51
|
MDM2 oligomers: antagonizers of the guardian of the genome. Oncogene 2016; 35:6157-6165. [PMID: 27041565 DOI: 10.1038/onc.2016.88] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Over two decades of MDM2 research has resulted in the accumulation of a wealth of knowledge of many aspects of MDM2 regulation and function, particularly with respect to its most prominent target, p53. For example, recent knock-in mouse studies have shown that MDM2 heterooligomer formation with its homolog, MDMX, is necessary and sufficient in utero to suppress p53 but is dispensable during adulthood. However, despite crucial advances such as these, several aspects regarding basic in vivo functions of MDM2 remain unknown. In one such example, although abundant evidence suggests that MDM2 forms homooligomers and heterooligomers with MDMX, the function and regulation of these homo- and heterooligomers in vivo remain incompletely understood. In this review, we discuss the current state of our knowledge of MDM2 oligomerization as well as current efforts to target the MDM2 oligomer as a broad therapeutic option for cancer treatment.
Collapse
|
52
|
Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:617-44. [PMID: 27022975 DOI: 10.1146/annurev-pathol-012414-040349] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For more than 25 years, MDM2 and its homolog MDMX (also known as MDM4) have been shown to exert oncogenic activity. These two proteins are best understood as negative regulators of the p53 tumor suppressor, although they may have additional p53-independent roles. Understanding the dysregulation of MDM2 and MDMX in human cancers and how they function either together or separately in tumorigenesis may improve methods of diagnosis and for assessing prognosis. Targeting the proteins themselves, or their regulators, may be a promising therapeutic approach to treating some forms of cancer.
Collapse
Affiliation(s)
- Orit Karni-Schmidt
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Maria Lokshin
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| |
Collapse
|
53
|
Wienken M, Dickmanns A, Nemajerova A, Kramer D, Najafova Z, Weiss M, Karpiuk O, Kassem M, Zhang Y, Lozano G, Johnsen SA, Moll UM, Zhang X, Dobbelstein M. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. Mol Cell 2016; 61:68-83. [PMID: 26748827 PMCID: PMC6284523 DOI: 10.1016/j.molcel.2015.12.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/08/2015] [Accepted: 11/23/2015] [Indexed: 01/16/2023]
Abstract
The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53.
Collapse
Affiliation(s)
- Magdalena Wienken
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Alice Nemajerova
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniela Kramer
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Zeynab Najafova
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Miriam Weiss
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Oleksandra Karpiuk
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Moustapha Kassem
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), University Hospital of Odense and University of Southern Denmark, Odense 5000, Denmark
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven A Johnsen
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Ute M Moll
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany; Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Xin Zhang
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany.
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany.
| |
Collapse
|
54
|
Liu XC, Gao JM, Liu S, Liu L, Wang JR, Qu XJ, Cai B, Wang SL. Targeting apoptosis is the major battle field for killing cancers. World J Transl Med 2015; 4:69-77. [DOI: 10.5528/wjtm.v4.i3.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/27/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023] Open
Abstract
Targeting apoptosis is one of the major strategies for cancer therapy. Essentially, most of the conventional cancer therapeutic drugs that are in the clinical use induce apoptosis and in part necrosis of malignant cells and therefore prevent cancer progression and metastasis. Although these cytotoxic anticancer drugs are important weapons for killing cancers, their toxic side effects limited their application. The molecularly targeted therapeutics that are based on the deeper understanding of the defects in the apoptotic signaling in cancers are emerging and have shown promising anticancer activity in selectively killing cancers but not normal cells. The examples of molecular targets that are under exploration for cancer therapy include the cell surface receptors such as TNFR family death receptors, the intrinsic Bcl-2 family members and some other intracellular molecules like p53, MDM2, IAP, and Smac. The advance in the high-throughput bio-technologies has greatly accelerated the progress of cancer drug discovery.
Collapse
|
55
|
Bradbury R, Jiang WG, Cui YX. The clinical and therapeutic uses of MDM2 and PSMA and their potential interaction in aggressive cancers. Biomark Med 2015; 9:1353-70. [PMID: 26581688 DOI: 10.2217/bmm.15.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) overexpression is observed in the neovasculature of solid tumors, but not in the vasculature of normal tissues. Increased PSMA expression is positively associated with tumor stage and grade, although its function in cancer remains unclear. Mouse double minute 2 (MDM2) is a negative regulator of the p53 tumor suppressor and is reported to regulate VEGF expression and angiogenesis. Both proteins have been considered as biomarkers and therapeutic targets for advanced solid tumors. Our work and a recent microarray-based gene profiling study suggest there could be signaling interplay between MDM2 and PSMA. We herein review the mechanisms underlining the outgrowth of tumors associated with PSMA and MDM2, their potential interaction and how this may be applied to anticancer therapeutics.
Collapse
Affiliation(s)
- Robyn Bradbury
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Yu-Xin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| |
Collapse
|
56
|
Screening analysis of ubiquitin ligases reveals G2E3 as a potential target for chemosensitizing cancer cells. Oncotarget 2015; 6:617-32. [PMID: 25593194 PMCID: PMC4359243 DOI: 10.18632/oncotarget.2710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/08/2014] [Indexed: 12/30/2022] Open
Abstract
Cisplatin is widely used against various tumors, but resistance is commonly encountered. By inducing DNA crosslinks, cisplatin triggers DNA damage response (DDR) and cell death. However, the molecular determinants of how cells respond to cisplatin are incompletely understood. Since ubiquitination plays a major role in DDR, we performed a high-content siRNA screen targeting 327 human ubiquitin ligases and 92 deubiquitinating enzymes in U2OS cells, interrogating the response to cisplatin. We quantified γH2AX by immunofluorescence and image analysis as a read-out for DNA damage. Among known mediators of DDR, the screen identified the ubiquitin ligase G2E3 as a new player in the response to cisplatin. G2E3 depletion led to decreased γH2AX levels and decreased phosphorylation of the checkpoint kinase 1 (Chk1) upon cisplatin. Moreover, loss of G2E3 triggered apoptosis and decreased proliferation of cancer cells. Treating cells with the nucleoside analogue gemcitabine led to increased accumulation of single-stranded DNA upon G2E3 depletion, pointing to a defect in replication. Furthermore, we show that endogenous G2E3 levels in cancer cells were down-regulated upon chemotherapeutic treatment. Taken together, our results suggest that G2E3 is a molecular determinant of the DDR and cell survival, and that its loss sensitizes tumor cells towards DNA-damaging treatment.
Collapse
|
57
|
Hussein MMM, Amr AEGE, Abdalla MM, Al-Omar MA, Safwat HM, Elgamal MH. Synthesis of androstanopyridine and pyrimidine compounds as novel activators of the tumor suppressor protein p53. ACTA ACUST UNITED AC 2015; 70:205-16. [PMID: 26426889 DOI: 10.1515/znc-2015-5033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/25/2015] [Indexed: 11/15/2022]
Abstract
A series of androstane derivatives 2-16 were synthesized from 3β-hydroxyandrostan-17-one derivatives (1a-e). Compounds (1a,b) were treated with ethyl cyanoacetate, cyanoacetamide, or malononitrile and gave the corresponding derivatives 2-7, respectively. Additionally, compounds (1a-e) were condensed with cyanothioacetamide, urea, or guanidine hydrochloride afforded the corresponding derivatives 8-12, which then by Moffat oxidation gave the oxidized derivatives 9, 11 and 13, respectively. Finally, compound (1) condensed with acetyl acetone or ethyl acetoacetate gave cyclohexene derivatives (14a-c) and (15a,b), respectively. Compound 15 was oxidized with a Moffat oxidizing agent and afforded the corresponding oxidized compound 16. The newly synthesized compounds activated the tumor suppressor p53 in cancer cells through inhibition of the p53-specific ubiquitin E3 ligase HDM2.
Collapse
|
58
|
SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene 2015; 35:2824-33. [PMID: 26387547 PMCID: PMC4801727 DOI: 10.1038/onc.2015.351] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are a promising target for cancer therapy, particularly for metastatic lung cancers, but how CSCs are regulated is largely unknown. We identify two proteins, SLUG (encoded by SNAI2 gene) and SOX9, that are associated with advanced stage lung cancers and are implicated in the regulation of CSCs. Inhibition of either SLUG or SOX9 sufficiently inhibits CSCs in human lung cancer cells and attenuates experimental lung metastasis in a xenograft mouse model. Correlation between SLUG and SOX9 levels was observed remarkably, we therefore sought to explore their mechanistic relationship and regulation. SLUG, beyond its known function as an epithelial-mesenchymal transition transcription factor, was found to regulate SOX9 by controlling its stability via a post-translational modification process. SLUG interacts directly with SOX9 and prevents it from ubiquitin-mediated proteasomal degradation. SLUG expression and binding are necessary for SOX9 promotion of lung CSCs and metastasis in a mouse model. Together, our findings provide a novel mechanistic insight into the regulation of CSCs via SLUG-SOX9 regulatory axis, which represents a potential novel target for CSC therapy that may overcome cancer chemoresistance and relapse.
Collapse
|
59
|
Pellegrino M, Mancini F, Lucà R, Coletti A, Giacchè N, Manni I, Arisi I, Florenzano F, Teveroni E, Buttarelli M, Fici L, Brandi R, Bruno T, Fanciulli M, D'Onofrio M, Piaggio G, Pellicciari R, Pontecorvi A, Marine JC, Macchiarulo A, Moretti F. Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy. Cancer Res 2015; 75:4560-72. [PMID: 26359458 DOI: 10.1158/0008-5472.can-15-0439] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022]
Abstract
Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM2 and MDM4 simultaneously based on recent studies indicating that formation of MDM2/MDM4 heterodimer complexes are required for efficient inactivation of p53 function. Using computational and mutagenesis analyses of the heterodimer binding interface, we identified a peptide that mimics the MDM4 C-terminus, competes with endogenous MDM4 for MDM2 binding, and activates p53 function. This peptide induces p53-dependent apoptosis in vitro and reduces tumor growth in vivo. Interestingly, interfering with the MDM2/MDM4 heterodimer specifically activates a p53-dependent oxidative stress response. Consistently, distinct subcellular pools of MDM2/MDM4 complexes were differentially sensitive to the peptide; nuclear MDM2/MDM4 complexes were particularly highly susceptible to the peptide-displacement activity. Taken together, these data identify the MDM2/MDM4 interaction interface as a valuable molecular target for therapeutic reactivation of p53 oncosuppressive function.
Collapse
Affiliation(s)
| | - Francesca Mancini
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy. Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Rossella Lucà
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
| | - Alice Coletti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Nicola Giacchè
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Ivan Arisi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Roma, Italy
| | - Fulvio Florenzano
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Roma, Italy
| | - Emanuela Teveroni
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy. Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | | | - Laura Fici
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy
| | - Rossella Brandi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Roma, Italy
| | | | | | - Mara D'Onofrio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Roma, Italy
| | | | - Roberto Pellicciari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Alfredo Pontecorvi
- Institute of Medical Pathology, Catholic University of Roma, Roma, Italy
| | - Jean Christophe Marine
- Center for Human Genetics, KU-Leuven, Leuven, Belgium. Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, CNR, Roma, Italy.
| |
Collapse
|
60
|
Landré V, Rotblat B, Melino S, Bernassola F, Melino G. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 2015; 5:7988-8013. [PMID: 25237759 PMCID: PMC4226663 DOI: 10.18632/oncotarget.2431] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides.
Collapse
Affiliation(s)
- Vivien Landré
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Sonia Melino
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Bernassola
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester, UK. Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
61
|
Lee H, Heo L, Lee MS, Seok C. GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res 2015; 43:W431-5. [PMID: 25969449 PMCID: PMC4489314 DOI: 10.1093/nar/gkv495] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/04/2015] [Indexed: 02/07/2023] Open
Abstract
Protein-peptide interactions are involved in a wide range of biological processes and are attractive targets for therapeutic purposes because of their small interfaces. Therefore, effective protein-peptide docking techniques can provide the basis for potential therapeutic applications by enabling an atomic-level understanding of protein interactions. With the increasing number of protein-peptide structures deposited in the protein data bank, the prediction accuracy of protein-peptide docking can be enhanced by utilizing the information provided by the database. The GalaxyPepDock web server, which is freely accessible at http://galaxy.seoklab.org/pepdock, performs similarity-based docking by finding templates from the database of experimentally determined structures and building models using energy-based optimization that allows for structural flexibility. The server can therefore effectively model the structural differences between the template and target protein-peptide complexes. The performance of GalaxyPepDock is superior to those of the other currently available web servers when tested on the PeptiDB set and on recently released complex structures. When tested on the CAPRI target 67, GalaxyPepDock generates models that are more accurate than the best server models submitted during the CAPRI blind prediction experiment.
Collapse
Affiliation(s)
- Hasup Lee
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Lim Heo
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Myeong Sup Lee
- Department of Biomedical Sciences, College of Medicine, University of Ulsan, Seoul 138-736, Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
62
|
Lima CF, Costa M, Proença M, Pereira-Wilson C. Novel structurally similar chromene derivatives with opposing effects on p53 and apoptosis mechanisms in colorectal HCT116 cancer cells. Eur J Pharm Sci 2015; 72:34-45. [DOI: 10.1016/j.ejps.2015.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 02/16/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023]
|
63
|
p53 as a target for the treatment of cancer. Cancer Treat Rev 2015; 40:1153-60. [PMID: 25455730 DOI: 10.1016/j.ctrv.2014.10.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 01/11/2023]
Abstract
TP53 (p53) is the most frequently mutated gene in cancer, being altered in approximately 50% of human malignancies. In most, if not all, cancers lacking mutation, wild-type (WT) p53 is inactivated by interaction with cellular (MDM2/MDM4) or viral proteins, leading to its degradation. Because of its near universal alteration in cancer, p53 is an attractive target for the development of new targeted therapies for this disease. However, until recently, p53 was widely regarded as ‘‘undruggable’’. This situation has now changed, as several compounds have become available that can restore wild-type properties to mutant p53 (e.g., PRIMA-1 and PRIMA-1MET). Other compounds are available that prevent the binding of MDM2/MDM4 to WT p53, thereby blocking its degradation (e.g., nutlins). Anti-mutant p53 compounds are potentially most useful in cancers with a high prevalence of p53 mutations. These include difficult-totreat tumors such as high grade serous ovarian cancer, triple-negative breast cancer and squamous lung cancer. MDM2/4 antagonists, on the other hand, are likely to be efficacious in malignancies in which MDM2 or MDM4 is overexpressed such as sarcomas, neuroblastomas and specific childhood leukemias. Presently, early clinical trials are ongoing evaluating the anti-mutant p53 agent, PRIMA-1MET, and specific MDM2–p53 nutlin antagonists.
Collapse
|
64
|
Rufini A, Cavallo F, Condò I, Fortuni S, De Martino G, Incani O, Di Venere A, Benini M, Massaro DS, Arcuri G, Serio D, Malisan F, Testi R. Highly specific ubiquitin-competing molecules effectively promote frataxin accumulation and partially rescue the aconitase defect in Friedreich ataxia cells. Neurobiol Dis 2015; 75:91-9. [PMID: 25549872 PMCID: PMC4358773 DOI: 10.1016/j.nbd.2014.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
Friedreich ataxia is an inherited neurodegenerative disease that leads to progressive disability. There is currently no effective treatment and patients die prematurely. The underlying genetic defect leads to reduced expression of the mitochondrial protein frataxin. Frataxin insufficiency causes mitochondrial dysfunction and ultimately cell death, particularly in peripheral sensory ganglia. There is an inverse correlation between the amount of residual frataxin and the severity of disease progression; therefore, therapeutic approaches aiming at increasing frataxin levels are expected to improve patients' conditions. We previously discovered that a significant amount of frataxin precursor is degraded by the ubiquitin/proteasome system before its functional mitochondrial maturation. We also provided evidence for the therapeutic potential of small molecules that increase frataxin levels by docking on the frataxin ubiquitination site, thus preventing frataxin ubiquitination and degradation. We called these compounds ubiquitin-competing molecules (UCM). By extending our search for effective UCM, we identified a set of new and more potent compounds that more efficiently promote frataxin accumulation. Here we show that these compounds directly interact with frataxin and prevent its ubiquitination. Interestingly, these UCM are not effective on the ubiquitin-resistant frataxin mutant, indicating their specific action on preventing frataxin ubiquitination. Most importantly, these compounds are able to promote frataxin accumulation and aconitase rescue in cells derived from patients, strongly supporting their therapeutic potential.
Collapse
Affiliation(s)
- Alessandra Rufini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy; Fratagene Therapeutics Ltd., 22 Northumberland Rd., Dublin, Ireland
| | - Francesca Cavallo
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Silvia Fortuni
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy; Fratagene Therapeutics Ltd., 22 Northumberland Rd., Dublin, Ireland
| | - Gabriella De Martino
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Ottaviano Incani
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Monica Benini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Damiano Sergio Massaro
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Gaetano Arcuri
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Dario Serio
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Florence Malisan
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy
| | - Roberto Testi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, Rome 00133, Italy; Fratagene Therapeutics Ltd., 22 Northumberland Rd., Dublin, Ireland.
| |
Collapse
|
65
|
Bielskienė K, Bagdonienė L, Mozūraitienė J, Kazbarienė B, Janulionis E. E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. MEDICINA-LITHUANIA 2015; 51:1-9. [PMID: 25744769 DOI: 10.1016/j.medici.2015.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 01/18/2015] [Indexed: 12/30/2022]
Abstract
Melanomas are highly proliferative and invasive, and are most frequently metastatic. Despite many advances in cancer treatment over the last several decades, the prognosis for patients with advanced melanoma remains poor. New treatment methods and strategies are necessary. The main hallmark of cancer is uncontrolled cellular proliferation with alterations in the expression of proteins. Ubiquitin and ubiquitin-related proteins posttranslationally modify proteins and thereby alter their functions. The ubiquitination process is involved in various physiological responses, including cell growth, cell death, and DNA damage repair. E3 ligases, the most specific enzymes of ubiquitination system, participate in the turnover of many key regulatory proteins and in the development of cancer. E3 ligases are of interest as drug targets for their ability to regulate proteins stability and functions. Compared to the general proteasome inhibitor bortezomib, which blocks the entire protein degradation, drugs that target a particular E3 ligase are expected to have better selectivity with less associated toxicity. Components of different E3 ligases complexes (FBW7, MDM2, RBX1/ROC1, RBX2/ROC2, cullins and many others) are known as oncogenes or tumor suppressors in melanomagenesis. These proteins participate in regulation of different cellular pathways and such important proteins in cancer development as p53 and Notch. In this review we summarized published data on the role of known E3 ligases in the development of melanoma and discuss the inhibitors of E3 ligases as a novel approach for the treatment of malignant melanomas.
Collapse
Affiliation(s)
| | - Lida Bagdonienė
- Department of Biochemistry and Molecular Biology, Vilnius University, Vilnius, Lithuania.
| | | | | | | |
Collapse
|
66
|
Arrigo AP, Ducarouge B, Lavial F, Gibert B. Immense Cellular Implications Associated to Small Stress Proteins Expression: Impacts on Human Pathologies. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
67
|
USP22 promotes NSCLC tumorigenesis via MDMX up-regulation and subsequent p53 inhibition. Int J Mol Sci 2014; 16:307-20. [PMID: 25547493 PMCID: PMC4307248 DOI: 10.3390/ijms16010307] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/15/2014] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence suggests that ubiquitin-specific protease 22 (USP22) has great clinicopathologic significance in oncology. In this study, we investigated the role of USP22 in human NSCLC tumorigenesis along with the underlying mechanisms of action. First, we determined the expression of USP22 in human NSCLC, as well as normal tissues and cell lines. We then studied the effects of USP22 silencing by shRNA on NSCLC cell growth in vitro and tumorigenesis in vivo, along with the effect on the p53 pathway. We found that USP22 is overexpressed in human NSCLC tissues and cell lines. USP22 silencing by shRNA inhibits proliferation, induces apoptosis and arrests cells at the G0/G1 phases in NSCLC cells and curbs human NSCLC tumor growth in a mouse xenograft model. Additionally, USP22 silencing downregulates MDMX protein expression and activates the p53 pathway. Our co-immunoprecipitation analysis shows that USP22 interacts with MDMX in NSCLC cells. Furthermore, MDMX silencing leads to growth arrest and apoptosis in NSCLC cells, and over-expression of MDMX reverses the USP22 silencing-induced effects. Taken together, our results suggest that USP22 promotes NSCLC tumorigenesis in vitro and in vivo through MDMX upregulation and subsequent p53 inhibition. USP22 may represent a novel target for NSCLC treatment.
Collapse
|
68
|
Liu J, Shaik S, Dai X, Wu Q, Zhou X, Wang Z, Wei W. Targeting the ubiquitin pathway for cancer treatment. Biochim Biophys Acta Rev Cancer 2014; 1855:50-60. [PMID: 25481052 DOI: 10.1016/j.bbcan.2014.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
Proteasome-mediated degradation is a common mechanism by which cells renew their intracellular proteins and maintain protein homeostasis. In this process, the E3 ubiquitin ligases are responsible for targeting specific substrates (proteins) for ubiquitin-mediated degradation. However, in cancer cells, the stability and the balance between oncoproteins and tumor suppressor proteins are disturbed in part due to deregulated proteasome-mediated degradation. This ultimately leads to either stabilization of oncoprotein(s) or increased degradation of tumor suppressor(s), contributing to tumorigenesis and cancer progression. Therefore, E3 ubiquitin ligases including the SCF types of ubiquitin ligases have recently evolved as promising therapeutic targets for the development of novel anti-cancer drugs. In this review, we highlighted the critical components along the ubiquitin pathway including E1, E2, various E3 enzymes and DUBs that could serve as potential drug targets and also described the available bioactive compounds that target the ubiquitin pathway to control various cancers.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shavali Shaik
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
69
|
Abstract
Abnormalities in the TP53 gene and overexpression of MDM2, a transcriptional target and negative regulator of p53, are commonly observed in cancers. The MDM2-p53 feedback loop plays an important role in tumor progression and thus, increased understanding of the pathway has the potential to improve clinical outcomes for cancer patients. Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the current treatment for HCC is less effective than those used against other cancers. We review the current studies of the MDM2-p53 pathway in cancer with a focus on HCC and specifically discuss the impact of p53 mutations along with other alterations of the MDM2-p53 feedback loop in HCC. We also discuss the potential diagnostic and prognostic applications of p53 and MDM2 in malignant tumors as well as therapeutic avenues that are being developed to target the MDM2-p53 pathway.
Collapse
Affiliation(s)
- Xuan Meng
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China. Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | - Derek A Franklin
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jiahong Dong
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China. Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China.
| | - Yanping Zhang
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China. Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
70
|
|
71
|
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20:1242-53. [PMID: 25375928 DOI: 10.1038/nm.3739] [Citation(s) in RCA: 838] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Ubiquitination is crucial for a plethora of physiological processes, including cell survival and differentiation and innate and adaptive immunity. In recent years, considerable progress has been made in the understanding of the molecular action of ubiquitin in signaling pathways and how alterations in the ubiquitin system lead to the development of distinct human diseases. Here we describe the role of ubiquitination in the onset and progression of cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infection and muscle dystrophies. Moreover, we indicate how current knowledge could be exploited for the development of new clinical therapies.
Collapse
Affiliation(s)
- Doris Popovic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California, USA
| | - Ivan Dikic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [3] Department of Immunology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
72
|
Pflaum J, Schlosser S, Müller M. p53 Family and Cellular Stress Responses in Cancer. Front Oncol 2014; 4:285. [PMID: 25374842 PMCID: PMC4204435 DOI: 10.3389/fonc.2014.00285] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022] Open
Abstract
p53 is an important tumor suppressor gene, which is stimulated by cellular stress like ionizing radiation, hypoxia, carcinogens, and oxidative stress. Upon activation, p53 leads to cell-cycle arrest and promotes DNA repair or induces apoptosis via several pathways. p63 and p73 are structural homologs of p53 that can act similarly to the protein and also hold functions distinct from p53. Today more than 40 different isoforms of the p53 family members are known. They result from transcription via different promoters and alternative splicing. Some isoforms have carcinogenic properties and mediate resistance to chemotherapy. Therefore, expression patterns of the p53 family genes can offer prognostic information in several malignant tumors. Furthermore, the p53 family constitutes a potential target for cancer therapy. Small molecules (e.g., Nutlins, RITA, PRIMA-1, and MIRA-1 among others) have been objects of intense research interest in recent years. They restore pro-apoptotic wild-type p53 function and were shown to break chemotherapeutic resistance. Due to p53 family interactions small molecules also influence p63 and p73 activity. Thus, the members of the p53 family are key players in the cellular stress response in cancer and are expected to grow in importance as therapeutic targets.
Collapse
Affiliation(s)
- Johanna Pflaum
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| | - Sophie Schlosser
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg , Regensburg , Germany
| |
Collapse
|
73
|
Caicedo-Granados E, Lin R, Fujisawa C, Yueh B, Sangwan V, Saluja A. Wild-type p53 reactivation by small-molecule Minnelide™ in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma. Oral Oncol 2014; 50:1149-56. [PMID: 25311433 DOI: 10.1016/j.oraloncology.2014.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/18/2014] [Accepted: 09/20/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The incidence of high-risk human papillomavirus (HR-HPV) head and neck squamous cell carcinoma (HNSCC) continues to increase, particularly oropharyngeal squamous cell carcinoma (OPSCC) cases. The inactivation of the p53 tumor suppressor gene promotes a chain of molecular events, including cell cycle progression and apoptosis resistance. Reactivation of wild-type p53 function is an intriguing therapeutic strategy. The aim of this study was to investigate whether a novel compound derived from diterpene triepoxide (Minnelide™) can reactivate wild-type p53 function in HPV-positive HNSCC. MATERIALS AND METHODS For all of our in vitro experiments, we used 2 HPV-positive HNSCC cell lines, University of Michigan squamous cell carcinoma (UM-SCC) 47 and 93-VU-147, and 2 HPV-positive human cervical cancer cell lines, SiHa and CaSki. Cells were treated with different concentrations of triptolide and analyzed for p53 activation. Mice bearing UM-SCC 47 subcutaneous xenografts and HPV-positive patient-derived tumor xenografts were treated with Minnelide and evaluated for tumor growth and p53 activation. RESULTS In HPV-positive HNSCC, Minnelide reactivated p53 by suppressing E6 oncoprotein. Activation of apoptosis followed, both in vitro and in vivo. In 2 preclinical HNSCC animal models (a subcutaneous xenograft model and a patient-derived tumor xenograft model), Minnelide reactivated p53 function and significantly decreased tumor progression and tumor volume. CONCLUSION Triptolide and Minnelide caused cell death in vitro and in vivo in HPV-positive HNSCC by reactivating wild-type p53 and thus inducing apoptosis. In addition, in 2 HPV-positive HNSCC animal models, Minnelide decreased tumor progression and induced apoptosis.
Collapse
Affiliation(s)
- Emiro Caicedo-Granados
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, United States.
| | - Rui Lin
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, United States
| | - Caitlin Fujisawa
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, United States
| | - Bevan Yueh
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, United States
| | - Veena Sangwan
- Department of Surgery, University of Minnesota, United States
| | - Ashok Saluja
- Department of Surgery, University of Minnesota, United States
| |
Collapse
|
74
|
Abstract
The ubiquitin proteasome pathway is critical in restraining the activities of the p53 tumor suppressor. This review by Pant and Lozano focuses on ubiquitination as a mechanism for regulating p53 stability and function and reviews current findings from in vivo models that evaluate the importance of the ubiquitin proteasome system in regulating p53. The ubiquitin proteasome pathway is critical in restraining the activities of the p53 tumor suppressor. Numerous E3 and E4 ligases regulate p53 levels. Additionally, deubquitinating enzymes that modify p53 directly or indirectly also impact p53 function. When alterations of these proteins result in increased p53 activity, cells arrest in the cell cycle, senesce, or apoptose. On the other hand, alterations that result in decreased p53 levels yield tumor-prone phenotypes. This review focuses on the physiological relevance of these important regulators of p53 and their therapeutic implications.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
75
|
Chou CC, Salunke SB, Kulp SK, Chen CS. Prospects on strategies for therapeutically targeting oncogenic regulatory factors by small-molecule agents. J Cell Biochem 2014; 115:611-24. [PMID: 24166934 DOI: 10.1002/jcb.24704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022]
Abstract
Although the Human Genome Project has raised much hope for the identification of druggable genetic targets for cancer and other diseases, this genetic target-based approach has not improved productivity in drug discovery over the traditional approach. Analyses of known human target proteins of currently marketed drugs reveal that these drugs target only a limited number of proteins as compared to the whole proteome. In contrast to genome-based targets, mechanistic targets are derived from empirical research, at cellular or molecular levels, in disease models and/or in patients, thereby enabling the exploration of a greater number of druggable targets beyond the genome and epigenome. The paradigm shift has made a tremendous headway in developing new therapeutic agents targeting different clinically relevant mechanisms/pathways in cancer cells. In this Prospects article, we provide an overview of potential drug targets related to the following four emerging areas: (1) tumor metabolism (the Warburg effect), (2) dysregulated protein turnover (E3 ubiquitin ligases), (3) protein-protein interactions, and (4) unique DNA high-order structures and protein-DNA interactions. Nonetheless, considering the genetic and phenotypic heterogeneities that characterize cancer cells, the development of drug resistance in cancer cells by adapting signaling circuitry to take advantage of redundant pathways or feedback/crosstalk systems is possible. This "phenotypic adaptation" underlies the rationale of using therapeutic combinations of these targeted agents with cytotoxic drugs.
Collapse
Affiliation(s)
- Chih-Chien Chou
- Division of Medicinal Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | | | | |
Collapse
|
76
|
Proietti S, Cucina A, Dobrowolny G, D'Anselmi F, Dinicola S, Masiello MG, Pasqualato A, Palombo A, Morini V, Reiter RJ, Bizzarri M. Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells. J Pineal Res 2014; 57:120-9. [PMID: 24920214 DOI: 10.1111/jpi.12150] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 01/10/2023]
Abstract
Compelling evidence demonstrated that melatonin increases p53 activity in cancer cells. p53 undergoes acetylation to be stabilized and activated for driving cells destined for apoptosis/growth inhibition. Over-expression of p300 induces p53 acetylation, leading to cell growth arrest by increasing p21 expression. In turn, p53 activation is mainly regulated in the nucleus by MDM2. MDM2 also acts as E3 ubiquitin ligase, promoting the proteasome-dependent p53 degradation. MDM2 entry into the nucleus is finely tuned by two different modulations: the ribosomal protein L11, acts by sequestering MDM2 in the cytosol, whereas the PI3K-AkT-dependent MDM2 phosphorylation is mandatory for MDM2 translocation across the nuclear membrane. In addition, MDM2-dependent targeting of p53 is regulated in a nonlinear fashion by MDM2/MDMX interplay. Melatonin induces both cell growth inhibition and apoptosis in MCF7 breast cancer cells. We previously reported that this effect is associated with reduced MDM2 levels and increased p53 activity. Herein, we demonstrated that melatonin drastically down-regulates MDM2 gene expression and inhibits MDM2 shuttling into the nucleus, given that melatonin increases L11 and inhibits Akt-PI3K-dependent MDM2 phosphorylation. Melatonin induces a 3-fold increase in both MDMX and p300 levels, decreasing simultaneously Sirt1, a specific inhibitor of p300 activity. Consequently, melatonin-treated cells display significantly higher values of both p53 and acetylated p53. Thus, a 15-fold increase in p21 levels was observed in melatonin-treated cancer cells. Our results provide evidence that melatonin enhances p53 acetylation by modulating the MDM2/MDMX/p300 pathway, disclosing new insights for understanding its anticancer effect.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Surgery "P. Valdoni", "Sapienza" University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Gomha SM, Eldebss TMA, Abdulla MM, Mayhoub AS. Diphenylpyrroles: Novel p53 activators. Eur J Med Chem 2014; 82:472-9. [PMID: 24934571 DOI: 10.1016/j.ejmech.2014.05.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 05/23/2014] [Accepted: 05/31/2014] [Indexed: 12/14/2022]
Abstract
Cellular tumor antigen p53 is crucial for cancer prevention via different mechanisms. E3 ubiquitin-protein ligase HDM2 binds to p53, blocks its ability to activate transcription, and therefore acts as a negative regulator. Blocking p53 binding site on HDM2 was believed to generate efficient antitumor agents. So far, limited scaffolds were reported with HDM2 antagonist activity. Herein, diphenylpyrroles were introduced and evaluated as a novel scaffold in the field of p53 activators. An efficient synthesis of novel 3-heteroaryl-pyrroles is described via reactions of E-3-(dimethylamino)-1-(2-methyl-4,5-diphenyl-1H-pyrrol-3-yl)prop-2-en-1-one or E-1-(2-methyl-4,5-diphenyl-1H-pyrrol-3-yl)-3-morpholinoprop-2-en-1-one with hydrazine hydrate, phenyl hydrazine, hydroxylamine, various heterocyclic amines and active methylene compounds.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Taha M A Eldebss
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Abdelrahman S Mayhoub
- Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884 Egypt
| |
Collapse
|
78
|
Stabilization of p53 Is Involved in Quercetin-Induced Cell Cycle Arrest and Apoptosis in HepG2 Cells. Biosci Biotechnol Biochem 2014; 72:797-804. [DOI: 10.1271/bbb.70680] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
79
|
Abstract
The RING domain ubiquitin E3 ligase MDM2 is a key regulator of p53 degradation and a mediator of signals that stabilize p53. The current understanding of the mechanisms by which MDM2 posttranslational modifications and protein binding cause p53 stabilization remains incomplete. Here we present evidence that the MDM2 central acidic region is critical for activating RING domain E3 ligase activity. A 30-amino-acid minimal region of the acidic domain binds to the RING domain through intramolecular interactions and stimulates the catalytic function of the RING domain in promoting ubiquitin release from charged E2. The minimal activation sequence is also the binding site for the ARF tumor suppressor, which inhibits ubiquitination of p53. The acidic domain-RING domain intramolecular interaction is modulated by ATM-mediated phosphorylation near the RING domain or by binding of ARF. These results suggest that MDM2 phosphorylation and association with protein regulators share a mechanism in inhibiting the E3 ligase function and stabilizing p53 and suggest that targeting the MDM2 autoactivation mechanism may be useful for therapeutic modulation of p53 levels.
Collapse
|
80
|
|
81
|
Mairinger FD, Walter RFH, Ting S, Vollbrecht C, Kollmeier J, Griff S, Hager T, Mairinger T, Christoph DC, Theegarten D, Schmid KW, Wohlschlaeger J. Mdm2 protein expression is strongly associated with survival in malignant pleural mesothelioma. Future Oncol 2014; 10:995-1005. [DOI: 10.2217/fon.13.261] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABSTRACT: Aims: TP53 mutations are extremely rare in malignant pleural mesothelioma (MPM). In TP53 wild-type tumors, the functional p53 protein can be inactivated by MDM2. Materials & methods: A total of 61 patient samples were tested for their Mdm2 and p53 protein expression levels via immunohistochemistry. Results: This study demonstrates nuclear Mdm2 expression in three out of four mesothelioma cell lines and 21.3% of the MPM specimens investigated. After silencing of the MDM2 gene by siRNA in MPM cell lines, Mdm2 immunoexpression is lost and cells show changes indicative of severe damage. Mdm2 protein expression in MPM is detected in epithelioid and biphasic subtypes only and is significantly associated with poor survival compared with Mdm2-negative tumors. This may be explained by increased Mdm2 levels possibly leading to an increased ubiquitilation and proteasomal degradation of functional p53 protein. Conclusion: Expression of Mdm2 is a strong prognostic factor associated with shortened overall survival in MPM.
Collapse
Affiliation(s)
- Fabian D Mairinger
- Institute of Pathology & Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert FH Walter
- Institute of Pathology & Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology & Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Jens Kollmeier
- Department of Pneumology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Sergei Griff
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Thomas Hager
- Institute of Pathology & Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Mairinger
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Daniel C Christoph
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Dirk Theegarten
- Institute of Pathology & Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology & Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology & Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
82
|
Zhao Y, Yu H, Hu W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:180-9. [PMID: 24389645 DOI: 10.1093/abbs/gmt147] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tumor suppressor p53 plays a central role in preventing tumor formation. The levels and activity of p53 is under tight regulation to ensure its proper function. Murine double minute 2 (MDM2), a p53 target gene, is an E3 ubiquitin ligase. MDM2 is a key negative regulator of p53 protein, and forms an auto-regulatory feedback loop with p53. MDM2 is an oncogene with both p53-dependent and p53-independent oncogenic activities, and often has increased expression levels in a variety of human cancers. MDM2 is highly regulated; the levels and function of MDM2 are regulated at the transcriptional, translational and post-translational levels. This review provides an overview of the regulation of MDM2. Dysregulation of MDM2 impacts significantly upon the p53 functions, and in turn the tumorigenesis. Considering the key role that MDM2 plays in human cancers, a better understanding of the regulation of MDM2 will help us to develop novel and more effective cancer therapeutic strategies to target MDM2 and activate p53 in cells.
Collapse
Affiliation(s)
- Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
83
|
Arrigo AP, Gibert B. HspB1, HspB5 and HspB4 in Human Cancers: Potent Oncogenic Role of Some of Their Client Proteins. Cancers (Basel) 2014; 6:333-65. [PMID: 24514166 PMCID: PMC3980596 DOI: 10.3390/cancers6010333] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/03/2014] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal unstressed cells as well as in many cancer cells where they are over-expressed. These proteins are characterized by cell physiology dependent changes in their oligomerization and phosphorylation status. These structural changes allow them to interact with many different client proteins that subsequently display modified activity and/or half-life. Nowdays, the protein interactomes of small Hsps are under intense investigations and will represent, when completed, key parameters to elaborate therapeutic strategies aimed at modulating the functions of these chaperones. Here, we have analyzed the potential pro-cancerous roles of several client proteins that have been described so far to interact with HspB1 (Hsp27) and its close members HspB5 (αB-crystallin) and HspB4 (αA-crystallin).
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Lyon 69008, France.
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Lyon 69008, France.
| |
Collapse
|
84
|
Hock AK, Vousden KH. The role of ubiquitin modification in the regulation of p53. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:137-49. [DOI: 10.1016/j.bbamcr.2013.05.022] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/16/2013] [Accepted: 05/23/2013] [Indexed: 01/09/2023]
|
85
|
Arrestin interaction with E3 ubiquitin ligases and deubiquitinases: functional and therapeutic implications. Handb Exp Pharmacol 2014; 219:187-203. [PMID: 24292831 DOI: 10.1007/978-3-642-41199-1_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arrestins constitute a small family of four homologous adaptor proteins (arrestins 1-4), which were originally identified as inhibitors of signal transduction elicited by the seven-transmembrane G protein-coupled receptors. Currently arrestins (especially arrestin2 and arrestin3; also called β-arrestin1 and β-arrestin2) are known to be activators of cell signaling and modulators of endocytic trafficking. Arrestins mediate these effects by binding to not only diverse cell-surface receptors but also by associating with a variety of critical signaling molecules in different intracellular compartments. Thus, the functions of arrestins are multifaceted and demand interactions with a host of proteins and require an array of selective conformations. Furthermore, receptor ligands that specifically induce signaling via arrestins are being discovered and their physiological roles are emerging. Recent evidence suggests that the activity of arrestin is regulated in space and time by virtue of its dynamic association with specific enzymes of the ubiquitination pathway. Ubiquitin-dependent, arrestin-mediated signaling could serve as a potential platform for developing novel therapeutic strategies to target transmembrane signaling and physiological responses.
Collapse
|
86
|
Abstract
The tumor suppressor p53 plays a central role in anti-tumorigenesis and cancer therapy. It has been described as "the guardian of the genome", because it is essential for conserving genomic stability by preventing mutation, and its mutation and inactivation are highly related to all human cancers. Two important p53 regulators, MDM2 and MDMX, inactivate p53 by directly inhibiting its transcriptional activity and mediating its ubiquitination in a feedback fashion, as their genes are also the transcriptional targets of p53. On account of the importance of the p53-MDM2-MDMX loop in the initiation and development of wild type p53-containing tumors, intensive studies over the past decade have been aiming to identify small molecules or peptides that could specifically target individual protein molecules of this pathway for developing better anti-cancer therapeutics. In this chapter, we review the approaches for screening and discovering efficient and selective MDM2 inhibitors with emphasis on the most advanced synthetic small molecules that interfere with the p53-MDM2 interaction and are currently on Phase I clinical trials. Other therapeutically useful strategies targeting this loop, which potentially improve the prospects of cancer therapy and prevention, will also be discussed briefly.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, Louisiana, LA, 70112, USA
| | | | | |
Collapse
|
87
|
Abstract
Discovered in 1987 and 1997 respectively, Mdm2 and MdmX represent two critical cellular regulators of the p53 tumor suppressor. This chapter reviews each from initial discovery to our current understanding of their deregulation in human cancer with a focus on how each regulator impacts p53 function. While p53 independent activities of Mdm2 and MdmX are noted the reader is directed to other reviews on this topic. The chapter concludes with an examination of the various mechanisms of Mdm-deregulation and an assessment of the current therapeutic approaches to target Mdm2 and MdmX overexpression.
Collapse
|
88
|
The ubiquitin/proteasome pathway in neoplasia. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
89
|
Inauhzin sensitizes p53-dependent cytotoxicity and tumor suppression of chemotherapeutic agents. Neoplasia 2013; 15:523-34. [PMID: 23633924 DOI: 10.1593/neo.13142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 12/20/2022] Open
Abstract
Toxicity and chemoresistance are two major issues to hamper the success of current standard tumor chemotherapy. Combined therapy of agents with different mechanisms of action is a feasible and effective means to minimize the side effects and avoid the resistance to chemotherapeutic drugs while improving the antitumor effects. As the most essential tumor suppressor, p53 or its pathway has been an attractive target to develop a new type of molecule-targeting anticancer therapy. Recently, we identified a small molecule, Inauhzin (INZ), which can specifically activate p53 by inducing its deacetylation. In this study, we tested if combination with INZ could sensitize tumor cells to the current chemotherapeutic drugs, cisplatin (CIS) and doxorubicin (DOX). We found that compared with any single treatment, combination of lower doses of INZ and CIS or DOX significantly promoted apoptosis and cell growth inhibition in human non-small lung cancer and colon cancer cell lines in a p53-dependent fashion. This cooperative effect between INZ and CIS on tumor suppression was also confirmed in a xenograft tumor model. Therefore, this study suggests that specifically targeting the p53 pathway could enhance the sensitivity of cancer cells to chemotherapeutic agents and markedly reduce the doses of the chemotherapy, possibly decreasing its adverse side effects.
Collapse
|
90
|
Joshi MR, Yao N, Myers KA, Li Z. Human serum albumin and p53-activating peptide fusion protein is able to promote apoptosis and deliver fatty acid-modified molecules. PLoS One 2013; 8:e80926. [PMID: 24278348 PMCID: PMC3836765 DOI: 10.1371/journal.pone.0080926] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
Therapeutic peptides offer a high degree of specificity, potency, and low toxicity; making them promising candidates for cancer therapy. Despite these advantages, a number of hurdles, such as poor serum stability and inefficient cellular penetration, must be overcome. Fusing a therapeutic peptide to human serum albumin (HSA) is a common approach to extend the serum stability of a peptide that binds to extracellular receptors. However, no study has shown that this approach can be applied to target intracellular proteins. Here we demonstrate the feasibility of using a recombinant human serum albumin (rHSA) fusion protein to simultaneously deliver two types of molecules: a peptide capable of binding an intracellular target, as well as fatty acid (FA)-modified FITC (FA-FITC). Two peptides reported to disrupt the intracellular p53 and MDM2/MDMX interaction were fused to the C-terminal of HSA. Cellular and biochemical studies indicate that rHSA fusion proteins were efficiently taken up by SJSA-1 cells and retained MDM2- and MDMX-binding activity. By inducing the accumulation of p53, both fusion proteins promoted efficient cytotoxicity in SJSA-1 cells via caspase activation. Long chain fatty acid (LCFA) transportation is an essential endogenous function of HSA. This study also demonstrates that rHSA fusion proteins formed highly stable complexes with FA-FITC via non-covalent interactions. FA-FITC complexed with HSA could be internalized efficiently and rHSA-P53i and rHSA-PMI retained apoptotic activity as complex components. It is expected that such an approach can ultimately be used to facilitate intracellular delivery of two anticancer therapeutics, each with distinct but complimentary mechanisms, to achieve synergistic efficacy.
Collapse
Affiliation(s)
- Michelle R. Joshi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Nianhuan Yao
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Kenneth A. Myers
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Zhiyu Li
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
91
|
Zhang W, Sidhu SS. Development of inhibitors in the ubiquitination cascade. FEBS Lett 2013; 588:356-67. [PMID: 24239534 PMCID: PMC7094371 DOI: 10.1016/j.febslet.2013.11.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
The ubiquitin proteasome system (UPS) is essential in regulating myriad aspects of protein functions. It is therefore a fundamentally important regulatory mechanism that impacts most if not all aspects of cellular processes. Indeed, malfunction of UPS components is implicated in human diseases such as neurodegenerative and immunological disorders and many cancers. The success of proteasome inhibitors in cancer therapy suggests that modulating enzymes in the ubiquitination cascade would be clinically important for therapeutic benefits. In this review, we summarize advances in developing inhibitors of a variety of UPS components. In particular, we highlight recent work done on the protein engineering of ubiquitin as modulators of the UPS, a novel approach that may shed light on innovative drug discovery in the future.
Collapse
Affiliation(s)
- Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada.
| |
Collapse
|
92
|
Devine T, Dai MS. Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Curr Pharm Des 2013; 19:3248-62. [PMID: 23151129 DOI: 10.2174/1381612811319180009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 02/08/2023]
Abstract
Within the past decade, there has been a revolution in the types of drugs developed to treat cancer. Therapies that selectively target cancer-specific aberrations, such as kinase inhibitors, have made a dramatic impact on a subset of patients. In spite of these successes, there is still a dearth of treatment options for the vast majority of patients. Therefore, there is a need to design therapies with broader efficacy. The p53 tumor suppressor pathway is one of the most frequently altered in human cancers. However, about half of all cancers retain wild-type p53, yet through various mechanisms, the p53 pathway is otherwise inactivated. Targeting this pathway for reactivation truly represents the "holy grail" in cancer treatment. Most commonly, destabilization of p53 by various components of ubiquitin- proteasome system, notably the ubiquitin ligase MDM2 and its partner MDMX as well as various deubiquitinating enzymes (DUBs), render p53 inert and unresponsive to stress signals. Reinstating its function in cancer has been a long sought-after goal. Towards this end, a great deal of work has been devoted to the development of compounds that either interfere with the p53-MDM2 and p53- MDMX interactions, inhibit MDM2 E3 activity, or target individual DUBs. Here we review the current progress that has been made in the field, with a special emphasis on both MDM2 and DUB inhibitors. Developing inhibitors targeting the upstream of the p53 ubiquitination pathway will likely also be a valuable option.
Collapse
Affiliation(s)
- Tiffany Devine
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
93
|
Specific expression of k63-linked ubiquitination of calmodulin-like protein 5 in breast cancer of premenopausal patients. J Cancer Res Clin Oncol 2013; 139:2125-32. [PMID: 24146193 DOI: 10.1007/s00432-013-1541-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/10/2013] [Indexed: 01/18/2023]
Abstract
PURPOSE Posttranslational modifications such as ubiquitination regulate many functions of proteins by affecting their interaction with other molecules, their activity, and their subcellular localization. In cancer biology, the ubiquitin network has gained major interest. K63-linked ubiquitination has emerged as a posttranslational modification with functional consequences, as it acts in several processes such as protein trafficking, DNA repair, and inflammation. Moreover, k63-linked ubiquitination is involved in the regulation of carcinogenesis. Based on previous findings, the aim of this study was to evaluate the ubiquitination of CALML5 in breast cancer patients. PATIENTS AND METHODS The breast cancer cell lines SkBr3, MCF7, HCC1937, and BT474 as well as 23 tumor samples of patients with primary breast cancer and the normal adjacent breast tissue were analyzed by one-dimensional immunoblot. RESULTS Using specific antibodies against CALML5 and k63-linked ubiquitin, we demonstrate a k63-linked ubiquitination in the nuclear fraction of premenopausal breast cancer patients. K63-linked ubiquitination of CALML5 was found in breast cancer tissue, but not found in surrounding healthy tissue. CONCLUSION Our findings support the concept that ubiquitination of CALML5 in the nucleus is involved in the carcinogenesis of breast cancer in premenopausal women.
Collapse
|
94
|
USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis. Cell Death Dis 2013; 4:e867. [PMID: 24136231 PMCID: PMC3920959 DOI: 10.1038/cddis.2013.400] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/23/2013] [Accepted: 09/02/2013] [Indexed: 01/06/2023]
Abstract
Neuroblastoma (NB) is a common pediatric cancer and contributes to more than 15% of all pediatric cancer-related deaths. Unlike adult tumors, recurrent somatic mutations in NB, such as tumor protein 53 (p53) mutations, occur with relative paucity. In addition, p53 downstream function is intact in NB cells with wild-type p53, suggesting that reactivation of p53 may be a viable therapeutic strategy for NB treatment. Herein, we report that the ubiquitin-specific protease 7 (USP7) inhibitor, P22077, potently induces apoptosis in NB cells with an intact USP7-HDM2-p53 axis but not in NB cells with mutant p53 or without human homolog of MDM2 (HDM2) expression. In this study, we found that P22077 stabilized p53 by inducing HDM2 protein degradation in NB cells. P22077 also significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) in NB cells with an intact USP7-HDM2-p53 axis. Moreover, P22077 was found to be able to sensitize chemoresistant LA-N-6 NB cells to chemotherapy. In an in vivo orthotopic NB mouse model, P22077 significantly inhibited the xenograft growth of three NB cell lines. Database analysis of NB patients shows that high expression of USP7 significantly predicts poor outcomes. Together, our data strongly suggest that targeting USP7 is a novel concept in the treatment of NB. USP7-specific inhibitors like P22077 may serve not only as a stand-alone therapy but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact USP7-HDM2-p53 axis.
Collapse
|
95
|
Dickens MP, Roxburgh P, Hock A, Mezna M, Kellam B, Vousden KH, Fischer PM. 5-Deazaflavin derivatives as inhibitors of p53 ubiquitination by HDM2. Bioorg Med Chem 2013; 21:6868-77. [PMID: 24113239 PMCID: PMC3898830 DOI: 10.1016/j.bmc.2013.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 11/16/2022]
Abstract
Based on previous reports of certain 5-deazaflavin derivatives being capable of activating the tumour suppressor p53 in cancer cells through inhibition of the p53-specific ubiquitin E3 ligase HDM2, we have conducted an structure–activity relationship (SAR) analysis through systematic modification of the 5-deazaflavin template. This analysis shows that HDM2-inhibitory activity depends on a combination of factors. The most active compounds (e.g., 15) contain a trifluoromethyl or chloro substituent at the deazaflavin C9 position and this activity depends to a large extent on the presence of at least one additional halogen or methyl substituent of the phenyl group at N10. Our SAR results, in combination with the HDM2 RING domain receptor recognition model we present, form the basis for the design of drug-like and potent activators of p53 for potential cancer therapy.
Collapse
Affiliation(s)
- Michael P Dickens
- School of Pharmacy & Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
96
|
Shen M, Schmitt S, Buac D, Dou QP. Targeting the ubiquitin-proteasome system for cancer therapy. Expert Opin Ther Targets 2013; 17:1091-108. [PMID: 23822887 DOI: 10.1517/14728222.2013.815728] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The ubiquitin-proteasome system (UPS) degrades 80 - 90% of intracellular proteins. Cancer cells take advantage of the UPS for their increased growth and decreased apoptotic cell death. Thus, the components that make up the UPS represent a diverse group of potential anti-cancer targets. The success of the first-in-class proteasome inhibitor bortezomib not only proved that the proteasome is a feasible and valuable anti-cancer target, but also inspired researchers to extensively explore other potential targets of this pathway. AREAS COVERED This review provides a broad overview of the UPS and its role in supporting cancer development and progression, especially in aspects of p53 inactivation, p27 turnover and NF-κB activation. Also, efforts toward the development of small molecule inhibitors (SMIs) targeting different steps in this pathway for cancer treatment are reviewed and discussed. EXPERT OPINION Whereas some of the targets in the UPS, such as the 20S proteasome, Nedd8 activating enzyme and HDM2, have been well-established and validated, there remains a large pool of candidates waiting to be investigated. Development of SMIs targeting the UPS has been largely facilitated by state-of-the-art technologies such as high-throughput screening and computer-assisted drug design, both of which require a better understanding of the targets of interest.
Collapse
Affiliation(s)
- Min Shen
- Wayne State University, Barbara Ann Karmanos Cancer Institute, School of Medicine, Department of Pharmacology, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
97
|
Heyne K, Winter C, Gerten F, Schmidt C, Roemer K. A novel mechanism of crosstalk between the p53 and NFκB pathways: MDM2 binds and inhibits p65RelA. Cell Cycle 2013; 12:2479-92. [PMID: 23839035 DOI: 10.4161/cc.25495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The inflammation regulating transcription factor NFκB and the tumor-suppressing transcription factor p53 can act as functional antagonists. Chronic inflammation (NFκB activity) may contribute to the development of cancer through the inhibition of p53 function, while, conversely, p53 activity may dampen inflammation. Here we report that the E3 ubiquitin ligase MDM2, whose gene is transcriptionally activated by both NFκB and p53, can bind and inhibit the p65RelA subunit of NFκB. The interaction is mediated through the N-terminal and the acidic/zinc finger domains of MDM2 on the one hand and through the N-terminal Rel homology domain of p65RelA on the other hand. Co-expression of MDM2 and p65RelA caused ubiquitination of the latter in the nucleus, and this modification was dependent of a functional MDM2 RING domain. Conversely, inhibition of endogenous MDM2 by small-molecule inhibitors or siRNA significantly reduced the ubiquitination of ectopic and endogenous p65RelA. MDM2 was able to equip p65RelA with mutated ubiquitin moieties capable of multiple monoubiquitination but incapable of polyubiquitination; moreover, MDM2 failed to destabilize p65RelA detectably, suggesting that the ubiquitin modification of p65RelA by MDM2 was mostly regulatory rather than stability-determining. MDM2 inhibited the NFκB-mediated transactivation of a reporter gene and the binding of NFκB to its DNA binding motif in vitro. Finally, knockdown of endogenous MDM2 increased the activity of endogenous NFκB as a transactivator. Thus, MDM2 can act as a direct negative regulator of NFκB by binding and inhibiting p65RelA.
Collapse
Affiliation(s)
- Kristina Heyne
- Internal Medicine I and José Carreras Center; University of Saarland Medical Center; Homburg, Saarland, Germany
| | | | | | | | | |
Collapse
|
98
|
Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2-p53 pathway revisited. J Biomed Res 2013; 27:254-71. [PMID: 23885265 PMCID: PMC3721034 DOI: 10.7555/jbr.27.20130030] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/12/2013] [Indexed: 12/15/2022] Open
Abstract
The p53 tumor suppressor is a key transcription factor regulating cellular pathways such as DNA repair, cell cycle, apoptosis, angiogenesis, and senescence. It acts as an important defense mechanism against cancer onset and progression, and is negatively regulated by interaction with the oncoprotein MDM2. In human cancers, the TP53 gene is frequently mutated or deleted, or the wild-type p53 function is inhibited by high levels of MDM2, leading to downregulation of tumor suppressive p53 pathways. Thus, the inhibition of MDM2-p53 interaction presents an appealing therapeutic strategy for the treatment of cancer. However, recent studies have revealed the MDM2-p53 interaction to be more complex involving multiple levels of regulation by numerous cellular proteins and epigenetic mechanisms, making it imperative to reexamine this intricate interplay from a holistic viewpoint. This review aims to highlight the multifaceted network of molecules regulating the MDM2-p53 axis to better understand the pathway and exploit it for anticancer therapy.
Collapse
Affiliation(s)
- Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
99
|
Qin JJ, Nag S, Voruganti S, Wang W, Zhang R. Natural product MDM2 inhibitors: anticancer activity and mechanisms of action. Curr Med Chem 2013; 19:5705-25. [PMID: 22830335 DOI: 10.2174/092986712803988910] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 12/12/2022]
Abstract
The mdm2 oncogene has recently been suggested to be a valuable target for cancer therapy and prevention. Overexpression of mdm2 is often seen in various human cancers and correlates with high-grade, late-stage, and more treatment-resistant tumors. The MDM2-p53 auto-regulatory loop has been extensively investigated and is an attractive cancer target, which indeed has been the main focus of anti-MDM2 drug discovery. Much effort has been expended in the development of small molecule MDM2 antagonists targeting the MDM2-p53 interaction, and a few of these have advanced into clinical trials. However, MDM2 exerts its oncogenic activity through both p53-dependent and -independent mechanisms. Recently, there is an increasing interest in identifying natural MDM2 inhibitors; some of them have been shown to decrease MDM2 expression and activity in vitro and in vivo. These identified natural MDM2 inhibitors include a plethora of diverse chemical frameworks, ranging from flavonoids, steroids, and sesquiterpenes to alkaloids. In addition to a brief review of synthetic MDM2 inhibitors, this review focuses on natural product MDM2 inhibitors, summarizing their biological activities in vitro and in vivo and the underlying molecular mechanisms of action, targeting MDM2 itself, regulators of MDM2, and/or the MDM2-p53 interaction. These MDM2 inhibitors can be used alone or in combination with conventional treatments, improving the prospects for cancer therapy and prevention. Their complex and unique molecular architectures may provide a stimulus for developing synthetic analogs in the future.
Collapse
Affiliation(s)
- J-J Qin
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
100
|
Abstract
The MDM2 and MDMX (also known as HDMX and MDM4) proteins are deregulated in many human cancers and exert their oncogenic activity predominantly by inhibiting the p53 tumour suppressor. However, the MDM proteins modulate and respond to many other signalling networks in which they are embedded. Recent mechanistic studies and animal models have demonstrated how functional interactions in these networks are crucial for maintaining normal tissue homeostasis, and for determining responses to oncogenic and therapeutic challenges. This Review highlights the progress made and pitfalls encountered as the field continues to search for MDM-targeted antitumour agents.
Collapse
Affiliation(s)
- Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy
| | | | | |
Collapse
|