TTK molecules and showed that TTK molecules might serve as prospective targets for EC therapy.
Collapse
Affiliation(s)
- Chun-Hong Cui
- Basic Medical College, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai 10th People’s Hospital of Tongji University, Shanghai, China
| | - Hong-Mei Zhou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haiju He
- Department of Hematology, Soochow University Affiliated No. 1 People’s Hospital, Suzhou, China
| | - Yan Wang
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhendong Tang
- School of Data Science and Engineering, East China Normal University, Shanghai, China
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xue Wang
- Department of Dermatology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhang
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
86
|
Chen J, Guo B, Liu X, Zhang J, Zhang J, Fang Y, Zhu S, Wei B, Cao Y, Zhan L. Roles of N6-methyladenosine (m6A) modifications in gynecologic cancers: mechanisms and therapeutic targeting. Exp Hematol Oncol 2022; 11:98. [DOI: 10.1186/s40164-022-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/01/2022] [Indexed: 11/14/2022] Open
Abstract
AbstractUterine and ovarian cancers are the most common gynecologic cancers. N6−methyladenosine (m6A), an important internal RNA modification in higher eukaryotes, has recently become a hot topic in epigenetic studies. Numerous studies have revealed that the m6A-related regulatory factors regulate the occurrence and metastasis of tumors and drug resistance through various mechanisms. The m6A-related regulatory factors can also be used as therapeutic targets and biomarkers for the early diagnosis of cancers, including gynecologic cancers. This review discusses the role of m6A in gynecologic cancers and summarizes the recent advancements in m6A modification in gynecologic cancers to improve the understanding of the occurrence, diagnosis, treatment, and prognosis of gynecologic cancers.
Collapse
|
87
|
Chibaya L, Snyder J, Ruscetti M. Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Semin Cancer Biol 2022; 86:827-845. [PMID: 35143990 PMCID: PMC9357237 DOI: 10.1016/j.semcancer.2022.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Cancer therapies, including conventional chemotherapy, radiation, and molecularly targeted agents, can lead to tumor eradication through a variety of mechanisms. In addition to their effects on tumor cell growth and survival, these regimens can also influence the surrounding tumor-immune microenvironment in ways that ultimately impact therapy responses. A unique biological outcome of cancer therapy is induction of cellular senescence. Senescence is a damage-induced stress program that leads to both the durable arrest of tumor cells and remodeling the tumor-immune microenvironment through activation of a collection pleiotropic cytokines, chemokines, growth factors, and proteinases known as the senescence-associated secretory phenotype (SASP). Depending on the cancer context and the mechanism of action of the therapy, the SASP produced following therapy-induced senescence (TIS) can promote anti-tumor immunity that enhances therapeutic efficacy, or alternatively chronic inflammation that leads to therapy failure and tumor relapse. Thus, a deeper understanding of the mechanisms regulating the SASP and components necessary for robust anti-tumor immune surveillance in different cancer and therapy contexts are key to harnessing senescence for tumor control. Here we draw a roadmap to modulate TIS and its immune-stimulating features for cancer immunotherapy.
Collapse
Affiliation(s)
- Loretah Chibaya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jarin Snyder
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
88
|
Chen S, Li L. Degradation strategy of cyclin D1 in cancer cells and the potential clinical application. Front Oncol 2022; 12:949688. [PMID: 36059670 PMCID: PMC9434365 DOI: 10.3389/fonc.2022.949688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023] Open
Abstract
Cyclin D1 has been reported to be upregulated in several solid and hematologic tumors, promoting cancer progression. Thus, decreasing cyclin D1 by degradation could be a promising target strategy for cancer therapy. This mini review summarizes the roles of cyclin D1 in tumorigenesis and progression and its degradation strategies. Besides, we proposed an exploration of the degradation of cyclin D1 by FBX4, an F box protein belonging to the E3 ligase SKP-CUL-F-box (SCF) complex, which mediates substrate ubiquitination, as well as a postulate about the concrete combination mode of FBX4 and cyclin D1. Furthermore, we proposed a possible photodynamic therapy strategythat is based on the above concrete combination mode for treating superficial cancer.
Collapse
Affiliation(s)
- Shuyi Chen
- The Sixth Student Battalion, School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Ling Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Ling Li,
| |
Collapse
|
89
|
Koch J, Schober SJ, Hindupur SV, Schöning C, Klein FG, Mantwill K, Ehrenfeld M, Schillinger U, Hohnecker T, Qi P, Steiger K, Aichler M, Gschwend JE, Nawroth R, Holm PS. Targeting the Retinoblastoma/E2F repressive complex by CDK4/6 inhibitors amplifies oncolytic potency of an oncolytic adenovirus. Nat Commun 2022; 13:4689. [PMID: 35948546 PMCID: PMC9365808 DOI: 10.1038/s41467-022-32087-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) and oncolytic viruses are promising therapeutic agents for the treatment of various cancers. As single agents, CDK4/6 inhibitors that are approved for the treatment of breast cancer in combination with endocrine therapy cause G1 cell cycle arrest, whereas adenoviruses induce progression into S-phase in infected cells as an integral part of the their life cycle. Both CDK4/6 inhibitors and adenovirus replication target the Retinoblastoma protein albeit for different purposes. Here we show that in combination CDK4/6 inhibitors potentiate the anti-tumor effect of the oncolytic adenovirus XVir-N-31 in bladder cancer and murine Ewing sarcoma xenograft models. This increase in oncolytic potency correlates with an increase in virus-producing cancer cells, enhanced viral genome replication, particle formation and consequently cancer cell killing. The molecular mechanism that regulates this response is fundamentally based on the reduction of Retinoblastoma protein expression levels by CDK4/6 inhibitors. Neither CDK4/6 inhibitors nor oncolytic adenoviruses show high efficiency as monotherapy in the treatment of cancer. Authors show here that when combined, CDK4/6 inhibitors deplete Retinoblastoma protein levels, which leads to more efficient virus replication and an increase in oncolytic virus-producing cancer cells and thus to efficient anti-tumor response in mouse xenograft sarcoma models.
Collapse
Affiliation(s)
- Jana Koch
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, University of Tübingen, Tübingen, Germany
| | - Sebastian J Schober
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804, Munich, Germany
| | - Sruthi V Hindupur
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Caroline Schöning
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804, Munich, Germany
| | - Florian G Klein
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Klaus Mantwill
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Ehrenfeld
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ulrike Schillinger
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timmy Hohnecker
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Pan Qi
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Katja Steiger
- Department of Pathology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michaela Aichler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Analytical Pathology, Munich, Germany
| | - Jürgen E Gschwend
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Department of Oral and Maxillofacial Surgery, Medical University Innsbruck, A-6020, Innsbruck, Austria.
| |
Collapse
|
90
|
Lin CY, Yu CJ, Liu CY, Chao TC, Huang CC, Tseng LM, Lai JI. CDK4/6 inhibitors downregulate the ubiquitin-conjugating enzymes UBE2C/S/T involved in the ubiquitin-proteasome pathway in ER + breast cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2120-2135. [PMID: 35917055 DOI: 10.1007/s12094-022-02881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 10/16/2022]
Abstract
Despite significant improvement in therapeutic development in the past decades, breast cancer remains a formidable cause of death for women worldwide. The hormone positive subtype (HR( +)) (also known as luminal type) is the most prevalent category of breast cancer, comprising ~ 70% of patients. The clinical success of the three CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib has revolutionized the treatment of choice for metastatic HR( +) breast cancer. Accumulating evidence demonstrate that the properties of CDK4/6 inhibitors extend beyond inhibition of the cell cycle, including modulation of immune function, sensitizing PI3K inhibitors, metabolism reprogramming, kinome rewiring, modulation of the proteasome, and many others. The ubiquitin-proteasome pathway (UPP) is a crucial cellular proteolytic system that maintains the homeostasis and turnover of proteins. By transcriptional profiling of the HR( +) breast cancer cell lines MCF7 and T47D treated with Palbociclib, we have uncovered a novel mechanism that demonstrates that the CDK4/6 inhibitors suppress the expression of three ubiquitin-conjugating enzymes UBE2C, UBE2S, UBE2T. Further validation in the HR( +) cell lines show that Palbociclib and ribociclib decrease UBE2C at both the mRNA and protein level, but this phenomenon was not shared with abemaciclib. These three E2 enzymes modulate several E3 ubiquitin ligases, including the APC/C complex which plays a role in G1/S progression. We further demonstrate that the UBE2C/UBE2T expression levels are associated with breast cancer survival, and HR( +) breast cancer cells demonstrate dependence on the UBE2C. Our study suggests a novel link between CDK4/6 inhibitor and UPP pathway, adding to the potential mechanisms of their clinical efficacy in cancer.
Collapse
Affiliation(s)
- Chih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jen Yu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiun-I Lai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
91
|
Merlano MC, Denaro N, Galizia D, Ruatta F, Occelli M, Minei S, Abbona A, Paccagnella M, Ghidini M, Garrone O. How Chemotherapy Affects the Tumor Immune Microenvironment: A Narrative Review. Biomedicines 2022; 10:biomedicines10081822. [PMID: 36009369 PMCID: PMC9405073 DOI: 10.3390/biomedicines10081822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy is much more effective in immunocompetent mice than in immunodeficient ones, and it is now acknowledged that an efficient immune system is necessary to optimize chemotherapy activity and efficacy. Furthermore, chemotherapy itself may reinvigorate immune response in different ways: by targeting cancer cells through the induction of cell stress, the release of damage signals and the induction of immunogenic cell death, by targeting immune cells, inhibiting immune suppressive cells and/or activating immune effector cells; and by targeting the host physiology through changes in the balance of gut microbiome. All these effects acting on immune and non-immune components interfere with the tumor microenvironment, leading to the different activity and efficacy of treatments. This article describes the correlation between chemotherapy and the immune changes induced in the tumor microenvironment. Our ultimate aim is to pave the way for the identification of the best drugs or combinations, the doses, the schedules and the right sequences to use when chemotherapy is combined with immunotherapy.
Collapse
Affiliation(s)
- Marco Carlo Merlano
- Scientific Direction, Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy
- Correspondence:
| | - Nerina Denaro
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.D.); (F.R.); (M.G.); (O.G.)
| | - Danilo Galizia
- Multidisciplinary Oncology Outpatient Clinic, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Italy;
| | - Fiorella Ruatta
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.D.); (F.R.); (M.G.); (O.G.)
| | - Marcella Occelli
- Department of Medical Oncology, S. Croce e Carle Teaching Hospital, 12100 Cuneo, Italy;
| | - Silvia Minei
- Post-Graduate School of Specialization Medical Oncology, University of Bari “A.Moro”, 70120 Bari, Italy;
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70120 Bari, Italy
| | - Andrea Abbona
- Translational Oncology ARCO Foundation, 12100 Cuneo, Italy; (A.A.); (M.P.)
| | - Matteo Paccagnella
- Translational Oncology ARCO Foundation, 12100 Cuneo, Italy; (A.A.); (M.P.)
| | - Michele Ghidini
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.D.); (F.R.); (M.G.); (O.G.)
| | - Ornella Garrone
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (N.D.); (F.R.); (M.G.); (O.G.)
| |
Collapse
|
92
|
Digiacomo G, Fumarola C, La Monica S, Bonelli M, Cavazzoni A, Galetti M, Terenziani R, Eltayeb K, Volta F, Zoppi S, Bertolini P, Missale G, Alfieri R, Petronini PG. CDK4/6 inhibitors improve the anti-tumor efficacy of lenvatinib in hepatocarcinoma cells. Front Oncol 2022; 12:942341. [PMID: 35936714 PMCID: PMC9354684 DOI: 10.3389/fonc.2022.942341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer with a poor prognosis and limited treatment options. Considering that alterations of the CDK4/6-cyclin D-Rb pathway occur frequently in HCC, we tested the efficacy of two CDK4/6 inhibitors, abemaciclib and ribociclib, in combination with lenvatinib, a multi-kinase inhibitor approved as first-line therapy for advanced HCC, in a panel of HCC Rb-expressing cell lines. The simultaneous drug combinations showed a superior anti-proliferative activity as compared with single agents or sequential schedules of treatment, either in short or in long-term experiments. In addition, the simultaneous combination of abemaciclib with lenvatinib reduced 3D cell growth, and impaired colony formation and cell migration. Mechanistically, these growth-inhibitory effects were associated with a stronger down-regulation of c-myc protein expression. Depending on the HCC cell model, reduced activation of MAPK, mTORC1/p70S6K or src/FAK signaling was also observed. Abemaciclib combined with lenvatinib arrested the cells in the G1 cell cycle phase, induced p21 accumulation, and promoted a stronger increase of cellular senescence, associated with elevation of β-galactosidase activity and accumulation of ROS, as compared with single treatments. After drug withdrawal, the capacity of forming colonies was significantly impaired, suggesting that the anti-tumor efficacy of abemaciclib and lenvatinib combination was persistent. Our pre-clinical results demonstrate the effectiveness of the simultaneous combination of CDK4/6 inhibitors with lenvatinib in HCC cell models, suggesting that this combination may be worthy of further investigation as a therapeutic approach for the treatment of advanced HCC.
Collapse
Affiliation(s)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers’ Compensation Authority, Rome, Italy
| | - Rita Terenziani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Volta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Zoppi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Patrizia Bertolini
- Paediatric Hematology Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
93
|
Young JS, Kidwell RL, Zheng A, Haddad AF, Aghi MK, Raleigh DR, Schulte JD, Butowski NA. CDK 4/6 inhibitors for the treatment of meningioma. Front Oncol 2022; 12:931371. [PMID: 35936751 PMCID: PMC9354681 DOI: 10.3389/fonc.2022.931371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Meningiomas are the most common non-metastatic brain tumors, and although the majority are relatively slow-growing and histologically benign, a subset of meningiomas are aggressive and remain challenging to treat. Despite a standard of care that includes surgical resection and radiotherapy, and recent advances in meningioma molecular grouping, there are no systemic medical options for patients with meningiomas that are resistant to standard interventions. Misactivation of the cell cycle at the level of CDK4/6 is common in high-grade or molecularly aggressive meningiomas, and CDK4/6 has emerged as a potential target for systemic meningioma treatments. In this review, we describe the preclinical evidence for CDK4/6 inhibitors as a treatment for high-grade meningiomas and summarize evolving clinical experience with these agents. Further, we highlight upcoming clinical trials for patients meningiomas, and discuss future directions aimed at optimizing the efficacy of these therapies and selecting patients most likely to benefit from their use.
Collapse
Affiliation(s)
- Jacob S. Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- *Correspondence: Jacob S. Young, ; Nicholas A. Butowski,
| | - Reilly L. Kidwell
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Allison Zheng
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Alex F. Haddad
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - David R. Raleigh
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Jessica D. Schulte
- Division of Neuro-Oncology, University of California San Diego, San Diego, CA, United States
- Department of Neuroscience, University of California San Diego, San Diego, CA, United States
| | - Nicholas A. Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, United States
- *Correspondence: Jacob S. Young, ; Nicholas A. Butowski,
| |
Collapse
|
94
|
Yousuf M, Alam M, Shamsi A, Khan P, Hasan GM, Rizwanul Haque QM, Hassan MI. Structure-guided design and development of cyclin-dependent kinase 4/6 inhibitors: A review on therapeutic implications. Int J Biol Macromol 2022; 218:394-408. [PMID: 35878668 DOI: 10.1016/j.ijbiomac.2022.07.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinase 6 (EC 2.7.11.22) play significant roles in numerous biological processes and triggers cell cycle events. CDK6 controlled the transcriptional regulation. A dysregulated function of CDK6 is linked with the development of progression of multiple tumor types. Thus, it is considered as an effective drug target for cancer therapy. Based on the direct roles of CDK4/6 in tumor development, numerous inhibitors developed as promising anti-cancer agents. CDK4/6 inhibitors regulate the G1 to S transition by preventing Rb phosphorylation and E2F liberation, showing potent anti-cancer activity in several tumors, including HR+/HER2- breast cancer. CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib, control cell cycle, provoke cell senescence, and induces tumor cell disturbance in pre-clinical studies. Here, we discuss the roles of CDK6 in cancer along with the present status of CDK4/6 inhibitors in cancer therapy. We further discussed, how structural features of CDK4/6 could be implicated in the design and development of potential anti-cancer agents. In addition, the therapeutic potential and limitations of available CDK4/6 inhibitors are described in detail. Recent pre-clinical and clinical information for CDK4/6 inhibitors are highlighted. In addition, combination of CDK4/6 inhibitors with other drugs for the therapeutic management of cancer are discussed.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
95
|
Cancer: A pathologist's journey from morphology to molecular. Med J Armed Forces India 2022; 78:255-263. [DOI: 10.1016/j.mjafi.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
96
|
Rampioni Vinciguerra GL, Sonego M, Segatto I, Dall’Acqua A, Vecchione A, Baldassarre G, Belletti B. CDK4/6 Inhibitors in Combination Therapies: Better in Company Than Alone: A Mini Review. Front Oncol 2022; 12:891580. [PMID: 35712501 PMCID: PMC9197541 DOI: 10.3389/fonc.2022.891580] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
The cyclin D-CDK4/6 complexes play a pivotal role in controlling the cell cycle. Deregulation in cyclin D-CDK4/6 pathway has been described in many types of cancer and it invariably leads to uncontrolled cell proliferation. Many efforts have been made to develop a target therapy able to inhibit CDK4/6 activity. To date, three selective CDK4/6 small inhibitors have been introduced in the clinic for the treatment of hormone positive advanced breast cancer patients, following the impressive results obtained in phase III clinical trials. However, since their approval, clinical evidences have demonstrated that about 30% of breast cancer is intrinsically resistant to CDK4/6 inhibitors and that prolonged treatment eventually leads to acquired resistance in many patients. So, on one hand, clinical and preclinical studies fully support to go beyond breast cancer and expand the use of CDK4/6 inhibitors in other tumor types; on the other hand, the question of primary and secondary resistance has to be taken into account, since it is now very clear that neoplastic cells rapidly develop adaptive strategies under treatment, eventually resulting in disease progression. Resistance mechanisms so far discovered involve both cell-cycle and non-cell-cycle related escape strategies. Full understanding is yet to be achieved but many different pathways that, if targeted, may lead to reversion of the resistant phenotype, have been already elucidated. Here, we aim to summarize the knowledge in this field, focusing on predictive biomarkers, to recognize intrinsically resistant tumors, and therapeutic strategies, to overcome acquired resistance.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Alessandra Dall’Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant’Andrea Hospital, University of Rome “Sapienza”, Rome, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- *Correspondence: Barbara Belletti,
| |
Collapse
|
97
|
Viganò L, Locatelli A, Ulisse A, Galbardi B, Dugo M, Tosi D, Tacchetti C, Daniele T, Győrffy B, Sica L, Macchini M, Zambetti M, Zambelli S, Bianchini G, Gianni L. Modulation of the Estrogen/erbB2 Receptors Cross-talk by CDK4/6 Inhibition Triggers Sustained Senescence in Estrogen Receptor- and ErbB2-positive Breast Cancer. Clin Cancer Res 2022; 28:2167-2179. [PMID: 35254385 PMCID: PMC9595107 DOI: 10.1158/1078-0432.ccr-21-3185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE The interplay between estrogen receptor (ER) and erbB tyrosine-kinase receptors (RTK) impacts growth and progression of ER-positive (ER+)/HER2-positive (HER2+) breast cancer and generates mitogenic signals converging onto the Cyclin-D1/CDK4/6 complex. We probed this cross-talk combining endocrine-therapy (fulvestrant), dual HER2-blockade (trastuzumab and pertuzumab), and CDK4/6-inhibition (palbociclib; PFHPert). EXPERIMENTAL DESIGN Cytotoxic drug effects, interactions, and pharmacodynamics were studied after 72 hours of treatment and over 6 more days of culture after drug wash-out in three ER+/HER2+, two HER2low, and two ER-negative (ER-)/HER2+ breast cancer cell lines. We assessed gene-expression dynamic and association with Ki67 downregulation in 28 patients with ER+/HER2+ breast cancer treated with neoadjuvant PFHPert in NA-PHER2 trial (NCT02530424). RESULTS In vitro, palbociclib and/or fulvestrant induced a functional activation of RTKs signalling. PFHPert had additive or synergistic antiproliferative activity, interfered with resistance mechanisms linked to the RTKs/Akt/MTORC1 axis and induced sustained senescence. Unexpected synergism was found in HER2low cells. In patients, Ki67 downregulation at week 2 and surgery were significantly associated to upregulation of senescence-related genes (P = 7.7E-4 and P = 1.8E-4, respectively). Activation of MTORC1 pathway was associated with high Ki67 at surgery (P = 0.019). CONCLUSIONS Resistance associated with the combination of drugs targeting ER and HER2 can be bypassed by cotargeting Rb, enhancing transition from quiescence to sustained senescence. MTORC1 pathway activation is a potential mechanism of escape and RTKs functional activation may be an alternative pathway for survival also in ER+/HER2low tumor. PFHPert combination is an effective chemotherapy-free regimen for ER+/HER2+ breast cancer, and the mechanistic elucidation of sensitivity/resistance patterns may provide insights for further treatment refinement.
Collapse
Affiliation(s)
- Lucia Viganò
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberta Locatelli
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adele Ulisse
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Galbardi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diego Tosi
- Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Carlo Tacchetti
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tiziana Daniele
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Balázs Győrffy
- Department of Bioinformatics, Faculty of General Medicine, Semmelweis University, Budapest, Hungary
- 2nd Dept. of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- TTK Oncology Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Lorenzo Sica
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Milvia Zambetti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Zambelli
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giampaolo Bianchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
98
|
Fang Y, Zhang Z, Liu Y, Gao T, Liang S, Chu Q, Guan L, Mu W, Fu S, Yang H, Zhang N, Liu Y. Artificial Assembled Macrophage Co-Deliver Black Phosphorus Quantum Dot and CDK4/6 Inhibitor for Colorectal Cancer Triple-Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20628-20640. [PMID: 35477252 DOI: 10.1021/acsami.2c01305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In recent years, therapeutic strategies based on macrophages have been inspiringly developed, but due to the high intricacy and immunosuppression of the tumor microenvironment, the widespread use of these strategies still faces significant challenges. Herein, an artificial assembled macrophage concept (AB@LM) was presented to imitate the main antitumor abilities of macrophages of tumor targeting, promoting the antitumor immunity, and direct tumor-killing effects. The artificial assembled macrophage (AB@LM) was prepared through an extrusion method, which is to fuse the macrophage membrane with abemaciclib and black phosphorus quantum dot (BPQD)-loaded liposomes. AB@LM showed good stability and tumor targeting ability with the help of macrophage membrane. Furthermore, AB@LM reversed the immunosuppressive tumor microenvironment by inhibiting regulatory T cells (Tregs) and stimulating the maturation of antigen-presenting cells to activate the antitumor immune response through triggering an immunogenic cell death effect. More importantly, in the colorectal tumor model in vivo, a strong cooperative therapeutic effect of photo/chemo/immunotherapy was observed with high tumor inhibition rate (95.3 ± 2.05%). In conclusion, AB@LM exhibits excellent antitumor efficacy by intelligently mimicking the abilities of macrophages. A promising therapeutic strategy for tumor treatment based on imitating macrophages was provided in this study.
Collapse
Affiliation(s)
- Yuxiao Fang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Zipeng Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Tong Gao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Shuang Liang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Qihui Chu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Li Guan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Weiwei Mu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Shunli Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Huizhen Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Na Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| | - Yongjun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, China
| |
Collapse
|
99
|
Alvarez-Breckenridge C, Remon J, Piña Y, Nieblas-Bedolla E, Forsyth P, Hendriks L, Brastianos PK. Emerging Systemic Treatment Perspectives on Brain Metastases: Moving Toward a Better Outlook for Patients. Am Soc Clin Oncol Educ Book 2022; 42:1-19. [PMID: 35522917 DOI: 10.1200/edbk_352320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diagnosis of brain metastases has historically been a dreaded, end-stage complication of systemic disease. Additionally, with the increasing effectiveness of systemic therapies that prolong life expectancy and improved imaging tools, the incidence of intracranial progression is becoming more common. Within this context, there has been increasing attention directed at understanding the molecular underpinnings of intracranial progression. Exploring the unique features of brain metastases compared with their extracranial counterparts to identify aberrant signaling pathways, which can be targeted pharmacologically, may help lead to new treatments for this patient population. Additionally, critical discoveries outside the sphere of the central nervous system are increasingly being applied to brain metastases with the emergence of immune checkpoint inhibition, becoming a prevalent treatment option for patients with brain metastases across multiple histologies. As novel treatment strategies are considered, they require thoughtful incorporation of agents that can cross the blood-brain barrier and can synergize with pre-existing agents through rational combinations. Lastly, as clinicians and scientists continue to understand key molecular features of these tumors, they will continue to influence the treatment algorithms that are developing for the management of these patients. Due to the complexity of treatment decisions for patients with brain metastases, an emerging tool is the utilization of multidisciplinary brain metastasis tumor boards to ensure optimal treatment decisions are made and that patients are provided access to applicable clinical trials. Looking to the future, the collective effort to understand the various tumor-intrinsic and tumor-extrinsic factors that promote central nervous system seeding and propagation will have the potential to change the clinical trajectory for these patients.
Collapse
Affiliation(s)
| | - Jordi Remon
- Department of Medical Oncology, HM CIOCC Barcelona (Centro Integral Oncológico Clara Campal), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | | | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | - Lizza Hendriks
- Department of Pulmonary Diseases - GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | | |
Collapse
|
100
|
Sager RA, Backe SJ, Ahanin E, Smith G, Nsouli I, Woodford MR, Bratslavsky G, Bourboulia D, Mollapour M. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat Rev Urol 2022; 19:305-320. [PMID: 35264774 PMCID: PMC9306014 DOI: 10.1038/s41585-022-00571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The treatment of advanced and metastatic kidney cancer has entered a golden era with the addition of more therapeutic options, improved survival and new targeted therapies. Tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and immune checkpoint blockade have all been shown to be promising strategies in the treatment of renal cell carcinoma (RCC). However, little is known about the best therapeutic approach for individual patients with RCC and how to combat therapeutic resistance. Cancers, including RCC, rely on sustained replicative potential. The cyclin-dependent kinases CDK4 and CDK6 are involved in cell-cycle regulation with additional roles in metabolism, immunogenicity and antitumour immune response. Inhibitors of CDK4 and CDK6 are now commonly used as approved and investigative treatments in breast cancer, as well as several other tumours. Furthermore, CDK4/6 inhibitors have been shown to work synergistically with other kinase inhibitors, including mTOR inhibitors, as well as with immune checkpoint inhibitors in preclinical cancer models. The effect of CDK4/6 inhibitors in kidney cancer is relatively understudied compared with other cancers, but the preclinical studies available are promising. Collectively, growing evidence suggests that targeting CDK4 and CDK6 in kidney cancer, alone and in combination with current therapeutics including mTOR and immune checkpoint inhibitors, might have therapeutic benefit and should be further explored.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Garrett Smith
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Syracuse VA Medical Center, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Syracuse VA Medical Center, Syracuse, NY, USA.
| |
Collapse
|