51
|
Li Y, Song Y, Li J, Li Y, Li N, Niu S. A scalable ultrasonic-assisted and foaming combination method preparation polyvinyl alcohol/phytic acid polymer sponge with thermal stability and conductive capability. ULTRASONICS SONOCHEMISTRY 2018; 42:18-25. [PMID: 29429659 DOI: 10.1016/j.ultsonch.2017.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 06/08/2023]
Abstract
In this article, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) is synthesized from PVA and PA via the esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation, and PVA/PA polymer sponge is prepared via foaming PVA/PA polymer in the presence of n-pentane and ammonium bicarbonate, and the structure of PVA/PA polymer and the structure, morphology and crystallinity of PVA/PA polymer sponge are characterized, and the thermal stability and surface resistivity of PVA/PA polymer sponge are investigated. Based on these, it has been attested that PVA/PA polymer synthesized under the acidity and ultrasound irradiation and PVA/PA polymer sponge are structured by the chain of PVA and the cricoid PA connected in the form of ether bonds and phosphonate bonds, and the thermal stability of PVA/PA polymer sponge attains 416.5 °C, and the surface resistivity of PVA/PA polymer sponge reaches 5.76 × 104 ohms/sq.
Collapse
Affiliation(s)
- Yongshen Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Yunna Song
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Jihui Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Yuehai Li
- Department of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Ning Li
- The Real Estate CO., LTD. of CSCEC, Beijing 100070, PR China
| | - Shuai Niu
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| |
Collapse
|
52
|
Li J, Li Y, Song Y, Niu S, Li N. Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity. ULTRASONICS SONOCHEMISTRY 2017; 39:853-862. [PMID: 28733015 DOI: 10.1016/j.ultsonch.2017.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
In this paper, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) was synthesized through esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation and characterized, and PVA/PA polymer film was prepared by PVA/PA polymer and characterized, and the influence of dosage of PA on the thermal stability, mechanical properties and surface resistivity of PVA/PA polymer film were researched, and the influence of sonication time on the mechanical properties of PVA/PA polymer film was investigated. Based on those, it was concluded that the hydroxyl group on the chain of PVA and the phosphonic group on PA were connected together in the form of phosphonate bond, and the hydroxyl group on the chain of PVA were connected together in the form of ether bond after the intermolecular dehydration; in the meantime, it was also confirmed that PVA/PA polymer film prepared from 1.20mL of PA not only had the high thermal stability and favorable ductility but also the low surface resistivity in comparison with PVA/PA polymer film with 0.00mL of PA, and the ductility of PVA/PA polymer film was very sensitive to the sonication time.
Collapse
Affiliation(s)
- Jihui Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yongshen Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| | - Yunna Song
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Shuai Niu
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Ning Li
- The Real Estate Co., Ltd. of CSCEC Beijing, 100070, PR China
| |
Collapse
|
53
|
Kurita Y, Baba K, Ohnishi M, Matsubara R, Kosuge K, Anegawa A, Shichijo C, Ishizaki K, Kaneko Y, Hayashi M, Suzaki T, Fukaki H, Mimura T. Inositol Hexakis Phosphate is the Seasonal Phosphorus Reservoir in the Deciduous Woody Plant Populus alba L. PLANT & CELL PHYSIOLOGY 2017; 58:1477-1485. [PMID: 28922751 DOI: 10.1093/pcp/pcx106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 05/28/2023]
Abstract
Seasonal recycling of nutrients is an important strategy for deciduous perennials. Deciduous perennials maintain and expand their nutrient pools by the autumn nutrient remobilization and the subsequent winter storage throughout their long life. Phosphorus (P), one of the most important elements in living organisms, is remobilized from senescing leaves during autumn in deciduous trees. However, it remains unknown how phosphate is stored over winter. Here we show that in poplar trees (Populus alba L.), organic phosphates are accumulated in twigs from late summer to winter, and that IP6 (myo-inositol-1,2,3,4,5,6-hexakis phosphate: phytic acid) is the primary storage form. IP6 was found in high concentrations in twigs during winter and quickly decreased in early spring. In parenchyma cells of winter twigs, P was associated with electron-dense structures, similar to globoids found in seeds of higher plants. Various other deciduous trees were also found to accumulate IP6 in twigs during winter. We conclude that IP6 is the primary storage form of P in poplar trees during winter, and that it may be a common strategy for seasonal P storage in deciduous woody plants.
Collapse
Affiliation(s)
- Yuko Kurita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Kei'ichi Baba
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, 611-0011 Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Keiko Kosuge
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Aya Anegawa
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Chizuko Shichijo
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Yasuko Kaneko
- Institute for Environmental Science and Technology, Saitama University, Saitama, 338-8570 Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Toshinobu Suzaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| |
Collapse
|
54
|
Hatch AJ, Odom AR, York JD. Inositol phosphate multikinase dependent transcriptional control. Adv Biol Regul 2017; 64:9-19. [PMID: 28342784 PMCID: PMC6198329 DOI: 10.1016/j.jbior.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Production of lipid-derived inositol phosphates including IP4 and IP5 is an evolutionarily conserved process essential for cellular adaptive responses that is dependent on both phospholipase C and the inositol phosphate multikinase Ipk2 (also known as Arg82 and IPMK). Studies of Ipk2, along with Arg82 prior to demonstrating its IP kinase activity, have provided an important link between control of gene expression and IP metabolism as both kinase dependent and independent functions are required for proper transcriptional complex function that enables cellular adaptation in response to extracellular queues such as nutrient availability. Here we define a promoter sequence cis-element, 5'-CCCTAAAAGG-3', that mediates both kinase-dependent and independent functions of Ipk2. Using a synthetic biological strategy, we show that proper gene expression in cells lacking Ipk2 may be restored through add-back of two components: IP4/IP5 production and overproduction of the MADS box DNA binding protein, Mcm1. Our results are consistent with a mechanism by which Ipk2 harbors a dual functionality that stabilizes transcription factor levels and enzymatically produces a small molecule code, which together coordinate control of biological processes and gene expression.
Collapse
Affiliation(s)
- Ace J Hatch
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Audrey R Odom
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - John D York
- Departments of Pharmacology and Cancer Biology and of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37232-0146, USA.
| |
Collapse
|
55
|
Beshnova DA, Pereira J, Lamzin VS. Estimation of the protein-ligand interaction energy for model building and validation. Acta Crystallogr D Struct Biol 2017; 73:195-202. [PMID: 28291754 PMCID: PMC5349431 DOI: 10.1107/s2059798317003400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 03/01/2017] [Indexed: 12/03/2022] Open
Abstract
Macromolecular X-ray crystallography is one of the main experimental techniques to visualize protein-ligand interactions. The high complexity of the ligand universe, however, has delayed the development of efficient methods for the automated identification, fitting and validation of ligands in their electron-density clusters. The identification and fitting are primarily based on the density itself and do not take into account the protein environment, which is a step that is only taken during the validation of the proposed binding mode. Here, a new approach, based on the estimation of the major energetic terms of protein-ligand interaction, is introduced for the automated identification of crystallographic ligands in the indicated binding site with ARP/wARP. The applicability of the method to the validation of protein-ligand models from the Protein Data Bank is demonstrated by the detection of models that are `questionable' and the pinpointing of unfavourable interatomic contacts.
Collapse
Affiliation(s)
- Daria A. Beshnova
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Joana Pereira
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
56
|
You H, Chen J, Yang C, Xu L. Selective removal of cationic dye from aqueous solution by low-cost adsorbent using phytic acid modified wheat straw. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
57
|
Baughman BM, Wang H, An Y, Kireev D, Stashko MA, Jessen HJ, Pearce KH, Frye SV, Shears SB. A High-Throughput Screening-Compatible Strategy for the Identification of Inositol Pyrophosphate Kinase Inhibitors. PLoS One 2016; 11:e0164378. [PMID: 27736936 PMCID: PMC5063353 DOI: 10.1371/journal.pone.0164378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/24/2016] [Indexed: 11/22/2022] Open
Abstract
Pharmacological tools-'chemical probes'-that intervene in cell signaling cascades are important for complementing genetically-based experimental approaches. Probe development frequently begins with a high-throughput screen (HTS) of a chemical library. Herein, we describe the design, validation, and implementation of the first HTS-compatible strategy against any inositol phosphate kinase. Our target enzyme, PPIP5K, synthesizes 'high-energy' inositol pyrophosphates (PP-InsPs), which regulate cell function at the interface between cellular energy metabolism and signal transduction. We optimized a time-resolved, fluorescence resonance energy transfer ADP-assay to record PPIP5K-catalyzed, ATP-driven phosphorylation of 5-InsP7 to 1,5-InsP8 in 384-well format (Z' = 0.82 ± 0.06). We screened a library of 4745 compounds, all anticipated to be membrane-permeant, which are known-or conjectured based on their structures-to target the nucleotide binding site of protein kinases. At a screening concentration of 13 μM, fifteen compounds inhibited PPIP5K >50%. The potency of nine of these hits was confirmed by dose-response analyses. Three of these molecules were selected from different structural clusters for analysis of binding to PPIP5K, using isothermal calorimetry. Acceptable thermograms were obtained for two compounds, UNC10112646 (Kd = 7.30 ± 0.03 μM) and UNC10225498 (Kd = 1.37 ± 0.03 μM). These Kd values lie within the 1-10 μM range generally recognized as suitable for further probe development. In silico docking data rationalizes the difference in affinities. HPLC analysis confirmed that UNC10225498 and UNC10112646 directly inhibit PPIP5K-catalyzed phosphorylation of 5-InsP7 to 1,5-InsP8; kinetic experiments showed inhibition to be competitive with ATP. No other biological activity has previously been ascribed to either UNC10225498 or UNC10112646; moreover, at 10 μM, neither compound inhibits IP6K2, a structurally-unrelated PP-InsP kinase. Our screening strategy may be generally applicable to inhibitor discovery campaigns for other inositol phosphate kinases.
Collapse
Affiliation(s)
- Brandi M. Baughman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Yi An
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael A. Stashko
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University of Freiburg, Freiburg 79104, Germany
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen B. Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
58
|
Abstract
Inositol pyrophosphates such as 5-diphosphoinositol pentakisphosphate (5-IP7) are highly energetic inositol metabolites containing phosphoanhydride bonds. Although inositol pyrophosphates are known to regulate various biological events, including growth, survival, and metabolism, the molecular sites of 5-IP7 action in vesicle trafficking have remained largely elusive. We report here that elevated 5-IP7 levels, caused by overexpression of inositol hexakisphosphate (IP6) kinase 1 (IP6K1), suppressed depolarization-induced neurotransmitter release from PC12 cells. Conversely, IP6K1 depletion decreased intracellular 5-IP7 concentrations, leading to increased neurotransmitter release. Consistently, knockdown of IP6K1 in cultured hippocampal neurons augmented action potential-driven synaptic vesicle exocytosis at synapses. Using a FRET-based in vitro vesicle fusion assay, we found that 5-IP7, but not 1-IP7, exhibited significantly higher inhibitory activity toward synaptic vesicle exocytosis than IP6 Synaptotagmin 1 (Syt1), a Ca(2+) sensor essential for synaptic membrane fusion, was identified as a molecular target of 5-IP7 Notably, 5-IP7 showed a 45-fold higher binding affinity for Syt1 compared with IP6 In addition, 5-IP7-dependent inhibition of synaptic vesicle fusion was abolished by increasing Ca(2+) levels. Thus, 5-IP7 appears to act through Syt1 binding to interfere with the fusogenic activity of Ca(2+) These findings reveal a role of 5-IP7 as a potent inhibitor of Syt1 in controlling the synaptic exocytotic pathway and expand our understanding of the signaling mechanisms of inositol pyrophosphates.
Collapse
|
59
|
Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. Proc Natl Acad Sci U S A 2016; 113:3503-8. [PMID: 26976604 DOI: 10.1073/pnas.1525580113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The family of cullin-RING E3 Ligases (CRLs) and the constitutive photomorphogenesis 9 (COP9) signalosome (CSN) form dynamic complexes that mediate ubiquitylation of 20% of the proteome, yet regulation of their assembly/disassembly remains poorly understood. Inositol polyphosphates are highly conserved signaling molecules implicated in diverse cellular processes. We now report that inositol hexakisphosphate (IP6) is a major physiologic determinant of the CRL-CSN interface, which includes a hitherto unidentified electrostatic interaction between the N-terminal acidic tail of CSN subunit 2 (CSN2) and a conserved basic canyon on cullins. IP6, with an EC50 of 20 nM, acts as an intermolecular "glue," increasing cullin-CSN2 binding affinity by 30-fold, thereby promoting assembly of the inactive CRL-CSN complexes. The IP6 synthase, Ins(1,3,4,5,6)P5 2-kinase (IPPK/IP5K) binds to cullins. Depleting IP5K increases the percentage of neddylated, active Cul1 and Cul4A, and decreases levels of the Cul1/4A substrates p27 and p21. Besides dysregulating CRL-mediated cell proliferation and UV-induced apoptosis, IP5K depletion potentiates by 28-fold the cytotoxic effect of the neddylation inhibitor MLN4924. Thus, IP5K and IP6 are evolutionarily conserved components of the CRL-CSN system and are potential targets for cancer therapy in conjunction with MLN4924.
Collapse
|
60
|
Song X, Chen Y, Rong M, Xie Z, Zhao T, Wang Y, Chen X, Wolfbeis OS. A Phytic Acid Induced Super-Amphiphilic Multifunctional 3D Graphene-Based Foam. Angew Chem Int Ed Engl 2016; 55:3936-41. [DOI: 10.1002/anie.201511064] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Xinhong Song
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yiying Chen
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Mingcong Rong
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Collaborative Innovation Center of Chemistry for Energy Materials and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Tingting Zhao
- Department of Planning; Xiamen Huaxia University; Xiamen 361024 China
| | - Yiru Wang
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Xi Chen
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
- State Key Laboratory of Marine Environmental Science; Xiamen University; Xiamen 361005 China
| | - Otto S. Wolfbeis
- University of Regensburg; Institute of Analytical Chemistry, Chemo- and Biosensors; 93040 Regensburg Germany
| |
Collapse
|
61
|
Song X, Chen Y, Rong M, Xie Z, Zhao T, Wang Y, Chen X, Wolfbeis OS. A Phytic Acid Induced Super-Amphiphilic Multifunctional 3D Graphene-Based Foam. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xinhong Song
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yiying Chen
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Mingcong Rong
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Collaborative Innovation Center of Chemistry for Energy Materials and College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Tingting Zhao
- Department of Planning; Xiamen Huaxia University; Xiamen 361024 China
| | - Yiru Wang
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Xi Chen
- Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
- State Key Laboratory of Marine Environmental Science; Xiamen University; Xiamen 361005 China
| | - Otto S. Wolfbeis
- University of Regensburg; Institute of Analytical Chemistry, Chemo- and Biosensors; 93040 Regensburg Germany
| |
Collapse
|
62
|
Steidle EA, Chong LS, Wu M, Crooke E, Fiedler D, Resnick AC, Rolfes RJ. A Novel Inositol Pyrophosphate Phosphatase in Saccharomyces cerevisiae: Siw14 PROTEIN SELECTIVELY CLEAVES THE β-PHOSPHATE FROM 5-DIPHOSPHOINOSITOL PENTAKISPHOSPHATE (5PP-IP5). J Biol Chem 2016; 291:6772-83. [PMID: 26828065 DOI: 10.1074/jbc.m116.714907] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Inositol pyrophosphates are high energy signaling molecules involved in cellular processes, such as energetic metabolism, telomere maintenance, stress responses, and vesicle trafficking, and can mediate protein phosphorylation. Although the inositol kinases underlying inositol pyrophosphate biosynthesis are well characterized, the phosphatases that selectively regulate their cellular pools are not fully described. The diphosphoinositol phosphate phosphohydrolase enzymes of the Nudix protein family have been demonstrated to dephosphorylate inositol pyrophosphates; however, theSaccharomyces cerevisiaehomolog Ddp1 prefers inorganic polyphosphate over inositol pyrophosphates. We identified a novel phosphatase of the recently discovered atypical dual specificity phosphatase family as a physiological inositol pyrophosphate phosphatase. Purified recombinant Siw14 hydrolyzes the β-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5or IP7)in vitro. In vivo,siw14Δ yeast mutants possess increased IP7levels, whereas heterologousSIW14overexpression eliminates IP7from cells. IP7levels increased proportionately whensiw14Δ was combined withddp1Δ orvip1Δ, indicating independent activity by the enzymes encoded by these genes. We conclude that Siw14 is a physiological phosphatase that modulates inositol pyrophosphate metabolism by dephosphorylating the IP7isoform 5PP-IP5to IP6.
Collapse
Affiliation(s)
- Elizabeth A Steidle
- From the Department of Biology, Georgetown University, Washington, D. C. 20057
| | - Lucy S Chong
- the Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Mingxuan Wu
- the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and
| | - Elliott Crooke
- the Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D. C. 20057
| | - Dorothea Fiedler
- the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and
| | - Adam C Resnick
- the Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104,
| | - Ronda J Rolfes
- From the Department of Biology, Georgetown University, Washington, D. C. 20057,
| |
Collapse
|
63
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
64
|
Thomas MP, Mills SJ, Potter BVL. Die “anderen” Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste Fortschritte in dermyo-Inositolchemie). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Stephen J. Mills
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Barry V. L. Potter
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT Vereinigtes Königreich
| |
Collapse
|
65
|
Inositol phosphate kinase 2 is required for imaginal disc development in Drosophila. Proc Natl Acad Sci U S A 2015; 112:15660-5. [PMID: 26647185 DOI: 10.1073/pnas.1514684112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inositol phosphate kinase 2 (Ipk2), also known as IP multikinase IPMK, is an evolutionarily conserved protein that initiates production of inositol phosphate intracellular messengers (IPs), which are critical for regulating nuclear and cytoplasmic processes. Here we report that Ipk2 kinase activity is required for the development of the adult fruit fly epidermis. Ipk2 mutants show impaired development of their imaginal discs, the primordial tissues that form the adult epidermis. Although disk tissue seems to specify normally during early embryogenesis, loss of Ipk2 activity results in increased apoptosis and impairment of proliferation during larval and pupal development. The proliferation defect is in part attributed to a reduction in JAK/STAT signaling, possibly by controlling production or secretion of the pathway's activating ligand, Unpaired. Constitutive activation of the JAK/STAT pathway downstream of Unpaired partially rescues the disk growth defects in Ipk2 mutants. Thus, IP production is essential for proliferation of the imaginal discs, in part, by regulating JAK/STAT signaling. Our work demonstrates an essential role for Ipk2 in producing inositide messengers required for imaginal disk tissue maturation and subsequent formation of adult body structures and provides molecular insights to signaling pathways involved in tissue growth and stability during development.
Collapse
|
66
|
Kim E, Beon J, Lee S, Park J, Kim S. IPMK: A versatile regulator of nuclear signaling events. Adv Biol Regul 2015; 61:25-32. [PMID: 26682649 DOI: 10.1016/j.jbior.2015.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
Inositol-derived metabolites (e.g., phosphoinositides and inositol polyphosphates) are key second messengers that are essential for controlling a wide range of cellular events. Inositol polyphosphate multikinase (IPMK) exhibits complex catalytic activities that eventually yield water-soluble inositol polyphosphates (e.g., IP4 and IP5) and lipid-bound phosphatidylinositol 3,4,5-trisphosphate. A series of recent studies have suggested that IPMK may be a multifunctional regulator in the nucleus of mammalian cells. In this review, we highlight the novel modes of action of IPMK in transcriptional and epigenetic regulation, and discuss its roles in physiology and disease.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jiyoon Beon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jina Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
67
|
Riley AM, Wang H, Shears SB, L. Potter BV. Synthetic tools for studying the chemical biology of InsP8. Chem Commun (Camb) 2015; 51:12605-8. [PMID: 26153667 PMCID: PMC4643724 DOI: 10.1039/c5cc05017k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/03/2015] [Indexed: 12/28/2022]
Abstract
To synthesise stabilised mimics of InsP8, the most phosphorylated inositol phosphate signalling molecule in Nature, we replaced its two diphosphate (PP) groups with either phosphonoacetate (PA) or methylenebisphosphonate (PCP) groups. Utility of the PA and PCP analogues was verified by structural and biochemical analyses of their interactions with enzymes of InsP8 metabolism.
Collapse
Affiliation(s)
- Andrew M. Riley
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath , BA2 7AY , UK
| | - Huanchen Wang
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Stephen B. Shears
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath , BA2 7AY , UK
- Department of Pharmacology , University of Oxford , Mansfield Road , Oxford , OX1 3QT , UK . ; Fax: +44-1865-271853 ; Tel: +44-1865-271945
| |
Collapse
|
68
|
Bang S, Chen Y, Ahima RS, Kim SF. Convergence of IPMK and LKB1-AMPK signaling pathways on metformin action. Mol Endocrinol 2014; 28:1186-93. [PMID: 24877601 DOI: 10.1210/me.2014-1134] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Metformin is a biguanide drug that is widely prescribed for type 2 diabetes. Metformin suppresses hepatic gluconeogenesis and increases fatty acid oxidation. Although studies have suggested that metformin acts, at least in part, via activation of the liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) pathway, the specific molecular mechanisms underlying metformin's regulation of glucose and lipid metabolism have not been well delineated. Recently, we have shown that inositol polyphosphate multikinase (IPMK) plays an important role in cellular energy metabolism and glucose-mediated AMPK regulation. Here we investigated the role of IPMK in metformin-induced AMPK activation. We observed that metformin-mediated activation of AMPK was impaired in the absence of IPMK. Overexpression of wild-type IPMK was sufficient to restore LKB1-AMPK activation by either metformin or AICAR in IPMK(-/-) murine embryonic fibroblast cells, suggesting that IPMK may act as an upstream regulator of LKB1-AMPK signaling in response to metformin. Moreover, this regulation was mediated by protein-protein interaction between IPMK and LKB1 as a dominant-negative peptide, which abrogates this interaction, attenuated metformin's ability to activate AMPK. Our data demonstrate that IPMK plays an important role in LKB1/AMPK signaling and may be targeted for treatment of metabolic diseases.
Collapse
Affiliation(s)
- Sookhee Bang
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior (S.B., Y.C., S.F.K.); and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism and the Institute for Diabetes, Obesity, and Metabolism (R.S.A.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | | | | |
Collapse
|
69
|
Thomas MP, Potter BVL. The enzymes of human diphosphoinositol polyphosphate metabolism. FEBS J 2013; 281:14-33. [PMID: 24152294 PMCID: PMC4063336 DOI: 10.1111/febs.12575] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/10/2013] [Accepted: 10/15/2013] [Indexed: 12/22/2022]
Abstract
Diphospho-myo-inositol polyphosphates have many roles to play, including roles in apoptosis, vesicle trafficking, the response of cells to stress, the regulation of telomere length and DNA damage repair, and inhibition of the cyclin-dependent kinase Pho85 system that monitors phosphate levels. This review focuses on the three classes of enzymes involved in the metabolism of these compounds: inositol hexakisphosphate kinases, inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases and diphosphoinositol polyphosphate phosphohydrolases. However, these enzymes have roles beyond being mere catalysts, and their interactions with other proteins have cellular consequences. Through their interactions, the three inositol hexakisphosphate kinases have roles in exocytosis, diabetes, the response to infection, and apoptosis. The two inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases influence the cellular response to phosphatidylinositol (3,4,5)-trisphosphate and the migration of pleckstrin homology domain-containing proteins to the plasma membrane. The five diphosphoinositol polyphosphate phosphohydrolases interact with ribosomal proteins and transcription factors, as well as proteins involved in membrane trafficking, exocytosis, ubiquitination and the proteasomal degradation of target proteins. Possible directions for future research aiming to determine the roles of these enzymes are highlighted.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, UK
| | | |
Collapse
|
70
|
Abstract
The present review will explore the insights gained into inositol pyrophosphates in the 20 years since their discovery in 1993. These molecules are defined by the presence of the characteristic ‘high energy’ pyrophosphate moiety and can be found ubiquitously in eukaryotic cells. The enzymes that synthesize them are similarly well distributed and can be found encoded in any eukaryote genome. Rapid progress has been made in characterizing inositol pyrophosphate metabolism and they have been linked to a surprisingly diverse range of cellular functions. Two decades of work is now beginning to present a view of inositol pyrophosphates as fundamental, conserved and highly important agents in the regulation of cellular homoeostasis. In particular it is emerging that energy metabolism, and thus ATP production, is closely regulated by these molecules. Much of the early work on these molecules was performed in the yeast Saccharomyces cerevisiae and the social amoeba Dictyostelium discoideum, but the development of mouse knockouts for IP6K1 and IP6K2 [IP6K is IP6 (inositol hexakisphosphate) kinase] in the last 5 years has provided very welcome tools to better understand the physiological roles of inositol pyrophosphates. Another recent innovation has been the use of gel electrophoresis to detect and purify inositol pyrophosphates. Despite the advances that have been made, many aspects of inositol pyrophosphate biology remain far from clear. By evaluating the literature, the present review hopes to promote further research in this absorbing area of biology.
Collapse
|
71
|
Lee JY, Kim YR, Park J, Kim S. Inositol polyphosphate multikinase signaling in the regulation of metabolism. Ann N Y Acad Sci 2013; 1271:68-74. [PMID: 23050966 PMCID: PMC3499638 DOI: 10.1111/j.1749-6632.2012.06725.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inositol phosphates (IPs) act as signaling messengers to regulate various cellular processes such as growth. Inositol polyphosphate multikinase (IPMK) generates inositol tetrakis- and pentakisphosphates (IP4 and IP5), acting as a key enzyme for inositol polyphosphate biosynthesis. IPMK was initially discovered as an essential subunit of the arginine-sensing transcription complex in budding yeast. In mammals, IPMK is also known as a physiologically important phosphatidylinositol 3 kinase (PI3K) that forms phosphatidylinositol 3,4,5-trisphosphate (PIP3), which activates Akt/PKB and stimulates its signaling. Acting in a catalytically independent fashion, IPMK mediates the activation of mammalian target of rapamycin (mTOR) in response to essential amino acids. In addition, IPMK binds and modulates AMP-activated protein kinase (AMPK) signaling pathways, including those involved in hypothalamic control of food intake. These recent findings strongly suggest that IPMK is a versatile player in insulin-, nutrient-, and energy-mediated metabolism signaling networks. Agents that control IPMK functions may provide novel therapeutics in metabolic syndromes such as obesity and diabetes.
Collapse
Affiliation(s)
- Joo-Young Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | | | |
Collapse
|
72
|
Vidyasagar A, Pathigoolla A, Sureshan KM. Chemoselective alcoholysis/acetolysis of trans-ketals over cis-ketals and its application in the total synthesis of the cellular second messenger, d-myo-inositol-1,4,5-trisphosphate. Org Biomol Chem 2013; 11:5443-53. [DOI: 10.1039/c3ob40789f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Adiyala Vidyasagar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | | | | |
Collapse
|
73
|
Vibhute AM, Sureshan KM. H2SO4-silica: an eco-friendly heterogeneous catalyst for the differential protection of myo-inositol hydroxyl groups. RSC Adv 2013. [DOI: 10.1039/c3ra40506k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
74
|
Zhou Y, Wu S, Wang H, Hayakawa Y, Bird GS, Shears SB. Activation of PLC by an endogenous cytokine (GBP) in Drosophila S3 cells and its application as a model for studying inositol phosphate signalling through ITPK1. Biochem J 2012; 448:273-83. [PMID: 22928859 PMCID: PMC3925326 DOI: 10.1042/bj20120730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using immortalized [3H]inositol-labelled S3 cells, we demonstrated in the present study that various elements of the inositol phosphate signalling cascade are recruited by a Drosophila homologue from a cytokine family of so-called GBPs (growth-blocking peptides). HPLC analysis revealed that dGBP (Drosophila GBP) elevated Ins(1,4,5)P3 levels 9-fold. By using fluorescent Ca2+ probes, we determined that dGBP initially mobilized Ca2+ from intracellular pools; the ensuing depletion of intracellular Ca2+ stores by dGBP subsequently activated a Ca2+ entry pathway. The addition of dsRNA (double-stranded RNA) to knock down expression of the Drosophila Ins(1,4,5)P3 receptor almost completely eliminated mobilization of intracellular Ca2+ stores by dGBP. Taken together, the results of the present study describe a classical activation of PLC (phospholipase C) by dGBP. The peptide also promoted increases in the levels of other inositol phosphates with signalling credentials: Ins(1,3,4,5)P4, Ins(1,4,5,6)P4 and Ins(1,3,4,5,6)P5. These results greatly expand the regulatory repertoire of the dGBP family, and also characterize S3 cells as a model for studying the regulation of inositol phosphate metabolism and signalling by endogenous cell-surface receptors. We therefore created a cell-line (S3ITPK1) in which heterologous expression of human ITPK (inositol tetrakisphosphate kinase) was controlled by an inducible metallothionein promoter. We found that dGBP-stimulated S3ITPK1 cells did not synthesize Ins(3,4,5,6)P4, contradicting a hypothesis that the PLC-coupled phosphotransferase activity of ITPK1 [Ins(1,3,4,5,6)P5+Ins(1,3,4)P3→Ins(3,4,5,6)P4+Ins(1,3,4,6)P4] is driven solely by the laws of mass action [Chamberlain, Qian, Stiles, Cho, Jones, Lesley, Grabau, Shears and Spraggon (2007) J. Biol. Chem. 282, 28117-28125]. This conclusion represents a fundamental breach in our understanding of ITPK1 signalling.
Collapse
Affiliation(s)
- Yixing Zhou
- Inositol Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, U.S.A
| | - Shilan Wu
- Calcium Regulation Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, U.S.A
| | - Huanchen Wang
- Inositol Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, U.S.A
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Honjo-1, Saga 840-8502, Japan
| | - Gary S. Bird
- Calcium Regulation Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, U.S.A
| | - Stephen B. Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, U.S.A
| |
Collapse
|
75
|
Brehm MA, Wundenberg T, Williams J, Mayr GW, Shears SB. A non-catalytic role for inositol 1,3,4,5,6-pentakisphosphate 2-kinase in the synthesis of ribosomal RNA. J Cell Sci 2012. [PMID: 23203802 DOI: 10.1242/jcs.110031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K 'moonlights' as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number.
Collapse
Affiliation(s)
- Maria A Brehm
- Inositol Signaling Section, Laboratory of Signal Transduction, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
76
|
Riley AM, Wang H, Weaver JD, Shears SB, Potter BVL. First synthetic analogues of diphosphoinositol polyphosphates: interaction with PP-InsP5 kinase. Chem Commun (Camb) 2012; 48:11292-4. [PMID: 23032903 PMCID: PMC3923271 DOI: 10.1039/c2cc36044f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/14/2012] [Indexed: 12/27/2022]
Abstract
We synthesised analogues of diphosphoinositol polyphosphates (PP-InsPs) in which the diphosphate is replaced by an α-phosphonoacetic acid (PA) ester. Structural analysis revealed that 5-PA-InsP(5) mimics 5-PP-InsP(5) binding to the kinase domain of PPIP5K2; both molecules were phosphorylated by the enzyme. PA-InsPs are promising candidates for further studies into the biology of PP-InsPs.
Collapse
Affiliation(s)
- Andrew M. Riley
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , BA2 7AY , UK . ; Fax: +44 (0)1225 386114 ; Tel: +44 (0)1225 386639
| | - Huanchen Wang
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Jeremy D. Weaver
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Stephen B. Shears
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry , Department of Pharmacy and Pharmacology , University of Bath , BA2 7AY , UK . ; Fax: +44 (0)1225 386114 ; Tel: +44 (0)1225 386639
| |
Collapse
|
77
|
Endo-Streeter S, Tsui MKM, Odom AR, Block J, York JD. Structural studies and protein engineering of inositol phosphate multikinase. J Biol Chem 2012; 287:35360-35369. [PMID: 22896696 DOI: 10.1074/jbc.m112.365031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol phosphates (IPs) regulate vital processes in eukaryotes, and their production downstream of phospholipase C activation is controlled through a network of evolutionarily conserved kinases and phosphatases. Inositol phosphate multikinase (IPMK, also called Ipk2 and Arg82) accounts for phosphorylation of IP(3) to IP(5), as well as production of several other IP molecules. Here, we report the structure of Arabidopsis thaliana IPMKα at 2.9 Å and find it is similar to the yeast homolog Ipk2, despite 17% sequence identity, as well as the active site architecture of human IP(3) 3-kinase. Structural comparison and substrate modeling were used to identify a putative basis for IPMK selectivity. To test this model, we re-engineered binding site residues predicted to have restricted substrate specificity. Using steady-state kinetics and in vivo metabolic labeling studies in modified yeast strains, we observed that K117W and K117W:K121W mutants exhibited nearly normal 6-kinase function but harbored significantly reduced 3-kinase activity. These mutants complemented conditional nutritional growth defects observed in ipmk null yeast and, remarkably, suppressed lethality observed in ipmk null flies. Our data are consistent with the hypothesis that IPMK 6-kinase activity and production of Ins(1,4,5,6)P(4) are critical for cellular signaling. Overall, our studies provide new insights into the structure and function of IPMK and utilize a synthetic biological approach to redesign inositol phosphate signaling pathways.
Collapse
Affiliation(s)
- Stuart Endo-Streeter
- Department of Pharmacology and Cancer Biology, and of Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Man-Kin Marco Tsui
- Department of Pharmacology and Cancer Biology, and of Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Audrey R Odom
- Department of Pharmacology and Cancer Biology, and of Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Jeremy Block
- Department of Pharmacology and Cancer Biology, and of Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - John D York
- Department of Pharmacology and Cancer Biology, and of Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
78
|
Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BCK, Shi Y, Cui Y, Bao Z. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci U S A 2012; 109:9287-92. [PMID: 22645374 PMCID: PMC3386113 DOI: 10.1073/pnas.1202636109] [Citation(s) in RCA: 569] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (~480 F·g(-1)), unprecedented rate capability, and cycling stability (~83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (~0.3 s) and superior sensitivity (~16.7 μA · mM(-1)). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes.
Collapse
Affiliation(s)
- Lijia Pan
- National Laboratory of Microstructures (Nanjing), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Guihua Yu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Dongyuan Zhai
- National Laboratory of Microstructures (Nanjing), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Hye Ryoung Lee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - Wenting Zhao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Nian Liu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025
| | - Huiliang Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
| | - Benjamin C.-K. Tee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - Yi Shi
- National Laboratory of Microstructures (Nanjing), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305; and
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| |
Collapse
|
79
|
Wang X, Wang Y, Peng D, Huang W, Zhou X, Fu G. Changes in the inositol lipid signal system and effects on the secretion of TNF-α by macrophages in severely scalded mice. Burns 2011; 37:1378-85. [PMID: 21855216 DOI: 10.1016/j.burns.2011.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 07/23/2011] [Accepted: 07/25/2011] [Indexed: 10/15/2022]
Abstract
AIM In order to study the mechanism of abnormal macrophage (Mϕ) function in pro-inflammatory cytokine changes after burn, the inositol lipid signal system and its role in tumour necrosis factor-alpha (TNF-α) secretion by peritoneal Mϕs was observed in severely scalded mice. METHODS Eighteen percent total body surface area (TBSA) full-thickness scalded mice were used as animal model in this experiment. Peritoneal Mϕs stimulated by lipopolysaccharide in vitro were collected at different time intervals (0, 2, 6, 12, 24 and 48 after burn hour (PBH)), The activities of phosphatidylinositol-phospholipase C (PI-PLC), inositol-1, 4,5, -triphosphate (IP(3)), protein kinase C (PKC), diacylglycerol (DAG) and TNF-α and the level of Ca(2+) concentration in peritoneal Mϕs were measured, and the effects of specific PKC inhibitor H-7 and calmodulin antagonist W-7 on the production of TNF-α were also observed. RESULTS After scald, increased activities of TNF-α and PLC of Mϕ were observed and peaked at 12 PBH. The activities of DAG and IP(3) and the concentration of Ca(2+) were markedly increased and reached their peaks at 24 PBH simultaneously. Membrane PKC activity was up-regulated after scald and showed a positive correlation with the change of DAG (r=0.83, P<0.05). There was also positive correlation between IP(3) and Ca(2+) activity (r=0.946, P<0.01). When 12 PBH was chosen as the time point for in vitro intervention with the pre-treatment by H-7, both membrane PKC and TNF-α activity decreased significantly. There was no obvious change of TNF-α activity with the application of W-7. CONCLUSIONS These results indicated that the abnormal activity of TNF-α of Mϕs might be regulated by the inositol lipid signal system following severe burn. The DAG-PKC signal pathway showed closer relationship than IP(3)-Ca(2+) in TNF-α production and could be the optimal target in the prevention and treatment of the systemic inflammatory response syndrome.
Collapse
Affiliation(s)
- Xinmin Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|