51
|
Ampattu BJ, Hagmann L, Liang C, Dittrich M, Schlüter A, Blom J, Krol E, Goesmann A, Becker A, Dandekar T, Müller T, Schoen C. Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence. BMC Genomics 2017; 18:282. [PMID: 28388876 PMCID: PMC5383966 DOI: 10.1186/s12864-017-3616-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/10/2017] [Indexed: 01/06/2023] Open
Abstract
Background Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3616-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Laura Hagmann
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Department of Human Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Elizaveta Krol
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Anke Becker
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
52
|
Rabbani M, Wahl LM. The dynamics of mobile promoters: Enhanced stability in promoter regions. J Theor Biol 2016; 407:401-408. [PMID: 27460588 DOI: 10.1016/j.jtbi.2016.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/18/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
Mobile promoters are emerging as a new class of mobile genetic elements, first identified by examining prokaryote genome sequences, and more recently confirmed by experimental observations in bacteria. Recent datasets have identified over 40,000 putative mobile promoters in sequenced prokaryote genomes, however only one-third of these are in regions of the genome directly upstream from coding sequences, that is, in promoter regions. The presence of many promoter sequences in non-promoter regions is unexplained. Here we develop a general mathematical model for the dynamics of mobile promoters, extending previous work to capture the dynamics both within and outside promoter regions. From this general model, we apply rigorous model selection techniques to identify which parameters are statistically justified in describing the available mobile promoter data, and find best-fit values of these parameters. Our results suggest that high rates of horizontal gene transfer maintain the population of mobile promoters in promoter regions, and that once established at these sites, mobile promoters are rarely lost, but are commonly copied to other genomic regions. In contrast, mobile promoter copies in non-promoter regions are more numerous and more volatile, experiencing substantially higher rates of duplication, loss and diversification.
Collapse
Affiliation(s)
- Mahnaz Rabbani
- Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7
| | - Lindi M Wahl
- Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
53
|
Bhatt S, Egan M, Jenkins V, Muche S, El-Fenej J. The Tip of the Iceberg: On the Roles of Regulatory Small RNAs in the Virulence of Enterohemorrhagic and Enteropathogenic Escherichia coli. Front Cell Infect Microbiol 2016; 6:105. [PMID: 27709103 PMCID: PMC5030294 DOI: 10.3389/fcimb.2016.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023] Open
Abstract
Enterohemorrhagic and enteropathogenic Escherichia coli are gastrointestinal pathogens that disrupt the intestinal microvilli to form attaching and effacing (A/E) lesions on infected cells and cause diarrhea. This pathomorphological trait is encoded within the pathogenicity island locus of enterocyte effacement (LEE). The LEE houses a type 3 secretion system (T3SS), which upon assembly bridges the bacterial cytosol to that of the host and enables the bacterium to traffic dozens of effectors into the host where they hijack regulatory and signal transduction pathways and contribute to bacterial colonization and disease. Owing to the importance of the LEE to EHEC and EPEC pathogenesis, much of the research on these pathogens has centered on its regulation. To date, over 40 proteinaceous factors have been identified that control the LEE at various hierarchical levels of gene expression. In contrast, RNA-based regulatory mechanisms that converge on the LEE have only just begun to be unraveled. In this minireview, we highlight major breakthroughs in small RNAs (sRNAs)-dependent regulation of the LEE, with an emphasis on their mechanisms of action and/or LEE-encoded targets.
Collapse
Affiliation(s)
- Shantanu Bhatt
- Department of Biology, Saint Joseph's University Philadelphia, PA, USA
| | - Marisa Egan
- Department of Biology, Saint Joseph's University Philadelphia, PA, USA
| | - Valerie Jenkins
- Department of Biology, Saint Joseph's University Philadelphia, PA, USA
| | - Sarah Muche
- Department of Biology, Saint Joseph's University Philadelphia, PA, USA
| | - Jihad El-Fenej
- Department of Biology, Saint Joseph's University Philadelphia, PA, USA
| |
Collapse
|
54
|
Abstract
The H-NS family of DNA-binding proteins is the subject of intense study due to its important roles in the regulation of horizontally acquired genes critical for virulence, antibiotic resistance, and metabolism. Xenogeneic silencing proteins, typified by the H-NS protein of Escherichia coli, specifically target and downregulate expression from AT-rich genes by selectively recognizing specific structural features unique to the AT-rich minor groove. In doing so, these proteins facilitate bacterial evolution; enabling these cells to engage in horizontal gene transfer while buffering potential any detrimental fitness consequences that may result from it. Xenogeneic silencing and counter-silencing explain how bacterial cells can evolve effective gene regulatory strategies in the face of rampant gene gain and loss and it has extended our understanding of bacterial gene regulation beyond the classic operon model. Here we review the structures and mechanisms of xenogeneic silencers as well as their impact on bacterial evolution. Several H-NS-like proteins appear to play a role in facilitating gene transfer by other mechanisms including by regulating transposition, conjugation, and participating in the activation of virulence loci like the locus of enterocyte effacement pathogenicity island of pathogenic strains of E. coli. Evidence suggests that the critical determinants that dictate whether an H-NS-like protein will be a silencer or will perform a different function do not lie in the DNA-binding domain but, rather, in the domains that control oligomerization. This suggests that H-NS-like proteins are transcription factors that both recognize and alter the shape of DNA to exert specific effects that include but are not limited to gene silencing.
Collapse
|
55
|
Kottara A, Hall JPJ, Harrison E, Brockhurst MA. Multi-host environments select for host-generalist conjugative plasmids. BMC Evol Biol 2016; 16:70. [PMID: 27039285 PMCID: PMC4818893 DOI: 10.1186/s12862-016-0642-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/22/2016] [Indexed: 11/26/2022] Open
Abstract
Background Conjugative plasmids play an important role in bacterial evolution by transferring ecologically important genes within and between species. A key limit on interspecific horizontal gene transfer is plasmid host range. Here, we experimentally test the effect of single and multi-host environments on the host-range evolution of a large conjugative mercury resistance plasmid, pQBR57. Specifically, pQBR57 was conjugated between strains of a single host species, either P. fluorescens or P. putida, or alternating between P. fluorescens and P. putida. Crucially, the bacterial hosts were not permitted to evolve allowing us to observe plasmid evolutionary responses in isolation. Results In all treatments plasmids evolved higher conjugation rates over time. Plasmids evolved in single-host environments adapted to their host bacterial species becoming less costly, but in the case of P. fluorescens-adapted plasmids, became costlier in P. putida, suggesting an evolutionary trade-off. When evolved in the multi-host environment plasmids adapted to P. fluorescens without a higher cost in P. putida. Conclusion Whereas evolution in a single-host environment selected for host-specialist plasmids due to a fitness trade-off, this trade-off could be circumvented in the multi-host environment, leading to the evolution of host-generalist plasmids.
Collapse
Affiliation(s)
- Anastasia Kottara
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - James P J Hall
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ellie Harrison
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | |
Collapse
|
56
|
Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev 2016; 80:139-60. [PMID: 26764017 DOI: 10.1128/mmbr.00055-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.
Collapse
|
57
|
Santolaya-Forgas J, Townsend R, Santolaya JL, Patel P, Herrera-Garcia G, Castracane VD. The Microbiota and Transgenomic Networks: Potential Implications for Maternal-Fetal Medicine. Fetal Diagn Ther 2016; 39:1-3. [DOI: 10.1159/000441452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/23/2015] [Indexed: 01/12/2023]
Abstract
The maternal microbiota has long been considered a potential cause for adverse perinatal outcomes. Gene expression regulators in prokaryotic and eukaryotic cells are influenced by changes in their microenvironments. We propose the novel idea that during in utero development, an adaptive and dynamic gene-regulatory cross talk might exist between the host genome and the maternal microbiota. Understanding these cross talks could increase the appreciation for the discovery of new diagnostics and therapeutics in maternal-fetal medicine.
Collapse
|
58
|
Abstract
Regulation of gene expression ensures an organism responds to stimuli and undergoes proper development. Although the regulatory networks in bacteria have been investigated in model microorganisms, nearly nothing is known about the evolution and plasticity of these networks in obligate, intracellular bacteria. The phylum Chlamydiae contains a vast array of host-associated microbes, including several human pathogens. The Chlamydiae are unique among obligate, intracellular bacteria as they undergo a complex biphasic developmental cycle in which large swaths of genes are temporally regulated. Coupled with the low number of transcription factors, these organisms offer a model to study the evolution of regulatory networks in intracellular organisms. We provide the first comprehensive analysis exploring the diversity and evolution of regulatory networks across the phylum. We utilized a comparative genomics approach to construct predicted coregulatory networks, which unveiled genus- and family-specific regulatory motifs and architectures, most notably those of virulence-associated genes. Surprisingly, our analysis suggests that few regulatory components are conserved across the phylum, and those that are conserved are involved in the exploitation of the intracellular niche. Our study thus lends insight into a component of chlamydial evolution that has otherwise remained largely unexplored.
Collapse
Affiliation(s)
- D Domman
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - M Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
59
|
Ding P, McFarland KA, Jin S, Tong G, Duan B, Yang A, Hughes TR, Liu J, Dove SL, Navarre WW, Xia B. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT. PLoS Pathog 2015; 11:e1004967. [PMID: 26068099 PMCID: PMC4466236 DOI: 10.1371/journal.ppat.1004967] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an "AT-pincer" motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA.
Collapse
Affiliation(s)
- Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kirsty A. McFarland
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shujuan Jin
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Grace Tong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bo Duan
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ally Yang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R. Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SLD); (WWN); (BX)
| | - William Wiley Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (SLD); (WWN); (BX)
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- * E-mail: (SLD); (WWN); (BX)
| |
Collapse
|
60
|
Jin J, He K, Tang X, Li Z, Lv L, Zhao Y, Luo J, Gao G. An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors. Mol Biol Evol 2015; 32:1767-73. [PMID: 25750178 PMCID: PMC4476157 DOI: 10.1093/molbev/msv058] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Transcription factors (TFs) play key roles in both development and stress responses. By integrating into and rewiring original systems, novel TFs contribute significantly to the evolution of transcriptional regulatory networks. Here, we report a high-confidence transcriptional regulatory map covering 388 TFs from 47 families in Arabidopsis. Systematic analysis of this map revealed the architectural heterogeneity of developmental and stress response subnetworks and identified three types of novel network motifs that are absent from unicellular organisms and essential for multicellular development. Moreover, TFs of novel families that emerged during plant landing present higher binding specificities and are preferentially wired into developmental processes and these novel network motifs. Further unveiled connection between the binding specificity and wiring preference of TFs explains the wiring preferences of novel-family TFs. These results reveal distinct functional and evolutionary features of novel TFs, suggesting a plausible mechanism for their contribution to the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Jinpu Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, P.R. China
| | - Kun He
- Monsanto Biotechnology R&D Center, Beijing, P.R. China
| | - Xing Tang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, P.R. China
| | - Zhe Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Le Lv
- Monsanto Biotechnology R&D Center, Beijing, P.R. China
| | - Yi Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, P.R. China
| | - Jingchu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, P.R. China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, P.R. China
| |
Collapse
|
61
|
de las Heras A, Martínez-García E, Domingo-Sananes MR, de Lorenzo V. Widening functional boundaries of the σ(54) promoter Pu of Pseudomonas putida by defeating extant physiological constraints. MOLECULAR BIOSYSTEMS 2015; 11:734-42. [PMID: 25560994 DOI: 10.1039/c4mb00557k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extant layout of the σ(54) promoter Pu, harboured by the catabolic TOL plasmid, pWW0, of Pseudomonas putida is one of the most complex instances of endogenous and exogenous signal integration known in the prokaryotic domain. In this regulatory system, all signal inputs are eventually translated into occupation of the promoter sequence by either of two necessary components: the m-xylene responsive transcriptional factor XylR and the σ(54) containing form of RNA polymerase. Modelling of these components indicated that the Pu promoter could be upgraded to respond with much greater capacity to aromatic inducers by artificially increasing the endogenous levels of both XylR and the σ(54) sigma factor, either separately or together. To explore these scenarios, expression of rpoN, the gene encoding σ(54), was placed under the control of an orthogonal regulatory system that was inducible by salicylic acid. We generated a knock-in P. putida strain containing this construct alongside the xylR/Pu regulatory module in its native configuration, and furthermore, a second strain where xylR expression was under the control of an engineered positive-feedback loop. These interventions allowed us to dramatically increase the transcriptional capacity (i.e. absolute promoter output) of Pu far beyond its natural scope. In addition, they resulted in a new regulatory device displaying more sensitive and ultra-fast responses to m-xylene. To our knowledge, this is the first time that the working regime of a promoter has been rationally modified by releasing the constraints imposed by its innate constituents.
Collapse
Affiliation(s)
- Aitor de las Heras
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain.
| | | | | | | |
Collapse
|
62
|
De S, Pérez JC. Reshuffling transcriptional circuits: how microorganisms adapt to colonize the human body. Transcription 2014; 5:e976095. [PMID: 25483603 PMCID: PMC4581354 DOI: 10.4161/21541264.2014.976095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022] Open
Abstract
Several hundred taxa of microorganisms-including bacteria, archaea and eukaryotes-inhabit the human body. What did it take for these species to become stable residents of humans? Recent reports illustrate how evolutionary changes in transcriptional circuits played a pivotal role in the adaptation of single-celled eukaryotes to colonize mammals.
Collapse
Affiliation(s)
- Sonakshi De
- Institut für Molekulare Infektionsbiologie; Universität Würzburg; Würzburg, Germany
| | - J Christian Pérez
- Institut für Molekulare Infektionsbiologie; Universität Würzburg; Würzburg, Germany
| |
Collapse
|
63
|
Will WR, Navarre WW, Fang FC. Integrated circuits: how transcriptional silencing and counter-silencing facilitate bacterial evolution. Curr Opin Microbiol 2014; 23:8-13. [PMID: 25461567 DOI: 10.1016/j.mib.2014.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/26/2022]
Abstract
Horizontal gene transfer is a major contributor to bacterial evolution and diversity. For a bacterial cell to utilize newly-acquired traits such as virulence and antibiotic resistance, new genes must be integrated into the existing regulatory circuitry to allow appropriate expression. Xenogeneic silencing of horizontally-acquired genes by H-NS or other nucleoid-associated proteins avoids adventitious expression and can be relieved by other DNA-binding counter-silencing proteins in an environmentally-responsive and physiologically-responsive manner. Biochemical and genetic analyses have recently demonstrated that counter-silencing can occur at a variety of promoter architectures, in contrast to classical transcriptional activation. Disruption of H-NS nucleoprotein filaments by DNA bending is a suggested mechanism by which silencing can be relieved. This review discusses recent advances in our understanding of the mechanisms and importance of xenogeneic silencing and counter-silencing in the successful integration of horizontally-acquired genes into regulatory networks.
Collapse
Affiliation(s)
- W Ryan Will
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William W Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ferric C Fang
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
64
|
Genome-scale co-expression network comparison across Escherichia coli and Salmonella enterica serovar Typhimurium reveals significant conservation at the regulon level of local regulators despite their dissimilar lifestyles. PLoS One 2014; 9:e102871. [PMID: 25101984 PMCID: PMC4125155 DOI: 10.1371/journal.pone.0102871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 06/24/2014] [Indexed: 01/01/2023] Open
Abstract
Availability of genome-wide gene expression datasets provides the opportunity to study gene expression across different organisms under a plethora of experimental conditions. In our previous work, we developed an algorithm called COMODO (COnserved MODules across Organisms) that identifies conserved expression modules between two species. In the present study, we expanded COMODO to detect the co-expression conservation across three organisms by adapting the statistics behind it. We applied COMODO to study expression conservation/divergence between Escherichia coli, Salmonella enterica, and Bacillus subtilis. We observed that some parts of the regulatory interaction networks were conserved between E. coli and S. enterica especially in the regulon of local regulators. However, such conservation was not observed between the regulatory interaction networks of B. subtilis and the two other species. We found co-expression conservation on a number of genes involved in quorum sensing, but almost no conservation for genes involved in pathogenicity across E. coli and S. enterica which could partially explain their different lifestyles. We concluded that despite their different lifestyles, no significant rewiring have occurred at the level of local regulons involved for instance, and notable conservation can be detected in signaling pathways and stress sensing in the phylogenetically close species S. enterica and E. coli. Moreover, conservation of local regulons seems to depend on the evolutionary time of divergence across species disappearing at larger distances as shown by the comparison with B. subtilis. Global regulons follow a different trend and show major rewiring even at the limited evolutionary distance that separates E. coli and S. enterica.
Collapse
|
65
|
Razo-Mejia M, Boedicker JQ, Jones D, DeLuna A, Kinney JB, Phillips R. Comparison of the theoretical and real-world evolutionary potential of a genetic circuit. Phys Biol 2014; 11:026005. [PMID: 24685590 DOI: 10.1088/1478-3975/11/2/026005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the development of next-generation sequencing technologies, many large scale experimental efforts aim to map genotypic variability among individuals. This natural variability in populations fuels many fundamental biological processes, ranging from evolutionary adaptation and speciation to the spread of genetic diseases and drug resistance. An interesting and important component of this variability is present within the regulatory regions of genes. As these regions evolve, accumulated mutations lead to modulation of gene expression, which may have consequences for the phenotype. A simple model system where the link between genetic variability, gene regulation and function can be studied in detail is missing. In this article we develop a model to explore how the sequence of the wild-type lac promoter dictates the fold-change in gene expression. The model combines single-base pair resolution maps of transcription factor and RNA polymerase binding energies with a comprehensive thermodynamic model of gene regulation. The model was validated by predicting and then measuring the variability of lac operon regulation in a collection of natural isolates. We then implement the model to analyze the sensitivity of the promoter sequence to the regulatory output, and predict the potential for regulation to evolve due to point mutations in the promoter region.
Collapse
Affiliation(s)
- M Razo-Mejia
- Ingenieria Biotecnologica, Instituto Politecnico Nacional, Av Mineral de Valenciana No 200 Col Fracc Industrial Puerto Interior, Silao de la Victoria, Guanajuato, 36275, Mexico. Department of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
66
|
Quinn HJ, Cameron ADS, Dorman CJ. Bacterial regulon evolution: distinct responses and roles for the identical OmpR proteins of Salmonella Typhimurium and Escherichia coli in the acid stress response. PLoS Genet 2014; 10:e1004215. [PMID: 24603618 PMCID: PMC3945435 DOI: 10.1371/journal.pgen.1004215] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/16/2014] [Indexed: 12/26/2022] Open
Abstract
The evolution of new gene networks is a primary source of genetic innovation that allows bacteria to explore and exploit new niches, including pathogenic interactions with host organisms. For example, the archetypal DNA binding protein, OmpR, is identical between Salmonella Typhimurium serovar Typhimurium and Escherichia coli, but regulatory specialization has resulted in different environmental triggers of OmpR expression and largely divergent OmpR regulons. Specifically, ompR mRNA and OmpR protein levels are elevated by acid pH in S. Typhimurium but not in E. coli. This differential expression pattern is due to differences in the promoter regions of the ompR genes and the E. coli ompR orthologue can be made acid-inducible by introduction of the appropriate sequences from S. Typhimurium. The OmpR regulon in S. Typhimurium overlaps that of E. coli at only 15 genes and includes many horizontally acquired genes (including virulence genes) that E. coli does not have. We found that OmpR binds to its genomic targets in higher abundance when the DNA is relaxed, something that occurs in S. Typhimurium as a result of acid stress and which is a requirement for optimal expression of its virulence genes. The genomic targets of OmpR do not share a strong nucleotide sequence consensus: we propose that the ability of OmpR to recruit additional genes to its regulon arises from its modest requirements for specificity in its DNA targets with its preference for relaxed DNA allowing it to cooperate with DNA-topology-based allostery to modulate transcription in response to acid stress.
Collapse
Affiliation(s)
- Heather J. Quinn
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Andrew D. S. Cameron
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Charles J. Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
67
|
Abstract
A previous study of prokaryotic genomes identified large reservoirs of putative mobile promoters (PMPs), that is, homologous promoter sequences associated with nonhomologous coding sequences. Here we extend this data set to identify the full complement of mobile promoters in sequenced prokaryotic genomes. The expanded search identifies nearly 40,000 PMP sequences, 90% of which occur in noncoding regions of the genome. To gain further insight from this data set, we develop a birth-death-diversification model for mobile genetic elements subject to sequence diversification; applying the model to PMPs we are able to quantify the relative importance of duplication, loss, horizontal gene transfer (HGT), and diversification to the maintenance of the PMP reservoir. The model predicts low rates of HGT relative to the duplication and loss of PMP copies, rapid dynamics of PMP families, and a pool of PMPs that exist as a single copy in a genome at any given time, despite their mobility. We report evidence of these "singletons" at high frequencies in prokaryotic genomes. We also demonstrate that including selection, either for or against PMPs, was not necessary to describe the observed data.
Collapse
|
68
|
Ghosh N, Goel AK, Alam SI. Exoproteome analysis of a novel strain of Bacillus cereus implicated in disease resembling cutaneous anthrax. INFECTION GENETICS AND EVOLUTION 2014; 22:1-11. [PMID: 24412723 DOI: 10.1016/j.meegid.2013.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/06/2013] [Accepted: 12/11/2013] [Indexed: 12/15/2022]
Abstract
Bacillus cereus belongs to B. cereus sensu lato group, shared by six other related species including Bacillus anthracis. B. anthracis is the causative agent for serious illness affecting a wide range of animals as well as humans and is a category A Biological and Toxin Warfare (BTW) agent. Recent studies indicate that a Bacillus species other than B. anthracis can cause anthrax-like disease and role of anthrax virulence plasmids (pXO1 and pXO2) on the pathogenicity of B. cereus has been documented. B. cereus strain TF5 was isolated from the tissue fluid of cutaneous anthrax-like skin lesions of a human patient from an anthrax endemic area in India. The strain harboured a PA gene, however, presence of pXO1 or pXO2-like plasmids could not be ascertained using reported primers. Abundant exoproteome of the strain in the early stationary phase was elucidated using a 2-DE MS approach and compared with that from a reference B. cereus strain. Analysis of proteins showing qualitative and quantitative differences between the two strains indicated an altered regulatory mechanism and putative role of S-layer protein and sphingomyelinase in the pathogenesis of strain TF5. Phylogenetic analysis of the S-layer protein indicated close affiliation of the strain with anthracis-like B. cereus strains such as B. cereus var. anthracis strain CI; whereas sphingomyelinase exhibited specific relationship with all the strains of B. anthracis apart from that with anthracis-like B. cereus strains.
Collapse
Affiliation(s)
- Neha Ghosh
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Ajay Kumar Goel
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| |
Collapse
|
69
|
Lin Z, Wang TY, Tsai BS, Wu FT, Yu FJ, Tseng YJ, Sung HM, Li WH. Identifying cis-regulatory changes involved in the evolution of aerobic fermentation in yeasts. Genome Biol Evol 2013; 5:1065-78. [PMID: 23650209 PMCID: PMC3698916 DOI: 10.1093/gbe/evt067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Ecology and Evolution, University of Chicago, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Genome-scale analyses of Escherichia coli and Salmonella enterica AraC reveal noncanonical targets and an expanded core regulon. J Bacteriol 2013; 196:660-71. [PMID: 24272778 DOI: 10.1128/jb.01007-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli AraC is a well-described transcription activator of genes involved in arabinose metabolism. Using complementary genomic approaches, chromatin immunoprecipitation (ChIP)-chip, and transcription profiling, we identify direct regulatory targets of AraC, including five novel target genes: ytfQ, ydeN, ydeM, ygeA, and polB. Strikingly, only ytfQ has an established connection to arabinose metabolism, suggesting that AraC has a broader function than previously described. We demonstrate arabinose-dependent repression of ydeNM by AraC, in contrast to the well-described arabinose-dependent activation of other target genes. We also demonstrate unexpected read-through of transcription at the Rho-independent terminators downstream of araD and araE, leading to significant increases in the expression of polB and ygeA, respectively. AraC is highly conserved in the related species Salmonella enterica. We use ChIP sequencing (ChIP-seq) and RNA sequencing (RNA-seq) to map the AraC regulon in S. enterica. A comparison of the E. coli and S. enterica AraC regulons, coupled with a bioinformatic analysis of other related species, reveals a conserved regulatory network across the family Enterobacteriaceae comprised of 10 genes associated with arabinose transport and metabolism.
Collapse
|
71
|
Chen Y, Zhu H, Zheng G, Jiang W, Lu Y. Functional analysis of TetR-family regulator AmtRsav in Streptomyces avermitilis. MICROBIOLOGY-SGM 2013; 159:2571-2583. [PMID: 24068239 DOI: 10.1099/mic.0.071449-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In actinomycetes, two main regulators, the OmpR-like GlnR and the TetR-type AmtR, have been identified as the central regulators for nitrogen metabolism. GlnR-mediated regulation was previously identified in different actinomycetes except for members of the genus Corynebacterium, in which AmtR plays a predominant role in nitrogen metabolism. Interestingly, some actinomycetes (e.g. Streptomyces avermitilis) harbour both glnR- and amtR-homologous genes in the chromosome. Thus, it will be interesting to determine how these two different types of regulators function together in nitrogen regulation of these strains. In this study, AmtRsav (sav_6701) in S. avermitilis, the homologue of AmtR from Corynebacterium glutamicum, was functionally characterized. We showed, by real-time reverse transcription (RT)-PCR (qPCR) in combination with electrophoretic mobility shift assays (EMSAs), that gene cluster sav_6697-6700 encoding a putative amidase, a urea carboxylase and two hypothetical proteins, respectively, and sav_6709 encoding a probable amino acid permease are under the direct control of AmtRsav. Using approaches of comparative analysis combined with site-directed DNA mutagenesis, the AmtRsav binding sites in the respective intergenic regions of sav_6700/6701 and sav_6709/6710 were defined. By genome screening coupled with EMSAs, two novel AmtRsav binding sites were identified. Taken together, AmtRsav seems to play a marginal role in regulation of nitrogen metabolism of S. avermitilis.
Collapse
Affiliation(s)
- Yunliang Chen
- Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China.,Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Hong Zhu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Guosong Zheng
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yinhua Lu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
72
|
Matsui M, Tomita M, Kanai A. Comprehensive computational analysis of bacterial CRP/FNR superfamily and its target motifs reveals stepwise evolution of transcriptional networks. Genome Biol Evol 2013; 5:267-82. [PMID: 23315382 PMCID: PMC3590769 DOI: 10.1093/gbe/evt004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cAMP receptor protein (CRP)/fumarate and nitrate reduction regulatory protein (FNR)-type transcription factors (TFs) are members of a well-characterized global TF family in bacteria and have two conserved domains: the N-terminal ligand-binding domain for small molecules (e.g., cAMP, NO, or O2) and the C-terminal DNA-binding domain. Although the CRP/FNR-type TFs recognize very similar consensus DNA target sequences, they can regulate different sets of genes in response to environmental signals. To clarify the evolution of the CRP/FNR-type TFs throughout the bacterial kingdom, we undertook a comprehensive computational analysis of a large number of annotated CRP/FNR-type TFs and the corresponding bacterial genomes. Based on the amino acid sequence similarities among 1,455 annotated CRP/FNR-type TFs, spectral clustering classified the TFs into 12 representative groups, and stepwise clustering allowed us to propose a possible process of protein evolution. Although each cluster mainly consists of functionally distinct members (e.g., CRP, NTC, FNR-like protein, and FixK), FNR-related TFs are found in several groups and are distributed in a wide range of bacterial phyla in the sequence similarity network. This result suggests that the CRP/FNR-type TFs originated from an ancestral FNR protein, involved in nitrogen fixation. Furthermore, a phylogenetic profiling analysis showed that combinations of TFs and their target genes have fluctuated dynamically during bacterial evolution. A genome-wide analysis of TF-binding sites also suggested that the diversity of the transcriptional regulatory system was derived by the stepwise adaptation of TF-binding sites to the evolution of TFs.
Collapse
Affiliation(s)
- Motomu Matsui
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | | |
Collapse
|
73
|
Chen HD, Groisman EA. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu Rev Microbiol 2013; 67:83-112. [PMID: 23799815 DOI: 10.1146/annurev-micro-092412-155751] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of gram-negative bacteria to resist killing by antimicrobial agents and to avoid detection by host immune systems often entails modification to the lipopolysaccharide (LPS) in their outer membrane. In this review, we examine the biology of the PmrA/PmrB two-component system, the major regulator of LPS modifications in the enteric pathogen Salmonella enterica. We examine the signals that activate the sensor PmrB and the targets controlled by the transcriptional regulator PmrA. We discuss the PmrA/PmrB-dependent chemical decorations of the LPS and their role in resistance to antibacterial agents. We analyze the feedback mechanisms that modulate the activity and thus output of the PmrA/PmrB system, dictating when, where, and to what extent bacteria modify their LPS. Finally, we explore the qualitative and quantitative differences in gene expression outputs resulting from the distinct PmrA/PmrB circuit architectures in closely related bacteria, which may account for their differential survival in various ecological niches.
Collapse
|
74
|
Leyn SA, Kazanov MD, Sernova NV, Ermakova EO, Novichkov PS, Rodionov DA. Genomic reconstruction of the transcriptional regulatory network in Bacillus subtilis. J Bacteriol 2013; 195:2463-73. [PMID: 23504016 PMCID: PMC3676070 DOI: 10.1128/jb.00140-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/11/2013] [Indexed: 12/26/2022] Open
Abstract
The adaptation of microorganisms to their environment is controlled by complex transcriptional regulatory networks (TRNs), which are still only partially understood even for model species. Genome scale annotation of regulatory features of genes and TRN reconstruction are challenging tasks of microbial genomics. We used the knowledge-driven comparative-genomics approach implemented in the RegPredict Web server to infer TRN in the model Gram-positive bacterium Bacillus subtilis and 10 related Bacillales species. For transcription factor (TF) regulons, we combined the available information from the DBTBS database and the literature with bioinformatics tools, allowing inference of TF binding sites (TFBSs), comparative analysis of the genomic context of predicted TFBSs, functional assignment of target genes, and effector prediction. For RNA regulons, we used known RNA regulatory motifs collected in the Rfam database to scan genomes and analyze the genomic context of new RNA sites. The inferred TRN in B. subtilis comprises regulons for 129 TFs and 24 regulatory RNA families. First, we analyzed 66 TF regulons with previously known TFBSs in B. subtilis and projected them to other Bacillales genomes, resulting in refinement of TFBS motifs and identification of novel regulon members. Second, we inferred motifs and described regulons for 28 experimentally studied TFs with previously unknown TFBSs. Third, we discovered novel motifs and reconstructed regulons for 36 previously uncharacterized TFs. The inferred collection of regulons is available in the RegPrecise database (http://regprecise.lbl.gov/) and can be used in genetic experiments, metabolic modeling, and evolutionary analysis.
Collapse
Affiliation(s)
- Semen A. Leyn
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Marat D. Kazanov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V. Sernova
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina O. Ermakova
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry A. Rodionov
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
75
|
Ishii Y, Kakizawa S, Oshima K. New ex vivo reporter assay system reveals that σ factors of an unculturable pathogen control gene regulation involved in the host switching between insects and plants. Microbiologyopen 2013; 2:553-65. [PMID: 23723081 PMCID: PMC3831623 DOI: 10.1002/mbo3.93] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 11/07/2022] Open
Abstract
Analysis of the environmental regulation of bacterial gene expression is important for understanding the nature, pathogenicity, and infection route of many pathogens. "Candidatus Phytoplasma asteris", onion yellows strain M (OY-M), is a phytopathogenic bacterium that is able to adapt to quite different host environments, including plants and insects, with a relatively small ~850 kb genome. The OY-M genome encodes two sigma (σ) factors, RpoD and FliA, that are homologous to Escherichia coli σ(70) and σ(28) , respectively. Previous studies show that gene expression of OY-M dramatically changes upon the response to insect and plant hosts. However, very little is known about the relationship between the two σ factors and gene regulatory systems in OY-M, because phytoplasma cannot currently be cultured in vitro. Here, we developed an Escherichia coli-based ex vivo reporter assay (EcERA) system to evaluate the transcriptional induction of phytoplasmal genes by the OY-M-derived σ factors. EcERA revealed that highly expressed genes in insect and plant hosts were regulated by RpoD and FliA, respectively. We also demonstrated that rpoD expression was significantly higher in insect than in plant hosts and fliA expression was similar between the hosts. These data indicate that phytoplasma-derived RpoD and FliA play key roles in the transcriptional switching mechanism during host switching between insects and plants. Our study will be invaluable to understand phytoplasmal transmission, virulence expression in plants, and the effect of infection on insect fitness. In addition, the novel EcERA system could be broadly applied to reveal transcriptional regulation mechanisms in other unculturable bacteria.
Collapse
Affiliation(s)
- Yoshiko Ishii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
76
|
Signal correlations in ecological niches can shape the organization and evolution of bacterial gene regulatory networks. Adv Microb Physiol 2013; 61:1-36. [PMID: 23046950 DOI: 10.1016/b978-0-12-394423-8.00001-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcriptional regulation plays a significant role in the biological response of bacteria to changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an important step not only in understanding how bacteria sense and interpret their environment but also to identify the functions involved in biological responses to specific conditions. Recent experimental and computational developments have facilitated the characterization of regulatory networks on a genome-wide scale in model organisms. In addition, the multiplication of complete genome sequences has encouraged comparative analyses to detect conserved regulatory elements and infer regulatory networks in other less well-studied organisms. However, transcription regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of regulatory networks have been the subjects of numerous analyses, and several models have been proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are complex. Finally, the rapid evolution of regulatory networks plays a significant role in the remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the characteristics of environmental niches determine the selective pressures and can shape the structure of regulatory network accordingly.
Collapse
|
77
|
Induction of the Yersinia pestis PhoP-PhoQ regulatory system in the flea and its role in producing a transmissible infection. J Bacteriol 2013; 195:1920-30. [PMID: 23435973 DOI: 10.1128/jb.02000-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of Yersinia pestis is greatly enhanced after it forms a bacterial biofilm in the foregut of the flea vector that interferes with normal blood feeding. Here we report that the ability to produce a normal foregut-blocking infection depends on induction of the Y. pestis PhoP-PhoQ two-component regulatory system in the flea. Y. pestis phoP-negative mutants achieved normal infection rates and bacterial loads in the flea midgut but produced a less cohesive biofilm both in vitro and in the flea and had a greatly reduced ability to localize to and block the flea foregut. Thus, not only is the PhoP-PhoQ system induced in the flea gut environment, but also this induction is required to produce a normal transmissible infection. The altered biofilm phenotype in the flea was not due to lack of PhoPQ-dependent or PmrAB-dependent addition of aminoarabinose to the Y. pestis lipid A, because an aminoarabinose-deficient mutant that is highly sensitive to cationic antimicrobial peptides had a normal phenotype in the flea digestive tract. In addition to enhancing transmissibility, induction of the PhoP-PhoQ system in the arthropod vector prior to transmission may preadapt Y. pestis to resist the initial encounter with the mammalian innate immune response.
Collapse
|
78
|
Boedicker JQ, Garcia HG, Phillips R. Theoretical and experimental dissection of DNA loop-mediated repression. PHYSICAL REVIEW LETTERS 2013; 110:018101. [PMID: 23383841 PMCID: PMC3716456 DOI: 10.1103/physrevlett.110.018101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Indexed: 06/01/2023]
Abstract
Transcriptional networks across all domains of life feature a wide range of regulatory architectures. Theoretical models now make clear predictions about how key parameters describing those architectures modulate gene expression, and the ability to construct genetic circuits with tunable parameters enables precise tests of such models. We dissect gene regulation through DNA looping by tuning network parameters such as repressor copy number, DNA binding strengths, and loop length in both thermodynamic models and experiments. Our results help clarify the short-length mechanical properties of DNA.
Collapse
Affiliation(s)
- James Q. Boedicker
- Department of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Hernan G. Garcia
- Department of Physics, Princeton University, Jadwin Hall, Princeton, New Jersey 08544, USA
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| |
Collapse
|
79
|
Chen HD, Jewett MW, Groisman EA. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product. PLoS Genet 2012; 8:e1003060. [PMID: 23300460 PMCID: PMC3531487 DOI: 10.1371/journal.pgen.1003060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022] Open
Abstract
Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.
Collapse
Affiliation(s)
- H. Deborah Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mollie W. Jewett
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eduardo A. Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
80
|
de las Heras A, Fraile S, de Lorenzo V. Increasing signal specificity of the TOL network of Pseudomonas putida mt-2 by rewiring the connectivity of the master regulator XylR. PLoS Genet 2012; 8:e1002963. [PMID: 23071444 PMCID: PMC3469447 DOI: 10.1371/journal.pgen.1002963] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/07/2012] [Indexed: 11/28/2022] Open
Abstract
Prokaryotic transcription factors (TFs) that bind small xenobiotic molecules (e.g., TFs that drive genes that respond to environmental pollutants) often display a promiscuous effector profile for analogs of the bona fide chemical signals. XylR, the master TF for expression of the m-xylene biodegradation operons encoded in the TOL plasmid pWW0 of Pseudomonas putida, responds not only to the aromatic compound but also, albeit to a lesser extent, to many other aromatic compounds, such as 3-methylbenzylalcohol (3MBA). We have examined whether such a relaxed regulatory scenario can be reshaped into a high-capacity/high-specificity regime by changing the connectivity of this effector-sensing TF within the rest of the circuit rather than modifying XylR structure itself. To this end, the natural negative feedback loop that operates on xylR transcription was modified with a translational attenuator that brings down the response to 3MBA while maintaining the transcriptional output induced by m-xylene (as measured with a luxCDABE reporter system). XylR expression was then subject to a positive feedback loop in which the TF was transcribed from its own target promoters, each known to hold different input/output transfer functions. In the first case (xylR under the strong promoter of the upper TOL operon, Pu), the reporter system displayed an increased transcriptional capacity in the resulting network for both the optimal and the suboptimal XylR effectors. In contrast, when xylR was expressed under the weaker Ps promoter, the resulting circuit unmistakably discriminated m-xylene from 3MBA. The non-natural connectivity engineered in the network resulted both in a higher promoter activity and also in a much-increased signal-to-background ratio. These results indicate that the working regimes of given genetic circuits can be dramatically altered through simple changes in the way upstream transcription factors are self-regulated by positive or negative feedback loops. It is generally taken for granted that promoters regulated by transcriptional factors (TFs) that respond to small molecules control their specificity to given effectors by tightening or relaxing the intrinsic dual interaction between the TF and the particular inducer. One such promoter is Pu, which drives expression of an operon for the biodegradation of m-xylene by the soil bacterium P. putida mt-2. While XylR, the chief TF of this system, binds this substrate and activates Pu, the same regulator responds, to a lesser extent, to 3-methylbenzylalcohol and thus also activates the promoter. This work provides evidence that such natural effector promiscuity of the system can be altogether suppressed by replacing the naturally occurring negative autoregulation loop that governs XylR expression with an equivalent positive feedback loop. Based on this result, we argue that signal specificity of a given regulatory device depends not only on the TF involved but also on TF connectivity to upstream signals and downstream targets.
Collapse
Affiliation(s)
| | | | - Victor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
- * E-mail:
| |
Collapse
|
81
|
Dillon SC, Espinosa E, Hokamp K, Ussery DW, Casadesús J, Dorman CJ. LeuO is a global regulator of gene expression inSalmonella entericaserovar Typhimurium. Mol Microbiol 2012; 85:1072-89. [DOI: 10.1111/j.1365-2958.2012.08162.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
82
|
Abstract
To exist in a wide range of environmental niches, bacteria must sense and respond to a variety of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically composed of a sensor histidine kinase that receives the input stimuli and then phosphorylates a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights.
Collapse
Affiliation(s)
- Emily J Capra
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | |
Collapse
|
83
|
Kim MS, Dufour YS, Yoo JS, Cho YB, Park JH, Nam GB, Kim HM, Lee KL, Donohue TJ, Roe JH. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol Microbiol 2012; 85:326-44. [PMID: 22651816 DOI: 10.1111/j.1365-2958.2012.08115.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Numerous thiol-reactive compounds cause oxidative stress where cells counteract by activation of survival strategies regulated by thiol-based sensors. In Streptomyces coelicolor, a model actinomycete, a sigma/antisigma pair SigR/RsrA controls the response to thiol-oxidative stress. To unravel its full physiological functions, chromatin immuno-precipitation combined with sequence and transcript analyses were employed to identify 108 SigR target genes in S. coelicolor and to predict orthologous regulons across actinomycetes. In addition to reported genes for thiol homeostasis, protein degradation and ribosome modulation, 64 additional operons were identified suggesting new functions of this global regulator. We demonstrate that SigR maintains the level and activity of the housekeeping sigma factor HrdB during thiol-oxidative stress, a novel strategy for stress responses. We also found that SigR defends cells against UV and thiol-reactive damages, in which repair UvrA takes a part. Using a refined SigR-binding sequence model, SigR orthologues and their targets were predicted in 42 actinomycetes. This revealed a conserved core set of SigR targets to function for thiol homeostasis, protein quality control, possible modulation of transcription and translation, flavin-mediated redox reactions, and Fe-S delivery. The composition of the SigR regulon reveals a robust conserved physiological mechanism to deal with thiol-oxidative stress from bacteria to human.
Collapse
Affiliation(s)
- Min-Sik Kim
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Zwick ME, Joseph SJ, Didelot X, Chen PE, Bishop-Lilly KA, Stewart AC, Willner K, Nolan N, Lentz S, Thomason MK, Sozhamannan S, Mateczun AJ, Du L, Read TD. Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res 2012; 22:1512-24. [PMID: 22645259 PMCID: PMC3409264 DOI: 10.1101/gr.134437.111] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The key genes required for Bacillus anthracis to cause anthrax have been acquired recently by horizontal gene transfer. To understand the genetic background for the evolution of B. anthracis virulence, we obtained high-redundancy genome sequences of 45 strains of the Bacillus cereus sensu lato (s.l.) species that were chosen for their genetic diversity within the species based on the existing multilocus sequence typing scheme. From the resulting data, we called more than 324,000 new genes representing more than 12,333 new gene families for this group. The core genome size for the B. cereus s.l. group was ∼1750 genes, with another 2150 genes found in almost every genome constituting the extended core. There was a paucity of genes specific and conserved in any clade. We found no evidence of recent large-scale gene loss in B. anthracis or for unusual accumulation of nonsynonymous DNA substitutions in the chromosome; however, several B. cereus genomes isolated from soil and not previously associated with human disease were degraded to various degrees. Although B. anthracis has undergone an ecological shift within the species, its chromosome does not appear to be exceptional on a macroscopic scale compared with close relatives.
Collapse
Affiliation(s)
- Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Intraspecies variation in the emergence of hyperinfectious bacterial strains in nature. PLoS Pathog 2012; 8:e1002647. [PMID: 22511871 PMCID: PMC3325197 DOI: 10.1371/journal.ppat.1002647] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/01/2012] [Indexed: 12/29/2022] Open
Abstract
Salmonella is a principal health concern because of its endemic prevalence in food and water supplies, the rise in incidence of multi-drug resistant strains, and the emergence of new strains associated with increased disease severity. Insights into pathogen emergence have come from animal-passage studies wherein virulence is often increased during infection. However, these studies did not address the prospect that a select subset of strains undergo a pronounced increase in virulence during the infective process- a prospect that has significant implications for human and animal health. Our findings indicate that the capacity to become hypervirulent (100-fold decreased LD50) was much more evident in certain S. enterica strains than others. Hyperinfectious salmonellae were among the most virulent of this species; restricted to certain serotypes; and more capable of killing vaccinated animals. Such strains exhibited rapid (and rapidly reversible) switching to a less-virulent state accompanied by more competitive growth ex vivo that may contribute to maintenance in nature. The hypervirulent phenotype was associated with increased microbial pathogenicity (colonization; cytotoxin production; cytocidal activity), coupled with an altered innate immune cytokine response within infected cells (IFN-β; IL-1β; IL-6; IL-10). Gene expression analysis revealed that hyperinfectious strains display altered transcription of genes within the PhoP/PhoQ, PhoR/PhoB and ArgR regulons, conferring changes in the expression of classical virulence functions (e.g., SPI-1; SPI-2 effectors) and those involved in cellular physiology/metabolism (nutrient/acid stress). As hyperinfectious strains pose a potential risk to human and animal health, efforts toward mitigation of these potential food-borne contaminants may avert negative public health impacts and industry-associated losses. Salmonellosis continues to compromise human health, animal welfare, and modern agriculture. Developing a comprehensive control plan requires an understanding of how pathogens emerge and express traits that confer increased incidence and severity of disease. It is well-established that animal passage often results in increased virulence; however, our findings indicate that the capacity to undergo a pronounced increase in virulence after passage was much more prevalent in certain Salmonella isolates than in others. The resultant hyperinfectious strains are among the most virulent salmonellae reported; were restricted to certain serotypes; and were able to override the immunity conferred in vaccinated animals. The induction of hypervirulence was responsive to subtle changes in environmental conditions and, potentially, may occur in other salmonellae serotypes after passage through certain hosts and/or exposure to certain environmental variables; a response that may be common across the microbial realm. Thus, management practices and environmental conditions inherent to livestock production have the potential to inadvertently trigger hypervirulence (e.g., diet; herd size; exposure to livestock waste and/or antimicrobials). From a farm management perspective, careful consideration must be given to risk-management strategies that reduce emergence/persistence of these potential food-borne contaminants to safeguard public health and reduce industry-associated losses.
Collapse
|
86
|
Hsu C, Scherrer S, Buetti-Dinh A, Ratna P, Pizzolato J, Jaquet V, Becskei A. Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution. Nat Commun 2012; 3:682. [PMID: 22353713 PMCID: PMC3293423 DOI: 10.1038/ncomms1687] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/17/2012] [Indexed: 01/18/2023] Open
Abstract
During evolution, genetic networks are rewired through strengthening or weakening their interactions to develop new regulatory schemes. In the galactose network, the GAL1/GAL3 paralogues and the GAL2 gene enhance their own expression mediated by the Gal4p transcriptional activator. The wiring strength in these feedback loops is set by the number of Gal4p binding sites. Here we show using synthetic circuits that multiplying the binding sites increases the expression of a gene under the direct control of an activator, but this enhancement is not fed back in the circuit. The feedback loops are rather activated by genes that have frequent stochastic bursts and fast RNA decay rates. In this way, rapid adaptation to galactose can be triggered even by weakly expressed genes. Our results indicate that nonlinear stochastic transcriptional responses enable feedback loops to function autonomously, or contrary to what is dictated by the strength of interactions enclosing the circuit.
Collapse
Affiliation(s)
- Chieh Hsu
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel 4056, Switzerland
| | | | | | | | | | | | | |
Collapse
|
87
|
Salvado B, Vilaprinyo E, Karathia H, Sorribas A, Alves R. Two component systems: physiological effect of a third component. PLoS One 2012; 7:e31095. [PMID: 22363555 PMCID: PMC3281920 DOI: 10.1371/journal.pone.0031095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 01/02/2012] [Indexed: 11/18/2022] Open
Abstract
Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component") on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.
Collapse
Affiliation(s)
- Baldiri Salvado
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Ester Vilaprinyo
- Evaluation and Clinical Epidemiology Department, Parc de Salut Mar and CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Hiren Karathia
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Albert Sorribas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Rui Alves
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
- * E-mail:
| |
Collapse
|
88
|
Zaoui C, Overhage J, Löns D, Zimmermann A, Müsken M, Bielecki P, Pustelny C, Becker T, Nimtz M, Häussler S. An orphan sensor kinase controls quinolone signal production via MexT in Pseudomonas aeruginosa. Mol Microbiol 2012; 83:536-47. [PMID: 22168309 DOI: 10.1111/j.1365-2958.2011.07947.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa employs both N-acylhomoserine lactone and 2-alkyl-4(1H)-quinolone (AQ)-mediated interbacterial signalling for the orchestration of a genome-wide gene regulatory network. Despite the many advances that have been made in understanding the target genes of quorum sensing regulation, little is known on how quorum sensing systems are influenced by environmental cues. In this study, we show that AQ production is modulated by an orphan P. aeruginosa sensor kinase. Transcriptional studies of the sensor kinase (MxtR) mutant demonstrated that an induced expression of MexT, a LysR-type transcriptional regulator, largely determined the global transcriptional profile. Thereby, overexpression of the MexT-regulated MexEF-OprN efflux pump led to a delayed expression of the AQ biosynthetic genes and of AQ-dependent virulence factors. Furthermore, we demonstrated that autophosphorylation of MxtR was inhibited by ubiquinone, the central electron carrier of respiration in in vitro experiments. Our results elucidate on a mechanism by which P. aeruginosa senses environmental conditions and adapts by controlling the production of interbacterial AQ signal molecules. A regulatory function of a sensor kinase may indicate that there is a pre-emptive role of adaptation mechanisms that are turned on under distinct environmental conditions and that are important for efficient colonization and pathogenesis.
Collapse
Affiliation(s)
- Caroline Zaoui
- Chronic Pseudomonas Infection Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Perez-Rueda E, Martinez-Nuñez MA. The repertoire of DNA-binding transcription factors in prokaryotes: functional and evolutionary lessons. Sci Prog 2012; 95:315-29. [PMID: 23094327 PMCID: PMC10365527 DOI: 10.3184/003685012x13420097673409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The capabilities of organisms to contend with environmental changes depend on their genes and their ability to regulate their expression. DNA-binding transcription factors (TFs) play a central role in this process, because they regulate gene expression positively and/or negatively, depending on the operator context and ligand-binding status. In this review, we summarise recent findings regarding the function and evolution of TFs in prokaryotes. We consider the abundance of TFs in bacteria and archaea, the role of DNA-binding domains and their partner domains, and the effects of duplication events in the evolution of regulatory networks. Finally, a comprehensive picture for how regulatory networks have evolved in prokaryotes is provided.
Collapse
Affiliation(s)
- Ernesto Perez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62100, Mexico.
| | | |
Collapse
|
90
|
Ding J, Hu H, Li X. Thousands of cis-regulatory sequence combinations are shared by Arabidopsis and poplar. PLANT PHYSIOLOGY 2012; 158:145-55. [PMID: 22058225 PMCID: PMC3252106 DOI: 10.1104/pp.111.186080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The identification of cis-regulatory modules (CRMs) can greatly advance our understanding of gene regulatory mechanisms. Despite the existence of binding sites of more than three transcription factors (TFs) in a CRM, studies in plants often consider only the cooccurrence of binding sites of one or two TFs. In addition, CRM studies in plants are limited to combinations of only a few families of TFs. It is thus not clear how widespread plant TFs work together, which TFs work together to regulate plant genes, and how the combinations of these TFs are shared by different plants. To fill these gaps, we applied a frequent pattern-mining-based approach to identify frequently used cis-regulatory sequence combinations in the promoter sequences of two plant species, Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa). A cis-regulatory sequence here corresponds to a DNA motif bound by a TF. We identified 18,638 combinations composed of two to six cis-regulatory sequences that are shared by the two plant species. In addition, with known cis-regulatory sequence combinations, gene function annotation, gene expression data, and known functional gene sets, we showed that the functionality of at least 96.8% and 65.2% of these shared combinations in Arabidopsis are partially supported, under a false discovery rate of 0.1 and 0.05, respectively. Finally, we discovered that 796 of the 18,638 combinations might relate to functions that are important in bioenergy research. Our work will facilitate the study of gene transcriptional regulation in plants.
Collapse
|
91
|
Fernandes N, Case RJ, Longford SR, Seyedsayamdost MR, Steinberg PD, Kjelleberg S, Thomas T. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLoS One 2011; 6:e27387. [PMID: 22162749 PMCID: PMC3230580 DOI: 10.1371/journal.pone.0027387] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/15/2011] [Indexed: 01/17/2023] Open
Abstract
Nautella sp. R11, a member of the marine Roseobacter clade, causes a bleaching disease in the temperate-marine red macroalga, Delisea pulchra. To begin to elucidate the molecular mechanisms underpinning the ability of Nautella sp. R11 to colonize, invade and induce bleaching of D. pulchra, we sequenced and analyzed its genome. The genome encodes several factors such as adhesion mechanisms, systems for the transport of algal metabolites, enzymes that confer resistance to oxidative stress, cytolysins, and global regulatory mechanisms that may allow for the switch of Nautella sp. R11 to a pathogenic lifestyle. Many virulence effectors common in phytopathogenic bacteria are also found in the R11 genome, such as the plant hormone indole acetic acid, cellulose fibrils, succinoglycan and nodulation protein L. Comparative genomics with non-pathogenic Roseobacter strains and a newly identified pathogen, Phaeobacter sp. LSS9, revealed a patchy distribution of putative virulence factors in all genomes, but also led to the identification of a quorum sensing (QS) dependent transcriptional regulator that was unique to pathogenic Roseobacter strains. This observation supports the model that a combination of virulence factors and QS-dependent regulatory mechanisms enables indigenous members of the host alga's epiphytic microbial community to switch to a pathogenic lifestyle, especially under environmental conditions when innate host defence mechanisms are compromised.
Collapse
Affiliation(s)
- Neil Fernandes
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Rebecca J. Case
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sharon R. Longford
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Mohammad R. Seyedsayamdost
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter D. Steinberg
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Torsten Thomas
- The Centre for Marine Bio-Innovation (CMB), University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
92
|
Rational design of an artificial genetic switch: Co-option of the H-NS-repressed proU operon by the VirB virulence master regulator. J Bacteriol 2011; 193:5950-60. [PMID: 21873493 DOI: 10.1128/jb.05557-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H-NS protein represses the transcription of hundreds of genes in Gram-negative bacteria. Derepression is achieved by a multitude of mechanisms, many of which involve the binding of a protein to DNA at the repressed promoter in a manner that compromises the maintenance of the H-NS-DNA nucleoprotein repression complex. The principal virulence gene promoters in Shigella flexneri, the cause of bacillary dysentery, are repressed by H-NS. VirB, a protein that closely resembles members of the ParB family of plasmid-partitioning proteins, derepresses the operons that encode the main structural components and the effector proteins of the S. flexneri type III secretion system. Bioinformatic analysis suggests that VirB has been co-opted into its current role as an H-NS antagonist in S. flexneri. To test this hypothesis, the potential for VirB to act as a positive regulator of proU, an operon that is repressed by H-NS, was assessed. Although VirB has no known relationship with the osmoregulated proU operon, it could relieve H-NS-mediated repression when the parS-like VirB binding site was placed appropriately upstream of the RpoD-dependent proU promoter. These results reveal the remarkable facility with which novel regulatory circuits can evolve, at least among those promoters that are repressed by H-NS.
Collapse
|
93
|
Wang L, Wang FF, Qian W. Evolutionary rewiring and reprogramming of bacterial transcription regulation. J Genet Genomics 2011; 38:279-88. [DOI: 10.1016/j.jgg.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
|
94
|
Gal-Mor O, Elhadad D, Deng W, Rahav G, Finlay BB. The Salmonella enterica PhoP directly activates the horizontally acquired SPI-2 gene sseL and is functionally different from a S. bongori ortholog. PLoS One 2011; 6:e20024. [PMID: 21625519 PMCID: PMC3098285 DOI: 10.1371/journal.pone.0020024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/09/2011] [Indexed: 11/22/2022] Open
Abstract
To establish a successful infection within the host, a pathogen must closely regulate multiple virulence traits to ensure their accurate temporal and spatial expression. As a highly adapted intracellular pathogen, Salmonella enterica has acquired during its evolution various virulence genes via numerous lateral transfer events, including the acquisition of the Salmonella Pathogenicity Island 2 (SPI-2) and its associated effectors. Beneficial use of horizontally acquired genes requires that their expression is effectively coordinated with the already existing virulence programs and the regulatory set-up in the bacterium. As an example for such a mechanism, we show here that the ancestral PhoPQ system of Salmonella enterica is able to regulate directly the SPI-2 effector gene sseL (encoding a secreted deubiquitinase) in an SsrB-independent manner and that PhoP plays a part in a feed-forward regulatory loop, which fine-tunes the cellular level of SseL. Additionally, we demonstrate the presence of conserved cis regulatory elements in the promoter region of sseL and show direct binding of purified PhoP to this region. Interestingly, in contrast to the S. enterica PhoP, an ortholog regulator from a S. bongori SARC 12 strain was found to be impaired in promoting transcription of sseL and other genes from the PhoP regulon. These findings have led to the identification of a previously uncharacterized residue in the DNA-binding domain of PhoP, which is required for the transcriptional activation of PhoP regulated genes in Salmonella spp. Collectively our data demonstrate an interesting interface between the acquired SsrB regulon and the ancestral PhoPQ regulatory circuit, provide novel insights into the function of PhoP, and highlight a mechanism of regulatory integration of horizontally acquired genes into the virulence network of Salmonella enterica.
Collapse
Affiliation(s)
- Ohad Gal-Mor
- Infectious Diseases Research Laboratory, Sheba Medical Center Tel-Hashomer, Tel-Hashomer, Israel.
| | | | | | | | | |
Collapse
|
95
|
Tree JJ, Roe AJ, Flockhart A, McAteer SP, Xu X, Shaw D, Mahajan A, Beatson SA, Best A, Lotz S, Woodward MJ, La Ragione R, Murphy KC, Leong JM, Gally DL. Transcriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type III secretion in enterohemorrhagic Escherichia coli O157:H7. Mol Microbiol 2011; 80:1349-65. [PMID: 21492263 DOI: 10.1111/j.1365-2958.2011.07650.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type III secretion (T3S) plays a pivotal role in the colonization of ruminant hosts by Enterohemorrhagic Escherichia coli (EHEC). The T3S system translocates effector proteins into host cells to promote bacterial attachment and persistence. The repertoire and variation in prophage regions underpins differences in the pathogenesis and epidemiology of EHEC strains. In this study, we have used a collection of deletions in cryptic prophages and EHEC O157 O-islands to screen for novel regulators of T3S. Using this approach we have identified a family of homologous AraC-like regulators that indirectly repress T3S. These prophage-encoded secretion regulator genes (psr) are found exclusively on prophages and are associated with effector loci and the T3S activating Pch family of regulators. Transcriptional profiling, mutagenesis and DNA binding studies were used to show that these regulators usurp the conserved GAD acid stress resistance system to regulate T3S by increasing the expression of GadE (YhiE) and YhiF and that this regulation follows attachment to bovine epithelial cells. We further demonstrate that PsrA and effectors encoded within cryptic prophage CP933-N are required for persistence in a ruminant model of colonization.
Collapse
Affiliation(s)
- Jai J Tree
- Immunity and Infection Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Wahl A, My L, Dumoulin R, Sturgis JN, Bouveret E. Antagonistic regulation of dgkA and plsB genes of phospholipid synthesis by multiple stress responses in Escherichia coli. Mol Microbiol 2011; 80:1260-75. [PMID: 21463370 DOI: 10.1111/j.1365-2958.2011.07641.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholipid homeostasis of the bacterial membrane is maintained by biochemical regulation of the synthesis enzymes depending on the environment. However, genes encoding phospholipid synthesis enzymes might also be regulated during stress responses, in order for the bacteria to adapt their growth to changing environments. While few studies have addressed this question, global analyses show that specific genes are activated by alternative Sigma factors, and that phospholipid synthesis genes are co-ordinately regulated during stringent response. In Escherichia coli, the genes coding for glycerol-3-phosphate acyltransferase and diacylglycerol kinase (plsB and dgkA) are found next to each other in divergent orientations, suggesting a co-ordinated regulation. We investigated their regulation and found that these two genes are inversely regulated by a diversity of stress responses. plsB activation by σE is concomitant with a reduced DgkA amount. A second proximal promoter for plsB expression is responsible for basal plsB expression and is inhibited during stringent response. Finally, dgkA is activated by the two-component regulator BasR, linking dgkA function of phospholipid recycling to LPS modifications. In E. coli, PlsB and DgkA are key enzymes in the phospholipid synthesis pathway. Our results show that their expression is a crucial point of integration for different stress signals.
Collapse
Affiliation(s)
- Astrid Wahl
- LISM, CNRS, Aix-Marseille University, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
97
|
Bhatt S, Romeo T, Kalman D. Honing the message: post-transcriptional and post-translational control in attaching and effacing pathogens. Trends Microbiol 2011; 19:217-24. [PMID: 21333542 DOI: 10.1016/j.tim.2011.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 01/05/2023]
Abstract
Bacteria evolve their capacity to cause disease by acquiring virulence genes that are usually clustered in discrete genetic modules termed pathogenicity islands (PAI). Stable integration of PAIs into pre-existing transcriptional networks coordinates expression from PAIs with ancestral genes in response to diverse environmental cues. Such transcriptional controls are evident in the regulation of the locus of enterocyte effacement (LEE), a PAI of enteropathogenic and enterohemorrhagic Escherichia coli. However, recent reports indicate that global post-transcriptional and post-translational regulators, including CsrA, Hfq and ClpXP, fine-tune the transcriptional output from the LEE. In this opinion article, we highlight recent advances in the understanding of post-transcriptional and post-translational regulation in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Shantanu Bhatt
- Microbiology and Molecular Genetics Program, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
98
|
Cameron ADS, Stoebel DM, Dorman CJ. DNA supercoiling is differentially regulated by environmental factors and FIS in Escherichia coli and Salmonella enterica. Mol Microbiol 2011; 80:85-101. [DOI: 10.1111/j.1365-2958.2011.07560.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
99
|
Mutations in the regulatory network underlie the recent clonal expansion of a dominant subclone of the Mycobacterium tuberculosis Beijing genotype. INFECTION GENETICS AND EVOLUTION 2011; 11:587-97. [PMID: 21277396 DOI: 10.1016/j.meegid.2011.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/10/2010] [Accepted: 01/13/2011] [Indexed: 11/20/2022]
Abstract
The Beijing genotype family is an epidemiologically important sub-group of Mycobacterium tuberculosis. It has been suggested that the high frequency of the Beijing isolates in some areas could be explained by selective advantages. Some evidence suggests that the emerging and most frequently isolated "Typical Beijing" lineage has the ability to circumvent BCG-induced immunity. To investigate the phylogeny of the Beijing genotype of M. tuberculosis, the genome of six Beijing strains from three different countries was sequenced with next-generation sequencing. The phylogeny of these strains was established using single nucleotide polymorphisms (SNPs). The three Typical Beijing strains clustered very tightly in the Beijing phylogeny suggesting that Typical Beijing strains represent a monophyletic lineage and resulted from recent diversification. Typing of 150 M. tuberculosis strains with a subset of the SNPs and comparison of the IS6110 restriction-fragment length polymorphism (RFLP) patterns of these strains to a database of 1522 Beijing RFLP patterns revealed that about 80% of all Beijing strains belong to the Typical Beijing subclone, which indicates clonal expansion. To identify the genomic changes that are characteristic for all Typical Beijing strains and to reconstruct their most recent common ancestor, the presence of SNPs was assayed in other Beijing strains. We identified 51 SNPs that define the minimal set of polymorphisms for all Typical Beijing strains. Nonsynonymous polymorphisms in genes coding for the regulatory network were over-represented in this set of mutations. We suggest that alterations in the response to environmental signals may have enabled Typical Beijing strains to develop the emerging phenotype.
Collapse
|
100
|
Popa O, Hazkani-Covo E, Landan G, Martin W, Dagan T. Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res 2011; 21:599-609. [PMID: 21270172 DOI: 10.1101/gr.115592.110] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer (LGT) plays a major role in prokaryote evolution with only a few genes that are resistant to it; yet the nature and magnitude of barriers to lateral transfer are still debated. Here, we implement directed networks to investigate donor-recipient events of recent lateral gene transfer among 657 sequenced prokaryote genomes. For 2,129,548 genes investigated, we detected 446,854 recent lateral gene transfer events through nucleotide pattern analysis. Among these, donor-recipient relationships could be specified through phylogenetic reconstruction for 7% of the pairs, yielding 32,028 polarized recent gene acquisition events, which constitute the edges of our directed networks. We find that the frequency of recent LGT is linearly correlated both with genome sequence similarity and with proteome similarity of donor-recipient pairs. Genome sequence similarity accounts for 25% of the variation in gene-transfer frequency, with proteome similarity adding only 1% to the variability explained. The range of donor-recipient GC content similarity within the network is extremely narrow, with 86% of the LGTs occurring between donor-recipient pairs having ≤5% difference in GC content. Hence, genome sequence similarity and GC content similarity are strong barriers to LGT in prokaryotes. But they are not insurmountable, as we detected 1530 recent transfers between distantly related genomes. The directed network revealed that recipient genomes of distant transfers encode proteins of nonhomologous end-joining (NHEJ; a DNA repair mechanism) far more frequently than the recipient lacking that mechanism. This implicates NHEJ in genes spread across distantly related prokaryotes through bypassing the donor-recipient sequence similarity barrier.
Collapse
Affiliation(s)
- Ovidiu Popa
- Institute of Botany III, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|