51
|
Huwiler A, Zangemeister-Wittke U. The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacol Ther 2018; 185:34-49. [DOI: 10.1016/j.pharmthera.2017.11.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Huang H, Zhu H, Kang JY. Regio- and Stereoselective Hydrophosphorylation of Ynamides for the Synthesis of β-Aminovinylphosphine Oxides. Org Lett 2018; 20:2778-2781. [DOI: 10.1021/acs.orglett.8b01065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hai Huang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, People’s Republic of China
| | - Hongjun Zhu
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, People’s Republic of China
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| |
Collapse
|
53
|
Chen T, Zhao CQ, Han LB. Hydrophosphorylation of Alkynes Catalyzed by Palladium: Generality and Mechanism. J Am Chem Soc 2018; 140:3139-3155. [DOI: 10.1021/jacs.8b00550] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tieqiao Chen
- College
of Material and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Chang-Qiu Zhao
- College
of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Li-Biao Han
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
54
|
White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 2018; 7:23106-27. [PMID: 27036015 PMCID: PMC5029614 DOI: 10.18632/oncotarget.7145] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy for multiple sclerosis that sequesters T-cells to lymph nodes through functional antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro and clinical cancer association. In addition, FTY720's anticancer properties may be attributable to actions on several other molecular targets. This study focuses on reviewing the emerging evidence regarding the anticancer properties and molecular targets of FTY720. While the clinical transition of FTY720 is currently limited by its immune suppression effects, studies aiming at FTY720 delivery and release together with identifying its key synergetic combinations and relevant patient subsets may lead to its rapid introduction into the clinic.
Collapse
Affiliation(s)
| | - Heba Alshaker
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.,School of Medicine, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | - Matthias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
55
|
Nagahashi M, Yamada A, Katsuta E, Aoyagi T, Huang WC, Terracina KP, Hait NC, Allegood JC, Tsuchida J, Yuza K, Nakajima M, Abe M, Sakimura K, Milstien S, Wakai T, Spiegel S, Takabe K. Targeting the SphK1/S1P/S1PR1 Axis That Links Obesity, Chronic Inflammation, and Breast Cancer Metastasis. Cancer Res 2018; 78:1713-1725. [PMID: 29351902 DOI: 10.1158/0008-5472.can-17-1423] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/27/2017] [Accepted: 01/16/2018] [Indexed: 01/07/2023]
Abstract
Although obesity with associated inflammation is now recognized as a risk factor for breast cancer and distant metastases, the functional basis for these connections remain poorly understood. Here, we show that in breast cancer patients and in animal breast cancer models, obesity is a sufficient cause for increased expression of the bioactive sphingolipid mediator sphingosine-1-phosphate (S1P), which mediates cancer pathogenesis. A high-fat diet was sufficient to upregulate expression of sphingosine kinase 1 (SphK1), the enzyme that produces S1P, along with its receptor S1PR1 in syngeneic and spontaneous breast tumors. Targeting the SphK1/S1P/S1PR1 axis with FTY720/fingolimod attenuated key proinflammatory cytokines, macrophage infiltration, and tumor progression induced by obesity. S1P produced in the lung premetastatic niche by tumor-induced SphK1 increased macrophage recruitment into the lung and induced IL6 and signaling pathways important for lung metastatic colonization. Conversely, FTY720 suppressed IL6, macrophage infiltration, and S1P-mediated signaling pathways in the lung induced by a high-fat diet, and it dramatically reduced formation of metastatic foci. In tumor-bearing mice, FTY720 similarly reduced obesity-related inflammation, S1P signaling, and pulmonary metastasis, thereby prolonging survival. Taken together, our results establish a critical role for circulating S1P produced by tumors and the SphK1/S1P/S1PR1 axis in obesity-related inflammation, formation of lung metastatic niches, and breast cancer metastasis, with potential implications for prevention and treatment.Significance: These findings offer a preclinical proof of concept that signaling by a sphingolipid may be an effective target to prevent obesity-related breast cancer metastasis. Cancer Res; 78(7); 1713-25. ©2018 AACR.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan. .,Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Akimitsu Yamada
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Breast and Thyroid Surgery, Yokohama City University Medical Center, Kanagawa, Japan
| | - Eriko Katsuta
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Tomoyoshi Aoyagi
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Wei-Ching Huang
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Krista P Terracina
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Nitai C Hait
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jeremy C Allegood
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Kizuki Yuza
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata City, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata City, Niigata, Japan
| | - Sheldon Milstien
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Sarah Spiegel
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan. .,Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, New York.,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan.,Department of Surgery, Yokohama City University, Yokohama, Japan
| |
Collapse
|
56
|
McNaughton M, Pitman M, Pitson SM, Pyne NJ, Pyne S. Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget 2017; 7:16663-75. [PMID: 26934645 PMCID: PMC4941342 DOI: 10.18632/oncotarget.7693] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
Sphingosine kinases (two isoforms termed SK1 and SK2) catalyse the formation of the bioactive lipid sphingosine 1-phosphate. We demonstrate here that the SK2 inhibitor, ABC294640 (3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl)amide) or the SK1/SK2 inhibitor, SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole)) induce the proteasomal degradation of SK1a (Mr = 42 kDa) and inhibit DNA synthesis in androgen-independent LNCaP-AI prostate cancer cells. These effects are recapitulated by the dihydroceramide desaturase (Des1) inhibitor, fenretinide. Moreover, SKi or ABC294640 reduce Des1 activity in Jurkat cells and ABC294640 induces the proteasomal degradation of Des1 (Mr = 38 kDa) in LNCaP-AI prostate cancer cells. Furthermore, SKi or ABC294640 or fenretinide increase the expression of the senescence markers, p53 and p21 in LNCaP-AI prostate cancer cells. The siRNA knockdown of SK1 or SK2 failed to increase p53 and p21 expression, but the former did reduce DNA synthesis in LNCaP-AI prostate cancer cells. Moreover, N-acetylcysteine (reactive oxygen species scavenger) blocked the SK inhibitor-induced increase in p21 and p53 expression but had no effect on the proteasomal degradation of SK1a. In addition, siRNA knockdown of Des1 increased p53 expression while a combination of Des1/SK1 siRNA increased the expression of p21. Therefore, Des1 and SK1 participate in regulating LNCaP-AI prostate cancer cell growth and this involves p53/p21-dependent and -independent pathways. Therefore, we propose targeting androgen-independent prostate cancer cells with compounds that affect Des1/SK1 to modulate both de novo and sphingolipid rheostat pathways in order to induce growth arrest.
Collapse
Affiliation(s)
- Melissa McNaughton
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Melissa Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide SA 5000, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide SA 5000, Australia
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
57
|
Pyne NJ, El Buri A, Adams DR, Pyne S. Sphingosine 1-phosphate and cancer. Adv Biol Regul 2017; 68:97-106. [PMID: 28942351 DOI: 10.1016/j.jbior.2017.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023]
Abstract
The bioactive lipid, sphingosine 1-phosphate (S1P) is produced by phosphorylation of sphingosine and this is catalysed by two sphingosine kinase isoforms (SK1 and SK2). Here we discuss structural functional aspects of SK1 (which is a dimeric quaternary enzyme) that relate to coordinated coupling of membrane association with phosphorylation of Ser225 in the 'so-called' R-loop, catalytic activity and protein-protein interactions (e.g. TRAF2, PP2A and Gq). S1P formed by SK1 at the plasma-membrane is released from cells via S1P transporters to act on S1P receptors to promote tumorigenesis. We discuss here an additional novel mechanism that can operate between cancer cells and fibroblasts and which involves the release of the S1P receptor, S1P2 in exosomes from breast cancer cells that regulates ERK-1/2 signalling in fibroblasts. This novel mechanism of signalling might provide an explanation for the role of S1P2 in promoting metastasis of cancer cells and which is dependent on the micro-environmental niche.
Collapse
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| | - Ashref El Buri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
58
|
"Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. Int J Mol Sci 2017; 18:ijms18091891. [PMID: 28869494 PMCID: PMC5618540 DOI: 10.3390/ijms18091891] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.
Collapse
|
59
|
Sphingosine Kinase 1: A Potential Therapeutic Target in Pulmonary Arterial Hypertension? Trends Mol Med 2017; 23:786-798. [DOI: 10.1016/j.molmed.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022]
|
60
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017; 8:556. [PMID: 28878674 PMCID: PMC5572949 DOI: 10.3389/fphar.2017.00556] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States.,Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
61
|
Martin JL, Julovi SM, Lin MZ, de Silva HC, Boyle FM, Baxter RC. Inhibition of basal-like breast cancer growth by FTY720 in combination with epidermal growth factor receptor kinase blockade. Breast Cancer Res 2017; 19:90. [PMID: 28778177 PMCID: PMC5545026 DOI: 10.1186/s13058-017-0882-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND New molecular targets are needed for women with triple-negative breast cancer (TNBC). This pre-clinical study investigated the combination of the EGFR inhibitor gefitinib with the sphingosine kinase (SphK) inhibitor FTY720 (Fingolimod), aiming to block tumorigenic signaling downstream of IGFBP-3, which is abundantly expressed in basal-like TNBC. METHODS In studies of breast cancer cell growth in culture, proliferation was monitored by IncuCyte live-cell imaging, and protein abundance was determined by western blotting. In vivo studies of mammary tumor growth used two models: orthotopic xenograft tumors derived from three basal-like TNBC cell lines, grown in immune-deficient mice, and syngeneic murine 4T1 tumors grown in immune-competent mice. Protein abundance in tumor tissue was assessed by immunohistochemistry. RESULTS Quantitated by live-cell imaging, the inhibitor combination showed synergistic cytostatic activity in basal-like cell lines across several TNBC molecular subtypes, the synergy being decreased by IGFBP-3 downregulation. Suppression of the tumorigenic mediator CD44 by gefitinib was potentiated by FTY720, consistent with CD44 involvement in the targeted pathway. In MDA-MB-468 and HCC1806 orthotopic TNBC xenograft tumors in nude mice, the drug combination inhibited tumor growth and prolonged mouse survival, although this effect was not significant for the gefitinib-resistant cell line HCC70. Combination treatment of murine 4T1 TNBC tumors in syngeneic BALB/c mice was more effective in immune-competent than immune-deficient (nude) mice, and a relative loss of tumor CD3 (T-cell) immunoreactivity caused by FTY720 treatment alone was alleviated by the drug combination, suggesting that, even at an FTY720 dose causing relative lymphopenia, the combination is still effective in an immune-competent setting. Immunohistochemistry of xenograft tumors showed significant enhancement of caspase-3 cleavage and suppression of Ki67 and phospho-EGFR by the drug combination, but SphK1 downregulation occurred only in MDA-MB-468 tumors, so is unlikely to be integral to treatment efficacy. CONCLUSIONS Our data indicate that targeting IGFBP-3-dependent signaling pathways through gefitinib-FTY720 co-therapy may be effective in many basal-like breast cancers, and suggest tissue IGFBP-3 and CD44 measurement as potential biomarkers of treatment efficacy.
Collapse
Affiliation(s)
- Janet L Martin
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Sohel M Julovi
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Mike Z Lin
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Present address: Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Hasanthi C de Silva
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Frances M Boyle
- Patricia Ritchie Centre for Cancer Care and Research, Mater Hospital, North Sydney, NSW, 2065, Australia
| | - Robert C Baxter
- Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| |
Collapse
|
62
|
Velmurugan BK, Lee CH, Chiang SL, Hua CH, Chen MC, Lin SH, Yeh KT, Ko YC. PP2A deactivation is a common event in oral cancer and reactivation by FTY720 shows promising therapeutic potential. J Cell Physiol 2017; 233:1300-1311. [PMID: 28516459 DOI: 10.1002/jcp.26001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022]
Abstract
Protein phosphatase 2A (PP2A) is a tumor suppressor gene, that has been frequently deactivated in many types of cancer. However, its molecular and clinical relevance in oral squamous cell carcinoma (OSCC) remain unclear. Here we show that, PP2A deactivation is a common event in oral cancer cells and hyperphosphorylation in its tyrosine-307 (Y307) residue contributes to PP2A deactivation. PP2A restoration by FTY720 treatment reduced cell growth and decreased GSK-3β phosphorylation without significantly altering other PP2A targets. We further detected PP2A phosphorylation in 262 OSCC tissues. Increased expression of p-PP2A in the tumor tissues was significantly correlated with higher N2/N3-stage (aOR = 2.1, 95%CI: 1.2-3.8). Patients with high p-PP2A expression had lower overall survival rates than those with low expression. Hazard ratio analysis showed that, high p-PP2A expression was significantly associated with mortality density (aOR = 2.2, 95%CI: 1.2-4.0) and lower 10-year overall survival (p = 0.027) in lymph node metastasis. However, no interaction was observed between p-PP2A expression and lymph node metastasis. All our results suggest that PP2A is frequently deactivated in oral cancer and determines poor outcome, restoring its expression by FTY720 can be an alternative therapeutic approach in OSCC.
Collapse
Affiliation(s)
- Bharath K Velmurugan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Chien-Hung Lee
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsuing, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Lun Chiang
- Environment-Omics-Diseases Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Chung Chen
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shu-Hui Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Diseases Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
63
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
64
|
Targeting sphingosine-1-phosphate signaling for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-017-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
65
|
Szymiczek A, Pastorino S, Larson D, Tanji M, Pellegrini L, Xue J, Li S, Giorgi C, Pinton P, Takinishi Y, Pass HI, Furuya H, Gaudino G, Napolitano A, Carbone M, Yang H. FTY720 inhibits mesothelioma growth in vitro and in a syngeneic mouse model. J Transl Med 2017; 15:58. [PMID: 28298211 PMCID: PMC5353897 DOI: 10.1186/s12967-017-1158-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is a very aggressive type of cancer, with a dismal prognosis and inherent resistance to chemotherapeutics. Development and evaluation of new therapeutic approaches is highly needed. Immunosuppressant FTY720, approved for multiple sclerosis treatment, has recently raised attention for its anti-tumor activity in a variety of cancers. However, its therapeutic potential in MM has not been evaluated yet. METHODS Cell viability and anchorage-independent growth were evaluated in a panel of MM cell lines and human mesothelial cells (HM) upon FTY720 treatment to assess in vitro anti-tumor efficacy. The mechanism of action of FTY720 in MM was assessed by measuring the activity of phosphatase protein 2A (PP2A)-a major target of FTY720. The binding of the endogenous inhibitor SET to PP2A in presence of FTY720 was evaluated by immunoblotting and immunoprecipitation. Signaling and activation of programmed cell death were evaluated by immunoblotting and flow cytometry. A syngeneic mouse model was used to evaluate anti-tumor efficacy and toxicity profile of FTY720 in vivo. RESULTS We show that FTY720 significantly suppressed MM cell viability and anchorage-independent growth without affecting normal HM cells. FTY720 inhibited the phosphatase activity of PP2A by displacement of SET protein, which appeared overexpressed in MM, as compared to HM cells. FTY720 promoted AKT dephosphorylation and Bcl-2 degradation, leading to induction of programmed cell death, as demonstrated by caspase-3 and PARP activation, as well as by cytochrome c and AIF intracellular translocation. Moreover, FTY720 administration in vivo effectively reduced tumor burden in mice without apparent toxicity. CONCLUSIONS Our preclinical data indicate that FTY720 is a potentially promising therapeutic agent for MM treatment.
Collapse
Affiliation(s)
- Agata Szymiczek
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Sandra Pastorino
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - David Larson
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Mika Tanji
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Laura Pellegrini
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Jiaming Xue
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Shuangjing Li
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Carlotta Giorgi
- Department of Morphology-Surgery-Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology-Surgery-Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Yasutaka Takinishi
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY, 10065, USA
| | - Hideki Furuya
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Giovanni Gaudino
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Andrea Napolitano
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Michele Carbone
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Haining Yang
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| |
Collapse
|
66
|
Gendron DR, Lecours PB, Lemay AM, Beaulieu MJ, Huppé CA, Lee-Gosselin A, Flamand N, Don AS, Bissonnette É, Blanchet MR, Laplante M, Bourgoin SG, Bossé Y, Marsolais D. A Phosphorylatable Sphingosine Analog Induces Airway Smooth Muscle Cytostasis and Reverses Airway Hyperresponsiveness in Experimental Asthma. Front Pharmacol 2017; 8:78. [PMID: 28270767 PMCID: PMC5318459 DOI: 10.3389/fphar.2017.00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
In asthma, excessive bronchial narrowing associated with thickening of the airway smooth muscle (ASM) causes respiratory distress. Numerous pharmacological agents prevent experimental airway hyperresponsiveness (AHR) when delivered prophylactically. However, most fail to resolve this feature after disease is instated. Although sphingosine analogs are primarily perceived as immune modulators with the ability to prevent experimental asthma, they also influence processes associated with tissue atrophy, supporting the hypothesis that they could interfere with mechanisms sustaining pre-established AHR. We thus assessed the ability of a sphingosine analog (AAL-R) to reverse AHR in a chronic model of asthma. We dissected the pharmacological mechanism of this class of agents using the non-phosphorylatable chiral isomer AAL-S and the pre-phosphorylated form of AAL-R (AFD-R) in vivo and in human ASM cells. We found that a therapeutic course of AAL-R reversed experimental AHR in the methacholine challenge test, which was not replicated by dexamethasone or the non-phosphorylatable isomer AAL-S. AAL-R efficiently interfered with ASM cell proliferation in vitro, supporting the concept that immunomodulation is not necessary to interfere with cellular mechanisms sustaining AHR. Moreover, the sphingosine-1-phosphate lyase inhibitor SM4 and the sphingosine-1-phosphate receptor antagonist VPC23019 failed to inhibit proliferation, indicating that intracellular accumulation of sphingosine-1-phosphate or interference with cell surface S1P1/S1P3 activation, are not sufficient to induce cytostasis. Potent AAL-R-induced cytostasis specifically related to its ability to induce intracellular AFD-R accumulation. Thus, a sphingosine analog that possesses the ability to be phosphorylated in situ interferes with cellular mechanisms that beget AHR.
Collapse
Affiliation(s)
- David R Gendron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Pascale B Lecours
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Anne-Marie Lemay
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Marie-Josée Beaulieu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Carole-Ann Huppé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Audrey Lee-Gosselin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Anthony S Don
- Centenary Institute and NHMRC Clinical Trials Centre, University of Sydney, Camperdown NSW, Australia
| | - Élyse Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Sylvain G Bourgoin
- Faculty of Medicine, Université Laval, QuébecQC, Canada; Division of Infectious Diseases and Immunology, CHU de Québec Research Center, QuébecQC, Canada
| | - Ynuk Bossé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| |
Collapse
|
67
|
Thieme M, Zillikens D, Sadik CD. Sphingosine-1-phosphate modulators in inflammatory skin diseases - lining up for clinical translation. Exp Dermatol 2017; 26:206-210. [PMID: 27574180 DOI: 10.1111/exd.13174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
The bioactive lysophospholipid sphingosine-1-phosphate (S1P) is best known for its activity as T-cell-active chemoattractant regulating the egress of T cells from the lymph node and, consequently, the availability of T cells for migration into peripheral tissues. This physiological role of S1P is exploited by the drug fingolimod, a first-line therapy for multiple sclerosis, which "detains" T cells in the lymph nodes. In recent year, it has been elucidated that S1P exerts regulatory functions far beyond T-cell egress from the lymph node. Thus, it additionally regulates, among others, homing of several immune cell populations into peripheral tissues under inflammatory conditions. In addition, evidence, mostly derived from mouse models, has accumulated that S1P may be involved in the pathogenesis of several inflammatory skin disorder and that S1P receptor modulators applied topically are effective in treating skin diseases. These recent developments highlight the pharmacological modulation of the S1P/S1P receptor system as a potential new therapeutic strategy for a plethora of inflammatory skin diseases. The impact of S1P receptor modulation on inflammatory skin diseases next requires testing in human patients.
Collapse
Affiliation(s)
- Markus Thieme
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
68
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017. [PMID: 28878674 DOI: 10.3389/fphar.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
69
|
Barbour M, McNaughton M, Boomkamp SD, MacRitchie N, Jiang H, Pyne NJ, Pyne S. Effect of sphingosine kinase modulators on interleukin-1β release, sphingosine 1-phosphate receptor 1 expression and experimental autoimmune encephalomyelitis. Br J Pharmacol 2017; 174:210-222. [PMID: 27864936 PMCID: PMC5192795 DOI: 10.1111/bph.13670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The sphingosine analogue, FTY720 (GilenyaR ), alleviates clinical disease progression in multiple sclerosis. Here, we variously assessed the effects of an azide analogue of (S)-FTY720 vinylphosphonate (compound 5; a sphingosine kinase 1 activator), (R)-FTY720 methyl ether (ROMe, a sphingosine kinase 2 inhibitor) and RB-020 (a sphingosine kinase 1 inhibitor and sphingosine kinase 2 substrate) on IL-1β formation, sphingosine 1-phosphate levels and expression of S1P1 receptors. We also assessed the effect of compound 5 and ROMe in an experimental autoimmune encephalomyelitis (EAE) model in mice. EXPERIMENTAL APPROACH We measured IL-1β formation by macrophages, sphingosine 1-phosphate levels and expression levels of S1P1 receptors in vitro and clinical score in mice with EAE and the extent of inflammatory cell infiltration into the spinal cord in vivo. KEY RESULTS Treatment of differentiated U937 macrophages with compound 5, RB-020 or sphingosine (but not ROMe) enhanced IL-1β release. These data suggest that these compounds might be pro-inflammatory in vitro. However, compound 5 or ROMe reduced disease progression and infiltration of inflammatory cells into the spinal cord in EAE, and ROMe induced a reduction in CD4+ and CD8+ T-cell levels in the blood (lymphopenia). Indeed, ROMe induced a marked decrease in expression of cell surface S1P1 receptors in vitro. CONCLUSION AND IMPLICATIONS This is the first demonstration that an activator of sphingosine kinase 1 (compound 5) and an inhibitor of sphingosine kinase 2 (ROMe, which also reduces cell surface S1P1 receptor expression) have an anti-inflammatory action in EAE.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Cells, Cultured
- Cricetulus
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Humans
- Interleukin-1beta/metabolism
- Mice
- Mice, Inbred C57BL
- Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Piperidines/chemistry
- Piperidines/pharmacology
- Receptors, Lysosphingolipid/biosynthesis
- Sphingosine/chemistry
- Sphingosine/pharmacology
- Sphingosine-1-Phosphate Receptors
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Mark Barbour
- Strathclyde Institute of Pharmacy and Biomedical ScienceUniversity of StrathclydeGlasgowUK
| | - Melissa McNaughton
- Strathclyde Institute of Pharmacy and Biomedical ScienceUniversity of StrathclydeGlasgowUK
| | - Stephanie D Boomkamp
- Strathclyde Institute of Pharmacy and Biomedical ScienceUniversity of StrathclydeGlasgowUK
| | - Neil MacRitchie
- Strathclyde Institute of Pharmacy and Biomedical ScienceUniversity of StrathclydeGlasgowUK
| | - Hui‐Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical ScienceUniversity of StrathclydeGlasgowUK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical ScienceUniversity of StrathclydeGlasgowUK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical ScienceUniversity of StrathclydeGlasgowUK
| |
Collapse
|
70
|
Zhou Y, Zhang Y, Wang J. Rh(I)-Catalyzed Arylation of α
-Diazo Phosphonates with Aryl Boronic Acids: Synthesis of Diarylmethylphosphonates. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yujing Zhou
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry; Peking University; Beijing 100871 China
| | - Yan Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry; Peking University; Beijing 100871 China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry; Peking University; Beijing 100871 China
- The State Key Laboratory of Organometallic Chemistry; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
71
|
Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier. PLoS Pathog 2016; 12:e1005926. [PMID: 27711202 PMCID: PMC5053521 DOI: 10.1371/journal.ppat.1005926] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022] Open
Abstract
Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood-brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics.
Collapse
|
72
|
Pitman MR, Costabile M, Pitson SM. Recent advances in the development of sphingosine kinase inhibitors. Cell Signal 2016; 28:1349-1363. [DOI: 10.1016/j.cellsig.2016.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
|
73
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
74
|
Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. Leukemia 2016; 30:2142-2151. [PMID: 27461062 DOI: 10.1038/leu.2016.208] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Sphingolipids, such as ceramide, sphingosine and sphingosine 1-phosphate (S1P) are bioactive molecules that have important functions in a variety of cellular processes, which include proliferation, survival, differentiation and cellular responses to stress. Sphingolipids have a major impact on the determination of cell fate by contributing to either cell survival or death. Although ceramide and sphingosine are usually considered to induce cell death, S1P promotes survival of cells. Sphingosine kinases (SPHKs) are the enzymes that catalyze the conversion of sphingosine to S1P. There are two isoforms, SPHK1 and SPHK2, which are encoded by different genes. SPHK1 has recently been implicated in contributing to cell transformation, tumor angiogenesis and metastatic spread, as well as cancer cell multidrug-resistance. More recent findings suggest that SPHK2 also has a role in cancer progression. This review is an overview of our understanding of the role of SPHKs and S1P in hematopoietic malignancies and provides information on the current status of SPHK inhibitors with respect to their therapeutic potential in the treatment of hematological cancers.
Collapse
|
75
|
Lai MKP, Chew WS, Torta F, Rao A, Harris GL, Chun J, Herr DR. Biological Effects of Naturally Occurring Sphingolipids, Uncommon Variants, and Their Analogs. Neuromolecular Med 2016; 18:396-414. [DOI: 10.1007/s12017-016-8424-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
|
76
|
Nagahashi M, Yamada A, Miyazaki H, Allegood JC, Tsuchida J, Aoyagi T, Huang WC, Terracina KP, Adams BJ, Rashid OM, Milstien S, Wakai T, Spiegel S, Takabe K. Interstitial Fluid Sphingosine-1-Phosphate in Murine Mammary Gland and Cancer and Human Breast Tissue and Cancer Determined by Novel Methods. J Mammary Gland Biol Neoplasia 2016; 21:9-17. [PMID: 27194029 PMCID: PMC4947521 DOI: 10.1007/s10911-016-9354-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
The tumor microenvironment is a determining factor for cancer biology and progression. Sphingosine-1-phosphate (S1P), produced by sphingosine kinases (SphKs), is a bioactive lipid mediator that regulates processes important for cancer progression. Despite its critical roles, the levels of S1P in interstitial fluid (IF), an important component of the tumor microenvironment, have never previously been measured due to a lack of efficient methods for collecting and quantifying IF. The purpose of this study is to clarify the levels of S1P in the IF from murine mammary glands and its tumors utilizing our novel methods. We developed an improved centrifugation method to collect IF. Sphingolipids in IF, blood, and tissue samples were measured by mass spectrometry. In mice with a deletion of SphK1, but not SphK2, levels of S1P in IF from the mammary glands were greatly attenuated. Levels of S1P in IF from mammary tumors were reduced when tumor growth was suppressed by oral administration of FTY720/fingolimod. Importantly, sphingosine, dihydro-sphingosine, and S1P levels, but not dihydro-S1P, were significantly higher in human breast tumor tissue IF than in the normal breast tissue IF. To our knowledge, this is the first reported S1P IF measurement in murine normal mammary glands and mammary tumors, as well as in human patients with breast cancer. S1P tumor IF measurement illuminates new aspects of the role of S1P in the tumor microenvironment.
Collapse
MESH Headings
- Activation, Metabolic
- Animals
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- Breast/metabolism
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Cell Line, Tumor
- Extracellular Fluid/drug effects
- Extracellular Fluid/metabolism
- Female
- Fingolimod Hydrochloride/pharmacokinetics
- Fingolimod Hydrochloride/therapeutic use
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Lysophospholipids/blood
- Lysophospholipids/metabolism
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred BALB C
- Mice, Knockout
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Prodrugs/pharmacokinetics
- Prodrugs/therapeutic use
- Random Allocation
- Sphingosine/analogs & derivatives
- Sphingosine/blood
- Sphingosine/metabolism
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan.
| | - Akimitsu Yamada
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Hiroshi Miyazaki
- Section of General Internal Medicine, Kojin Hospital, 1-710 Shikenya, Moriyama, Nagoya, 463-8530, Japan
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Tomoyoshi Aoyagi
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Wei-Ching Huang
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Krista P Terracina
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Barbara J Adams
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Omar M Rashid
- Holy Cross Hospital Michael and Dianne Bienes Comprehensive Cancer Center, 4725 North Federal Highway, Fort Lauderdale, FL, 33308, USA
- Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA.
- Breast Surgery, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
77
|
Patmanathan SN, Johnson SP, Lai SL, Panja Bernam S, Lopes V, Wei W, Ibrahim MH, Torta F, Narayanaswamy P, Wenk MR, Herr DR, Murray PG, Yap LF, Paterson IC. Aberrant expression of the S1P regulating enzymes, SPHK1 and SGPL1, contributes to a migratory phenotype in OSCC mediated through S1PR2. Sci Rep 2016; 6:25650. [PMID: 27160553 PMCID: PMC4861980 DOI: 10.1038/srep25650] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a lethal disease with a 5-year mortality rate of around 50%. Molecular targeted therapies are not in routine use and novel therapeutic targets are required. Our previous microarray data indicated sphingosine 1-phosphate (S1P) metabolism and signalling was deregulated in OSCC. In this study, we have investigated the contribution of S1P signalling to the pathogenesis of OSCC. We show that the expression of the two major enzymes that regulate S1P levels were altered in OSCC: SPHK1 was significantly upregulated in OSCC tissues compared to normal oral mucosa and low levels of SGPL1 mRNA correlated with a worse overall survival. In in vitro studies, S1P enhanced the migration/invasion of OSCC cells and attenuated cisplatin-induced death. We also demonstrate that S1P receptor expression is deregulated in primary OSCCs and that S1PR2 is over-expressed in a subset of tumours, which in part mediates S1P-induced migration of OSCC cells. Lastly, we demonstrate that FTY720 induced significantly more apoptosis in OSCC cells compared to non-malignant cells and that FTY720 acted synergistically with cisplatin to induce cell death. Taken together, our data show that S1P signalling promotes tumour aggressiveness in OSCC and identify S1P signalling as a potential therapeutic target.
Collapse
Affiliation(s)
- Sathya Narayanan Patmanathan
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research &Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Steven P Johnson
- Dept of Molecular Genetics, The Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Sook Ling Lai
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research &Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suthashini Panja Bernam
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research &Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Victor Lopes
- Department of Oral surgery, Edinburgh Postgraduate Dental Institute, University of Edinburgh, Edinburgh, EH3 9HA, United Kingdom
| | - Wenbin Wei
- School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Maha Hafez Ibrahim
- School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore
| | - Pradeep Narayanaswamy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore
| | - Paul G Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Lee Fah Yap
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research &Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research &Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
78
|
Kalhori V, Magnusson M, Asghar MY, Pulli I, Törnquist K. FTY720 (Fingolimod) attenuates basal and sphingosine-1-phosphate-evoked thyroid cancer cell invasion. Endocr Relat Cancer 2016; 23:457-68. [PMID: 26935838 DOI: 10.1530/erc-16-0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022]
Abstract
The bioactive lipid sphingosine-1-phosphate (S1P) is a potent inducer of ML-1 thyroid cancer cell migration and invasion. It evokes migration and invasion by activating S1P receptor 1 and 3 (S1P1,3) and downstream signaling intermediates as well as through cross-communication with vascular endothelial growth factor receptor 2 (VEGFR2). However, very little is known about the role of S1P receptors in thyroid cancer. Furthermore, the currently used treatments for thyroid cancer have proven to be rather unsuccessful. Thus, due to the insufficiency of the available treatments for thyroid cancer, novel and targeted therapies are needed. The S1P receptor functional antagonist FTY720, an immunosuppressive drug currently used for treatment of multiple sclerosis, has shown promising effects as an inhibitor of cancer cell proliferation and invasion. In this study, we investigated the effect of FTY720 on invasion and proliferation of several thyroid cancer cell lines. We present evidence that FTY720 attenuated basal as well as S1P-evoked invasion of these cell lines. Furthermore, FTY720 potently downregulated S1P1, protein kinase Cα(PKCα), PKCβI, and VEGFR2. It also attenuated S1P-evoked phosphorylation of ERK1/2. Our results also showed that FTY720 attenuated S1P-induced MMP2 intracellular expression, S1P-induced secretion of MMP2 and MMP9, and decreased basal MMP2 and MMP9 activity. Moreover, in FTY720-treated cells, proliferation was attenuated, p21 and p27 were upregulated, and the cells were arrested in the G1 phase of the cell cycle. FTY720 attenuated cancer cell proliferation in the chick embryo chorioallantoic membrane assay. Thus, we suggest that FTY720 could be beneficial in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Veronica Kalhori
- Department of BiosciencesÅbo Akademi University, Turku, Finland The Minerva Foundation Institute for Medical ResearchBiomedicum Helsinki, Helsinki, Finland
| | - Melissa Magnusson
- Department of BiosciencesÅbo Akademi University, Turku, Finland The Minerva Foundation Institute for Medical ResearchBiomedicum Helsinki, Helsinki, Finland
| | | | - Ilari Pulli
- Department of BiosciencesÅbo Akademi University, Turku, Finland
| | - Kid Törnquist
- Department of BiosciencesÅbo Akademi University, Turku, Finland The Minerva Foundation Institute for Medical ResearchBiomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
79
|
MacRitchie N, Volpert G, Al Washih M, Watson DG, Futerman AH, Kennedy S, Pyne S, Pyne NJ. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal 2016; 28:946-55. [PMID: 27063355 PMCID: PMC4913619 DOI: 10.1016/j.cellsig.2016.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Abstract
Recent studies have demonstrated that the expression of sphingosine kinase 1, the enzyme that catalyses formation of the bioactive lipid, sphingosine 1-phosphate, is increased in lungs from patients with pulmonary arterial hypertension. In addition, Sk1−/− mice are protected from hypoxic-induced pulmonary arterial hypertension. Therefore, we assessed the effect of the sphingosine kinase 1 selective inhibitor, PF-543 and a sphingosine kinase 1/ceramide synthase inhibitor, RB-005 on pulmonary and cardiac remodelling in a mouse hypoxic model of pulmonary arterial hypertension. Administration of the potent sphingosine kinase 1 inhibitor, PF-543 in a mouse hypoxic model of pulmonary hypertension had no effect on vascular remodelling but reduced right ventricular hypertrophy. The latter was associated with a significant reduction in cardiomyocyte death. The protection involves a reduction in the expression of p53 (that promotes cardiomyocyte death) and an increase in the expression of anti-oxidant nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). In contrast, RB-005 lacked effects on right ventricular hypertrophy, suggesting that sphingosine kinase 1 inhibition might be nullified by concurrent inhibition of ceramide synthase. Therefore, our findings with PF-543 suggest an important role for sphingosine kinase 1 in the development of hypertrophy in pulmonary arterial hypertension. PF-543, a sphingosine kinase 1 inhibitor reduces cardiac hypertrophy in a mouse pulmonary arterial hypertension (PAH) model This results in reduced cardiomyocyte apoptosis PF-543 reduces PARP processing and p53 expression and increases Nrf-2 expression in the right ventricle of mice with PAH
Collapse
Affiliation(s)
- Neil MacRitchie
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Giora Volpert
- Department of Biological Chemistry, Weizmann Insitute of Science, Rehovot 76100, Israel
| | - Mohammed Al Washih
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Insitute of Science, Rehovot 76100, Israel
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
80
|
Sun WY, Dimasi DP, Pitman MR, Zhuang Y, Heddle R, Pitson SM, Grimbaldeston MA, Bonder CS. Topical Application of Fingolimod Perturbs Cutaneous Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 196:3854-64. [PMID: 27001955 DOI: 10.4049/jimmunol.1501510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/23/2016] [Indexed: 01/13/2023]
Abstract
The prevalence of allergies, including rhinitis, eczema, and anaphylaxis, is rising dramatically worldwide. This increase is especially problematic in children who bear the greatest burden of this rising trend. Increasing evidence identifies neutrophils as primary perpetrators of the more severe and difficult to manage forms of inflammation. A newly recognized mechanism by which neutrophils are recruited during the early phase of histamine-induced inflammation involves the sphingosine kinase (SK)/sphingosine-1-phosphate axis. This study examines whether topical application of fingolimod, an established SK/sphingosine-1-phosphate antagonist already in clinical use to treat multiple sclerosis, may be repurposed to treat cutaneous inflammation. Using two mouse models of ear skin inflammation (histamine- and IgE-mediated passive cutaneous anaphylaxis) we topically applied fingolimod prophylactically, as well as after establishment of the inflammatory response, and examined ear swelling, SK activity, vascular permeability, leukocyte recruitment, and production of proinflammatory mediators. The present study reveals that when applied topically, fingolimod attenuates both immediate and late-phase responses to histamine with reduced extravasation of fluid, SK-1 activity, proinflammatory cytokine and chemokine production, and neutrophil influx and prevents ear swelling. Intravital microscopy demonstrates that histamine-induced neutrophil rolling and adhesion to the postcapillary venules in the mouse ears is significantly attenuated even after 24 h. More importantly, these effects are achievable even once inflammation is established. Translation into humans was also accomplished with epicutaneous application of fingolimod resolving histamine-induced and allergen-induced inflammatory reactions in forearm skin. Overall, this study demonstrates, to our knowledge for the first time, that fingolimod may be repurposed to treat cutaneous inflammation.
Collapse
Affiliation(s)
- Wai Y Sun
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - David P Dimasi
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - YiZhong Zhuang
- School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Robert Heddle
- School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Clinical Immunology Unit, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia; and Discipline of Pediatrics and Child Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Michele A Grimbaldeston
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia;
| |
Collapse
|
81
|
Pyne S, Adams DR, Pyne NJ. Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Prog Lipid Res 2016; 62:93-106. [PMID: 26970273 DOI: 10.1016/j.plipres.2016.03.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/24/2022]
Abstract
Sphingosine kinases (isoforms SK1 and SK2) catalyse the formation of a bioactive lipid, sphingosine 1-phosphate (S1P). S1P is a well-established ligand of a family of five S1P-specific G protein coupled receptors but also has intracellular signalling roles. There is substantial evidence to support a role for sphingosine kinases and S1P in health and disease. This review summarises recent advances in the area in relation to receptor-mediated signalling by S1P and novel intracellular targets of this lipid. New evidence for a role of each sphingosine kinase isoform in cancer, the cardiovascular system, central nervous system, inflammation and diabetes is discussed. There is continued research to develop isoform selective SK inhibitors, summarised here. Analysis of the crystal structure of SK1 with the SK1-selective inhibitor, PF-543, is used to identify residues that could be exploited to improve selectivity in SK inhibitor development for future therapeutic application.
Collapse
Affiliation(s)
- Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| | - David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK.
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
82
|
Aurelio L, Scullino CV, Pitman MR, Sexton A, Oliver V, Davies L, Rebello RJ, Furic L, Creek DJ, Pitson SM, Flynn BL. From Sphingosine Kinase to Dihydroceramide Desaturase: A Structure-Activity Relationship (SAR) Study of the Enzyme Inhibitory and Anticancer Activity of 4-((4-(4-Chlorophenyl)thiazol-2-yl)amino)phenol (SKI-II). J Med Chem 2016; 59:965-84. [PMID: 26780304 DOI: 10.1021/acs.jmedchem.5b01439] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sphingosine kinase (SK) inhibitor, SKI-II, has been employed extensively in biological investigations of the role of SK1 and SK2 in disease and has demonstrated impressive anticancer activity in vitro and in vivo. However, interpretations of results using this pharmacological agent are complicated by several factors: poor SK1/2 selectivity, additional activity as an inducer of SK1-degradation, and off-target effects, including its recently identified capacity to inhibit dihydroceramide desaturase-1 (Des1). In this study, we have delineated the structure-activity relationship (SAR) for these different targets and correlated them to that required for anticancer activity and determined that Des1 inhibition is primarily responsible for the antiproliferative effects of SKI-II and its analogues. In the course of these efforts, a series of novel SK1, SK2, and Des1 inhibitors have been generated, including compounds with significantly greater anticancer activity.
Collapse
Affiliation(s)
- Luigi Aurelio
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Carmen V Scullino
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology , Frome Road, Adelaide South Australia 5000, Australia
| | - Anna Sexton
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Victoria Oliver
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lorena Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology , Frome Road, Adelaide South Australia 5000, Australia
| | - Richard J Rebello
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Clayton, Victoria 3800, Australia
| | - Luc Furic
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Clayton, Victoria 3800, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology , Frome Road, Adelaide South Australia 5000, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Science, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
83
|
Imeri F, Schwalm S, Lyck R, Zivkovic A, Stark H, Engelhardt B, Pfeilschifter J, Huwiler A. Sphingosine kinase 2 deficient mice exhibit reduced experimental autoimmune encephalomyelitis: Resistance to FTY720 but not ST-968 treatments. Neuropharmacology 2016; 105:341-350. [PMID: 26808312 DOI: 10.1016/j.neuropharm.2016.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 02/08/2023]
Abstract
The immunomodulatory drug FTY720 is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that requires activation by sphingosine kinase 2 (SK-2) to induce T cell homing to secondary lymphoid tissue. In this study, we have investigated the role of SK-2 in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. We show that SK-2 deficiency reduced clinical symptoms of EAE. Furthermore, in SK-2-deficient mice, the protective effect of FTY720 on EAE was abolished, while the non-prodrug FTY720-derivative ST-968 was still fully active. Protection was paralleled by reduced numbers of T-lymphocytes in blood and a reduced blood-brain-barrier leakage. This correlated with reduced mRNA expression of ICAM-1, VCAM-1, but enhanced expression of PECAM-1. A similar regulation of permeability and of PECAM-1 was seen in primary cultures of isolated mouse brain vascular endothelial cells and in a human immortalized cell line upon SK-2 knockdown. In summary, these data demonstrated that deletion of SK-2 exerts a protective effect on the pathogenesis of EAE in C57BL/6 mice and that SK-2 is essential for the protective effect of FTY720 but not of ST-968. Thus, ST-968 is a promising novel immunomodulatory compound that may be a valuable alternative to FTY720 under conditions where SK-2 activity is limited.
Collapse
Affiliation(s)
- Faik Imeri
- Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland
| | - Stephanie Schwalm
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Ruth Lyck
- Theodor-Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Britta Engelhardt
- Theodor-Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland.
| |
Collapse
|
84
|
Tran HB, Barnawi J, Ween M, Hamon R, Roscioli E, Hodge G, Reynolds PN, Pitson SM, Davies LT, Haberberger R, Hodge S. Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720. J Leukoc Biol 2016; 100:195-202. [PMID: 26792820 DOI: 10.1189/jlb.3a1015-471r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Alveolar macrophages from chronic obstructive pulmonary disease patients and cigarette smokers are deficient in their ability to phagocytose apoptotic bronchial epithelial cells (efferocytosis). We hypothesized that the defect is mediated via inhibition of sphingosine kinases and/or their subcellular mislocalization in response to cigarette smoke and can be normalized with exogenous sphingosine-1-phosphate or FTY720 (fingolimod), a modulator of sphingosine-1-phosphate signaling, which has been shown to be clinically useful in multiple sclerosis. Measurement of sphingosine kinase 1/2 activities by [(32)P]-labeled sphingosine-1-phosphate revealed a 30% reduction of sphingosine kinase 1 (P < 0.05) and a nonsignificant decrease of sphingosine kinase 2 in THP-1 macrophages after 1 h cigarette smoke extract exposure. By confocal analysis macrophage sphingosine kinase 1 protein was normally localized to the plasma membrane and cytoplasm and sphingosine kinase 2 to the nucleus and cytoplasm but absent at the cell surface. Cigarette smoke extract exposure (24 h) led to a retraction of sphingosine kinase 1 from the plasma membrane and sphingosine kinase 1/2 clumping in the Golgi domain. Selective inhibition of sphingosine kinase 2 with 25 µM ABC294640 led to 36% inhibition of efferocytosis (P < 0.05); 10 µM sphingosine kinase inhibitor/5C (sphingosine kinase 1-selective inhibitor) induced a nonsignificant inhibition of efferocytosis, but its combination with ABC294640 led to 56% inhibition (P < 0.01 vs. control and < 0.05 vs. single inhibitors). Cigarette smoke-inhibited efferocytosis was significantly (P < 0.05) reversed to near-control levels in the presence of 10-100 nM exogenous sphingosine-1-phosphate or FTY720, and FTY720 reduced cigarette smoke-induced clumping of sphingosine kinase 1/2 in the Golgi domain. These data strongly support a role of sphingosine kinase 1/2 in efferocytosis and as novel therapeutic targets in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Hai B Tran
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia;
| | - Jameel Barnawi
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia; Department of Medical Laboratory Technology, University of Tabuk, Saudi Arabia
| | - Miranda Ween
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Rhys Hamon
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Eugene Roscioli
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Greg Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia
| | - Paul N Reynolds
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia
| | - Stuart M Pitson
- Department of Medicine, University of Adelaide, Australia; Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia; and
| | - Lorena T Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia; and
| | - Rainer Haberberger
- Centre for Neuroscience Anatomy and Histology, Flinders University, Adelaide, Australia
| | - Sandra Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia;
| |
Collapse
|
85
|
A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties. Oncotarget 2016; 6:7065-83. [PMID: 25788259 PMCID: PMC4466670 DOI: 10.18632/oncotarget.3178] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/25/2015] [Indexed: 12/20/2022] Open
Abstract
The dynamic balance of cellular sphingolipids, the sphingolipid rheostat, is an important determinant of cell fate, and is commonly deregulated in cancer. Sphingosine 1-phosphate is a signaling molecule with anti-apoptotic, pro-proliferative and pro-angiogenic effects, while conversely, ceramide and sphingosine are pro-apoptotic. The sphingosine kinases (SKs) are key regulators of this sphingolipid rheostat, and are attractive targets for anti-cancer therapy. Here we report a first-in-class ATP-binding site-directed small molecule SK inhibitor, MP-A08, discovered using an approach of structural homology modelling of the ATP-binding site of SK1 and in silico docking with small molecule libraries. MP-A08 is a highly selective ATP competitive SK inhibitor that targets both SK1 and SK2. MP-A08 blocks pro-proliferative signalling pathways, induces mitochondrial-associated apoptosis in a SK-dependent manner, and reduces the growth of human lung adenocarcinoma tumours in a mouse xenograft model by both inducing tumour cell apoptosis and inhibiting tumour angiogenesis. Thus, this selective ATP competitive SK inhibitor provides a promising candidate for potential development as an anti-cancer therapy, and also, due to its different mode of inhibition to other known SK inhibitors, both validates the SKs as targets for anti-cancer therapy, and represents an important experimental tool to study these enzymes.
Collapse
|
86
|
Pyne NJ, McNaughton M, Boomkamp S, MacRitchie N, Evangelisti C, Martelli AM, Jiang HR, Ubhi S, Pyne S. Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation. Adv Biol Regul 2016; 60:151-159. [PMID: 26429117 DOI: 10.1016/j.jbior.2015.09.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/19/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Sphingosine kinase (there are two isoforms, SK1 and SK2) catalyses the formation of sphingosine 1-phosphate (S1P), a bioactive lipid that can be released from cells to activate a family of G protein-coupled receptors, termed S1P1-5. In addition, S1P can bind to intracellular target proteins, such as HDAC1/2, to induce cell responses. There is increasing evidence of a role for S1P receptors (e.g. S1P4) and SK1 in cancer, where high expression of these proteins in ER negative breast cancer patient tumours is linked with poor prognosis. Indeed, evidence will be presented here to demonstrate that S1P4 is functionally linked with SK1 and the oncogene HER2 (ErbB2) to regulate mitogen-activated protein kinase pathways and growth of breast cancer cells. Although much emphasis is placed on SK1 in terms of involvement in oncogenesis, evidence will also be presented for a role of SK2 in both T-cell and B-cell acute lymphoblastic leukemia. In patient T-ALL lymphoblasts and T-ALL cell lines, we have demonstrated that SK2 inhibitors promote T-ALL cell death via autophagy and induce suppression of c-myc and PI3K/AKT pathways. We will also present evidence demonstrating that certain SK inhibitors promote oxidative stress and protein turnover via proteasomal degradative pathways linked with induction of p53-and p21-induced growth arrest. In addition, the SK1 inhibitor, PF-543 exacerbates disease progression in an experimental autoimmune encephalomyelitis mouse model indicating that SK1 functions in an anti-inflammatory manner. Indeed, sphingosine, which accumulates upon inhibition of SK1 activity, and sphingosine-like compounds promote activation of the inflammasome, which is linked with multiple sclerosis, to stimulate formation of the pro-inflammatory mediator, IL-1β. Such compounds could be exploited to produce antagonists that diminish exaggerated inflammation in disease. The therapeutic potential of modifying the SK-S1P receptor pathway in cancer and inflammation will therefore, be reviewed.
Collapse
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| | - Melissa McNaughton
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Stephanie Boomkamp
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Neil MacRitchie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Satvir Ubhi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
87
|
Mulla K, Aleshire KL, Forster PM, Kang JY. Utility of Bifunctional N-Heterocyclic Phosphine (NHP)-Thioureas for Metal-Free Carbon–Phosphorus Bond Construction toward Regio- and Stereoselective Formation of Vinylphosphonates. J Org Chem 2015; 81:77-88. [DOI: 10.1021/acs.joc.5b02184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karimulla Mulla
- Department
of Chemistry and
Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Kyle L. Aleshire
- Department
of Chemistry and
Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Paul M. Forster
- Department
of Chemistry and
Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Jun Yong Kang
- Department
of Chemistry and
Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| |
Collapse
|
88
|
A reflection of the lasting contributions from Dr. Robert Bittman to sterol trafficking, sphingolipid and phospholipid research. Prog Lipid Res 2015; 61:19-29. [PMID: 26584871 DOI: 10.1016/j.plipres.2015.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
With the passing of Dr. Robert Bittman from pancreatic cancer on the 1st October 2014, the lipid research field lost one of the most influential and significant personalities. Robert Bittman's genius was in chemical design and his contribution to the lipid research field was truly immense. The reagents and chemicals he designed and synthesised allowed interrogation of the role of lipids in constituting complex biophysical membranes, sterol transfer and in cellular communication networks. Here we provide a review of these works which serve as a lasting memory to his life.
Collapse
|
89
|
Xing XQ, Li YL, Zhang YX, Xiao Y, Li ZD, Liu LQ, Zhou YS, Zhang HY, Liu YH, Zhang LH, Zhuang M, Chen YP, Ouyang SR, Wu XW, Yang J. Sphingosine kinase 1/sphingosine 1-phosphate signalling pathway as a potential therapeutic target of pulmonary hypertension. Int J Clin Exp Med 2015; 8:11930-5. [PMID: 26550106 DOI: pmid/26550106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/28/2015] [Indexed: 02/08/2023]
Abstract
Pulmonary hypertension is characterized by extensive vascular remodelling, leading to increased pulmonary vascular resistance and eventual death due to right heart failure. The pathogenesis of pulmonary hypertension involves vascular endothelial dysfunction and disordered vascular smooth muscle cell (VSMC) proliferation and migration, but the exact processes remain unknown. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid involved in a wide spectrum of biological processes. S1P has been shown to regulate VSMC proliferation and migration and vascular tension via a family of five S1P G-protein-coupled receptors (S1P1-SIP5). S1P has been shown to have both a vasoconstrictive and vasodilating effect. The S1P receptors S1P1 and S1P3 promote, while S1P2 inhibits VSMC proliferation and migration in vitro in response to S1P. Moreover, it has been reported recently that sphingosine kinase 1 and S1P2 inhibitors might be useful therapeutic agents in the treatment of empirical pulmonary hypertension. The sphingosine kinase 1/S1P signalling pathways may play a role in the pathogenesis of pulmonary hypertension. Modulation of this pathway may offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Xi-Qian Xing
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yan-Li Li
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yu-Xuan Zhang
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yi Xiao
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Zhi-Dong Li
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Li-Qiong Liu
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yu-Shan Zhou
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Hong-Yan Zhang
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yan-Hong Liu
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Li-Hui Zhang
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Min Zhuang
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Yan-Ping Chen
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Sheng-Rong Ouyang
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Xu-Wei Wu
- First Department of Respiratory Medicine, Yan'an Hospital Affiliated to Kunming Medical University Kunming, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, First Affiliated Hospital of Kunming Medical University Kunming, Yunnan, China
| |
Collapse
|
90
|
Ahmed D, de Verdier PJ, Ryk C, Lunqe O, Stål P, Flygare J. FTY720 (Fingolimod) sensitizes hepatocellular carcinoma cells to sorafenib-mediated cytotoxicity. Pharmacol Res Perspect 2015; 3:e00171. [PMID: 26516583 PMCID: PMC4618642 DOI: 10.1002/prp2.171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The multityrosine kinase inhibitor sorafenib is used in the therapy of advanced disease. However, the effects of sorafenib are limited, and combination treatments aiming at improved survival are encouraged. The sphingosine analog FTY720 (Fingolimod), which is approved for treatment of multiple sclerosis, has shown tumor suppressive effects in cell lines and animal models of HCC. In the present study, we combined sorafenib with FTY720 in order to sensitize the HCC cell lines Huh7 and HepG2 to sorafenib treatment. Using the XTT assay we show that noncytotoxic doses of FTY720 synergistically enhanced the decrease in viability caused by treatment of both cell lines with increasing doses of sorafenib. Further studies in Huh7 revealed that combined treatment with FTY720 and sorafenib resulted in G1 arrest and enhanced cell death measured using flow cytometry analysis of cells labeled with propidium iodide (PI)/Annexin-V and PI and 4′,6-diamidino-2-phenylindole-staining of nuclei. In addition, signs of both caspase-dependent and – independent apoptosis were observed, as cotreatment with FTY720 and sorafenib caused cytochrome c release and poly-ADP ribose polymerase-cleavage as well as translocation of Apoptosis-inducing factor into the cytosol. We also detected features of autophagy blockage, as the protein levels of LC3-II and p62 were affected by combined treatment with FTY720 and sorafenib. Together, our results suggest that FTY720 sensitizes HCC cells to cytotoxic effects induced by treatment with sorafenib alone. These findings warrant further investigations of combined treatment with sorafenib and FTY720 in vivo in order to develop more effective treatment of HCC.
Collapse
Affiliation(s)
- Dilruba Ahmed
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Petra J de Verdier
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Charlotta Ryk
- Urology Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet 171 76, Stockholm, Sweden
| | - Oscar Lunqe
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Per Stål
- Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge Stockholm, Sweden
| | - Jenny Flygare
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| |
Collapse
|
91
|
Patmanathan SN, Yap LF, Murray PG, Paterson IC. The antineoplastic properties of FTY720: evidence for the repurposing of fingolimod. J Cell Mol Med 2015; 19:2329-40. [PMID: 26171944 PMCID: PMC4594675 DOI: 10.1111/jcmm.12635] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022] Open
Abstract
Almost all drugs approved for use in humans possess potentially beneficial 'off-target' effects in addition to their principal activity. In some cases this has allowed for the relatively rapid repurposing of drugs for other indications. In this review we focus on the potential for re-purposing FTY720 (also known as fingolimod, Gilenya(™)), an immunomodulatory drug recently approved for the treatment of multiple sclerosis (MS). The therapeutic benefit of FTY720 in MS is largely attributed to the immunosuppressive effects that result from its modulation of sphingosine 1-phosphate receptor signalling. However, this drug has also been shown to inhibit other cancer-associated signal transduction pathways in part because of its structural similarity to sphingosine, and consequently shows efficacy as an anti-cancer agent both in vitro and in vivo. Here, we review the effects of FTY720 on signal transduction pathways and cancer-related cellular processes, and discuss its potential use as an anti-cancer drug.
Collapse
Affiliation(s)
- Sathya Narayanan Patmanathan
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul G Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
92
|
Gao Y, Gao F, Chen K, Tian ML, Zhao DL. Sphingosine kinase 1 as an anticancer therapeutic target. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3239-45. [PMID: 26150697 PMCID: PMC4484649 DOI: 10.2147/dddt.s83288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of chemotherapeutic resistance is a major challenge in oncology. Elevated sphingosine kinase 1 (SK1) levels is predictive of a poor prognosis, and SK1 overexpression may confer resistance to chemotherapeutics. The SK/sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor (S1PR) signaling pathway has been implicated in the progression of various cancers and in chemotherapeutic drug resistance. Therefore, SK1 may represent an important target for cancer therapy. Targeting the SK/S1P/S1PR signaling pathway may be an effective anticancer therapeutic strategy, particularly in the context of overcoming drug resistance. This review summarizes our current understanding of the role of SK/S1P/S1PR signaling in cancer and development of SK1 inhibitors.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fei Gao
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
| | - Kan Chen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Mei-li Tian
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Dong-li Zhao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
93
|
Zhou Y, Ye F, Wang X, Xu S, Zhang Y, Wang J. Synthesis of Alkenylphosphonates through Palladium-Catalyzed Coupling of α-Diazo Phosphonates with Benzyl or Allyl Halides. J Org Chem 2015; 80:6109-18. [DOI: 10.1021/acs.joc.5b00629] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yujing Zhou
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Fei Ye
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Xi Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Shuai Xu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Yan Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry, Peking University, Beijing 100871, China
- State Key Laboratory of Organometallic
Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
94
|
Cristóbal I, González-Alonso P, Daoud L, Solano E, Torrejón B, Manso R, Madoz-Gúrpide J, Rojo F, García-Foncillas J. Activation of the Tumor Suppressor PP2A Emerges as a Potential Therapeutic Strategy for Treating Prostate Cancer. Mar Drugs 2015; 13:3276-86. [PMID: 26023836 PMCID: PMC4483628 DOI: 10.3390/md13063276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/13/2015] [Indexed: 12/29/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a tumor suppressor complex that has recently been reported as a novel and highly relevant molecular target in prostate cancer (PCa). However, its potential therapeutic value remains to be fully clarified. We treated PC-3 and LNCaP cell lines with the PP2A activators forskolin and FTY720 alone or combined with the PP2A inhibitor okadaic acid. We examined PP2A activity, cell growth, prostasphere formation, levels of PP2A phosphorylation, CIP2A and SET expression, and AKT and ERK activation. Interestingly, both forskolin and FTY720 dephosphorylated and activated PP2A, impairing proliferation and prostasphere formation and inducing changes in AKT and ERK phosphorylation. Moreover, FTY720 led to reduced CIP2A levels. Treatment with okadaic acid impaired PP2A activation thus demonstrating the antitumoral PP2A-dependent mechanism of action of both forskolin and FTY720. Levels of PP2A phosphorylation together with SET and CIP2A protein expression were studied in 24 PCa patients and both were associated with high Gleason scores and presence of metastatic disease. Altogether, our results suggest that PP2A inhibition could be involved in PCa progression, and the use of PP2A-activating drugs might represent a novel alternative therapeutic strategy for treating PCa patients.
Collapse
Affiliation(s)
- Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital “Fundacion Jimenez Diaz”, E-28040 Madrid, Spain; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (I.C.); (F.R.); (J.G.-F.); Tel.: +34-915504800 (ext. 2824)
| | - Paula González-Alonso
- Group of Cancer Biomarkers, Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, E-28040 Madrid, Spain; E-Mails: (P.G.-A.); (L.D.); (E.S.); (R.M.); (J.M.-G.)
| | - Lina Daoud
- Group of Cancer Biomarkers, Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, E-28040 Madrid, Spain; E-Mails: (P.G.-A.); (L.D.); (E.S.); (R.M.); (J.M.-G.)
| | - Esther Solano
- Group of Cancer Biomarkers, Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, E-28040 Madrid, Spain; E-Mails: (P.G.-A.); (L.D.); (E.S.); (R.M.); (J.M.-G.)
| | - Blanca Torrejón
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital “Fundacion Jimenez Diaz”, E-28040 Madrid, Spain; E-Mail:
| | - Rebeca Manso
- Group of Cancer Biomarkers, Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, E-28040 Madrid, Spain; E-Mails: (P.G.-A.); (L.D.); (E.S.); (R.M.); (J.M.-G.)
| | - Juan Madoz-Gúrpide
- Group of Cancer Biomarkers, Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, E-28040 Madrid, Spain; E-Mails: (P.G.-A.); (L.D.); (E.S.); (R.M.); (J.M.-G.)
| | - Federico Rojo
- Group of Cancer Biomarkers, Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, E-28040 Madrid, Spain; E-Mails: (P.G.-A.); (L.D.); (E.S.); (R.M.); (J.M.-G.)
- Authors to whom correspondence should be addressed; E-Mails: (I.C.); (F.R.); (J.G.-F.); Tel.: +34-915504800 (ext. 2824)
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital “Fundacion Jimenez Diaz”, E-28040 Madrid, Spain; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (I.C.); (F.R.); (J.G.-F.); Tel.: +34-915504800 (ext. 2824)
| |
Collapse
|
95
|
Pulkoski-Gross MJ, Donaldson JC, Obeid LM. Sphingosine-1-phosphate metabolism: A structural perspective. Crit Rev Biochem Mol Biol 2015; 50:298-313. [PMID: 25923252 DOI: 10.3109/10409238.2015.1039115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sphingolipids represent an important class of bioactive signaling lipids which have key roles in numerous cellular processes. Over the last few decades, the levels of bioactive sphingolipids and/or their metabolizing enzymes have been realized to be important factors involved in disease development and progression, most notably in cancer. Targeting sphingolipid-metabolizing enzymes in disease states has been the focus of many studies and has resulted in a number of pharmacological inhibitors, with some making it into the clinic as therapeutics. In order to better understand the regulation of sphingolipid-metabolizing enzymes as well as to develop much more potent and specific inhibitors, the field of sphingolipids has recently taken a turn toward structural biology. The last decade has seen the structural determination of a number of sphingolipid enzymes and effector proteins. In these terms, one of the most complete arms of the sphingolipid pathway is the sphingosine-1-phosphate (S1P) arm. The structures of proteins involved in the function and regulation of S1P are being used to investigate further the regulation of said proteins as well as in the design and development of inhibitors as potential therapeutics.
Collapse
Affiliation(s)
| | - Jane C Donaldson
- b Department of Medicine , Stony Brook University , Stony Brook , NY , USA .,c Stony Brook Cancer Center , Stony Brook , NY , USA , and
| | - Lina M Obeid
- b Department of Medicine , Stony Brook University , Stony Brook , NY , USA .,c Stony Brook Cancer Center , Stony Brook , NY , USA , and.,d Northport Veterans Affairs Medical Center , Northport , NY , USA
| |
Collapse
|
96
|
Sheng R, Zhang TT, Felice VD, Qin T, Qin ZH, Smith CD, Sapp E, Difiglia M, Waeber C. Preconditioning stimuli induce autophagy via sphingosine kinase 2 in mouse cortical neurons. J Biol Chem 2015; 289:20845-57. [PMID: 24928515 DOI: 10.1074/jbc.m114.578120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase 2 (SPK2) and autophagy are both involved in brain preconditioning, but whether preconditioning-induced SPK2 up-regulation and autophagy activation are linked mechanistically remains to be elucidated. In this study, we used in vitro and in vivo models to explore the role of SPK2-mediated autophagy in isoflurane and hypoxic preconditioning. In primary mouse cortical neurons, both isoflurane and hypoxic preconditioning induced autophagy. Isoflurane and hypoxic preconditioning protected against subsequent oxygen glucose deprivation or glutamate injury, whereas pretreatment with autophagy inhibitors (3-methyladenine or KU55933) abolished preconditioning-induced tolerance. Pretreatment with SPK2 inhibitors (ABC294640 and SKI-II) or SPK2 knockdown prevented preconditioning-induced autophagy. Isoflurane also induced autophagy in mouse in vivo as shown by Western blots for LC3 and p62, LC3 immunostaining, and electron microscopy. Isoflurane-induced autophagy in mice lacking the SPK1 isoform (SPK1(-/-)), but not in SPK2(-/-)mice. Sphingosine 1-phosphate and the sphingosine 1-phosphate receptor agonist FTY720 did not protect against oxygen glucose deprivation in cultured neurons and did not alter the expression of LC3 and p62, suggesting that SPK2-mediated autophagy and protections are not S1P-dependent. Beclin 1 knockdown abolished preconditioning-induced autophagy, and SPK2 inhibitors abolished isoflurane-induced disruption of the Beclin 1/Bcl-2 association. These results strongly indicate that autophagy is involved in isoflurane preconditioning both in vivo and in vitro and that SPK2 contributes to preconditioning-induced autophagy, possibly by disrupting the Beclin 1/Bcl-2 interaction.
Collapse
|
97
|
Wang J, Knapp S, Pyne NJ, Pyne S, Elkins JM. Crystal Structure of Sphingosine Kinase 1 with PF-543. ACS Med Chem Lett 2014; 5:1329-33. [PMID: 25516793 DOI: 10.1021/ml5004074] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022] Open
Abstract
The most potent inhibitor of Sphingosine Kinase 1 (SPHK1) so far identified is PF-543. The crystal structure of SPHK1 in complex with inhibitor PF-543 to 1.8 Å resolution reveals the inhibitor bound in a bent conformation analogous to that expected of a bound sphingosine substrate but with a rotated head group. The structural data presented will aid in the design of SPHK1 and SPHK2 inhibitors with improved properties.
Collapse
Affiliation(s)
- Jing Wang
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford, NDM
Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Nigel J. Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy
and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Susan Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy
and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Jonathan M. Elkins
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| |
Collapse
|
98
|
Aftab MN, Dinger ME, Perera RJ. The role of microRNAs and long non-coding RNAs in the pathology, diagnosis, and management of melanoma. Arch Biochem Biophys 2014; 563:60-70. [PMID: 25065585 PMCID: PMC4221535 DOI: 10.1016/j.abb.2014.07.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/21/2022]
Abstract
Melanoma is frequently lethal and its global incidence is steadily increasing. Despite the rapid development of different modes of targeted treatment, durable clinical responses remain elusive. A complete understanding of the molecular mechanisms that drive melanomagenesis is required, both genetic and epigenetic, in order to improve prevention, diagnosis, and treatment. There is increased appreciation of the role of microRNAs (miRNAs) in melanoma biology, including in proliferation, cell cycle, migration, invasion, and immune evasion. Data are also emerging on the role of long non-coding RNAs (lncRNAs), such as SPRY4-IT1, BANCR, and HOTAIR, in melanomagenesis. Here we review the data on the miRNAs and lncRNAs implicated in melanoma biology. An overview of these studies will be useful for providing insights into mechanisms of melanoma development and the miRNAs and lncRNAs that might be useful biomarkers or future therapeutic targets.
Collapse
Affiliation(s)
- Muhammad Nauman Aftab
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA; Institute of Industrial Biotechnology, Government College University, Katchery Road, Lahore 54000, Pakistan
| | - Marcel E Dinger
- Garvan Institute of Medical Research and St Vincent's Clinical School, University of New South Wales, Darlinghurst NSW 2010, Australia
| | - Ranjan J Perera
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA.
| |
Collapse
|
99
|
Raza A, Huang WC, Takabe K. Advances in the management of peritoneal mesothelioma. World J Gastroenterol 2014; 20:11700-11712. [PMID: 25206274 PMCID: PMC4155360 DOI: 10.3748/wjg.v20.i33.11700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/21/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Malignant peritoneal mesothelioma (PM) is an infrequent disease which has historically been associated with a poor prognosis. Given its long latency period and non-specific symptomatology, a diagnosis of PM can be suggested by occupational exposure history, but ultimately relies heavily on imaging and diagnostic biopsy. Early treatment options including palliative operative debulking, intraperitoneal chemotherapy, and systemic chemotherapy have marginally improved the natural course of the disease with median survival being approximately one year. The advent of cytoreduction (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) has dramatically improved survival outcomes with wide median survival estimates between 2.5 to 9 years; these studies however remain largely heterogeneous, with differing study populations, tumor biology, and specific treatment regimens. More recent investigations have explored extent of cytoreduction, repeated operative intervention, and choice of chemotherapy but have been unable to offer definitive conclusions. CRS and HIPEC remain morbid procedures with complication rates ranging between 30% to 46% in larger series. Accordingly, an increasing interest in identifying molecular targets and developing targeted therapies is emerging. Among such novel targets is sphingosine kinase 1 (SphK1) which regulates the production of sphingosine-1-phosphate, a biologically active lipid implicated in various cancers including malignant mesothelioma. The known action of specific SphK inhibitors may warrant further exploration in peritoneal disease.
Collapse
|
100
|
Ishitsuka A, Fujine E, Mizutani Y, Tawada C, Kanoh H, Banno Y, Seishima M. FTY720 and cisplatin synergistically induce the death of cisplatin-resistant melanoma cells through the downregulation of the PI3K pathway and the decrease in epidermal growth factor receptor expression. Int J Mol Med 2014; 34:1169-74. [PMID: 25109763 DOI: 10.3892/ijmm.2014.1882] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/31/2014] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase (SK), a key enzyme in sphingosine-1-phosphate (S1P) synthesis, is known to be overexpressed in various types of cancer cells. The effects of anticancer agents on SK1/S1P signaling have not yet been fully assessed in melanoma cells. In the present study, we investigated the effects of the combination of FTY720, an S1P receptor antagonist, and cisplatin, a DNA-damaging agent, on the induction of the death of human melanoma cells, as well as the molecular mechanisms involved. The viability of various human melanoma cell lines was examined following treatment with anticancer drugs. The cisplatin-resistant SK-Mel-28 and cisplatin-sensitive A375 cell lines were selected for this analysis. Protein expression and apoptotic rates were evaluated by western blot analysis following treatment with cisplatin and/or FTY720. Following treatment with a combination of FTY720 and cisplatin, cell viability significantly decreased and the expression of apoptosis-associated cleaved poly(ADP-ribose) polymerase (PARP) was significantly higher in comparison to treatment with cisplatin alone in the SK-Mel-28 cells. In addition, the combination of FTY720 and cisplatin reduced the protein expression of SK1 and the phosphorylation levels of phosphoinositide 3-kinase (PI3K), Akt and mTOR in the SK-Mel-28 cells; the expression of epidermal growth factor receptor (EGFR) was also markedly reduced. These findings suggest that FTY720 and cisplatin synergistically induce cell death through the downregulation of the PI3K/Akt/mTOR pathway and the decrease in EGFR expression in SK-Mel-28 cells. Thus, the combination of FTY720 and cisplatin may have therapeutic potential for chemotherapy-resistant melanoma, and the effects are likely exerted through the downregulation of S1P signaling.
Collapse
Affiliation(s)
- Asako Ishitsuka
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Etsuko Fujine
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Yoko Mizutani
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Chisato Tawada
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroyuki Kanoh
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Yoshiko Banno
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|