51
|
Becker W, Adams LA, Graham B, Wagner GE, Zangger K, Otting G, Nitsche C. Trimethylsilyl tag for probing protein-ligand interactions by NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:211-218. [PMID: 29564580 DOI: 10.1007/s10858-018-0173-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Protein-ligand titrations can readily be monitored with a trimethylsilyl (TMS) tag. Owing to the intensity, narrow line shape and unique chemical shift of a TMS group, dissociation constants can be determined from straightforward 1D 1H-NMR spectra not only in the fast but also in the slow exchange limit. The tag is easily attached to cysteine residues and a sensitive reporter of ligand binding also at sites where it does not interfere with ligand binding or catalytic efficiency of the target protein. Its utility is demonstrated for the Zika virus NS2B-NS3 protease and the human prolyl isomerase FK506 binding protein.
Collapse
Affiliation(s)
- Walter Becker
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Institute of Chemistry, University of Graz, 8010, Graz, Austria
| | - Luke A Adams
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Gabriel E Wagner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, 8010, Graz, Austria
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
52
|
Alavilli H, Lee H, Park M, Yun DJ, Lee BH. Enhanced multiple stress tolerance in Arabidopsis by overexpression of the polar moss peptidyl prolyl isomerase FKBP12 gene. PLANT CELL REPORTS 2018; 37:453-465. [PMID: 29247292 DOI: 10.1007/s00299-017-2242-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
PaFKBP12 overexpression in Arabidopsis resulted in stress tolerance to heat, ABA, drought, and salt stress, in addition to growth promotion under normal conditions. Polytrichastrum alpinum (alpine haircap moss) is one of polar organisms that can withstand the severe conditions of the Antarctic. In this study, we report the isolation of a peptidyl prolyl isomerase FKBP12 gene (PaFKBP12) from P. alpinum collected in the Antarctic and its functional implications in development and stress responses in plants. In P. alpinum, PaFKBP12 expression was induced by heat and ABA. Overexpression of PaFKBP12 in Arabidopsis increased the plant size, which appeared to result from increased rates of cell cycle. Under heat stress conditions, PaFKBP12-overexpressing lines (PaFKBP12-OE) showed better growth and survival than the wild type. PaFKBP12-OE also showed higher root elongation rates, better shoot growth and enhanced survival at higher concentrations of ABA in comparison to the wild type. In addition, PaFKBP12-OE were more tolerant to drought and salt stress than the wild type. All these phenotypes were accompanied with higher induction of the stress responsive genes in PaFKBP12-OE than in the wild type. Taken together, our findings revealed important functions of PaFKBP12 in plant development and abiotic stress responses.
Collapse
Affiliation(s)
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Mira Park
- Department of Life Science, Sogang University, Seoul, 04107, South Korea
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Seoul, 04107, South Korea.
| |
Collapse
|
53
|
Saatori SM, Perez TJ, Graham SM. Variable-Temperature NMR Spectroscopy, Conformational Analysis, and Thermodynamic Parameters of Cyclic Adenosine 5'-Diphosphate Ribose Agonists and Antagonists. J Org Chem 2018; 83:2554-2569. [PMID: 29365260 DOI: 10.1021/acs.joc.7b02749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cyclic adenosine 5'-diphosphate ribose (cADPR) is a ubiquitous Ca2+-releasing second messenger. Knowledge of its conformational landscape is an essential tool for unraveling the structure-activity relationship (SAR) in cADPR. Variable-temperature 1H NMR spectroscopy, in conjunction with PSEUROT and population analyses, allowed us to determine the conformations and thermodynamic parameters of the furanose rings, γ-bonds (C4'-C5'), and β-bonds (C5'-O5') in the cADPR analogues 2'-deoxy-cADPR, 7-deaza-cADPR, and 8-bromo-cADPR. A significant finding was that, although the analogues are similar to each other and to cADPR itself in terms of overall conformation and population (ΔG°), there were subtle yet important differences in some of thermodynamic properties (ΔH°, ΔS°) associated with each of the conformational equilibria. These differences prompted us to propose a model for cADPR in which the interactions between the A2'-N3, A5″-N3, and H2-R5' atoms serve to fine-tune the N-glycosidic torsion angles (χ).
Collapse
Affiliation(s)
- Sarah-Marie Saatori
- Department of Chemistry, St. John's University , 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Tanner J Perez
- Department of Chemistry, St. John's University , 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Steven M Graham
- Department of Chemistry, St. John's University , 8000 Utopia Parkway, Queens, New York 11439, United States
| |
Collapse
|
54
|
Adam AP, Zheng Y, Wang Y. The changes in endothelial cytoskeleton and calcium in vascular barrier breakdown: a response of ever‐growing complexity. Pulm Circ 2018; 8:2045893218754854. [PMID: 29309245 PMCID: PMC5784478 DOI: 10.1177/2045893218754854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Alejandro Pablo Adam
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNYUSA
- Department of OphthalmologyAlbany Medical CollegeAlbanyNYUSA
| | - Yun‐Min Zheng
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNYUSA
| | - Yong‐Xiao Wang
- Department of Molecular and Cellular PhysiologyAlbany Medical CollegeAlbanyNYUSA
| |
Collapse
|
55
|
Dave M, Islam ABMMK, Jensen RV, Rostagno A, Ghiso J, Amin AR. Proteomic Analysis Shows Constitutive Secretion of MIF and p53-associated Activity of COX-2 -/- Lung Fibroblasts. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:339-351. [PMID: 29247872 PMCID: PMC5828655 DOI: 10.1016/j.gpb.2017.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022]
Abstract
The differential expression of two closelyassociated cyclooxygenase isozymes, COX-1 and COX-2, exhibited functions beyond eicosanoid metabolism. We hypothesized that COX-1 or COX-2 knockout lung fibroblasts may display altered protein profiles which may allow us to further differentiate the functional roles of these isozymes at the molecular level. Proteomic analysis shows constitutive production of macrophage migration inhibitory factor (MIF) in lung fibroblasts derived from COX-2−/− but not wild-type (WT) or COX-1−/− mice. MIF was spontaneously released in high levels into the extracellular milieu of COX2−/− fibroblasts seemingly from the preformed intracellular stores, with no change in the basal gene expression of MIF. The secretion and regulation of MIF in COX-2−/− was “prostaglandin-independent.” GO analysis showed that concurrent with upregulation of MIF, there is a significant surge in expression of genes related to fibroblast growth, FK506 binding proteins, and isomerase activity in COX-2−/− cells. Furthermore, COX-2−/− fibroblasts also exhibit a significant increase in transcriptional activity of various regulators, antagonists, and co-modulators of p53, as well as in the expression of oncogenes and related transcripts. Integrative Oncogenomics Cancer Browser (IntroGen) analysis shows downregulation of COX-2 and amplification of MIF and/or p53 activity during development of glioblastomas, ependymoma, and colon adenomas. These data indicate the functional role of the MIF-COX-p53 axis in inflammation and cancer at the genomic and proteomic levels in COX-2-ablated cells. This systematic analysis not only shows the proinflammatory state but also unveils a molecular signature of a pro-oncogenic state of COX-1 in COX-2 ablated cells.
Collapse
Affiliation(s)
- Mandar Dave
- Department of Rheumatology, New York University Hospital for Joint Diseases, New York, NY 10003, USA; Department of Science, STEM Division, Union County College, Cranford, NJ 07016, USA
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Roderick V Jensen
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Agueda Rostagno
- Departments of Pathology, New York University School of Medicine, New York, NY 10003, USA
| | - Jorge Ghiso
- Departments of Pathology, New York University School of Medicine, New York, NY 10003, USA
| | - Ashok R Amin
- Department of Rheumatology, New York University Hospital for Joint Diseases, New York, NY 10003, USA; Departments of Pathology, New York University School of Medicine, New York, NY 10003, USA; Department of Bio-Medical Engineering, Virginia Tech, Blacksburg, VA 24060, USA; RheuMatric Inc., Blacksburg, VA 24061, USA.
| |
Collapse
|
56
|
Javornik U, Plavec J, Wang B, Graham SM. A combined variable temperature 600 MHz NMR/MD study of the calcium release agent cyclic adenosine diphosphate ribose (cADPR): Structure, conformational analysis, and thermodynamics of the conformational equilibria. Carbohydr Res 2017; 455:71-80. [PMID: 29175657 DOI: 10.1016/j.carres.2017.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 11/17/2022]
Abstract
A combined variable temperature 600 MHz NMR/molecular dynamics study of the Ca2+-release agent cyclic adenosine 5'-diphosphate ribose (cADPR) was conducted. In addition to elucidating the major and minor orientations of the conformationally flexible furanose rings, γ- (C4'-C5'), and β- (C5'-O5') bonds, the thermodynamics (ΔHo, ΔSo) associated with each of these conformational equilibria were determined. Both furanose rings were biased towards a south conformation (64-74%) and both β-bonds heavily favored trans conformations. The R-ring γ-bond was found to exist almost exclusively as the γ+ conformer, whereas the A-ring γ-bond was a mixture of the γ+ and γt conformers, with the trans conformer being slightly favored. Enthalpic factors accounted for most of the observed conformational preferences, although the R-ring furanose exists as its major conformation based solely on entropic factors. There was excellent agreement between the NMR and MD results, particularly with regard to the conformer identities, but the MD showed a bias towards γ+ conformers. The MD results showed that both N-glycosidic χ-bonds are exclusively syn. Collectively the data allowed for the construction of a model for cADPR in which many of the conformationally flexible units in fact effectively adopt single orientations and where most of the conformational diversity resides in its A-ring furanose and γ-bond.
Collapse
Affiliation(s)
- Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| | - Baifan Wang
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| | - Steven M Graham
- Department of Chemistry, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|