51
|
Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, van der Ven K, Hsu J, Wolf P, Fleishman M, O’Dushlaine C, Rose S, Chambert K, Lau FH, Ahfeldt T, Rueckert EH, Sheridan SD, Fass DM, Nemesh J, Mullen TE, Daheron L, McCarroll S, Sklar P, Perlis RH, Haggarty SJ. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry 2015; 20:703-17. [PMID: 25733313 PMCID: PMC4440839 DOI: 10.1038/mp.2015.7] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 10/29/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD, little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD, we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially, no significant phenotypic differences were observed between iPSCs derived from the different family members. However, upon directed neural differentiation, we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared with their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity, including WNT pathway components and ion channel subunits. Treatment of the CXCR4(+) NPCs with a pharmacological inhibitor of glycogen synthase kinase 3, a known regulator of WNT signaling, was found to rescue a progenitor proliferation deficit in the BD patient NPCs. Taken together, these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.
Collapse
Affiliation(s)
- Jon M. Madison
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Correspondence: (JM), (SJH)
| | - Fen Zhou
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aparna Nigam
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ali Hussain
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Douglas D. Barker
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Karlijn van der Ven
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenny Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pavlina Wolf
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Colm O’Dushlaine
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Sam Rose
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Frank H. Lau
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Tim Ahfeldt
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Erroll H. Rueckert
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven D. Sheridan
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel M. Fass
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas E. Mullen
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Laurence Daheron
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Steve McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela Sklar
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Roy H. Perlis
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen J. Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA,Correspondence: (JM), (SJH)
| |
Collapse
|
52
|
Coutelier M, Stevanin G, Brice A. Genetic landscape remodelling in spinocerebellar ataxias: the influence of next-generation sequencing. J Neurol 2015; 262:2382-95. [DOI: 10.1007/s00415-015-7725-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/23/2022]
|
53
|
Wildburger NC, Ali SR, Hsu WCJ, Shavkunov AS, Nenov MN, Lichti CF, LeDuc RD, Mostovenko E, Panova-Elektronova NI, Emmett MR, Nilsson CL, Laezza F. Quantitative proteomics reveals protein-protein interactions with fibroblast growth factor 12 as a component of the voltage-gated sodium channel 1.2 (nav1.2) macromolecular complex in Mammalian brain. Mol Cell Proteomics 2015; 14:1288-300. [PMID: 25724910 PMCID: PMC4424400 DOI: 10.1074/mcp.m114.040055] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Nav1.1–Nav1.9) are responsible for the initiation and propagation of action potentials in neurons, controlling firing patterns, synaptic transmission and plasticity of the brain circuit. Yet, it is the protein–protein interactions of the macromolecular complex that exert diverse modulatory actions on the channel, dictating its ultimate functional outcome. Despite the fundamental role of Nav channels in the brain, information on its proteome is still lacking. Here we used affinity purification from crude membrane extracts of whole brain followed by quantitative high-resolution mass spectrometry to resolve the identity of Nav1.2 protein interactors. Of the identified putative protein interactors, fibroblast growth factor 12 (FGF12), a member of the nonsecreted intracellular FGF family, exhibited 30-fold enrichment in Nav1.2 purifications compared with other identified proteins. Using confocal microscopy, we visualized native FGF12 in the brain tissue and confirmed that FGF12 forms a complex with Nav1.2 channels at the axonal initial segment, the subcellular specialized domain of neurons required for action potential initiation. Co-immunoprecipitation studies in a heterologous expression system validate Nav1.2 and FGF12 as interactors, whereas patch-clamp electrophysiology reveals that FGF12 acts synergistically with CaMKII, a known kinase regulator of Nav channels, to modulate Nav1.2-encoded currents. In the presence of CaMKII inhibitors we found that FGF12 produces a bidirectional shift in the voltage-dependence of activation (more depolarized) and the steady-state inactivation (more hyperpolarized) of Nav1.2, increasing the channel availability. Although providing the first characterization of the Nav1.2 CNS proteome, we identify FGF12 as a new functionally relevant interactor. Our studies will provide invaluable information to parse out the molecular determinant underlying neuronal excitability and plasticity, and extending the relevance of iFGFs signaling in the normal and diseased brain.
Collapse
Affiliation(s)
- Norelle C Wildburger
- From the ‡Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-0617; §Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas, 77555-0617; ¶UTMB Cancer Center, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas, 77555-1074;
| | - Syed R Ali
- From the ‡Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-0617
| | - Wei-Chun J Hsu
- ‖Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas, 77555-0617
| | - Alexander S Shavkunov
- From the ‡Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-0617; ¶UTMB Cancer Center, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas, 77555-1074
| | - Miroslav N Nenov
- From the ‡Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-0617
| | - Cheryl F Lichti
- From the ‡Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-0617; ¶UTMB Cancer Center, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas, 77555-1074
| | - Richard D LeDuc
- **National Center for Genome Analysis Support, Indiana University, 107 S Indiana Ave., Bloomington, Indiana, 47408
| | - Ekaterina Mostovenko
- From the ‡Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-0617; ¶UTMB Cancer Center, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas, 77555-1074
| | - Neli I Panova-Elektronova
- From the ‡Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-0617
| | - Mark R Emmett
- ¶UTMB Cancer Center, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas, 77555-1074; ‖Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas, 77555-0617
| | - Carol L Nilsson
- From the ‡Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-0617; ¶UTMB Cancer Center, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas, 77555-1074
| | - Fernanda Laezza
- From the ‡Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-0617;
| |
Collapse
|
54
|
Fast-onset long-term open-state block of sodium channels by A-type FHFs mediates classical spike accommodation in hippocampal pyramidal neurons. J Neurosci 2015; 34:16126-39. [PMID: 25429153 DOI: 10.1523/jneurosci.1271-14.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Classical accommodation is a form of spike frequency adaptation in neurons whereby excitatory drive results in action potential output of gradually decreasing frequency. Here we describe an essential molecular component underlying classical accommodation in juvenile mouse hippocampal CA1 pyramidal neurons. A-type isoforms of fibroblast growth factor homologous factors (FHFs) bound to axosomatic voltage-gated sodium channels bear an N-terminal blocking particle that drives some associated channels into a fast-onset, long-term inactivated state. Use-dependent accumulating channel blockade progressively elevates spike voltage threshold and lengthens interspike intervals. The FHF particle only blocks sodium channels from the open state, and mutagenesis studies demonstrate that this particle uses multiple aliphatic and cationic residues to both induce and maintain the long-term inactivated state. The broad expression of A-type FHFs in neurons throughout the vertebrate CNS suggests a widespread role of these sodium channel modulators in the control of neural firing.
Collapse
|
55
|
Choquet K, La Piana R, Brais B. A novel frameshift mutation in FGF14 causes an autosomal dominant episodic ataxia. Neurogenetics 2015; 16:233-6. [PMID: 25566820 DOI: 10.1007/s10048-014-0436-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/19/2014] [Indexed: 12/30/2022]
Abstract
Episodic ataxias (EAs) are a heterogeneous group of neurological disorders characterized by recurrent attacks of ataxia. Mutations in KCNA1 and CACNA1A account for the majority of EA cases worldwide. We recruited a two-generation family affected with EA of unknown subtype and performed whole-exome sequencing on two affected members. This revealed a novel heterozygous mutation c.211_212insA (p.I71NfsX27) leading to a premature stop codon in FGF14. Mutations in FGF14 are known to cause spinocerebellar ataxia type 27 (SCA27). Sanger sequencing confirmed segregation within the family. Our findings expand the phenotypic spectrum of SCA27 by underlining the possible episodic nature of this ataxia.
Collapse
Affiliation(s)
- Karine Choquet
- Neurogenetics of Motion Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | |
Collapse
|
56
|
Pablo JL, Pitt GS. Fibroblast Growth Factor Homologous Factors: New Roles in Neuronal Health and Disease. Neuroscientist 2014; 22:19-25. [PMID: 25492945 DOI: 10.1177/1073858414562217] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fibroblast growth factor homologous factors (FHFs) are a noncanonical subset of intracellular fibroblast growth factors that have been implicated in a variety of neurobiological processes and in disease. They are most prominently regulators of voltage-gated Na(+) channels (NaVs). In this review, we discuss new insights into how FHFs modulate NaVs. This is followed by a summary of a growing body of evidence that FHFs operate in much broader fashion. Finally, we highlight unknown aspects of FHF function as areas of future interest.
Collapse
Affiliation(s)
- Juan L Pablo
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC, USA Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Geoffrey S Pitt
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC, USA Department of Neurobiology, Duke University Medical Center, Durham, NC, USA Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
57
|
Carter EP, Fearon AE, Grose RP. Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends Cell Biol 2014; 25:221-33. [PMID: 25467007 DOI: 10.1016/j.tcb.2014.11.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022]
Abstract
Since its discovery 40 years ago, fibroblast growth factor (FGF) receptor (FGFR) signalling has been found to regulate fundamental cellular behaviours in a wide range of cell types. FGFRs regulate development, homeostasis, and repair and are implicated in many disorders and diseases; and indeed, there is extensive potential for severe consequences, be they developmental, homeostatic, or oncogenic, should FGF-FGFR signalling go awry, so careful control of the pathway is critically important. In this review, we discuss the recent developments in the FGF field, highlighting how FGFR signalling works in normal cells, how it can go wrong, how frequently it is compromised, and how it is being targeted therapeutically.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK
| | - Abbie E Fearon
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK.
| |
Collapse
|
58
|
Yan H, Pablo JL, Wang C, Pitt GS. FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons. eLife 2014; 3:e04193. [PMID: 25269146 PMCID: PMC4356139 DOI: 10.7554/elife.04193] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/29/2014] [Indexed: 11/13/2022] Open
Abstract
Rapid firing of cerebellar Purkinje neurons is facilitated in part by a voltage-gated Na+ (NaV) ‘resurgent’ current, which allows renewed Na+ influx during membrane repolarization. Resurgent current results from unbinding of a blocking particle that competes with normal channel inactivation. The underlying molecular components contributing to resurgent current have not been fully identified. In this study, we show that the NaV channel auxiliary subunit FGF14 ‘b’ isoform, a locus for inherited spinocerebellar ataxias, controls resurgent current and repetitive firing in Purkinje neurons. FGF14 knockdown biased NaV channels towards the inactivated state by decreasing channel availability, diminishing the ‘late’ NaV current, and accelerating channel inactivation rate, thereby reducing resurgent current and repetitive spiking. Critical for these effects was both the alternatively spliced FGF14b N-terminus and direct interaction between FGF14b and the NaV C-terminus. Together, these data suggest that the FGF14b N-terminus is a potent regulator of resurgent NaV current in cerebellar Purkinje neurons. DOI:http://dx.doi.org/10.7554/eLife.04193.001 The cerebellum is a region of the brain that is involved in motor control, and it contains a special type of nerve cells called Purkinje neurons. Messages travel along neurons as electrical signals carried by sodium ions, which have a positive electric charge. Normally, when a neuron is ‘at rest’, the plasma membrane that surrounds the neuron prevents the sodium ions outside the cell from entering. To send an electrical signal, voltage-sensitive proteins in the membrane called sodium channels open up. This allows the sodium ions to enter the cell by passing through a pore in the channel protein, thereby changing the voltage across the membrane. Once sodium channels open, they rapidly become ‘locked’ in a closed state, which allows the membrane voltage to return to its original value before another signal can be sent. This locked state also prevents sodium channels from reopening quickly. As a consequence most neurons cannot send successive electrical signals rapidly. Purkinje neurons are unusual because they can send many electrical signals in quick succession—known as rapid firing—without having to be reset each time. Rapid firing is possible in Purkinje neurons because the channel proteins can be reopened to allow more Na+ to enter the cell, but it is not clear how this is controlled. Now, based on experiments on Purkinje neurons isolated from mice, Yan et al. have shown that a protein called FGF14 that binds to the sodium channel proteins can help them to reopen quickly in order to allow rapid firing. Spinocerebellar ataxia is a degenerative disease caused by damage to the cerebellum that leads to loss of physical coordination. Some patients suffering from this disease carry mutations in the gene that makes the FGF14 protein. Therefore, understanding the role of FGF14 in the rapid firing of Purkinje neurons may aid the development of new treatments for this disease. DOI:http://dx.doi.org/10.7554/eLife.04193.002
Collapse
Affiliation(s)
- Haidun Yan
- Department of Medicine, Duke University Medical Center, Durham, United States
| | - Juan L Pablo
- Ion Channel Research Unit, Duke University Medical Center, Durham, United States
| | - Chaojian Wang
- Department of Medicine, Duke University Medical Center, Durham, United States
| | - Geoffrey S Pitt
- Department of Medicine, Duke University Medical Center, Durham, United States
| |
Collapse
|
59
|
Structural analyses of Ca²⁺/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation. Nat Commun 2014; 5:4896. [PMID: 25232683 PMCID: PMC4170523 DOI: 10.1038/ncomms5896] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/01/2014] [Indexed: 12/15/2022] Open
Abstract
Ca2+ regulates voltage-gated Na+ (NaV) channels and perturbed Ca2+ regulation of NaV function is associated with epilepsy syndromes, autism, and cardiac arrhythmias. Understanding the disease mechanisms, however, has been hindered by a lack of structural information and competing models for how Ca2+ affects NaV channel function. Here, we report the crystal structures of two ternary complexes of a human NaV cytosolic C-terminal domain (CTD), a fibroblast growth factor homologous factor, and Ca2+/calmodulin (Ca2+/CaM). These structures rule out direct binding of Ca2+ to the NaV CTD, and uncover new contacts between CaM and the NaV CTD. Probing these new contacts with biochemical and functional experiments allows us to propose a mechanism by which Ca2+ could regulate NaV channels. Further, our model provides hints towards understanding the molecular basis of the neurologic disorders and cardiac arrhythmias caused by NaV channel mutations.
Collapse
|
60
|
Hsu WCJ, Nilsson CL, Laezza F. Role of the axonal initial segment in psychiatric disorders: function, dysfunction, and intervention. Front Psychiatry 2014; 5:109. [PMID: 25191280 PMCID: PMC4139700 DOI: 10.3389/fpsyt.2014.00109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022] Open
Abstract
The progress of developing effective interventions against psychiatric disorders has been limited due to a lack of understanding of the underlying cellular and functional mechanisms. Recent research findings focused on exploring novel causes of psychiatric disorders have highlighted the importance of the axonal initial segment (AIS), a highly specialized neuronal structure critical for spike initiation of the action potential. In particular, the role of voltage-gated sodium channels, and their interactions with other protein partners in a tightly regulated macromolecular complex has been emphasized as a key component in the regulation of neuronal excitability. Deficits and excesses of excitability have been linked to the pathogenesis of brain disorders. Identification of the factors and regulatory pathways involved in proper AIS function, or its disruption, can lead to the development of novel interventions that target these mechanistic interactions, increasing treatment efficacy while reducing deleterious off-target effects for psychiatric disorders.
Collapse
Affiliation(s)
- Wei-Chun Jim Hsu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- M.D.–Ph.D. Combined Degree Program, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Carol Lynn Nilsson
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Center for Addiction Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Center for Biomedical Engineering, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
61
|
Hennessey JA, Marcou CA, Wang C, Wei EQ, Wang C, Tester DJ, Torchio M, Dagradi F, Crotti L, Schwartz PJ, Ackerman MJ, Pitt GS. FGF12 is a candidate Brugada syndrome locus. Heart Rhythm 2013; 10:1886-94. [PMID: 24096171 DOI: 10.1016/j.hrthm.2013.09.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Less than 30% of the cases of Brugada syndrome (BrS) have an identified genetic cause. Of the known BrS-susceptibility genes, loss-of-function mutations in SCN5A or CACNA1C and their auxiliary subunits are most common. On the basis of the recent demonstration that fibroblast growth factor (FGF) homologous factors (FHFs; FGF11-FGF14) regulate cardiac Na(+) and Ca(2+) channel currents, we hypothesized that FHFs are candidate BrS loci. OBJECTIVE The goal of this study was to test whether FGF12 is a candidate BrS locus. METHODS We used quantitative polymerase chain reaction to identify the major FHF expressed in the human ventricle and then queried a phenotype-positive, genotype-negative BrS biorepository for FHF mutations associated with BrS. We queried the effects of an identified mutant with biochemical analyses combined with electrophysiological assessment. We designed a novel rat ventricular cardiomyocyte system in which we swapped the endogenous FHF with the identified mutant and defined its effects on multiple ionic currents in their native milieu and on the cardiac action potential. RESULTS We identified FGF12 as the major FHF expressed in the human ventricle. In 102 individuals in the biorepository, we identified a single missense mutation in FGF12-B (Q7R-FGF12). The mutant reduced binding to the NaV1.5 C terminus, but not to junctophilin-2. In adult rat cardiac myocytes, Q7R-FGF12, but not wild-type FGF12, reduced Na(+) channel current density and availability without affecting Ca(2+) channel function. Furthermore, the mutant, but not wild-type FGF12, reduced action potential amplitude, which is consistent with a mutant-induced loss of Na(+) channel function. CONCLUSIONS These multilevel investigations strongly suggest that Q7R-FGF12 is a disease-associated BrS mutation. Moreover, these data suggest for the first time that FHF effects on Na(+) and Ca(2+) channels are separable. Most significantly, this study establishes a new method to analyze effects of human arrhythmogenic mutations on cardiac ionic currents.
Collapse
Affiliation(s)
- Jessica A Hennessey
- Departments of Medicine/Cardiology and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
RATIONALE Fibroblast growth factor (FGF) homologous factors (FHFs; FGF11-14) are intracellular modulators of voltage-gated Na+ channels, but their cellular distribution in cardiomyocytes indicated that they performed other functions. OBJECTIVE We aimed to uncover novel roles for FHFs in cardiomyocytes, starting with a proteomic approach to identify novel interacting proteins. METHODS AND RESULTS Affinity purification of FGF13 from rodent ventricular lysates followed by mass spectroscopy revealed an interaction with junctophilin-2, a protein that organizes the close apposition of the L-type Ca2+ channel CaV1.2 and the ryanodine receptor 2 in the dyad. Immunocytochemical analysis revealed that overall T-tubule structure and localization of ryanodine receptor 2 were unaffected by FGF13 knockdown in adult ventricular cardiomyocytes but localization of CaV1.2 was affected. FGF13 knockdown decreased CaV1.2 current density and reduced the amount of CaV1.2 at the surface as a result of aberrant localization of the channels. CaV1.2 current density and channel localization were rescued by expression of an shRNA-insensitive FGF13, indicating a specific role for FGF13. Consistent with these newly discovered effects on CaV1.2, we demonstrated that FGF13 also regulated Ca(2+)-induced Ca2+ release, indicated by a smaller Ca2+ transient after FGF13 knockdown. Furthermore, FGF13 knockdown caused a profound decrease in the cardiac action potential half-width. CONCLUSIONS This study demonstrates that FHFs not only are potent modulators of voltage-gated Na+ channels but also affect Ca2+ channels and their function. We predict that FHF loss-of-function mutations would adversely affect currents through both Na+ and Ca2+ channels, suggesting that FHFs may be arrhythmogenic loci, leading to arrhythmias through a novel, dual-ion channel mechanism.
Collapse
Affiliation(s)
- Jessica A Hennessey
- Department of Medicine/Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|