51
|
A brief guideline for studies of phase-separated biomolecular condensates. Nat Chem Biol 2022; 18:1307-1318. [DOI: 10.1038/s41589-022-01204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022]
|
52
|
Different states and the associated fates of biomolecular condensates. Essays Biochem 2022; 66:849-862. [PMID: 36350032 DOI: 10.1042/ebc20220054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Biomolecular condensates are functional assemblies, which can enrich intrinsically disordered proteins (IDPs) and/or RNAs at concentrations that are orders of magnitude higher than the bulk. In their native functional state, these structures can exist in multiple physical states including liquid-droplet phase, hydrogels, and solid assemblies. On the other hand, an aberrant transition between these physical states can result in loss-of-function or a gain-of-toxic-function. A prime example of such an aberrant transition is droplet aging—a phenomenon where some condensates may progressively transition into less dynamic material states at biologically relevant timescales. In this essay, we review structural and viscoelastic roots of aberrant liquid–solid transitions. Also, we highlight the different checkpoints and experimentally tunable handles, both active (ATP-dependent enzymes, post-translational modifications) and passive (colocalization of RNA molecules), that could alter the material state of assemblies.
Collapse
|
53
|
de Castro RJA, Rêgo MTAM, Brandão FS, Pérez ALA, De Marco JL, Poças-Fonseca MJ, Nichols C, Alspaugh JA, Felipe MSS, Alanio A, Bocca AL, Fernandes L. Engineered Fluorescent Strains of Cryptococcus neoformans: a Versatile Toolbox for Studies of Host-Pathogen Interactions and Fungal Biology, Including the Viable but Nonculturable State. Microbiol Spectr 2022; 10:e0150422. [PMID: 36005449 PMCID: PMC9603711 DOI: 10.1128/spectrum.01504-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.
Collapse
Affiliation(s)
- Raffael Júnio Araújo de Castro
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
| | - Marco Túlio Aidar Mariano Rêgo
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Fabiana S. Brandão
- Faculty of Health Science, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Ana Laura Alfonso Pérez
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Janice Lisboa De Marco
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Marcio José Poças-Fonseca
- Department of Genetics and Morphology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Connie Nichols
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - J. Andrew Alspaugh
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Maria Sueli S. Felipe
- Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Brasília, Federal District, Brazil
| | - Alexandre Alanio
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
- Laboratoire de Mycologie et Parasitologie, AP-HP, Hôpital Saint Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Brasília, Federal District, Brazil
| |
Collapse
|
54
|
Chaves-Arquero B, Martínez-Lumbreras S, Sibille N, Camero S, Bernadó P, Jiménez MÁ, Zorrilla S, Pérez-Cañadillas JM. eIF4G1 N-terminal intrinsically disordered domain is a multi-docking station for RNA, Pab1, Pub1, and self-assembly. Front Mol Biosci 2022; 9:986121. [PMID: 36213119 PMCID: PMC9537944 DOI: 10.3389/fmolb.2022.986121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Yeast eIF4G1 interacts with RNA binding proteins (RBPs) like Pab1 and Pub1 affecting its function in translation initiation and stress granules formation. We present an NMR and SAXS study of the N-terminal intrinsically disordered region of eIF4G1 (residues 1-249) and its interactions with Pub1, Pab1 and RNA. The conformational ensemble of eIF4G11-249 shows an α-helix within the BOX3 conserved element and a dynamic network of fuzzy π-π and π-cation interactions involving arginine and aromatic residues. The Pab1 RRM2 domain interacts with eIF4G1 BOX3, the canonical interaction site, but also with BOX2, a conserved element of unknown function to date. The RNA1 region interacts with RNA through a new RNA interaction motif and with the Pub1 RRM3 domain. This later also interacts with eIF4G1 BOX1 modulating its intrinsic self-assembly properties. The description of the biomolecular interactions involving eIF4G1 to the residue detail increases our knowledge about biological processes involving this key translation initiation factor.
Collapse
Affiliation(s)
- Belén Chaves-Arquero
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Santiago Martínez-Lumbreras
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Sergio Camero
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - M. Ángeles Jiménez
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Silvia Zorrilla
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC, Madrid, Spain
| | | |
Collapse
|
55
|
Palumbo RJ, McKean N, Leatherman E, Namitz KEW, Connell L, Wolfe A, Moody K, Gostinčar C, Gunde-Cimerman N, Bah A, Hanes SD. Coevolution of the Ess1-CTD axis in polar fungi suggests a role for phase separation in cold tolerance. SCIENCE ADVANCES 2022; 8:eabq3235. [PMID: 36070379 PMCID: PMC9451162 DOI: 10.1126/sciadv.abq3235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 06/14/2023]
Abstract
Most of the world's biodiversity lives in cold (-2° to 4°C) and hypersaline environments. To understand how cells adapt to such conditions, we isolated two key components of the transcription machinery from fungal species that live in extreme polar environments: the Ess1 prolyl isomerase and its target, the carboxy-terminal domain (CTD) of RNA polymerase II. Polar Ess1 enzymes are conserved and functional in the model yeast, Saccharomyces cerevisiae. By contrast, polar CTDs diverge from the consensus (YSPTSPS)26 and are not fully functional in S. cerevisiae. These CTDs retain the critical Ess1 Ser-Pro target motifs, but substitutions at Y1, T4, and S7 profoundly affected their ability to undergo phase separation in vitro and localize in vivo. We propose that environmentally tuned phase separation by the CTD and other intrinsically disordered regions plays an adaptive role in cold tolerance by concentrating enzymes and substrates to overcome energetic barriers to metabolic activity.
Collapse
Affiliation(s)
- Ryan J. Palumbo
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Nathan McKean
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Erinn Leatherman
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Kevin E. W. Namitz
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Laurie Connell
- School of Marine Sciences and Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - Aaron Wolfe
- Ichor Life Sciences Inc., 2651 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Kelsey Moody
- Ichor Life Sciences Inc., 2651 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven D. Hanes
- Department of Biochemistry and Molecular Biology, SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
56
|
Li Z, Liu X, Liu M. Stress Granule Homeostasis, Aberrant Phase Transition, and Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:2356-2370. [PMID: 35905138 DOI: 10.1021/acschemneuro.2c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. In recent years, a large number of ALS-related mutations have been discovered to have a strong link to stress granules (SGs). SGs are cytoplasmic ribonucleoprotein condensates mediated by liquid-liquid phase separation (LLPS) of biomacromolecules. They help cells cope with stress. The normal physiological functions of SGs are dependent on three key aspects of SG "homeostasis": SG assembly, disassembly, and SG components. Any of these three aspects can be disrupted, resulting in abnormalities in the cellular stress response and leading to cytotoxicity. Several ALS-related pathogenic mutants have abnormal LLPS abilities that disrupt SG homeostasis, and some of them can even cause aberrant phase transitions. As a result, ALS-related mutants may disrupt various aspects of SG homeostasis by directly disturbing the intermolecular interactions or affecting core SG components, thus disrupting the phase equilibrium of the cytoplasm during stress. Considering that the importance of the "global view" of SG homeostasis in ALS pathogenesis has not received enough attention, we first systematically summarize the physiological regulatory mechanism of SG homeostasis based on LLPS and then examine ALS pathogenesis from the perspective of disrupted SG homeostasis and aberrant phase transition of biomacromolecules.
Collapse
Affiliation(s)
- Zhanxu Li
- Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
57
|
Chatterjee S, Maltseva D, Kan Y, Hosseini E, Gonella G, Bonn M, Parekh SH. Lipid-driven condensation and interfacial ordering of FUS. SCIENCE ADVANCES 2022; 8:eabm7528. [PMID: 35930639 PMCID: PMC9355348 DOI: 10.1126/sciadv.abm7528] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/23/2022] [Indexed: 05/26/2023]
Abstract
Protein condensation into liquid-like structures is critical for cellular compartmentalization, RNA processing, and stress response. Research on protein condensation has primarily focused on membraneless organelles in the absence of lipids. However, the cellular cytoplasm is full of lipid interfaces, yet comparatively little is known about how lipids affect protein condensation. Here, we show that nonspecific interactions between lipids and the disordered fused in sarcoma low-complexity (FUS LC) domain strongly affect protein condensation. In the presence of anionic lipids, FUS LC formed lipid-protein clusters at concentrations more than 30-fold lower than required for pure FUS LC. Lipid-triggered FUS LC clusters showed less dynamic protein organization than canonical, lipid-free FUS LC condensates. Lastly, we found that phosphatidylserine membranes promoted FUS LC condensates having β sheet structures, while phosphatidylglycerol membranes initiated unstructured condensates. Our results show that lipids strongly influence FUS LC condensation, suggesting that protein-lipid interactions modulate condensate formation in cells.
Collapse
Affiliation(s)
- Sayantan Chatterjee
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, TX 78712, USA
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, DE 55128, Germany
| | - Daria Maltseva
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, DE 55128, Germany
| | - Yelena Kan
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, TX 78712, USA
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, DE 55128, Germany
- LUT School of Engineering Science, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland
| | - Elnaz Hosseini
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, DE 55128, Germany
| | - Grazia Gonella
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, DE 55128, Germany
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, DE 55128, Germany
| | - Sapun H. Parekh
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, TX 78712, USA
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, DE 55128, Germany
| |
Collapse
|
58
|
Hurst Z, Liu W, Shi Q, Herman PK. A distinct P-body-like granule is induced in response to the disruption of microtubule integrity in Saccharomyces cerevisiae. Genetics 2022; 222:6649695. [PMID: 35876801 PMCID: PMC9434292 DOI: 10.1093/genetics/iyac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
The Processing-body (P-body) is a conserved membraneless organelle that has been implicated in the storage and/or decay of mRNAs. Although P-bodies have been shown to be induced by a variety of conditions, the mechanisms controlling their assembly and their precise physiological roles in eukaryotic cells are still being worked out. In this study, we find that a distinct subtype of P-body is induced in response to conditions that disrupt microtubule integrity in the budding yeast, Saccharomyces cerevisiae. For example, treatment with the microtubule-destabilizing agent, benomyl, led to the induction of these novel ribonucleoprotein (RNP) granules. A link to microtubules had been noted previously and the observations here extend our understanding by demonstrating that the induced foci differ from traditional P-bodies in a number of significant ways. These include differences in overall granule morphology, protein composition and the manner in which their induction is regulated. Of particular note, several key P-body constituents are absent from these Benomyl-Induced Granules (BIGs), including the Pat1 protein that is normally required for efficient P-body assembly. However, these novel RNP structures still contain many known P-body proteins and exhibit similar hallmarks of a liquid-like compartment. In all, the data suggest that the disruption of microtubule integrity leads to the formation of a novel type of P-body granule that may have distinct biological activities in the cell. Future work will aim to identify the biological activities of these BIGs and to determine, in turn, whether these P-body-like granules have any role in the regulation of microtubule dynamics.
Collapse
Affiliation(s)
- Zachary Hurst
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Wenfang Liu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Qian Shi
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Paul K Herman
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| |
Collapse
|
59
|
Glauninger H, Wong Hickernell CJ, Bard JAM, Drummond DA. Stressful steps: Progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules. Mol Cell 2022; 82:2544-2556. [PMID: 35662398 PMCID: PMC9308734 DOI: 10.1016/j.molcel.2022.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 01/11/2023]
Abstract
Stress-induced condensation of mRNA and protein into massive cytosolic clusters is conserved across eukaryotes. Known as stress granules when visible by imaging, these structures remarkably have no broadly accepted biological function, mechanism of formation or dispersal, or even molecular composition. As part of a larger surge of interest in biomolecular condensation, studies of stress granules and related RNA/protein condensates have increasingly probed the biochemical underpinnings of condensation. Here, we review open questions and recent advances, including the stages from initial condensate formation to accumulation in mature stress granules, mechanisms by which stress-induced condensates form and dissolve, and surprising twists in understanding the RNA components of stress granules and their role in condensation. We outline grand challenges in understanding stress-induced RNA condensation, centering on the unique and substantial barriers in the molecular study of cellular structures, such as stress granules, for which no biological function has been firmly established.
Collapse
Affiliation(s)
- Hendrik Glauninger
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60673, USA
| | | | - Jared A M Bard
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60673, USA
| | - D Allan Drummond
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60673, USA.
| |
Collapse
|
60
|
Lsm7 phase-separated condensates trigger stress granule formation. Nat Commun 2022; 13:3701. [PMID: 35764627 PMCID: PMC9240020 DOI: 10.1038/s41467-022-31282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Stress granules (SGs) are non-membranous organelles facilitating stress responses and linking the pathology of age-related diseases. In a genome-wide imaging-based phenomic screen, we identify Pab1 co-localizing proteins under 2-deoxy-D-glucose (2-DG) induced stress in Saccharomyces cerevisiae. We find that deletion of one of the Pab1 co-localizing proteins, Lsm7, leads to a significant decrease in SG formation. Under 2-DG stress, Lsm7 rapidly forms foci that assist in SG formation. The Lsm7 foci form via liquid-liquid phase separation, and the intrinsically disordered region and the hydrophobic clusters within the Lsm7 sequence are the internal driving forces in promoting Lsm7 phase separation. The dynamic Lsm7 phase-separated condensates appear to work as seeding scaffolds, promoting Pab1 demixing and subsequent SG initiation, seemingly mediated by RNA interactions. The SG initiation mechanism, via Lsm7 phase separation, identified in this work provides valuable clues for understanding the mechanisms underlying SG formation and SG-associated human diseases.
Collapse
|
61
|
Jin X, Zhou M, Chen S, Li D, Cao X, Liu B. Effects of pH alterations on stress- and aging-induced protein phase separation. Cell Mol Life Sci 2022; 79:380. [PMID: 35750966 PMCID: PMC9232405 DOI: 10.1007/s00018-022-04393-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 01/18/2023]
Abstract
Upon stress challenges, proteins/RNAs undergo liquid–liquid phase separation (LLPS) to fine-tune cell physiology and metabolism to help cells adapt to adverse environments. The formation of LLPS has been recently linked with intracellular pH, and maintaining proper intracellular pH homeostasis is known to be essential for the survival of organisms. However, organisms are constantly exposed to diverse stresses, which are accompanied by alterations in the intracellular pH. Aging processes and human diseases are also intimately linked with intracellular pH alterations. In this review, we summarize stress-, aging-, and cancer-associated pH changes together with the mechanisms by which cells regulate cytosolic pH homeostasis. How critical cell components undergo LLPS in response to pH alterations is also discussed, along with the functional roles of intracellular pH fluctuation in the regulation of LLPS. Further studies investigating the interplay of pH with other stressors in LLPS regulation and identifying protein responses to different pH levels will provide an in-depth understanding of the mechanisms underlying pH-driven LLPS in cell adaptation. Moreover, deciphering aging and disease-associated pH changes that influence LLPS condensate formation could lead to a deeper understanding of the functional roles of biomolecular condensates in aging and aging-related diseases.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuxin Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China. .,Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90, Goteborg, Sweden. .,Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, 413 90, Goteborg, Sweden.
| |
Collapse
|
62
|
Mittag T, Pappu RV. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol Cell 2022; 82:2201-2214. [PMID: 35675815 PMCID: PMC9233049 DOI: 10.1016/j.molcel.2022.05.018] [Citation(s) in RCA: 265] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Macromolecular phase separation is being recognized for its potential importance and relevance as a driver of spatial organization within cells. Here, we describe a framework based on synergies between networking (percolation or gelation) and density (phase separation) transitions. Accordingly, the phase transitions in question are referred to as phase separation coupled to percolation (PSCP). The condensates that result from PSCP are viscoelastic network fluids. Such systems have sequence-, composition-, and topology-specific internal network structures that give rise to time-dependent interplays between viscous and elastic properties. Unlike pure phase separation, the process of PSCP gives rise to sequence-, chemistry-, and structure-specific distributions of clusters that can form at concentrations that lie well below the threshold concentration for phase separation. PSCP, influenced by specific versus solubility-determining interactions, also provides a bridge between different observations and helps answer questions and address challenges that have arisen regarding the role of macromolecular phase separation in biology.
Collapse
Affiliation(s)
- Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
63
|
Li J, Zhang M, Ma W, Yang B, Lu H, Zhou F, Zhang L. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. MOLECULAR BIOMEDICINE 2022; 3:13. [PMID: 35543798 PMCID: PMC9092326 DOI: 10.1186/s43556-022-00075-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) has received significant attention in recent biological studies. It refers to a phenomenon that biomolecule exceeds the solubility, condensates and separates itself from solution in liquid like droplets formation. Our understanding of it has also changed from memebraneless organelles to compartmentalization, muti-functional crucibles, and reaction regulators. Although this phenomenon has been employed for a variety of biological processes, recent studies mainly focus on its physiological significance, and the comprehensive research of the underlying physical mechanism is limited. The characteristics of side chains of amino acids and the interaction tendency of proteins function importantly in regulating LLPS thus should be pay more attention on. In addition, the importance of post-translational modifications (PTMs) has been underestimated, despite their abundance and crucial functions in maintaining the electrostatic balance. In this review, we first introduce the driving forces and protein secondary structures involved in LLPS and their different physical functions in cell life processes. Subsequently, we summarize the existing reports on PTM regulation related to LLPS and analyze the underlying basic principles, hoping to find some common relations between LLPS and PTM. Finally, we speculate several unreported PTMs that may have a significant impact on phase separation basing on the findings.
Collapse
Affiliation(s)
- Jingxian Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengdi Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
| | - Weirui Ma
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bing Yang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Huasong Lu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
64
|
Pedley AM, Boylan JP, Chan CY, Kennedy EL, Kyoung M, Benkovic SJ. Purine biosynthetic enzymes assemble into liquid-like condensates dependent on the activity of chaperone protein HSP90. J Biol Chem 2022; 298:101845. [PMID: 35307352 PMCID: PMC9034097 DOI: 10.1016/j.jbc.2022.101845] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/18/2023] Open
Abstract
Enzymes within the de novo purine biosynthetic pathway spatially organize into dynamic intracellular assemblies called purinosomes. The formation of purinosomes has been correlated with growth conditions resulting in high purine demand, and therefore, the cellular advantage of complexation has been hypothesized to enhance metabolite flux through the pathway. However, the properties of this cellular structure are unclear. Here, we define the purinosome in a transient expression system as a biomolecular condensate using fluorescence microscopy. We show that purinosomes, as denoted by formylglycinamidine ribonucleotide synthase granules in purine-depleted HeLa cells, are spherical and appear to coalesce when two come into contact, all liquid-like characteristics that are consistent with previously reported condensates. We further explored the biophysical and biochemical means that drive the liquid-liquid phase separation of these structures. We found that the process of enzyme condensation into purinosomes is likely driven by the oligomeric state of the pathway enzymes and not a result of intrinsic disorder, the presence of low-complexity domains, the assistance of RNA scaffolds, or changes in intracellular pH. Finally, we demonstrate that the heat shock protein 90 KDa helps to regulate the physical properties of the condensate and maintain their liquid-like state inside HeLa cells. We show that disruption of heat shock protein 90 KDa activity induced the transformation of formylglycinamidine ribonucleotide synthase clusters into more irregularly shaped condensates, suggesting that its chaperone activity is essential for purinosomes to retain their liquid-like properties. This refined view of the purinosome offers new insight into how metabolic enzymes spatially organize into dynamic condensates within human cells.
Collapse
Affiliation(s)
- Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jack P Boylan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chung Yu Chan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erin L Kennedy
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
65
|
Huang X, Xiao N, Zou Y, Xie Y, Tang L, Zhang Y, Yu Y, Li Y, Xu C. Heterotypic transcriptional condensates formed by prion-like paralogous proteins canalize flowering transition in tomato. Genome Biol 2022; 23:78. [PMID: 35287709 PMCID: PMC8919559 DOI: 10.1186/s13059-022-02646-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Paralogs that arise from gene duplications during genome evolution enable genetic redundancy and phenotypic robustness. Variation in the coding or regulatory sequence of paralogous transcriptional regulators diversifies their functions and relationships, which provides developmental robustness against genetic or environmental perturbation. The fate transition of plant shoot stem cells for flowering and reproductive success requires a robust transcriptional control. However, how paralogs function and interact to achieve such robustness is unknown. RESULTS Here, we explore the genetic relationship and protein behavior of ALOG family transcriptional factors with diverse transcriptional abundance in shoot meristems. A mutant spectrum covers single and higher-order mutant combinations of five ALOG paralogs and creates a continuum of flowering transition defects, showing gradually enhanced precocious flowering, along with inflorescence simplification from wild-type-like to progressively fewer flowers until solitary flower with sterile floral organs. Therefore, these paralogs play unequal roles and act together to achieve a robust genetic canalization. All five proteins contain prion-like intrinsically disordered regions (IDRs) and undergo phase separation. Accumulated mutations following gene duplications lead to IDR variations among ALOG paralogs, resulting in divergent phase separation and transcriptional regulation capabilities. Remarkably, they retain the ancestral abilities to assemble into a heterotypic condensate that prevents precocious activation of the floral identity gene ANANTHA. CONCLUSIONS Our study reveals a novel genetic canalization mechanism enabled by heterotypic transcriptional condensates formed by paralogous protein interactions and phase separation, uncovering the molecular link between gene duplication caused IDR variation and robust transcriptional control of stem cell fate transition.
Collapse
Affiliation(s)
- Xiaozhen Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Nan Xiao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yupan Zou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yue Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lingli Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqin Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Coastal Agricultural Sciences Guangdong Ocean University, Zhanjiang, China
| | - Yuan Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
66
|
Yoo H, Bard JA, Pilipenko E, Drummond DA. Chaperones directly and efficiently disperse stress-triggered biomolecular condensates. Mol Cell 2022; 82:741-755.e11. [PMID: 35148816 PMCID: PMC8857057 DOI: 10.1016/j.molcel.2022.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022]
Abstract
Stresses such as heat shock trigger the formation of protein aggregates and the induction of a disaggregation system composed of molecular chaperones. Recent work reveals that several cases of apparent heat-induced aggregation, long thought to be the result of toxic misfolding, instead reflect evolved, adaptive biomolecular condensation, with chaperone activity contributing to condensate regulation. Here we show that the yeast disaggregation system directly disperses heat-induced biomolecular condensates of endogenous poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used misfolded model substrate, firefly luciferase. Beyond its efficiency, heat-induced condensate dispersal differs from heat-induced aggregate dispersal in its molecular requirements and mechanistic behavior. Our work establishes a bona fide endogenous heat-induced substrate for long-studied heat shock proteins, isolates a specific example of chaperone regulation of condensates, and underscores needed expansion of the proteotoxic interpretation of the heat shock response to encompass adaptive, chaperone-mediated regulation.
Collapse
Affiliation(s)
- Haneul Yoo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jared A.M. Bard
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Evgeny Pilipenko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA,Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA,Lead Contact,Correspondence: (D.A.D.)
| |
Collapse
|
67
|
Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-Guevara R. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Comput Biol 2022; 18:e1009810. [PMID: 35108264 PMCID: PMC8896709 DOI: 10.1371/journal.pcbi.1009810] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/04/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jorge R. Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jerelle A. Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| |
Collapse
|
68
|
Romero AM, García-Martínez J, Pérez-Ortín JE, Martínez-Pastor MT, Puig S. Changes in mRNA stability play an important role in the adaptation of yeast cells to iron deprivation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194800. [PMID: 35218933 DOI: 10.1016/j.bbagrm.2022.194800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Eukaryotic cells rely on iron as an indispensable cofactor for multiple biological functions including mitochondrial respiration and protein synthesis. The budding yeast Saccharomyces cerevisiae utilizes both transcriptional and posttranscriptional mechanisms to couple mRNA levels to the requirements of iron deprivation. Thus, in response to iron deficiency, transcription factors Aft1 and Aft2 activate the expression of genes implicated in iron acquisition and mobilization, whereas two mRNA-binding proteins, Cth1 and Cth2, posttranscriptionally control iron metabolism. By using a genome-wide approach, we describe here a global stabilization of mRNAs, including transcripts encoding ribosomal proteins (RPs), when iron bioavailability diminishes. mRNA decay assays indicate that the mRNA-binding protein Pub1 contributes to RP transcript stabilization during adaptation to iron limitation. In fact, Pub1 becomes critical for growth and translational repression in low-iron conditions. Remarkably, we observe that pub1Δ cells also exhibit an increase in the transcription of RP genes that evidences the crosstalk between transcription and degradation mechanisms to maintain the appropriate mRNA balance under iron deficiency conditions.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| | - José García-Martínez
- Departamento de Genética, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - José Enrique Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain; Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Ave. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
69
|
Chatterjee S, Kan Y, Brzezinski M, Koynov K, Regy RM, Murthy AC, Burke KA, Michels JJ, Mittal J, Fawzi NL, Parekh SH. Reversible Kinetic Trapping of FUS Biomolecular Condensates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104247. [PMID: 34862761 PMCID: PMC8811844 DOI: 10.1002/advs.202104247] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 05/13/2023]
Abstract
Formation of membrane-less organelles by self-assembly of disordered proteins can be triggered by external stimuli such as pH, salt, or temperature. These organelles, called biomolecular condensates, have traditionally been classified as liquids, gels, or solids with limited subclasses. Here, the authors show that a thermal trigger can lead to formation of at least two distinct liquid condensed phases of the fused in sarcoma low complexity (FUS LC) domain. Forming FUS LC condensates directly at low temperature leads to formation of metastable, kinetically trapped condensates that show arrested coalescence, escape from which to untrapped condensates can be achieved via thermal annealing. Using experimental and computational approaches, the authors find that molecular structure of interfacial FUS LC in kinetically trapped condensates is distinct (more β-sheet like) compared to untrapped FUS LC condensates. Moreover, molecular motion within kinetically trapped condensates is substantially slower compared to that in untrapped condensates thereby demonstrating two unique liquid FUS condensates. Controlling condensate thermodynamic state, stability, and structure with a simple thermal switch may contribute to pathological protein aggregate stability and provides a facile method to trigger condensate mixing for biotechnology applications.
Collapse
Affiliation(s)
- Sayantan Chatterjee
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Yelena Kan
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- LUT School of Engineering ScienceLUT UniversityYliopistonkatu 34Lappeenranta53850Finland
| | - Mateusz Brzezinski
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Roshan Mammen Regy
- Artie McFerrin Department of Chemical EngineeringTexas A&M University200 Jack E. Brown Engineering BuildingCollege StationTX77843USA
| | - Anastasia C. Murthy
- Department of Molecular Biology, Cell Biology, and BiochemistryBrown University70 Ship StreetProvidenceRI02912USA
| | - Kathleen A. Burke
- Department of Molecular Biology, Cell Biology, and BiochemistryBrown University70 Ship StreetProvidenceRI02912USA
| | - Jasper J. Michels
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical EngineeringTexas A&M University200 Jack E. Brown Engineering BuildingCollege StationTX77843USA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology, and BiochemistryBrown University70 Ship StreetProvidenceRI02912USA
| | - Sapun H. Parekh
- Department of Biomedical EngineeringUniversity of Texas at Austin107 W. Dean Keeton Rd.AustinTX78712USA
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
70
|
Differential Interactions of Molecular Chaperones and Yeast Prions. J Fungi (Basel) 2022; 8:jof8020122. [PMID: 35205876 PMCID: PMC8877571 DOI: 10.3390/jof8020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Baker’s yeast Saccharomyces cerevisiae is an important model organism that is applied to study various aspects of eukaryotic cell biology. Prions in yeast are self-perpetuating heritable protein aggregates that can be leveraged to study the interaction between the protein quality control (PQC) machinery and misfolded proteins. More than ten prions have been identified in yeast, of which the most studied ones include [PSI+], [URE3], and [PIN+]. While all of the major molecular chaperones have been implicated in propagation of yeast prions, many of these chaperones differentially impact propagation of different prions and/or prion variants. In this review, we summarize the current understanding of the life cycle of yeast prions and systematically review the effects of different chaperone proteins on their propagation. Our analysis clearly shows that Hsp40 proteins play a central role in prion propagation by determining the fate of prion seeds and other amyloids. Moreover, direct prion-chaperone interaction seems to be critically important for proper recruitment of all PQC components to the aggregate. Recent results also suggest that the cell asymmetry apparatus, cytoskeleton, and cell signaling all contribute to the complex network of prion interaction with the yeast cell.
Collapse
|
71
|
Tejedor AR, Garaizar A, Ramírez J, Espinosa JR. 'RNA modulation of transport properties and stability in phase-separated condensates. Biophys J 2021; 120:5169-5186. [PMID: 34762868 DOI: 10.1101/2021.03.05.434111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 10/03/2021] [Indexed: 05/25/2023] Open
Abstract
One of the key mechanisms employed by cells to control their spatiotemporal organization is the formation and dissolution of phase-separated condensates. The balance between condensate assembly and disassembly can be critically regulated by the presence of RNA. In this work, we use a chemically-accurate sequence-dependent coarse-grained model for proteins and RNA to unravel the impact of RNA in modulating the transport properties and stability of biomolecular condensates. We explore the phase behavior of several RNA-binding proteins such as FUS, hnRNPA1, and TDP-43 proteins along with that of their corresponding prion-like domains and RNA recognition motifs from absence to moderately high RNA concentration. By characterizing the phase diagram, key molecular interactions, surface tension, and transport properties of the condensates, we report a dual RNA-induced behavior: on the one hand, RNA enhances phase separation at low concentration as long as the RNA radius of gyration is comparable to that of the proteins, whereas at high concentration, it inhibits the ability of proteins to self-assemble independently of its length. On the other hand, along with the stability modulation, the viscosity of the condensates can be considerably reduced at high RNA concentration as long as the length of the RNA chains is shorter than that of the proteins. Conversely, long RNA strands increase viscosity even at high concentration, but barely modify protein self-diffusion which mainly depends on RNA concentration and on the effect RNA has on droplet density. On the whole, our work rationalizes the different routes by which RNA can regulate phase separation and condensate dynamics, as well as the subsequent aberrant rigidification implicated in the emergence of various neuropathologies and age-related diseases.
Collapse
Affiliation(s)
- Andrés R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adiran Garaizar
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jorge R Espinosa
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
72
|
Tejedor AR, Garaizar A, Ramírez J, Espinosa JR. 'RNA modulation of transport properties and stability in phase-separated condensates. Biophys J 2021; 120:5169-5186. [PMID: 34762868 PMCID: PMC8715277 DOI: 10.1016/j.bpj.2021.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
One of the key mechanisms employed by cells to control their spatiotemporal organization is the formation and dissolution of phase-separated condensates. The balance between condensate assembly and disassembly can be critically regulated by the presence of RNA. In this work, we use a chemically-accurate sequence-dependent coarse-grained model for proteins and RNA to unravel the impact of RNA in modulating the transport properties and stability of biomolecular condensates. We explore the phase behavior of several RNA-binding proteins such as FUS, hnRNPA1, and TDP-43 proteins along with that of their corresponding prion-like domains and RNA recognition motifs from absence to moderately high RNA concentration. By characterizing the phase diagram, key molecular interactions, surface tension, and transport properties of the condensates, we report a dual RNA-induced behavior: on the one hand, RNA enhances phase separation at low concentration as long as the RNA radius of gyration is comparable to that of the proteins, whereas at high concentration, it inhibits the ability of proteins to self-assemble independently of its length. On the other hand, along with the stability modulation, the viscosity of the condensates can be considerably reduced at high RNA concentration as long as the length of the RNA chains is shorter than that of the proteins. Conversely, long RNA strands increase viscosity even at high concentration, but barely modify protein self-diffusion which mainly depends on RNA concentration and on the effect RNA has on droplet density. On the whole, our work rationalizes the different routes by which RNA can regulate phase separation and condensate dynamics, as well as the subsequent aberrant rigidification implicated in the emergence of various neuropathologies and age-related diseases.
Collapse
Affiliation(s)
- Andrés R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adiran Garaizar
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jorge R Espinosa
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
73
|
Li J, Chen K, Dong X, Xu Y, Sun Q, Wang H, Chen Z, Liu C, Liu R, Yang Z, Mei X, Zhang R, Chang L, Tian Z, Chen J, Liang K, He C, Luo M. YTHDF1 promotes mRNA degradation via YTHDF1-AGO2 interaction and phase separation. Cell Prolif 2021; 55:e13157. [PMID: 34821414 PMCID: PMC8780909 DOI: 10.1111/cpr.13157] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
Objectives YTHDF1 is known as a m6A reader protein, and many researches of YTHDF1 focused on the regulation of mRNA translation efficiency. However, YTHDF1 is also related to RNA degradation, but how YTHDF1 regulates mRNA degradation is indefinite. Liquid‐liquid phase separation (LLPS) underlies the formation of membraneless compartments in mammal cells, and there are few reports focused on the correlation of RNA degradation with LLPS. In this research, we focused on the mechanism of YTHDF1 degraded mRNA through LLPS. Materials and Methods The CRISPR/Cas9 knock out system was used to establish the YTHDF1 knock out (YTHDF1‐KO) cell lines (HEK293 and HeLa) and METTL14 knock out (METTL14‐KO) cell line (HEK293). 4SU‐TT‐seq was used to check the half‐life changes of mRNAs. Actinomycin D and qPCR were used to test the half‐life changes of individual mRNA. RNA was stained with SYTO RNA‐select dye in wild type (WT) and YTHDF1‐KO HeLa cell lines. Co‐localization of YTHDF1 and AGO2 was identified by immunofluorescence. The interaction domain of YTHDF1 and AGO2 was identified by western blot. Phase separation of YTHDF1 was performed in vitro and in vivo. Fluorescence recovery after photobleaching (FRAP) was performed on droplets as an assessment of their liquidity. Results In this research, we found that deletion of YTHDF1 led to massive RNA patches deposited in cytoplasm. The results of 4SU‐TT‐seq showed that deletion of YTHDF1 would prolong the half‐life of mRNAs. Immunofluorescence data showed that YTHDF1 and AGO2 could co‐localize in P‐body, and Co‐IP results showed that YTHDF1 could interact with AGO2 through YT521‐B homology (YTH) domain. We confirmed that YTHDF1 could undergo phase separation in vitro and in vivo, and compared with AGO2, YTHDF1 was more important in P‐body formation. The FRAP results showed that liquid AGO2 droplets would convert to gel/solid when YTHDF1 was deleted. As AGO2 plays important roles in miRISCs, we also found that miRNA‐mediate mRNA degradation is related to YTHDF1. Conclusions YTHDF1 recruits AGO2 through the YTH domain. YTHDF1 degrades targeting mRNAs by promoting P‐body formation through LLPS. The deletion of YTHDF1 causes the P‐body to change from liquid droplets to gel/solid droplets, and form AGO2/RNA patches, resulting in a degradation delay of mRNAs. These findings reveal a previously unrecognized crosstalk between YTHDF1 and AGO2, raising a new sight of mRNA post‐transcriptional regulation by YTHDF1.
Collapse
Affiliation(s)
- Jiong Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yating Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Honghong Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhen Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Cong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhe Yang
- College of Life Science, Liaoning University, Liaoning, China
| | - Xiangfei Mei
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Rongyu Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Liuping Chang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Zongwen Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jianjun Chen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Los Angeles, California, USA
| | - Kaiwei Liang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chunjiang He
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
74
|
Ginsawaeng O, Heise C, Sangwan R, Karcher D, Hernández-Sánchez IE, Sampathkumar A, Zuther E. Subcellular Localization of Seed-Expressed LEA_4 Proteins Reveals Liquid-Liquid Phase Separation for LEA9 and for LEA48 Homo- and LEA42-LEA48 Heterodimers. Biomolecules 2021; 11:biom11121770. [PMID: 34944414 PMCID: PMC8698616 DOI: 10.3390/biom11121770] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022] Open
Abstract
LEA proteins are involved in plant stress tolerance. In Arabidopsis, the LEA_4 Pfam group is the biggest group with the majority of its members being expressed in dry seeds. To assess subcellular localization in vivo, we investigated 11 seed-expressed LEA_4 proteins in embryos dissected from dry seeds expressing LEA_4 fusion proteins under its native promoters with the Venus fluorescent protein (proLEA_4::LEA_4:Venus). LEA_4 proteins were shown to be localized in the endoplasmic reticulum, nucleus, mitochondria, and plastids. LEA9, in addition to the nucleus, was also found in cytoplasmic condensates in dry seeds dependent on cellular hydration level. Most investigated LEA_4 proteins were detected in 4-d-old seedlings. In addition, we assessed bioinformatic tools for predicting subcellular localization and promoter motifs of 11 seed-expressed LEA_4 proteins. Ratiometric bimolecular fluorescence complementation assays showed that LEA7, LEA29, and LEA48 form homodimers while heterodimers were formed between LEA7-LEA29 and LEA42-LEA48 in tobacco leaves. Interestingly, LEA48 homodimers and LEA42-LEA48 heterodimers formed droplets structures with liquid-like behavior. These structures, along with LEA9 cytoplasmic condensates, may have been formed through liquid-liquid phase separation. These findings suggest possible important roles of LLPS for LEA protein functions.
Collapse
|
75
|
Li J, Cui P, Sun Q, Du Z, Chen Z, Li Z, Liu C, Cao Y, Yang Z, Liu R, Luo M. PSPC1 regulates CHK1 phosphorylation through phase separation and participates in mouse oocyte maturation. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1527-1537. [PMID: 34490876 DOI: 10.1093/abbs/gmab123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) underlies the formation of membraneless compartments in mammal cells. However, there are few reports that focus on the correlation of mouse oocyte maturation with LLPS. Previous studies have reported that paraspeckle component 1 (PSPC1) is related to the occurrence and development of tumors, but whether PSPC1 functions in mouse oocyte maturation is still unclear. Sequence analysis of PSPC1 protein showed that it contains a prion-like domain (PrLD) that is required for phase separation of proteins. In this study, we found that PSPC1 could undergo phase separation. Moreover, the loss of PrLD domain of PSPC1 could greatly weaken its phase separation ability. The immunofluorescence assays showed that PSPC1 is present in mouse oocytes in the germinal vesicle (GV) stage. Knockdown of PSPC1 significantly impeded the maturation of mouse oocytes in vitro. CHK1 has been reported to play important roles in the GV stage of mouse oocytes. Co-IP experiment revealed that PSPC1 could interact with phosphatase serine/threonine-protein phosphatase 5 (PPP5C), which regulates CHK1 phosphorylation. Western blot analysis revealed that PSPC1 could regulate the phosphorylation of CHK1 through PPP5C; however, PSPC1 without PrLD domain was inactive, suggesting that the lack of phase separation ability led to the abnormal function of PSPC1 in regulating CHK1 phosphorylation. Thus, we conclude that PSPC1 may undergo phase separation to regulate the phosphorylation level of CHK1 via PPP5C and participate in mouse oocyte maturation. Our study provides new insights into the mechanism of mouse oocyte maturation.
Collapse
Affiliation(s)
- Jiong Li
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430062, China
| | - Peng Cui
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430062, China
| | - Qi Sun
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430062, China
| | - Ziye Du
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430062, China
| | - Zhen Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430062, China
| | - Zejia Li
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430062, China
| | - Cong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430062, China
| | - Yuming Cao
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430062, China
| | - Zhe Yang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Rong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430062, China
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430062, China
| |
Collapse
|
76
|
Kar M, Posey AE, Dar F, Hyman AA, Pappu RV. Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils. Biochemistry 2021; 60:3213-3222. [PMID: 34648275 PMCID: PMC10715152 DOI: 10.1021/acs.biochem.1c00501] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycine-rich regions feature prominently in intrinsically disordered regions (IDRs) of proteins that drive phase separation and the regulated formation of membraneless biomolecular condensates. Interestingly, the Gly-rich IDRs seldom feature poly-Gly tracts. The protein fused in sarcoma (FUS) is an exception. This protein includes two 10-residue poly-Gly tracts within the prion-like domain (PLD) and at the interface between the PLD and the RNA binding domain. Poly-Gly tracts are known to be highly insoluble, being potent drivers of self-assembly into solid-like fibrils. Given that the internal concentrations of FUS and FUS-like molecules cross the high micromolar and even millimolar range within condensates, we reasoned that the intrinsic insolubility of poly-Gly tracts might be germane to emergent fluid-to-solid transitions within condensates. To assess this possibility, we characterized the concentration-dependent self-assembly for three non-overlapping 25-residue Gly-rich peptides derived from FUS. Two of the three peptides feature 10-residue poly-Gly tracts. These peptides form either long fibrils based on twisted ribbon-like structures or self-supporting gels based on physical cross-links of fibrils. Conversely, the peptide with similar Gly contents but lacking a poly-Gly tract does not form fibrils or gels. Instead, it remains soluble across a wide range of concentrations. Our findings highlight the ability of poly-Gly tracts within IDRs that drive phase separation to undergo self-assembly. We propose that these tracts are likely to contribute to nucleation of fibrillar solids within dense condensates formed by FUS.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), 01307 Dresden, Germany
| | - Ammon E. Posey
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Furqan Dar
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anthony A. Hyman
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), 01307 Dresden, Germany
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
77
|
Sankaranarayanan M, Emenecker RJ, Wilby EL, Jahnel M, Trussina IREA, Wayland M, Alberti S, Holehouse AS, Weil TT. Adaptable P body physical states differentially regulate bicoid mRNA storage during early Drosophila development. Dev Cell 2021; 56:2886-2901.e6. [PMID: 34655524 PMCID: PMC8555633 DOI: 10.1016/j.devcel.2021.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023]
Abstract
Ribonucleoprotein condensates can exhibit diverse physical states in vitro and in vivo. Despite considerable progress, the relevance of condensate physical states for in vivo biological function remains limited. Here, we investigated the physical properties of processing bodies (P bodies) and their impact on mRNA storage in mature Drosophila oocytes. We show that the conserved DEAD-box RNA helicase Me31B forms viscous P body condensates, which adopt an arrested physical state. We demonstrate that structurally distinct proteins and protein-protein interactions, together with RNA, regulate the physical properties of P bodies. Using live imaging and in situ hybridization, we show that the arrested state and integrity of P bodies support the storage of bicoid (bcd) mRNA and that egg activation modulates P body properties, leading to the release of bcd for translation in the early embryo. Together, this work provides an example of how physical states of condensates regulate cellular function in development.
Collapse
Affiliation(s)
- M Sankaranarayanan
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Elise L Wilby
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marcus Jahnel
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Irmela R E A Trussina
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Matt Wayland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
78
|
Jin X, Lee JE, Schaefer C, Luo X, Wollman AJM, Payne-Dwyer AL, Tian T, Zhang X, Chen X, Li Y, McLeish TCB, Leake MC, Bai F. Membraneless organelles formed by liquid-liquid phase separation increase bacterial fitness. SCIENCE ADVANCES 2021; 7:eabh2929. [PMID: 34669478 PMCID: PMC8528417 DOI: 10.1126/sciadv.abh2929] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/27/2021] [Indexed: 05/20/2023]
Abstract
Liquid-liquid phase separation is emerging as a crucial phenomenon in several fundamental cell processes. A range of eukaryotic systems exhibit liquid condensates. However, their function in bacteria, which, in general, lack membrane-bound compartments, remains less clear. Here, we used high-resolution optical microscopy to observe single bacterial aggresomes, nanostructured intracellular assemblies of proteins, to undercover their role in cell stress. We find that proteins inside aggresomes are mobile and undergo dynamic turnover, consistent with a liquid state. Our observations are in quantitative agreement with phase-separated liquid droplet formation driven by interacting proteins under thermal equilibrium that nucleate following diffusive collisions in the cytoplasm. We have found aggresomes in multiple species of bacteria and show that these emergent, metastable liquid-structured protein assemblies increase bacterial fitness by enabling cells to tolerate environmental stresses.
Collapse
Affiliation(s)
- Xin Jin
- Biomedical Pioneering Innovation Centre (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Ji-Eun Lee
- Department of Physics, University of York, York, UK
| | | | - Xinwei Luo
- Biomedical Pioneering Innovation Centre (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | | | - Alex L. Payne-Dwyer
- Department of Physics, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Tian Tian
- Biomedical Pioneering Innovation Centre (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xiaowei Zhang
- Biomedical Pioneering Innovation Centre (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xiao Chen
- Biomedical Pioneering Innovation Centre (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yingxing Li
- Biomedical Pioneering Innovation Centre (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Mark C. Leake
- Department of Physics, University of York, York, UK
- Department of Biology, University of York, York, UK
- Corresponding author. (F.B.); (M.C.L.)
| | - Fan Bai
- Biomedical Pioneering Innovation Centre (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
- Corresponding author. (F.B.); (M.C.L.)
| |
Collapse
|
79
|
Ghosh A, Kota D, Zhou HX. Shear relaxation governs fusion dynamics of biomolecular condensates. Nat Commun 2021; 12:5995. [PMID: 34645832 PMCID: PMC8514506 DOI: 10.1038/s41467-021-26274-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Phase-separated biomolecular condensates must respond agilely to biochemical and environmental cues in performing their wide-ranging cellular functions, but our understanding of condensate dynamics is lagging. Ample evidence now indicates biomolecular condensates as viscoelastic fluids, where shear stress relaxes at a finite rate, not instantaneously as in viscous liquids. Yet the fusion dynamics of condensate droplets has only been modeled based on viscous liquids, with fusion time given by the viscocapillary ratio (viscosity over interfacial tension). Here we used optically trapped polystyrene beads to measure the viscous and elastic moduli and the interfacial tensions of four types of droplets. Our results challenge the viscocapillary model, and reveal that the relaxation of shear stress governs fusion dynamics. These findings likely have implications for other dynamic processes such as multiphase organization, assembly and disassembly, and aging.
Collapse
Affiliation(s)
- Archishman Ghosh
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
80
|
Reversible amyloids of pyruvate kinase couple cell metabolism and stress granule disassembly. Nat Cell Biol 2021; 23:1085-1094. [PMID: 34616026 PMCID: PMC7611853 DOI: 10.1038/s41556-021-00760-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022]
Abstract
Cells respond to stress by blocking translation, rewiring metabolism and forming transient messenger ribonucleoprotein assemblies called stress granules (SGs). After stress release, re-establishing homeostasis and disassembling SGs requires ATP-consuming processes. However, the molecular mechanisms whereby cells restore ATP production and disassemble SGs after stress remain poorly understood. Here we show that upon stress, the ATP-producing enzyme Cdc19 forms inactive amyloids, and that their rapid re-solubilization is essential to restore ATP production and disassemble SGs in glucose-containing media. Cdc19 re-solubilization is initiated by the glycolytic metabolite fructose-1,6-bisphosphate, which directly binds Cdc19 amyloids, allowing Hsp104 and Ssa2 chaperone recruitment and aggregate re-solubilization. Fructose-1,6-bisphosphate then promotes Cdc19 tetramerization, which boosts its activity to further enhance ATP production and SG disassembly. Together, these results describe a molecular mechanism that is critical for stress recovery and directly couples cellular metabolism with SG dynamics via the regulation of reversible Cdc19 amyloids.
Collapse
|
81
|
Garaizar A, Espinosa JR. Salt dependent phase behavior of intrinsically disordered proteins from a coarse-grained model with explicit water and ions. J Chem Phys 2021; 155:125103. [PMID: 34598583 DOI: 10.1063/5.0062687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multivalent proteins and nucleic acids can self-assemble into biomolecular condensates that contribute to compartmentalize the cell interior. Computer simulations offer a unique view to elucidate the mechanisms and key intermolecular interactions behind the dynamic formation and dissolution of these condensates. In this work, we present a novel approach to include explicit water and salt in sequence-dependent coarse-grained (CG) models for proteins and RNA, enabling the study of biomolecular condensate formation in a salt-dependent manner. Our framework combines a reparameterized version of the HPS protein force field with the monoatomic mW water model and the mW-ion potential for NaCl. We show how our CG model qualitatively captures the experimental radius of the gyration trend of a subset of intrinsically disordered proteins and reproduces the experimental protein concentration and water percentage of the human fused in sarcoma (FUS) low-complexity-domain droplets at physiological salt concentration. Moreover, we perform seeding simulations as a function of salt concentration for two antagonist systems: the engineered peptide PR25 and poly-uridine/poly-arginine mixtures, finding good agreement with their reported in vitro phase behavior with salt concentration in both cases. Taken together, our work represents a step forward towards extending sequence-dependent CG models to include water and salt, and to consider their key role in biomolecular condensate self-assembly.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
82
|
Dannenmaier S, Desroches Altamirano C, Schüler L, Zhang Y, Hummel J, Milanov M, Oeljeklaus S, Koch HG, Rospert S, Alberti S, Warscheid B. Quantitative proteomics identifies the universally conserved ATPase Ola1p as a positive regulator of heat shock response in Saccharomyces cerevisiae. J Biol Chem 2021; 297:101050. [PMID: 34571008 PMCID: PMC8531669 DOI: 10.1016/j.jbc.2021.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
The universally conserved P-loop ATPase Ola1 is implicated in various cellular stress response pathways, as well as in cancer and tumor progression. However, Ola1p functions are divergent between species, and the involved mechanisms are only poorly understood. Here, we studied the role of Ola1p in the heat shock response of the yeast Saccharomyces cerevisiae using a combination of quantitative and pulse labeling-based proteomics approaches, in vitro studies, and cell-based assays. Our data show that when heat stress is applied to cells lacking Ola1p, the expression of stress-protective proteins is enhanced. During heat stress Ola1p associates with detergent-resistant protein aggregates and rapidly forms assemblies that localize to stress granules. The assembly of Ola1p was also observed in vitro using purified protein and conditions, which resembled those in living cells. We show that loss of Ola1p results in increased protein ubiquitination of detergent-insoluble aggregates recovered from heat-shocked cells. When cells lacking Ola1p were subsequently relieved from heat stress, reinitiation of translation was delayed, whereas, at the same time, de novo synthesis of central factors required for protein refolding and the clearance of aggregates was enhanced when compared with wild-type cells. The combined data suggest that upon acute heat stress, Ola1p is involved in the stabilization of misfolded proteins, which become sequestered in cytoplasmic stress granules. This function of Ola1p enables cells to resume translation in a timely manner as soon as heat stress is relieved.
Collapse
Affiliation(s)
- Stefan Dannenmaier
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Lisa Schüler
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Hummel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Milanov
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Simon Alberti
- BIOTEC and CMCB, Technische Universität Dresden, Dresden, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
83
|
Allen GE, Panasenko OO, Villanyi Z, Zagatti M, Weiss B, Pagliazzo L, Huch S, Polte C, Zahoran S, Hughes CS, Pelechano V, Ignatova Z, Collart MA. Not4 and Not5 modulate translation elongation by Rps7A ubiquitination, Rli1 moonlighting, and condensates that exclude eIF5A. Cell Rep 2021; 36:109633. [PMID: 34469733 DOI: 10.1016/j.celrep.2021.109633] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/18/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
In this work, we show that Not4 and Not5 from the Ccr4-Not complex modulate translation elongation dynamics and change ribosome A-site dwelling occupancy in a codon-dependent fashion. These codon-specific changes in not5Δ cells are very robust and independent of codon position within the mRNA, the overall mRNA codon composition, or changes of mRNA expression levels. They inversely correlate with codon-specific changes in cells depleted for eIF5A and positively correlate with those in cells depleted for ribosome-recycling factor Rli1. Not5 resides in punctate loci, co-purifies with ribosomes and Rli1, but not with eIF5A, and limits mRNA solubility. Overexpression of wild-type or non-complementing Rli1 and loss of Rps7A ubiquitination enable Not4 E3 ligase-dependent translation of polyarginine stretches. We propose that Not4 and Not5 modulate translation elongation dynamics to produce a soluble proteome by Rps7A ubiquitination, dynamic condensates that limit mRNA solubility and exclude eIF5A, and a moonlighting function of Rli1.
Collapse
Affiliation(s)
- George E Allen
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Zoltan Villanyi
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Marina Zagatti
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Lucile Pagliazzo
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Christine Polte
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Szabolcs Zahoran
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | | | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
84
|
The multiscale and multiphase organization of the transcriptome. Emerg Top Life Sci 2021; 4:265-280. [PMID: 32542380 DOI: 10.1042/etls20190187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Gene expression must be co-ordinated to cellular activity. From transcription to decay, the expression of millions of RNA molecules is highly synchronized. RNAs are covered by proteins that regulate every aspect of their cellular life: expression, storage, translational status, localization, and decay. Many RNAs and their associated regulatory proteins can coassemble to condense into liquid droplets, viscoelastic hydrogels, freeze into disorganized glass-like aggregates, or harden into quasi-crystalline solids. Phase separations provide a framework for transcriptome organization where the single functional unit is no longer a transcript but instead an RNA regulon. Here, we will analyze the interaction networks that underlie RNA super-assemblies, assess the complex multiscale, multiphase architecture of the transcriptome, and explore how the biophysical state of an RNA molecule can define its fate. Phase separations are emerging as critical routes for the epitranscriptomic control of gene expression.
Collapse
|
85
|
Corbet GA, Wheeler JR, Parker R, Weskamp K. TDP43 ribonucleoprotein granules: physiologic function to pathologic aggregates. RNA Biol 2021; 18:128-138. [PMID: 34412568 DOI: 10.1080/15476286.2021.1963099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Ribonucleoprotein (RNP) assemblies are ubiquitous in eukaryotic cells and have functions throughout RNA transcription, splicing, and stability. Of the RNA-binding proteins that form RNPs, TAR DNA-binding protein of 43 kD (TDP43) is of particular interest due to its essential nature and its association with disease. TDP43 plays critical roles in RNA metabolism, many of which require its recruitment to RNP granules such as stress granules, myo-granules, and neuronal transport granules. Moreover, the presence of cytoplasmic TDP43-positive inclusions is a pathological hallmark of several neurodegenerative diseases. Despite the pervasiveness of TDP43 aggregates, TDP43 mutations are exceedingly rare, suggesting that aggregation may be linked to dysregulation of TDP43 function. Oligomerization is a part of normal TDP43 function; thus, it is of interest to understand what triggers the irreversible aggregation that is seen in disease. Herein, we examine TDP43 functions, particularly in RNP granules, and the mechanisms which may explain pathological TDP43 aggregation.
Collapse
Affiliation(s)
- Giulia Ada Corbet
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,Department of Chemistry, Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | |
Collapse
|
86
|
Patni D, Jha SK. Protonation-Deprotonation Switch Controls the Amyloid-like Misfolding of Nucleic-Acid-Binding Domains of TDP-43. J Phys Chem B 2021; 125:8383-8394. [PMID: 34318672 DOI: 10.1021/acs.jpcb.1c03262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nutrient starvation stress acidifies the cytosol and leads to the formation of large protein assemblies and misfolded aggregates. However, how starvation stress is sensed at the molecular level and leads to protein misfolding is poorly understood. TDP-43 is a vital protein, which, under stress-like conditions, associates with stress granule proteins via its functional nucleic-acid-binding domains (TDP-43tRRM) and misfolds to form aberrant aggregates. Here, we show that the monomeric N form of TDP-43tRRM forms a misfolded amyloid-like protein assembly, β form, in a pH-dependent manner and identified the critical protein side-chain residue whose protonation triggers its misfolding. We systematically mutated the three buried ionizable residues, D105, H166, and H256, to neutral amino acids to block the pH-dependent protonation-deprotonation titration of their side chain and studied their effect on the N-to-β transition. We observed that D105A and H256Q resembled TDP-43tRRM in their pH-dependent misfolding behavior. However, H166Q retains the N-like secondary structure under low-pH conditions and does not show pH-dependent misfolding to the β form. These results indicate that H166 is the critical side-chain residue whose protonation triggers the misfolding of TDP-43tRRM and shed light on how stress-induced misfolding of proteins during neurodegeneration could begin from site-specific triggers.
Collapse
Affiliation(s)
- Divya Patni
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
87
|
Sanchez-Burgos I, Joseph JA, Collepardo-Guevara R, Espinosa JR. Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients. Sci Rep 2021; 11:15241. [PMID: 34315935 PMCID: PMC8316449 DOI: 10.1038/s41598-021-94309-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Biomolecular condensates are liquid-like membraneless compartments that contribute to the spatiotemporal organization of proteins, RNA, and other biomolecules inside cells. Some membraneless compartments, such as nucleoli, are dispersed as different condensates that do not grow beyond a certain size, or do not present coalescence over time. In this work, using a minimal protein model, we show that phase separation of binary mixtures of scaffolds and low-valency clients that can act as surfactants-i.e., that significantly reduce the droplet surface tension-can yield either a single drop or multiple droplets that conserve their sizes on long timescales (herein 'multidroplet size-conserved' scenario'), depending on the scaffold to client ratio. Our simulations demonstrate that protein connectivity and condensate surface tension regulate the balance between these two scenarios. The multidroplet size-conserved scenario spontaneously arises at increasing surfactant-to-scaffold concentrations, when the interfacial penalty for creating small liquid droplets is sufficiently reduced by the surfactant proteins that are preferentially located at the interface. In contrast, low surfactant-to-scaffold concentrations enable continuous growth and fusion of droplets without restrictions. Overall, our work proposes one thermodynamic mechanism to help rationalize how size-conserved coexisting condensates can persist inside cells-shedding light on the roles of protein connectivity, binding affinity, and droplet composition in this process.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
88
|
Nosella ML, Tereshchenko M, Pritišanac I, Chong PA, Toretsky JA, Lee HO, Forman-Kay JD. O-Linked- N-Acetylglucosaminylation of the RNA-Binding Protein EWS N-Terminal Low Complexity Region Reduces Phase Separation and Enhances Condensate Dynamics. J Am Chem Soc 2021; 143:11520-11534. [PMID: 34304571 DOI: 10.1021/jacs.1c04194] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many membraneless organelles are thought to be biomolecular condensates formed by phase separation of proteins and other biopolymers. Post-translational modifications (PTMs) can impact protein phase separation behavior, although for many PTMs this aspect of their function is unknown. O-linked β-D-N-acetylglucosaminylation (O-GlcNAcylation) is an abundant form of intracellular glycosylation whose roles in regulating biomolecular condensate assembly and dynamics have not been delineated. Using an in vitro approach, we found that O-GlcNAcylation reduces the phase separation propensity of the EWS N-terminal low complexity region (LCRN) under different conditions, including in the presence of the arginine- and glycine-rich RNA-binding domains (RBD). O-GlcNAcylation enhances fluorescence recovery after photobleaching (FRAP) within EWS LCRN condensates and causes the droplets to exhibit more liquid-like relaxation following fusion. Following extended incubation times, EWS LCRN+RBD condensates exhibit diminished FRAP, indicating a loss of fluidity, while condensates containing the O-GlcNAcylated LCRN do not. In HeLa cells, EWS is less O-GlcNAcylated following OGT knockdown, which correlates with its increased accumulation in a filter retardation assay. Relative to the human proteome, O-GlcNAcylated proteins are enriched with regions that are predicted to phase separate, suggesting a general role of O-GlcNAcylation in regulation of biomolecular condensates.
Collapse
Affiliation(s)
- Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Iva Pritišanac
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - P Andrew Chong
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, D.C. 20057, United States
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
89
|
Posey AE, Ruff KM, Lalmansingh JM, Kandola TS, Lange JJ, Halfmann R, Pappu RV. Mechanistic Inferences From Analysis of Measurements of Protein Phase Transitions in Live Cells. J Mol Biol 2021; 433:166848. [PMID: 33539877 PMCID: PMC8561728 DOI: 10.1016/j.jmb.2021.166848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The combination of phase separation and disorder-to-order transitions can give rise to ordered, semi-crystalline fibrillar assemblies that underlie prion phenomena namely, the non-Mendelian transfer of information across cells. Recently, a method known as Distributed Amphifluoric Förster Resonance Energy Transfer (DAmFRET) was developed to study the convolution of phase separation and disorder-to-order transitions in live cells. In this assay, a protein of interest is expressed to a broad range of concentrations and the acquisition of local density and order, measured by changes in FRET, is used to map phase transitions for different proteins. The high-throughput nature of this assay affords the promise of uncovering sequence-to-phase behavior relationships in live cells. Here, we report the development of a supervised method to obtain automated and accurate classifications of phase transitions quantified using the DAmFRET assay. Systems that we classify as undergoing two-state discontinuous transitions are consistent with prion-like behaviors, although the converse is not always true. We uncover well-established and surprising new sequence features that contribute to two-state phase behavior of prion-like domains. Additionally, our method enables quantitative, comparative assessments of sequence-specific driving forces for phase transitions in live cells. Finally, we demonstrate that a modest augmentation of DAmFRET measurements, specifically time-dependent protein expression profiles, can allow one to apply classical nucleation theory to extract sequence-specific lower bounds on the probability of nucleating ordered assemblies. Taken together, our approaches lead to a useful analysis pipeline that enables the extraction of mechanistic inferences regarding phase transitions in live cells.
Collapse
Affiliation(s)
- Ammon E Posey
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jared M Lalmansingh
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tejbir S Kandola
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
90
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. J Neuropathol Exp Neurol 2021; 80:494-513. [PMID: 33860329 PMCID: PMC8177850 DOI: 10.1093/jnen/nlab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins. This protein aggregation suggests that abnormal proteostasis contributes to aging-related neurodegeneration. A better fundamental understanding of proteins that regulate proteostasis may provide insight into the pathophysiology of neurodegenerative disease and may perhaps reveal novel therapeutic opportunities. The 26S proteasome is the key effector of the ubiquitin-proteasome system responsible for degrading polyubiquitinated proteins. However, additional factors, such as valosin-containing protein (VCP/p97/Cdc48) and C9orf72, play a role in regulation and trafficking of substrates through the normal proteostasis systems of a cell. Nonhuman AAA+ ATPases, such as the disaggregase Hsp104, also provide insights into the biochemical processes that regulate protein aggregation. X-ray crystallography and cryo-electron microscopy (cryo-EM) structures not bound to substrate have provided meaningful information about the 26S proteasome, VCP, and Hsp104. However, recent cryo-EM structures bound to substrate have provided new information about the function and mechanism of these proteostasis factors. Cryo-EM and cryo-electron tomography data combined with biochemical data have also increased the understanding of C9orf72 and its role in maintaining proteostasis. These structural insights provide a foundation for understanding proteostasis mechanisms with near-atomic resolution upon which insights can be gleaned regarding the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
91
|
Wiedner HJ, Giudice J. It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol 2021; 28:465-473. [PMID: 34099940 PMCID: PMC8787349 DOI: 10.1038/s41594-021-00601-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Biomolecular condensates that form via phase separation are increasingly regarded as coordinators of cellular reactions that regulate a wide variety of biological phenomena. Mounting evidence suggests that multiple steps of the RNA life cycle are organized within RNA-binding protein-rich condensates. In this Review, we discuss recent insights into the influence of phase separation on RNA biology, which has implications for basic cell biology, the pathogenesis of human diseases and the development of novel therapies.
Collapse
Affiliation(s)
- Hannah J Wiedner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
92
|
Onoguchi-Mizutani R, Kirikae Y, Ogura Y, Gutschner T, Diederichs S, Akimitsu N. Identification of a heat-inducible novel nuclear body containing the long noncoding RNA MALAT1. J Cell Sci 2021; 134:268337. [PMID: 34028540 DOI: 10.1242/jcs.253559] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/29/2021] [Indexed: 11/20/2022] Open
Abstract
The heat-shock response is critical for the survival of all organisms. Metastasis-associated long adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA localized in nuclear speckles, but its physiological role remains elusive. Here, we show that heat shock induces translocation of MALAT1 to a distinct nuclear body named the heat shock-inducible noncoding RNA-containing nuclear (HiNoCo) body in mammalian cells. MALAT1-knockout A549 cells showed reduced proliferation after heat shock. The HiNoCo body, which is formed adjacent to nuclear speckles, is distinct from any other known nuclear bodies, including the nuclear stress body, Cajal body, germs, paraspeckles, nucleoli and promyelocytic leukemia body. The formation of HiNoCo body is reversible and independent of heat shock factor 1, the master transcription regulator of the heat-shock response. Our results suggest the HiNoCo body participates in heat shock factor 1-independent heat-shock responses in mammalian cells.
Collapse
Affiliation(s)
| | - Yoshitaka Kirikae
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yoko Ogura
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Tony Gutschner
- Junior Research Group 'RNA Biology and Pathogenesis', Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, 79106 Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | |
Collapse
|
93
|
Malcova I, Senohrabkova L, Novakova L, Hasek J. eIF3a Destabilization and TDP-43 Alter Dynamics of Heat-Induced Stress Granules. Int J Mol Sci 2021; 22:ijms22105164. [PMID: 34068231 PMCID: PMC8153170 DOI: 10.3390/ijms22105164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
Stress granules (SGs) are membrane-less assemblies arising upon various stresses in eukaryotic cells. They sequester mRNAs and proteins from stressful conditions and modulate gene expression to enable cells to resume translation and growth after stress relief. SGs containing the translation initiation factor eIF3a/Rpg1 arise in yeast cells upon robust heat shock (HS) at 46 °C only. We demonstrate that the destabilization of Rpg1 within the PCI domain in the Rpg1-3 variant leads to SGs assembly already at moderate HS at 42 °C. These are bona fide SGs arising upon translation arrest containing mRNAs, which are components of the translation machinery, and associating with P-bodies. HS SGs associate with endoplasmatic reticulum and mitochondria and their contact sites ERMES. Although Rpg1-3-labeled SGs arise at a lower temperature, their disassembly is delayed after HS at 46 °C. Remarkably, the delayed disassembly of HS SGs after the robust HS is reversed by TDP-43, which is a human protein connected with amyotrophic lateral sclerosis. TDP-43 colocalizes with HS SGs in yeast cells and facilitates cell regrowth after the stress relief. Based on our results, we propose yeast HS SGs labeled by Rpg1 and its variants as a novel model system to study functions of TDP-43 in stress granules disassembly.
Collapse
Affiliation(s)
- Ivana Malcova
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
- Correspondence: ; Tel.: +420-241062769
| | - Lenka Senohrabkova
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
- First Faculty of Medicine, Charles University, Katerinska 42, 12108 Prague, Czech Republic
| | - Lenka Novakova
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
| | - Jiri Hasek
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (L.S.); (L.N.); (J.H.)
| |
Collapse
|
94
|
Latham AP, Zhang B. Consistent Force Field Captures Homologue-Resolved HP1 Phase Separation. J Chem Theory Comput 2021; 17:3134-3144. [PMID: 33826337 PMCID: PMC8119372 DOI: 10.1021/acs.jctc.0c01220] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many proteins have been shown to function via liquid-liquid phase separation. Computational modeling could offer much needed structural details of protein condensates and reveal the set of molecular interactions that dictate their stability. However, the presence of both ordered and disordered domains in these proteins places a high demand on the model accuracy. Here, we present an algorithm to derive a coarse-grained force field, MOFF, which can model both ordered and disordered proteins with consistent accuracy. It combines maximum entropy biasing, least-squares fitting, and basic principles of energy landscape theory to ensure that MOFF recreates experimental radii of gyration while predicting the folded structures for globular proteins with lower energy. The theta temperature determined from MOFF separates ordered and disordered proteins at 300 K and exhibits a strikingly linear relationship with amino acid sequence composition. We further applied MOFF to study the phase behavior of HP1, an essential protein for post-translational modification and spatial organization of chromatin. The force field successfully resolved the structural difference of two HP1 homologues despite their high sequence similarity. We carried out large-scale simulations with hundreds of proteins to determine the critical temperature of phase separation and uncover multivalent interactions that stabilize higher-order assemblies. In all, our work makes significant methodological strides to connect theories of ordered and disordered proteins and provides a powerful tool for studying liquid-liquid phase separation with near-atomistic details.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
95
|
Sanulli S, Narlikar GJ. Generation and Biochemical Characterization of Phase-Separated Droplets Formed by Nucleic Acid Binding Proteins: Using HP1 as a Model System. Curr Protoc 2021; 1:e109. [PMID: 33950570 DOI: 10.1002/cpz1.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Liquid-liquid phase separation (LLPS) has been invoked as an underlying mechanism involved in the formation and function of several cellular membrane-less compartments. Given the explosion of studies in this field in recent years, it has become essential to converge on clear guidelines and methods to rigorously investigate LLPS and advance our understanding of this phenomenon. Here, we describe basic methods to (1) visualize droplets formed by nucleic acid binding proteins and (2) characterize the liquid-like nature of these droplets under controlled in vitro experimental conditions. We discuss the rationale behind these methods, as well as caveats and limitations. Our ultimate goal is to guide scientists interested in learning how to test for LLPS, while appreciating that the field is evolving rapidly and adjusting constantly to the growing knowledge. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Observing phase-separated condensates by microscopy. Support Protocol: Coating of glass-bottom plates. Basic Protocol 2: Assessing condensate reversibility by changing ionic strength. Alternate Protocol 1: Assessing condensate reversibility by dilution. Alternate Protocol 2: Assessing condensate reversibility by altering temperature. Basic Protocol 3: Quantifying phase separation by centrifugation assay. Basic Protocol 4: Quantifying phase separation by turbidity assay.
Collapse
Affiliation(s)
- Serena Sanulli
- Department of Genetics, Stanford University, Palo Alto, California
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California
| |
Collapse
|
96
|
Huang X, Chen S, Li W, Tang L, Zhang Y, Yang N, Zou Y, Zhai X, Xiao N, Liu W, Li P, Xu C. ROS regulated reversible protein phase separation synchronizes plant flowering. Nat Chem Biol 2021; 17:549-557. [PMID: 33633378 DOI: 10.1038/s41589-021-00739-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
How aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear. Here, we reveal that developmentally produced H2O2 in plant shoot apical meristem (SAM) triggers reversible protein phase separation of TERMINATING FLOWER (TMF), a transcription factor that times flowering transition in the tomato by repressing pre-maturation of SAM. Cysteine residues within TMF sense cellular redox to form disulfide bonds that concatenate multiple TMF molecules and elevate the amount of intrinsically disordered regions to drive phase separation. Oxidation triggered phase separation enables TMF to bind and sequester the promoter of a floral identity gene ANANTHA to repress its expression. The reversible transcriptional condensation via redox-regulated phase separation endows aerobic organisms with the flexibility of gene control in dealing with developmental cues.
Collapse
Affiliation(s)
- Xiaozhen Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shudong Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weiping Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingli Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqin Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Ning Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yupan Zou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiawan Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Nan Xiao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
97
|
Hamey JJ, Nguyen A, Wilkins MR. Discovery of Arginine Methylation, Phosphorylation, and Their Co-occurrence in Condensate-Associated Proteins in Saccharomyces cerevisiae. J Proteome Res 2021; 20:2420-2434. [PMID: 33856219 DOI: 10.1021/acs.jproteome.0c00927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The formation of condensates in membraneless organelles is thought to be driven by protein phase separation. Arginine methylation and serine/threonine phosphorylation are important in the phase separation process; however, these post-translational modifications are often present in intrinsically disordered regions that are difficult to analyze with standard proteomic techniques. To understand their presence and co-occurrence in condensate-associated proteins, here, we use a multiprotease and multi-tandem mass spectrometry (MS/MS) fragmentation approach, coupled with heavy methyl stable isotope labeling of amino acids in cell culture (SILAC) and phospho- or methyl-peptide enrichment. For Saccharomyces cerevisiae, we report a 50% increase in the known arginine methylproteome, involving 15 proteins that are all condensate-associated. Importantly, some of these proteins have arginine methylation on all predicted sites-providing evidence that this modification can be pervasive. We explored whether arginine-methylated, condensate-associated proteins are also phosphorylated and found 12 such proteins to carry phosphorylated serine or threonine. In Npl3, Ded1, and Sbp1, single peptides were found to carry both modifications, indicating a co-occurrence in close proximity and on the same protein molecule. These co-modifications occur in regions of disorder, whereas arginine methylation is typically on regions of disorder that are also basic. For phosphorylation, its association with charged regions of condensate-associated proteins was less consistent, although some regions with multisite phosphorylation sites were strongly acidic. We conclude that arginine-methylated proteins associated with condensates are typically also modified with protein phosphorylation.
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Amy Nguyen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
98
|
Robles-Ramos MÁ, Zorrilla S, Alfonso C, Margolin W, Rivas G, Monterroso B. Assembly of bacterial cell division protein FtsZ into dynamic biomolecular condensates. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118986. [PMID: 33581219 PMCID: PMC8529516 DOI: 10.1016/j.bbamcr.2021.118986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022]
Abstract
Biomolecular condensation through phase separation may be a novel mechanism to regulate bacterial processes, including cell division. Previous work revealed that FtsZ, a protein essential for cytokinesis in most bacteria, forms biomolecular condensates with SlmA, a protein that protects the chromosome from damage inflicted by the division machinery in Escherichia coli. The absence of condensates composed solely of FtsZ under the conditions used in that study suggested this mechanism was restricted to nucleoid occlusion by SlmA or to bacteria containing this protein. Here we report that FtsZ alone, under physiologically relevant conditions, can demix into condensates in bulk and when encapsulated in synthetic cell-like systems generated by microfluidics. Condensate assembly depends on FtsZ being in the GDP-bound state and on conditions mimicking the crowded environment of the cytoplasm that promote its oligomerization. Condensates are dynamic and reversibly convert into filaments upon GTP addition. Notably, FtsZ lacking its C-terminal disordered region, a structural element likely to favor biomolecular condensation, also forms condensates, albeit less efficiently. The inherent tendency of FtsZ to form condensates susceptible to modulation by physiological factors, including binding partners, suggests that such mechanisms may play a more general role in bacterial division than initially envisioned.
Collapse
Affiliation(s)
- Miguel Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX 77030, USA
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.
| |
Collapse
|
99
|
Barrett J, Girr P, Mackinder LCM. Pyrenoids: CO 2-fixing phase separated liquid organelles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118949. [PMID: 33421532 DOI: 10.1016/j.bbamcr.2021.118949] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Pyrenoids are non-membrane bound organelles found in chloroplasts of algae and hornwort plants that can be seen by light-microscopy. Pyrenoids are formed by liquid-liquid phase separation (LLPS) of Rubisco, the primary CO2 fixing enzyme, with an intrinsically disordered multivalent Rubisco-binding protein. Pyrenoids are the heart of algal and hornwort biophysical CO2 concentrating mechanisms, which accelerate photosynthesis and mediate about 30% of global carbon fixation. Even though LLPS may underlie the apparent convergent evolution of pyrenoids, our current molecular understanding of pyrenoid formation comes from a single example, the model alga Chlamydomonas reinhardtii. In this review, we summarise current knowledge about pyrenoid assembly, regulation and structural organization in Chlamydomonas and highlight evidence that LLPS is the general principle underlying pyrenoid formation across algal lineages and hornworts. Detailed understanding of the principles behind pyrenoid assembly, regulation and structural organization within diverse lineages will provide a fundamental understanding of this biogeochemically important organelle and help guide ongoing efforts to engineer pyrenoids into crops to increase photosynthetic performance and yields.2.
Collapse
Affiliation(s)
- James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
100
|
Reynaud K, Brothers M, Ly M, Ingolia NT. Dynamic post-transcriptional regulation by Mrn1 links cell wall homeostasis to mitochondrial structure and function. PLoS Genet 2021; 17:e1009521. [PMID: 33857138 PMCID: PMC8079021 DOI: 10.1371/journal.pgen.1009521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
The RNA-binding protein Mrn1 in Saccharomyces cerevisiae targets over 300 messenger RNAs, including many involved in cell wall biogenesis. The impact of Mrn1 on these target transcripts is not known, however, nor is the cellular role for this regulation. We have shown that Mrn1 represses target mRNAs through the action of its disordered, asparagine-rich amino-terminus. Its endogenous targets include the paralogous SUN domain proteins Nca3 and Uth1, which affect mitochondrial and cell wall structure and function. While loss of MRN1 has no effect on fermentative growth, we found that mrn1Δ yeast adapt more quickly to respiratory conditions. These cells also have enlarged mitochondria in fermentative conditions, mediated in part by dysregulation of NCA3, and this may explain their faster switch to respiration. Our analyses indicated that Mrn1 acts as a hub for integrating cell wall integrity and mitochondrial biosynthesis in a carbon-source responsive manner.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| | - Molly Brothers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Nicholas T. Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|