51
|
Abstract
H(+), a most common ion, is involved in very many biological processes. However, most proteins have distinct ranges of pH for function; when the H(+) concentration in the cells is too high or too low, protons turn into very potent stressors to all cells. Therefore, all living cells are strictly dependent on homeostasis mechanisms that regulate their intracellular pH. Na(+)/H(+) antiporters play primary role in pH homeostatic mechanisms both in prokaryotes and eukaryotes. Regulation by pH is a property common to these antiporters. They are equipped with a pH sensor to perceive the pH signal and a pH transducer to transduce the signal into a change in activity. Determining the crystal structure of NhaA, the Na(+)/H(+) antiporter of Escherichia coli have provided the basis for understanding in a realistic rational way the unique regulation of an antiporter by pH and the mechanism of the antiport activity. The physical separation between the pH sensor/transducer and the active site revealed by the structure entailed long-range pH-induced conformational changes for NhaA pH activation. As yet, it is not possible to decide whether the amino acid participating in the pH sensor and the pH transducer overlap or are separated. The pH sensor/transducer is not a single amino acid but rather a cluster of electrostatically interacting residues. Thus, integrating structural, computational, and experimental approaches are essential to reveal how the pH signal is perceived and transduced to activate the pH regulated protein.
Collapse
Affiliation(s)
- Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
52
|
Functional and structural dynamics of NhaA, a prototype for Na(+) and H(+) antiporters, which are responsible for Na(+) and H(+) homeostasis in cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1047-62. [PMID: 24361841 DOI: 10.1016/j.bbabio.2013.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 01/14/2023]
Abstract
The crystal structure of down-regulated NhaA crystallized at acidic pH4 [21] has provided the first structural insights into the antiport mechanism and pH regulation of a Na(+)/H(+) antiporter [22]. On the basis of the NhaA crystal structure [21] and experimental data (reviewed in [2,22,38] we have suggested that NhaA is organized into two functional regions: (i) a cluster of amino acids responsible for pH regulation (ii) a catalytic region at the middle of the TM IV/XI assembly, with its unique antiparallel unfolded regions that cross each other forming a delicate electrostatic balance in the middle of the membrane. This unique structure contributes to the cation binding site and allows the rapid conformational changes expected for NhaA. Extended chains interrupting helices appear now a common feature for ion binding in transporters. However the NhaA fold is unique and shared by ASBTNM [30] and NapA [29]. Computation [13], electrophysiology [69] combined with biochemistry [33,47] have provided intriguing models for the mechanism of NhaA. However, the conformational changes and the residues involved have not yet been fully identified. Another issue which is still enigma is how energy is transduced "in this 'nano-machine.'" We expect that an integrative approach will reveal the residues that are crucial for NhaA activity and regulation, as well as elucidate the pHand ligand-induced conformational changes and their dynamics. Ultimately, integrative results will shed light on the mechanism of activity and pH regulation of NhaA, a prototype of the CPA2 family of transporters. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
|
53
|
Purification and functional reconstitution of a seven-subunit mrp-type na+/h+ antiporter. J Bacteriol 2013; 196:28-35. [PMID: 24142251 DOI: 10.1128/jb.01029-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mrp antiporters and their homologues in the cation/proton antiporter 3 family of the Membrane Transporter Database are widely distributed in bacteria. They have major roles in supporting cation and cytoplasmic pH homeostasis in many environmental, extremophilic, and pathogenic bacteria. These antiporters require six or seven hydrophobic proteins that form hetero-oligomeric complexes, while most other cation/proton antiporters require only one membrane protein for their activity. The resemblance of three Mrp subunits to membrane-embedded subunits of the NADH:quinone oxidoreductase of respiratory chains and to subunits of several hydrogenases has raised interest in the evolutionary path and commonalities of their proton-translocating domains. In order to move toward a greater mechanistic understanding of these unusual antiporters and to rigorously demonstrate that they function as secondary antiporters, powered by an imposed proton motive force, we established a method for purification and functional reconstitution of the seven-subunit Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4. Na(+)/H(+) antiporter activity was demonstrated by a fluorescence-based assay with proteoliposomes in which the Mrp complex was coreconstituted with a bacterial FoF1-ATPase. Proton pumping by the ATPase upon addition of ATP generated a proton motive force across the membranes that powered antiporter activity upon subsequent addition of Na(+).
Collapse
|
54
|
Martinière A, Bassil E, Jublanc E, Alcon C, Reguera M, Sentenac H, Blumwald E, Paris N. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. THE PLANT CELL 2013; 25:4028-43. [PMID: 24104564 PMCID: PMC3877828 DOI: 10.1105/tpc.113.116897] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 07/30/2013] [Accepted: 09/18/2013] [Indexed: 05/18/2023]
Abstract
The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH -1.5) and Arabidopsis thaliana root cells (ΔpH -2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H(+) ATPase-dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.
Collapse
Affiliation(s)
- Alexandre Martinière
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Elodie Jublanc
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 866, Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| | - Carine Alcon
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Maria Reguera
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hervé Sentenac
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Nadine Paris
- Biochemistry and Plant Molecular Biology Lab, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| |
Collapse
|
55
|
Mottaleb SA, Rodríguez-Navarro A, Haro R. Knockouts of Physcomitrella patens CHX1 and CHX2 Transporters Reveal High Complexity of Potassium Homeostasis. ACTA ACUST UNITED AC 2013; 54:1455-68. [DOI: 10.1093/pcp/pct096] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
56
|
Chanroj S, Padmanaban S, Czerny DD, Jauh GY, Sze H. K+ transporter AtCHX17 with its hydrophilic C tail localizes to membranes of the secretory/endocytic system: role in reproduction and seed set. MOLECULAR PLANT 2013; 6:1226-46. [PMID: 23430044 DOI: 10.1093/mp/sst032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The importance of sorting proteins and wall materials to their destination is critical for plant growth and development, though the machinery orchestrating membrane trafficking is poorly understood. Transporters that alter the environment across endomembrane compartments are thought to be important players. Using Escherichia coli and yeast, we previously showed that several Arabidopsis Cation/H(+) eXchanger (AtCHX) members were K(+) transporters with a role in pH homeostasis, though their subcellular location and biological roles in plants are unclear. Co-expression of markers with CHX16, CHX17, CHX18, or CHX19 tagged with a fluorescent protein indicated these transporters associated with plasma membrane (PM) and post-Golgi compartments. Under its native promoter, AtCHX17(1-820)-GFP localized to prevacuolar compartment (PVC) and to PM in roots. Brefeldin A diminished AtCHX17-GFP fluorescence at PM, whereas wortmannin caused formation of GFP-labeled ring-like structures, suggesting AtCHX17 trafficked among PVC, vacuole and PM. AtCHX17(1-472) lacking its carboxylic tail did not associate with PVC or PM in plant cells. Single chx17 mutant or higher-order mutants showed normal root growth and vegetative development. However, quadruple (chx16chx17chx18chx19) mutants were reduced in frequency and produced 50%-70% fewer seeds, indicating overlapping roles of several AtCHX17-related transporters in reproduction and/or seed development. Together, our results suggest that successful reproduction and seed development depend on the ability to regulate cation and pH homeostasis by AtCHX17-like transporters on membranes that traffic in the endocytic and/or secretory pathways.
Collapse
Affiliation(s)
- Salil Chanroj
- Department of Cell Biology and Molecular Genetics, and Maryland Agricultural Experiment Station, University of Maryland, College Park, MD, USA
| | | | | | | | | |
Collapse
|
57
|
Contractile Vacuole Complex—Its Expanding Protein Inventory. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:371-416. [DOI: 10.1016/b978-0-12-407694-5.00009-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
58
|
Rimon A, Kozachkov-Magrisso L, Padan E. The Unwound Portion Dividing Helix IV of NhaA Undergoes a Conformational Change at Physiological pH and Lines the Cation Passage. Biochemistry 2012; 51:9560-9. [DOI: 10.1021/bi301030x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abraham Rimon
- Department
of Biological Chemistry, Alexander Silberman
Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel
| | - Lena Kozachkov-Magrisso
- Department
of Biological Chemistry, Alexander Silberman
Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel
| | - Etana Padan
- Department
of Biological Chemistry, Alexander Silberman
Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel
| |
Collapse
|
59
|
Bassil E, Coku A, Blumwald E. Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5727-40. [PMID: 22991159 DOI: 10.1093/jxb/ers250] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent evidence highlights novel roles for intracellular Na(+)/H(+) antiporters (NHXs) in plants. The availability of knockouts and overexpressors of specific NHX isoforms has provided compelling genetic evidence to support earlier physiological and biochemical data which suggested the involvement of NHX antiporters in ion and pH regulation. Most plants sequenced to date contain multiple NHX members and, based on their sequence identity and localization, can be grouped into three distinct functional classes: plasma membrane, vacuolar, and endosomal associated. Orthologues of each functional class are represented in all sequenced plant genomes, suggesting conserved and fundamental roles across taxa. In this review we seek to highlight recent findings which demonstrate that intracellular NHX antiporters (i.e. vacuolar and endosomal isoforms) play roles in growth and development, including cell expansion, cell volume regulation, ion homeostasis, osmotic adjustment, pH regulation, vesicular trafficking, protein processing, cellular stress responses, as well as flowering. A significant new discovery demonstrated that in addition to the better known vacuolar NHX isoforms, plants also contain endosomal NHX isoforms that regulate protein processing and trafficking of cellular cargo. We draw parallels from close orthologues in yeast and mammals and discuss distinctive NHX functions in plants.
Collapse
Affiliation(s)
- Elias Bassil
- Department of Plant Sciences, University of California, One Shields Ave, Davis, CA 95616, USA
| | | | | |
Collapse
|
60
|
Maes M, Rimon A, Kozachkov-Magrisso L, Friedler A, Padan E. Revealing the ligand binding site of NhaA Na+/H+ antiporter and its pH dependence. J Biol Chem 2012; 287:38150-7. [PMID: 22915592 DOI: 10.1074/jbc.m112.391128] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
pH and Na(+) homeostasis in all cells requires Na(+)/H(+) antiporters. In most cases, their activity is tightly pH-regulated. NhaA, the main antiporter of Escherichia coli, has homologues in all biological kingdoms. The crystal structure of NhaA provided insights into the mechanism of action and pH regulation of an antiporter. However, the active site of NhaA remained elusive because neither Na(+) nor Li(+), the NhaA ligands, were observed in the structure. Using isothermal titration calorimetry, we show that purified NhaA binds Li(+) in detergent micelles. This interaction is driven by an increase in enthalpy (ΔH of -8000 ± 300 cal/mol and ΔS of -15.2 cal/mol/degree at 283 K), involves a single binding site per NhaA molecule, and is highly specific and drastically dependent on pH; Li(+) binding was observed only at pH 8.5. Combining mutational analysis with the isothermal titration calorimetry measurements revealed that Asp-163, Asp-164, Thr-132, and Asp-133 form the Li(+) binding site, whereas Lys-300 plays an important role in pH regulation of the antiporter.
Collapse
Affiliation(s)
- Michal Maes
- Institute of Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
61
|
Di Sole F, Vadnagara K, Moe OW, Babich V. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family. Am J Physiol Renal Physiol 2012; 303:F165-79. [PMID: 22189947 PMCID: PMC3404583 DOI: 10.1152/ajprenal.00628.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022] Open
Abstract
The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca(2+)-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca(2+)-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, and nuclear export signals. These structural features are essential for the function of the three members of the CHP subfamily. Indeed, CHP1-CHP3 have multiple and diverse essential functions, ranging from the regulation of the plasma membrane Na(+)/H(+) exchanger protein function, to carrier vesicle trafficking and gene transcription. The diverse functions attributed to the CHP subfamily rendered an understanding of its action highly complex and often controversial. This review provides a comprehensive and organized examination of the properties and physiological roles of the CHP subfamily with a view to revealing a link between CHP diverse functions.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA.
| | | | | | | |
Collapse
|
62
|
|
63
|
Girardi ACC, Di Sole F. Deciphering the mechanisms of the Na+/H+ exchanger-3 regulation in organ dysfunction. Am J Physiol Cell Physiol 2012; 302:C1569-87. [DOI: 10.1152/ajpcell.00017.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Na+/H+ exchanger-3 (NHE3) belongs to the mammalian NHE protein family and catalyzes the electro-neutral exchange of extracellular sodium for intracellular proton across cellular membranes. Its transport function is of essential importance for the maintenance of the body's salt and water homeostasis as well as acid-base balance. Indeed, NHE3 activity is finely regulated by a variety of stimuli, both acutely and chronically, and its transport function is fundamental for a multiplicity of severe and world-wide infection-pathological conditions. This review aims to provide a concise overview of NHE3 physiology and discusses the role of NHE3 in clinical conditions of prominent importance, specifically in hypertension, diabetic nephropathy, heart failure, acute kidney injury, and diarrhea. Study of NHE3 function in models of these diseases has contributed to the deciphering of mechanisms that control the delicate ion balance disrupted in these disorders. The majority of the findings indicate that NHE3 transport function is activated before the onset of hypertension and inhibited thereafter; NHE3 transport function is also upregulated in diabetic nephropathy and heart failure, while it is reported to be downregulated in acute kidney injury and in diarrhea. The molecular mechanisms activated during these pathological conditions to regulate NHE3 transport function are examined with the aim of linking NHE3 dysfunction to the analyzed clinical disorders.
Collapse
Affiliation(s)
| | - Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
- Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
64
|
Ernstrom GG, Weimer R, Pawar DRL, Watanabe S, Hobson RJ, Greenstein D, Jorgensen EM. V-ATPase V1 sector is required for corpse clearance and neurotransmission in Caenorhabditis elegans. Genetics 2012; 191:461-75. [PMID: 22426883 PMCID: PMC3374311 DOI: 10.1534/genetics.112.139667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 02/29/2012] [Indexed: 11/18/2022] Open
Abstract
The vacuolar-type ATPase (V-ATPase) is a proton pump composed of two sectors, the cytoplasmic V(1) sector that catalyzes ATP hydrolysis and the transmembrane V(o) sector responsible for proton translocation. The transmembrane V(o) complex directs the complex to different membranes, but also has been proposed to have roles independent of the V(1) sector. However, the roles of the V(1) sector have not been well characterized. In the nematode Caenorhabditis elegans there are two V(1) B-subunit genes; one of them, vha-12, is on the X chromosome, whereas spe-5 is on an autosome. vha-12 is broadly expressed in adults, and homozygotes for a weak allele in vha-12 are viable but are uncoordinated due to decreased neurotransmission. Analysis of a null mutation demonstrates that vha-12 is not required for oogenesis or spermatogenesis in the adult germ line, but it is required maternally for early embryonic development. Zygotic expression begins during embryonic morphogenesis, and homozygous null mutants arrest at the twofold stage. These mutant embryos exhibit a defect in the clearance of apoptotic cell corpses in vha-12 null mutants. These observations indicate that the V(1) sector, in addition to the V(o) sector, is required in exocytic and endocytic pathways.
Collapse
Affiliation(s)
- Glen G. Ernstrom
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| | - Robby Weimer
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| | - Divya R. L. Pawar
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| | - Shigeki Watanabe
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| | - Robert J. Hobson
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| | - David Greenstein
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455-0465
| | - Erik M. Jorgensen
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| |
Collapse
|
65
|
Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 2012; 92:39-74. [PMID: 22298651 DOI: 10.1152/physrev.00011.2011] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fluid and HCO(3)(-) secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO(3)(-) secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren's syndrome, and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO(3)(-) secretion, in particular by secretory glands. Fluid and HCO(3)(-) secretion by secretory glands is a two-step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl(-) and secrete HCO(3)(-). The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete a small amount of NaCl-rich fluid, while the duct absorbs the Cl(-) and secretes HCO(3)(-) and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO(3)(-) secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that is driven by active Cl(-) secretion and contains high concentrations of Na(+) and Cl(-). The salivary glands duct absorbs both the Na(+) and Cl(-) and secretes K(+) and HCO(3)(-). In this review, we focus on the molecular mechanism of fluid and HCO(3)(-) secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and to point out the differences to meet gland-specific secretions.
Collapse
Affiliation(s)
- Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
66
|
Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 2011; 439:349-74. [PMID: 21992097 DOI: 10.1042/bj20110949] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.
Collapse
|
67
|
Chanroj S, Lu Y, Padmanaban S, Nanatani K, Uozumi N, Rao R, Sze H. Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. J Biol Chem 2011; 286:33931-41. [PMID: 21795714 PMCID: PMC3190763 DOI: 10.1074/jbc.m111.252650] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/08/2011] [Indexed: 11/30/2022] Open
Abstract
The complexity of intracellular compartments in eukaryotic cells evolved to provide distinct environments to regulate processes necessary for cell proliferation and survival. A large family of predicted cation/proton exchangers (CHX), represented by 28 genes in Arabidopsis thaliana, are associated with diverse endomembrane compartments and tissues in plants, although their roles are poorly understood. We expressed a phylogenetically related cluster of CHX genes, encoded by CHX15-CHX20, in yeast and bacterial cells engineered to lack multiple cation-handling mechanisms. Of these, CHX16-CHX20 were implicated in pH homeostasis because their expression rescued the alkaline pH-sensitive growth phenotype of the host yeast strain. A smaller subset, CHX17-CHX19, also conferred tolerance to hygromycin B. Further differences were observed in K(+)- and low pH-dependent growth phenotypes. Although CHX17 did not alter cytoplasmic or vacuolar pH in yeast, CHX20 elicited acidification and alkalization of the cytosol and vacuole, respectively. Using heterologous expression in Escherichia coli strains lacking K(+) uptake systems, we provide evidence for K(+) ((86)Rb) transport mediated by CHX17 and CHX20. Finally, we show that CHX17 and CHX20 affected protein sorting as measured by carboxypeptidase Y secretion in yeast mutants grown at alkaline pH. In plant cells, CHX20-RFP co-localized with an endoplasmic reticulum marker, whereas RFP-tagged CHX17-CHX19 co-localized with prevacuolar compartment and endosome markers. Together, these results suggest that in response to environmental cues, multiple CHX transporters differentially modulate K(+) and pH homeostasis of distinct intracellular compartments, which alter membrane trafficking events likely to be critical for adaptation and survival.
Collapse
Affiliation(s)
- Salil Chanroj
- From the Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | - Yongxian Lu
- From the Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | - Senthilkumar Padmanaban
- From the Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | - Kei Nanatani
- the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Nobuyuki Uozumi
- the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Rajini Rao
- the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Heven Sze
- From the Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
68
|
Site-directed tryptophan fluorescence reveals two essential conformational changes in the Na+/H+ antiporter NhaA. Proc Natl Acad Sci U S A 2011; 108:15769-74. [PMID: 21873214 DOI: 10.1073/pnas.1109256108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NhaA, a Na(+)/H(+) antiporter critical for pH and Na(+) homeostasis in Escherichia coli, as well as other enterobacteria and possibly Homo sapiens, was modified for fluorescence spectroscopy by constructing a functional Trp-less NhaA mutant. Purified Trp-less NhaA lacks the Trp fluorescence emission characteristic of the wild type, thereby providing a background for studying structure-function relationships in NhaA by site-directed Trp fluorescence. Two single-Trp variants in the Trp-less background (F136W and F339W) were constructed. The mutants grow on selective media, have antiport activities that are similar to Trp-less NhaA, and exhibit Trp fluorescence with three different reversible responses to Li(+), Na(+), and/or pH. With single Trp/F136W, a pH shift from pH 6.0 to 8.5 induces a red shift and dramatically increases fluorescence in a reversible fashion; no effect is observed when either Na(+) or Li(+) is added. In marked contrast, with single Trp/F339W, changes in pH do not alter fluorescence, but addition of either Na(+) or Li(+) drastically quenches fluorescence at alkaline pH. Therefore, a Trp at position 136 specifically monitors a pH-induced conformational change that activates NhaA, whereas a Trp at position 339 senses a ligand-induced conformational change that does not occur until NhaA is activated at alkaline pH.
Collapse
|
69
|
Scott CC, Gruenberg J. Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. Bioessays 2011; 33:103-10. [PMID: 21140470 DOI: 10.1002/bies.201000108] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ionic nature of endosomes varies considerably in character along the endocytic pathway. Counter-ion flux across the limiting membrane of endosomes has long been considered essential for full acidification and normal endosome/lysosomal function. The proximal functions of luminal ions, however, have been difficult to assess. The recent development of transgenic mice carrying mutations in the intracellular chloride channels (ClCs) has provided a tool to uncouple Cl(-) influx from endosomal acidification. Intriguingly, many of the defects of the endo-lysomal system attributed to aberrant pH persist in the Cl(-)-deficient mice implying a direct regulatory role for Cl(-) influx in endosome function. These observations may begin to explain the abundance of endosomal ion transporters, including ClCs, sodium-proton exchangers, two-pore channels and mucolipins, that have been localized to endo-lysosomes, and the extensive changes in luminal ion composition therein. In this review, we summarize what is known regarding the mediators of endosomal ion flux, and discuss the implications of changing ionic content on endo-lysosomal function.
Collapse
Affiliation(s)
- Cameron C Scott
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
70
|
Honsbein A, Blatt MR, Grefen C. A molecular framework for coupling cellular volume and osmotic solute transport control. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2363-2370. [PMID: 21115662 DOI: 10.1093/jxb/erq386] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Eukaryotic cells expand using vesicle traffic to increase membrane surface area. Expansion in walled eukaryotes is driven by turgor pressure which depends fundamentally on the uptake and accumulation of inorganic ions. Thus, ion uptake and vesicle traffic must be controlled coordinately for growth. How this coordination is achieved is still poorly understood, yet is so elemental to life that resolving the underlying mechanisms will have profound implications for our understanding of cell proliferation, development, and pathogenesis, and will find applications in addressing the mineral and water use by plants in the face of global environmental change. Recent discoveries of interactions between trafficking and ion transport proteins now open the door to an entirely new approach to understanding this coordination. Some of the advances to date in identifying key protein partners in the model plant Arabidopsis and in yeast at membranes vital for cell volume and turgor control are outlined here. Additionally, new evidence is provided of a wider participation among Arabidopsis Kv-like K(+) channels in selective interaction with the vesicle-trafficking protein SYP121. These advances suggest some common paradigms that will help guide further exploration of the underlying connection between ion transport and membrane traffic and should transform our understanding of cellular homeostasis in eukaryotes.
Collapse
Affiliation(s)
- Annegret Honsbein
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cellular and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
71
|
Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. THE PLANT CELL 2011; 23:224-39. [PMID: 21278129 PMCID: PMC3051250 DOI: 10.1105/tpc.110.079426] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 05/18/2023]
Abstract
Intracellular Na(+)/H(+) antiporters (NHXs) play important roles in cellular pH and Na(+) and K(+) homeostasis in all eukaryotes. Based on sequence similarity, the six intracellular Arabidopsis thaliana members are divided into two groups. Unlike the vacuolar NHX1-4, NHX5 and NHX6 are believed to be endosomal; however, little data exist to support either their function or localization. Using reverse genetics, we show that whereas single knockouts nhx5 or nhx6 did not differ from the wild type, the double knockout nhx5 nhx6 showed reduced growth, with smaller and fewer cells and increased sensitivity to salinity. Reduced growth of nhx5 nhx6 was due to slowed cell expansion. Transcriptome analysis indicated that nhx5, nhx6, and the wild type had similar gene expression profiles, whereas transcripts related to vesicular trafficking and abiotic stress were enriched in nhx5 nhx6. We show that unlike other intracellular NHX proteins, NHX5 and NHX6 are associated with punctate, motile cytosolic vesicles, sensitive to Brefeldin A, that colocalize to known Golgi and trans-Golgi network markers. We provide data to show that vacuolar trafficking is affected in nhx5 nhx6. Possible involvements of NHX5 and NHX6 in maintaining organelle pH and ion homeostasis with implications in endosomal sorting and cellular stress responses are discussed.
Collapse
Affiliation(s)
- Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Masa-aki Ohto
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Tomoya Esumi
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Zhu Zhu
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Olivier Cagnac
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Mark Belmonte
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Zvi Peleg
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Toshio Yamaguchi
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
72
|
Ohgaki R, van IJzendoorn SCD, Matsushita M, Hoekstra D, Kanazawa H. Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry 2010; 50:443-50. [PMID: 21171650 DOI: 10.1021/bi101082e] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mammalian Na+/H+ exchangers (NHEs) play a fundamental role in cellular ion homeostasis. NHEs exhibit an appreciable variation in expression, regulation, and physiological function, dictated by their dynamics in subcellular localization and/or interaction with regulatory proteins. In recent years, a subgroup of NHEs consisting of four isoforms has been identified, and its members predominantly localize to the membranes of the Golgi apparatus and endosomes. These organellar NHEs constitute a family of transporters with an emerging function in the regulation of luminal pH and in intracellular membrane trafficking as expressed, for example, in cell polarity development. Moreover, specific roles of a variety of cofactors, regulating the intracellular dynamics of these transporters, are also becoming apparent, thereby providing further insight into their mechanism of action and overall functioning. Interestingly, organellar NHEs have been related to mental disorders, implying a potential role in the brain, thus expanding the physiological significance of these transporters.
Collapse
Affiliation(s)
- Ryuichi Ohgaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, Japan
| | | | | | | | | |
Collapse
|
73
|
Lawrence SP, Bright NA, Luzio JP, Bowers K. The sodium/proton exchanger NHE8 regulates late endosomal morphology and function. Mol Biol Cell 2010; 21:3540-51. [PMID: 20719963 PMCID: PMC2954119 DOI: 10.1091/mbc.e09-12-1053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The pH and lumenal environment of intracellular organelles is considered essential for protein sorting and trafficking through the cell. We provide the first evidence that a mammalian sodium (potassium)/proton exchanger, NHE8, plays a key role in the control of protein trafficking and endosome morphology. The pH and lumenal environment of intracellular organelles is considered essential for protein sorting and trafficking through the cell. We provide the first evidence that a mammalian NHE sodium (potassium)/proton exchanger, NHE8, plays a key role in the control of protein trafficking and endosome morphology. At steady state, the majority of epitope-tagged NHE8 was found in the trans-Golgi network of HeLa M-cells, but a proportion was also localized to multivesicular bodies (MVBs). Depletion of NHE8 in HeLa M-cells with siRNA resulted in the perturbation of MVB protein sorting, as shown by an increase in epidermal growth factor degradation. Additionally, NHE8-depleted cells displayed striking perinuclear clustering of endosomes and lysosomes, and there was a ninefold increase in the cellular volume taken up by LAMP1/LBPA-positive, dense MVBs. Our data points to a role for the ion exchange activity of NHE8 being required to maintain endosome morphology, as overexpression of a nonfunctional point mutant protein (NHE8 E225Q) resulted in phenotypes similar to those seen after siRNA depletion of endogenous NHE8. Interestingly, we found that depletion of NHE8, despite its function as a sodium (potassium)/proton antiporter, did not affect the overall pH inside dense MVBs.
Collapse
Affiliation(s)
- Scott P Lawrence
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
74
|
Oh DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ. Intracellular consequences of SOS1 deficiency during salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2010; 5:766-8. [PMID: 20054031 PMCID: PMC2826659 DOI: 10.1093/jxb/erp391] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 12/12/2009] [Accepted: 12/15/2009] [Indexed: 05/18/2023]
Abstract
A mutation of AtSOS1 (Salt Overly Sensitive 1), a plasma membrane Na(+)/H(+)-antiporter in Arabidopsis thaliana, leads to a salt-sensitive phenotype accompanied by the death of root cells under salt stress. Intracellular events and changes in gene expression were compared during a non-lethal salt stress between the wild type and a representative SOS1 mutant, atsos1-1, by confocal microscopy using ion-specific fluorophores and by quantitative RT-PCR. In addition to the higher accumulation of sodium ions, atsos1-1 showed inhibition of endocytosis, abnormalities in vacuolar shape and function, and changes in intracellular pH compared to the wild type in root tip cells under stress. Quantitative RT-PCR revealed a dramatically faster and higher induction of root-specific Ca(2+) transporters, including several CAXs and CNGCs, and the drastic down-regulation of genes involved in pH-homeostasis and membrane potential maintenance. Differential regulation of genes for functions in intracellular protein trafficking in atsos1-1 was also observed. The results suggested roles of the SOS1 protein, in addition to its function as a Na(+)/H(+) antiporter, whose disruption affected membrane traffic and vacuolar functions possibly by controlling pH homeostasis in root cells.
Collapse
Affiliation(s)
- Dong-Ha Oh
- Division of Applied Life Science (BK21 program) and Environmental BiotechnologyNational Core Research Center, Graduate School of Gyeongsang NationalUniversity, Jinju 660-701, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 program) and Environmental BiotechnologyNational Core Research Center, Graduate School of Gyeongsang NationalUniversity, Jinju 660-701, Korea
| | - Ray A. Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, WestLafayette, IN 47907, USA
- WCU Program, Division of Applied Life Sciences, Gyeongsang National University, Jinju 660--701, Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 program) and Environmental BiotechnologyNational Core Research Center, Graduate School of Gyeongsang NationalUniversity, Jinju 660-701, Korea
- WCU Program, Division of Applied Life Sciences, Gyeongsang National University, Jinju 660--701, Korea
| | - Hans J. Bohnert
- WCU Program, Division of Applied Life Sciences, Gyeongsang National University, Jinju 660--701, Korea
- Departments of Plant Biology and of Crop Sciences, University of Illinois at UrbanaChampaign, Urbana, IL 61801, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
75
|
Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 2009; 11:50-61. [PMID: 19997129 DOI: 10.1038/nrm2820] [Citation(s) in RCA: 1579] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.
Collapse
Affiliation(s)
- Joseph R Casey
- Departments of Physiology and Biochemistry, University of Alberta, Canada
| | | | | |
Collapse
|
76
|
Abstract
Much is already known about the function and functioning of the three genes that make up the SOS (Salt-Overly-Sensitive) pathway in plants, but recent studies indicate that the linkage between external increases in salinity and stress protection provided by genes SOS1, SOS2 and SOS3 is more complex than previously appreciated. It has recently been shown that the engineered reduced expression of the sodium/proton antiporter SOS1 affected several pathways indicating a role for SOS1 that exceeds its known function as an antiporter. Interference with expression of SOS1, characterized as a sodium/proton antiporter in the halophyte Thellungiella salsuginea converted Thellungiella into an essentially glycophytic species.
Collapse
Affiliation(s)
- Dong-Ha Oh
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
77
|
Donowitz M, Mohan S, Zhu CX, Chen TE, Lin R, Cha B, Zachos NC, Murtazina R, Sarker R, Li X. NHE3 regulatory complexes. ACTA ACUST UNITED AC 2009; 212:1638-46. [PMID: 19448074 DOI: 10.1242/jeb.028605] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The epithelial brush border Na/H exchanger NHE3 is active under basal conditions and functions as part of neutral NaCl absorption in the intestine and renal proximal tubule, where it accounts for the majority of total Na absorbed. NHE3 is highly regulated. Both stimulation and inhibition occur post-prandially. This digestion related regulation of NHE3 is mimicked by multiple extracellular agonists and intracellular second messengers. The regulation of NHE3 depends on its C-terminal cytoplasmic domain, which acts as a scaffold to bind multiple regulatory proteins and links NHE3 to the cytoskeleton. The cytoskeletal association occurs by both direct binding to ezrin and by indirect binding via ezrin binding to the C-terminus of the multi-PDZ domain containing proteins NHERF1 and NHERF2. This is a review of the domain structure of NHE3 and of the scaffolding function and role in the regulation of NHE3 of the NHE3 C-terminal domain.
Collapse
Affiliation(s)
- Mark Donowitz
- Johns Hopkins University School of Medicine, 720 Rutland Avenue Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Di Sole F, Babich V, Moe OW. The calcineurin homologous protein-1 increases Na(+)/H(+) -exchanger 3 trafficking via ezrin phosphorylation. J Am Soc Nephrol 2009; 20:1776-86. [PMID: 19556366 DOI: 10.1681/asn.2008121255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The Na(+)/H(+)-exchanger 3 (NHE3) is essential for regulation of Na(+) transport in the renal and intestinal epithelium. Although changes in cell surface abundance control NHE3 function, the molecular signals that regulate NHE3 surface expression are not well defined. We found that overexpression of the calcineurin homologous protein-1 (CHP1) in opossum kidney cells increased NHE3 transport activity, surface protein abundance, and ezrin phosphorylation. CHP1 knockdown by small interfering RNA had the opposite effects. Overexpression of wild-type ezrin increased both NHE3 transport activity and surface protein abundance, confirming that NHE3 is downstream of ezrin. Expression of a pseudophosphorylated ezrin enhanced these effects, whereas expression of an ezrin variant that could not be phosphorylated prevented the downstream effects on NHE3. Furthermore, CHP1 knockdown reversed the activation of NHE3 by wild-type ezrin but not by the pseudophosphorylated ezrin. Taken together, these results demonstrate that CHP1 increases NHE3 abundance and constitutive function in a manner dependent on ezrin phosphorylation.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8885, USA.
| | | | | |
Collapse
|
79
|
Padan E, Kozachkov L, Herz K, Rimon A. NhaA crystal structure: functional–structural insights. J Exp Biol 2009; 212:1593-603. [DOI: 10.1242/jeb.026708] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SUMMARY
Na+/H+ antiporters are integral membrane proteins that exchange Na+ for H+ across the cytoplasmic membrane and many intracellular membranes. They are essential for Na+, pH and volume homeostasis, which are crucial processes for cell viability. Accordingly, antiporters are important drug targets in humans and underlie salt-resistance in plants. Many Na+/H+ antiporters are tightly regulated by pH. Escherichia coli NhaA Na+/H+ antiporter, a prototype pH-regulated antiporter,exchanges 2 H+ for 1 Na+ (or Li+). The NhaA crystal structure has provided insights into the pH-regulated mechanism of antiporter action and opened up new in silico and in situavenues of research. The monomer is the functional unit of NhaA yet the dimer is essential for the stability of the antiporter under extreme stress conditions. Ionizable residues of NhaA that strongly interact electrostatically are organized in a transmembrane fashion in accordance with the functional organization of the cation-binding site, `pH sensor', the pH transduction pathway and the pH-induced conformational changes. Remarkably,NhaA contains an inverted topology motive of transmembrane segments, which are interrupted by extended mid-membrane chains that have since been found to vary in other ion-transport proteins. This novel structural fold creates a delicately balanced electrostatic environment in the middle of the membrane,which might be essential for ion binding and translocation. Based on the crystal structure of NhaA, a model structure of the human Na+/H+ exchanger (NHE1) was constructed, paving the way to a rational drug design.
Collapse
Affiliation(s)
- Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lena Kozachkov
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Katia Herz
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Abraham Rimon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
80
|
Alexander RT, Grinstein S. Tethering, recycling and activation of the epithelial sodium–proton exchanger, NHE3. J Exp Biol 2009; 212:1630-7. [DOI: 10.1242/jeb.027375] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
NHE3 is a sodium–proton exchanger expressed predominantly in the apical membrane of renal and intestinal epithelia, where it plays a key role in salt and fluid absorption and pH homeostasis. It performs these functions through the exchange of luminal sodium for cytosolic protons. Acute regulation of NHE3 function is mediated by altering the total number of exchangers in the plasma membrane as well as their individual activity. Traffic between endomembrane and plasmalemmal pools of NHE3 dictates the density of exchangers available at the cell surface. The activity of the plasmalemmal pool, however,is not fixed and can be altered by the association with modifier proteins, by post-translational alterations (such as cAMP-mediated phosphorylation) and possibly also via interaction with specific plasmalemmal phospholipids. Interestingly, association with cytoskeletal components affects both levels of regulation, tethering NHE3 molecules at the surface and altering their intrinsic activity. This paper reviews the role of proteins and lipids in the modulation of NHE3 function.
Collapse
Affiliation(s)
- R. Todd Alexander
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada,T6G 2R7
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada,M5G 1X8
- Department of Biochemistry, University of Toronto, Ontario, Canada
| |
Collapse
|
81
|
Barriere H, Bagdany M, Bossard F, Okiyoneda T, Wojewodka G, Gruenert D, Radzioch D, Lukacs GL. Revisiting the role of cystic fibrosis transmembrane conductance regulator and counterion permeability in the pH regulation of endocytic organelles. Mol Biol Cell 2009; 20:3125-41. [PMID: 19420138 DOI: 10.1091/mbc.e09-01-0061] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Organellar acidification by the electrogenic vacuolar proton-ATPase is coupled to anion uptake and cation efflux to preserve electroneutrality. The defective organellar pH regulation, caused by impaired counterion conductance of the mutant cystic fibrosis transmembrane conductance regulator (CFTR), remains highly controversial in epithelia and macrophages. Restricting the pH-sensitive probe to CFTR-containing vesicles, the counterion and proton permeability, and the luminal pH of endosomes were measured in various cells, including genetically matched CF and non-CF human respiratory epithelia, as well as cftr(+/+) and cftr(-/-) mouse alveolar macrophages. Passive proton and relative counterion permeabilities, determinants of endosomal, lysosomal, and phagosomal pH-regulation, were probed with FITC-conjugated transferrin, dextran, and Pseudomonas aeruginosa, respectively. Although CFTR function could be documented in recycling endosomes and immature phagosomes, neither channel activation nor inhibition influenced the pH in any of these organelles. CFTR heterologous overexpression also failed to alter endocytic organellar pH. We propose that the relatively large CFTR-independent counterion and small passive proton permeability ensure efficient shunting of the proton-ATPase-generated membrane potential. These results have implications in the regulation of organelle acidification in general and demonstrate that perturbations of the endolysosomal organelles pH homeostasis cannot be linked to the etiology of the CF lung disease.
Collapse
Affiliation(s)
- Herve Barriere
- Department of Physiology, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Piermarini PM, Weihrauch D, Meyer H, Huss M, Beyenbach KW. NHE8 is an intracellular cation/H+ exchanger in renal tubules of the yellow fever mosquito Aedes aegypti. Am J Physiol Renal Physiol 2009; 296:F730-50. [PMID: 19193723 PMCID: PMC2670640 DOI: 10.1152/ajprenal.90564.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/27/2009] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to identify and characterize the hypothesized apical cation/H(+) exchanger responsible for K(+) and/or Na(+) secretion in the renal (Malpighian) tubules of the yellow fever mosquito Aedes aegypti. From Aedes Malpighian tubules, we cloned "AeNHE8," a full-length cDNA encoding an ortholog of mammalian Na(+)/H(+) exchanger 8 (NHE8). The expression of AeNHE8 transcripts is ubiquitous among mosquito tissues and is not enriched in Malpighian tubules. Western blots of Malpighian tubules suggest that AeNHE8 is expressed primarily as an intracellular protein, which was confirmed by immunohistochemical localizations in Malpighian tubules. AeNHE8 immunoreactivity is expressed in principal cells of the secretory, distal segments, where it localizes to a subapical compartment (e.g., vesicles or endosomes), but not in the apical brush border. Furthermore, feeding mosquitoes a blood meal or treating isolated tubules with dibutyryl-cAMP, both of which stimulate a natriuresis by Malpighian tubules, do not influence the intracellular localization of AeNHE8 in principal cells. When expressed heterologously in Xenopus laevis oocytes, AeNHE8 mediates EIPA-sensitive Na/H exchange, in which Li(+) partially and K(+) poorly replace Na(+). The expression of AeNHE8 in Xenopus oocytes is associated with the development of a conductive pathway that closely resembles the known endogenous nonselective cation conductances of Xenopus oocytes. In conclusion, AeNHE8 does not mediate cation/H(+) exchange in the apical membrane of Aedes Malpighian tubules; it is more likely involved with an intracellular function.
Collapse
Affiliation(s)
- Peter M Piermarini
- Cornell Univ., College of Veterinary Medicine, Dept. of Biomedical Sciences, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
83
|
Diering GH, Church J, Numata M. Secretory Carrier Membrane Protein 2 Regulates Cell-surface Targeting of Brain-enriched Na+/H+ Exchanger NHE5. J Biol Chem 2009; 284:13892-13903. [PMID: 19276089 DOI: 10.1074/jbc.m807055200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
NHE5 is a brain-enriched Na(+)/H(+) exchanger that dynamically shuttles between the plasma membrane and recycling endosomes, serving as a mechanism that acutely controls the local pH environment. In the current study we show that secretory carrier membrane proteins (SCAMPs), a group of tetraspanning integral membrane proteins that reside in multiple secretory and endocytic organelles, bind to NHE5 and co-localize predominantly in the recycling endosomes. In vitro protein-protein interaction assays revealed that NHE5 directly binds to the N- and C-terminal cytosolic extensions of SCAMP2. Heterologous expression of SCAMP2 but not SCAMP5 increased cell-surface abundance as well as transporter activity of NHE5 across the plasma membrane. Expression of a deletion mutant lacking the SCAMP2-specific N-terminal cytosolic domain, and a mini-gene encoding the N-terminal extension, reduced the transporter activity. Although both Arf6 and Rab11 positively regulate NHE5 cell-surface targeting and NHE5 activity across the plasma membrane, SCAMP2-mediated surface targeting of NHE5 was reversed by dominant-negative Arf6 but not by dominant-negative Rab11. Together, these results suggest that SCAMP2 regulates NHE5 transit through recycling endosomes and promotes its surface targeting in an Arf6-dependent manner.
Collapse
Affiliation(s)
- Graham H Diering
- Departments of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John Church
- Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Masayuki Numata
- Departments of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
84
|
Brown D, Breton S, Ausiello DA, Marshansky V. Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic 2009; 10:275-84. [PMID: 19170982 PMCID: PMC2896909 DOI: 10.1111/j.1600-0854.2008.00867.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The kidney regulates body fluid, ion and acid/base homeostasis through the interaction of a host of channels, transporters and pumps within specific tubule segments, specific cell types and specific plasma membrane domains. Furthermore, renal epithelial cells have adapted to function in an often unique and challenging environment that includes high medullary osmolality, acidic pHs, variable blood flow and constantly changing apical and basolateral 'bathing' solutions. In this review, we focus on selected protein trafficking events by which kidney epithelial cells regulate body fluid, ion and acid-base homeostasis in response to changes in physiological conditions. We discuss aquaporin 2 and G-protein-coupled receptors in fluid and ion balance, the vacuolar H(+)-adenosine triphosphatase (V-ATPase) and intercalated cells in acid/base regulation and acidification events in the proximal tubule degradation pathway. Finally, in view of its direct role in vesicle trafficking that we outline in this study, we propose that the V-ATPase itself should, under some circumstances, be considered a fourth category of vesicle 'coat' protein (COP), alongside clathrin, caveolin and COPs.
Collapse
Affiliation(s)
- Dennis Brown
- Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
85
|
Aoh QL, Castle AM, Hubbard CH, Katsumata O, Castle JD. SCAMP3 negatively regulates epidermal growth factor receptor degradation and promotes receptor recycling. Mol Biol Cell 2009; 20:1816-32. [PMID: 19158374 DOI: 10.1091/mbc.e08-09-0894] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is targeted for lysosomal degradation by ubiquitin-mediated interactions with the ESCRTs (endosomal-sorting complexes required for transport) in multivesicular bodies (MVBs). We show that secretory carrier membrane protein, SCAMP3, localizes in part to early endosomes and negatively regulates EGFR degradation through processes that involve its ubiquitylation and interactions with ESCRTs. SCAMP3 is multimonoubiquitylated and is able to associate with Nedd4 HECT ubiquitin ligases and the ESCRT-I subunit Tsg101 via its PY and PSAP motifs, respectively. SCAMP3 also associates with the ESCRT-0 subunit Hrs. Depletion of SCAMP3 in HeLa cells by inhibitory RNA accelerated degradation of EGFR and EGF while inhibiting recycling. Conversely, overexpression enhanced EGFR recycling unless ubiquitylatable lysines, PY or PSAP motifs in SCAMP3 were mutated. Notably, dual depletions of SCAMP3 and ESCRT subunits suggest that SCAMP3 has a distinct function in parallel with the ESCRTs that regulates receptor degradation. This function may affect trafficking of receptors from prelysosomal compartments as SCAMP3 depletion appeared to sustain the incidence of EGFR-containing MVBs detected by immunoelectron microscopy. Together, our results suggest that SCAMP3, its modification with ubiquitin, and its interactions with ESCRTs coordinately regulate endosomal pathways and affect the efficiency of receptor down-regulation.
Collapse
Affiliation(s)
- Quyen L Aoh
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
86
|
Nishinaga H, Komatsu R, Doi M, Fustin JM, Yamada H, Okura R, Yamaguchi Y, Matsuo M, Emoto N, Okamura H. Circadian expression of the Na+/H+ exchanger NHE3 in the mouse renal medulla. Biomed Res 2009; 30:87-93. [DOI: 10.2220/biomedres.30.87] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
87
|
Fuster D, Moe OW, Hilgemann DW. Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry. ACTA ACUST UNITED AC 2008; 132:465-80. [PMID: 18824592 PMCID: PMC2553392 DOI: 10.1085/jgp.200810016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe the steady-state function of the ubiquitous mammalian Na/H exchanger (NHE)1 isoform in voltage-clamped Chinese hamster ovary cells, as well as other cells, using oscillating pH-sensitive microelectrodes to quantify proton fluxes via extracellular pH gradients. Giant excised patches could not be used as gigaseal formation disrupts NHE activity within the patch. We first analyzed forward transport at an extracellular pH of 8.2 with no cytoplasmic Na (i.e., nearly zero-trans). The extracellular Na concentration dependence is sigmoidal at a cytoplasmic pH of 6.8 with a Hill coefficient of 1.8. In contrast, at a cytoplasmic pH of 6.0, the Hill coefficient is <1, and Na dependence often appears biphasic. Results are similar for mouse skin fibroblasts and for an opossum kidney cell line that expresses the NHE3 isoform, whereas NHE1−/− skin fibroblasts generate no proton fluxes in equivalent experiments. As proton flux is decreased by increasing cytoplasmic pH, the half-maximal concentration (K1/2) of extracellular Na decreases less than expected for simple consecutive ion exchange models. The K1/2 for cytoplasmic protons decreases with increasing extracellular Na, opposite to predictions of consecutive exchange models. For reverse transport, which is robust at a cytoplasmic pH of 7.6, the K1/2 for extracellular protons decreases only a factor of 0.4 when maximal activity is decreased fivefold by reducing cytoplasmic Na. With 140 mM of extracellular Na and no cytoplasmic Na, the K1/2 for cytoplasmic protons is 50 nM (pH 7.3; Hill coefficient, 1.5), and activity decreases only 25% with extracellular acidification from 8.5 to 7.2. Most data can be reconstructed with two very different coupled dimer models. In one model, monomers operate independently at low cytoplasmic pH but couple to translocate two ions in “parallel” at alkaline pH. In the second “serial” model, each monomer transports two ions, and translocation by one monomer allosterically promotes translocation by the paired monomer in opposite direction. We conclude that a large fraction of mammalian Na/H activity may occur with a 2Na/2H stoichiometry.
Collapse
Affiliation(s)
- Daniel Fuster
- Department of Physiology and Department of Internal Medicine, University of Texas-Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
88
|
Padan E. The enlightening encounter between structure and function in the NhaA Na+–H+ antiporter. Trends Biochem Sci 2008; 33:435-43. [DOI: 10.1016/j.tibs.2008.06.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 11/16/2022]
|
89
|
Gosset G, Satre M, Blaive B, Clément JL, Martin JB, Culcasi M, Pietri S. Investigation of subcellular acidic compartments using α-aminophosphonate 31P nuclear magnetic resonance probes. Anal Biochem 2008; 380:184-94. [DOI: 10.1016/j.ab.2008.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/19/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
|
90
|
Marshansky V, Futai M. The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol 2008; 20:415-26. [PMID: 18511251 PMCID: PMC7111286 DOI: 10.1016/j.ceb.2008.03.015] [Citation(s) in RCA: 379] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 12/31/2022]
Abstract
Vacuolar-type H+-ATPase (V-ATPase)-driven proton pumping and organellar acidification is essential for vesicular trafficking along both the exocytotic and endocytotic pathways of eukaryotic cells. Deficient function of V-ATPase and defects of vesicular acidification have been recently recognized as important mechanisms in a variety of human diseases and are emerging as potential therapeutic targets. In the past few years, significant progress has been made in our understanding of function, regulation, and the cell biological role of V-ATPase. Here, we will review these studies with emphasis on novel direct roles of V-ATPase in the regulation of vesicular trafficking events.
Collapse
Affiliation(s)
- Vladimir Marshansky
- Program in Membrane Biology, Center for Systems Biology, Simches Research Center, CPZN No. 8212, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
| | | |
Collapse
|
91
|
Zaun HC, Shrier A, Orlowski J. Calcineurin B homologous protein 3 promotes the biosynthetic maturation, cell surface stability, and optimal transport of the Na+/H+ exchanger NHE1 isoform. J Biol Chem 2008; 283:12456-67. [PMID: 18321853 DOI: 10.1074/jbc.m800267200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcineurin B homologous protein (CHP) 1 and 2 are Ca(2+)-binding proteins that modulate several cellular processes, including cytoplasmic pH by positively regulating plasma membrane-type Na(+)/H(+) exchangers (NHEs). Recently another CHP-related protein, termed tescalcin or CHP3, was also shown to interact with the ubiquitous NHE1 isoform, but seemingly suppressed its activity. However, the precise physical and functional nature of this association was not examined in detail. In this study, biochemical and cellular studies were undertaken to further delineate this relationship. Glutathione S-transferase-NHE1 fusion protein pulldown assays revealed that full-length CHP3 binds directly to the proximal juxtamembrane C-terminal region (amino acids 505-571) of rat NHE1 in the same region that binds CHP1 and CHP2. The interaction was further validated by coimmunoprecipitation and coimmunolocalization experiments using full-length CHP3 and wild-type NHE1 in transfected Chinese hamster ovary AP-1 cells. Simultaneous mutation of four hydrophobic residues within this region ((530)FLDHLL(535)) to either Ala, Gln, or Arg (FL-A, FL-Q, or FL-R) abrogated this interaction both in vitro and in intact cells. The NHE1 mutants were sorted properly to the cell surface but showed markedly reduced (FL-A) or minimal (FL-R and FL-Q) activity. Interestingly, and contrary to an earlier finding, ectopic coexpression of CHP3 up-regulated the cell surface activity of wild-type NHE1. This stimulation was not observed with the CHP3 binding-defective mutants. Mechanistically, overexpression of CHP3 did not alter the H(+) sensitivity of wild-type NHE1 but rather promoted its biosynthetic maturation and half-life at the cell surface, thereby increasing the steady-state abundance of functional NHE1 protein.
Collapse
Affiliation(s)
- Hans C Zaun
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
92
|
Mongin AA. Disruption of ionic and cell volume homeostasis in cerebral ischemia: The perfect storm. ACTA ACUST UNITED AC 2007; 14:183-93. [PMID: 17961999 DOI: 10.1016/j.pathophys.2007.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The mechanisms of brain tissue damage in stroke are strongly linked to the phenomenon of excitotoxicity, which is defined as damage or death of neural cells due to excessive activation of receptors for the excitatory neurotransmitters glutamate and aspartate. Under physiological conditions, ionotropic glutamate receptors mediate the processes of excitatory neurotransmission and synaptic plasticity. In ischemia, sustained pathological release of glutamate from neurons and glial cells causes prolonged activation of these receptors, resulting in massive depolarization and cytoplasmic Ca(2+) overload. High cytoplasmic levels of Ca(2+) activate many degradative processes that, depending on the metabolic status, cause immediate or delayed death of neural cells. This traditional view has been expanded by a number of observations that implicate Cl(-) channels and several types of non-channel transporter proteins, such as the Na(+),K(+),2Cl(-) cotransporter, Na(+)/H(+) exchanger, and Na(+)/Ca(2+) exchanger, in the development of glutamate toxicity. Some of these ion transporters increase tissue damage by promoting pathological cell swelling and necrotic cell death, while others contribute to a long-term accumulation of cytoplasmic Ca(2+). This brief review is aimed at illustrating how the dysregulation of various ion transport processes combine in a 'perfect storm' that disrupts neural ionic homeostasis and culminates in the irreversible damage and death of neural cells. The clinical relevance of individual transporters as targets for therapeutic intervention in stroke is also briefly discussed.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Avenue (MC-136), Albany, NY 12208, USA
| |
Collapse
|