51
|
Tain LS, Jain C, Nespital T, Froehlich J, Hinze Y, Grönke S, Partridge L. Longevity in response to lowered insulin signaling requires glycine N-methyltransferase-dependent spermidine production. Aging Cell 2020; 19:e13043. [PMID: 31721422 PMCID: PMC6974722 DOI: 10.1111/acel.13043] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/24/2019] [Accepted: 08/30/2019] [Indexed: 11/27/2022] Open
Abstract
Reduced insulin/IGF signaling (IIS) extends lifespan in multiple organisms. Different processes in different tissues mediate this lifespan extension, with a set of interplays that remain unclear. We here show that, in Drosophila, reduced IIS activity modulates methionine metabolism, through tissue-specific regulation of glycine N-methyltransferase (Gnmt), and that this regulation is required for full IIS-mediated longevity. Furthermore, fat body-specific expression of Gnmt was sufficient to extend lifespan. Targeted metabolomics showed that reducing IIS activity led to a Gnmt-dependent increase in spermidine levels. We also show that both spermidine treatment and reduced IIS activity are sufficient to extend the lifespan of Drosophila, but only in the presence of Gnmt. This extension of lifespan was associated with increased levels of autophagy. Finally, we found that increased expression of Gnmt occurs in the liver of liver-specific IRS1 KO mice and is thus an evolutionarily conserved response to reduced IIS. The discovery of Gnmt and spermidine as tissue-specific modulators of IIS-mediated longevity may aid in developing future therapeutic treatments to ameliorate aging and prevent disease.
Collapse
Affiliation(s)
- Luke S. Tain
- Max‐Planck Institute for Biology of AgeingCologneGermany
| | - Chirag Jain
- Max‐Planck Institute for Biology of AgeingCologneGermany
| | | | | | - Yvonne Hinze
- Max‐Planck Institute for Biology of AgeingCologneGermany
| | | | - Linda Partridge
- Max‐Planck Institute for Biology of AgeingCologneGermany
- Institute of Healthy Ageing, and GEEUCLLondonUK
| |
Collapse
|
52
|
Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep 2019; 20:e48395. [PMID: 31667999 PMCID: PMC6893295 DOI: 10.15252/embr.201948395] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are organized in the cell in the form of a dynamic, interconnected network. Mitochondrial dynamics, regulated by mitochondrial fission, fusion, and trafficking, ensure restructuring of this complex reticulum in response to nutrient availability, molecular signals, and cellular stress. Aberrant mitochondrial structures have long been observed in aging and age-related diseases indicating that mitochondrial dynamics are compromised as cells age. However, the specific mechanisms by which aging affects mitochondrial dynamics and whether these changes are causally or casually associated with cellular and organismal aging is not clear. Here, we review recent studies that show specifically how mitochondrial fission, fusion, and trafficking are altered with age. We discuss factors that change with age to directly or indirectly influence mitochondrial dynamics while examining causal roles for altered mitochondrial dynamics in healthy aging and underlying functional outputs that might affect longevity. Lastly, we propose that altered mitochondrial dynamics might not just be a passive consequence of aging but might constitute an adaptive mechanism to mitigate age-dependent cellular impairments and might be targeted to increase longevity and promote healthy aging.
Collapse
Affiliation(s)
- Arpit Sharma
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Hannah J Smith
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Pallas Yao
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - William B Mair
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| |
Collapse
|
53
|
Zivanovic J, Kouroussis E, Kohl JB, Adhikari B, Bursac B, Schott-Roux S, Petrovic D, Miljkovic JL, Thomas-Lopez D, Jung Y, Miler M, Mitchell S, Milosevic V, Gomes JE, Benhar M, Gonzalez-Zorn B, Ivanovic-Burmazovic I, Torregrossa R, Mitchell JR, Whiteman M, Schwarz G, Snyder SH, Paul BD, Carroll KS, Filipovic MR. Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metab 2019; 30:1152-1170.e13. [PMID: 31735592 PMCID: PMC7185476 DOI: 10.1016/j.cmet.2019.10.007] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/08/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
Abstract
Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation (S-sulfhydration) is a post-translational modification of reactive cysteine residues, which modulate protein structure and/or function. Persulfides are difficult to label and study due to their reactivity and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust persulfide labeling in biological samples with broad utility. Using this method, we show persulfidation is an evolutionarily conserved modification and waves of persulfidation are employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation preserving protein function. We report an age-associated decline in persulfidation that is conserved across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase persulfidation associate with increased longevity and improved capacity to cope with stress stimuli.
Collapse
Affiliation(s)
- Jasmina Zivanovic
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Emilia Kouroussis
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Joshua B Kohl
- Department of Biochemistry, Center for Molecular Medicine, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Bikash Adhikari
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Biljana Bursac
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Sonia Schott-Roux
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Dunja Petrovic
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Jan Lj Miljkovic
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Daniel Thomas-Lopez
- Departamento de Sanidad Animal, Facultad de Veterinaria and VISAVET, Universidad Complutense de Madrid, Madrid, Spain
| | - Youngeun Jung
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sarah Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Verica Milosevic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jose Eduardo Gomes
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Moran Benhar
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Bruno Gonzalez-Zorn
- Departamento de Sanidad Animal, Facultad de Veterinaria and VISAVET, Universidad Complutense de Madrid, Madrid, Spain
| | - Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, UK
| | - Guenter Schwarz
- Department of Biochemistry, Center for Molecular Medicine, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Milos R Filipovic
- CNRS, Institut de Biochimie et Génétique Cellulaires UMR5095, Université de Bordeaux, Bordeaux, France; Université de Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France.
| |
Collapse
|
54
|
Abstract
Ageing appears to be a nearly universal feature of life, ranging from unicellular microorganisms to humans. Longevity depends on the maintenance of cellular functionality, and an organism's ability to respond to stress has been linked to functional maintenance and longevity. Stress response pathways might indeed become therapeutic targets of therapies aimed at extending the healthy lifespan. Various progeroid syndromes have been linked to genome instability, indicating an important causal role of DNA damage accumulation in the ageing process and the development of age-related pathologies. Recently, non-cell-autonomous mechanisms including the systemic consequences of cellular senescence have been implicated in regulating organismal ageing. We discuss here the role of cellular and systemic mechanisms of ageing and their role in ageing-associated diseases.
Collapse
Affiliation(s)
- Paulo F L da Silva
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
55
|
Abstract
Cells and organisms grow old and die. We develop a biophysical model of the mechanism. Young cells are kept healthy by the positive processes of protein synthesis, degradation, and chaperoning (the activity of keeping proteins properly folded). But, with age, negative processes increase: Oxidative damage accumulates randomly in the cell’s proteins, healthy synthesis and degradation slow down, and—like overfilled garbage cans—chaperone capacity is exceeded. The chaperones are distracted trying to fold irreversibly damaged proteins, leading to accumulating misfolded and aggregated proteins in the cell. The tipping point to death happens when the negative overwhelms the positive. The model makes several quantitative predictions of the life span of the worm Caenorhabditis elegans. What molecular processes drive cell aging and death? Here, we model how proteostasis—i.e., the folding, chaperoning, and maintenance of protein function—collapses with age from slowed translation and cumulative oxidative damage. Irreparably damaged proteins accumulate with age, increasingly distracting the chaperones from folding the healthy proteins the cell needs. The tipping point to death occurs when replenishing good proteins no longer keeps up with depletion from misfolding, aggregation, and damage. The model agrees with experiments in the worm Caenorhabditis elegans that show the following: Life span shortens nonlinearly with increased temperature or added oxidant concentration, and life span increases in mutants having more chaperones or proteasomes. It predicts observed increases in cellular oxidative damage with age and provides a mechanism for the Gompertz-like rise in mortality observed in humans and other organisms. Overall, the model shows how the instability of proteins sets the rate at which damage accumulates with age and upends a cell’s normal proteostasis balance.
Collapse
|
56
|
Brenes A, Afzal V, Kent R, Lamond AI. The Encyclopedia of Proteome Dynamics: a big data ecosystem for (prote)omics. Nucleic Acids Res 2019; 46:D1202-D1209. [PMID: 28981707 PMCID: PMC5753345 DOI: 10.1093/nar/gkx807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/31/2017] [Indexed: 11/15/2022] Open
Abstract
Driven by improvements in speed and resolution of mass spectrometers (MS), the field of proteomics, which involves the large-scale detection and analysis of proteins in cells, tissues and organisms, continues to expand in scale and complexity. There is a resulting growth in datasets of both raw MS files and processed peptide and protein identifications. MS-based proteomics technology is also used increasingly to measure additional protein properties affecting cellular function and disease mechanisms, including post-translational modifications, protein-protein interactions, subcellular and tissue distributions. Consequently, biologists and clinicians need innovative tools to conveniently analyse, visualize and explore such large, complex proteomics data and to integrate it with genomics and other related large-scale datasets. We have created the Encyclopedia of Proteome Dynamics (EPD) to meet this need (https://peptracker.com/epd/). The EPD combines a polyglot persistent database and web-application that provides open access to integrated proteomics data for >30 000 proteins from published studies on human cells and model organisms. It is designed to provide a user-friendly interface, featuring graphical navigation with interactive visualizations that facilitate powerful data exploration in an intuitive manner. The EPD offers a flexible and scalable ecosystem to integrate proteomics data with genomics information, RNA expression and other related, large-scale datasets.
Collapse
Affiliation(s)
- Alejandro Brenes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St, Dundee DD1 5EH, UK
| | - Vackar Afzal
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St, Dundee DD1 5EH, UK
| | - Robert Kent
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St, Dundee DD1 5EH, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St, Dundee DD1 5EH, UK
| |
Collapse
|
57
|
Di Cara F, Andreoletti P, Trompier D, Vejux A, Bülow MH, Sellin J, Lizard G, Cherkaoui-Malki M, Savary S. Peroxisomes in Immune Response and Inflammation. Int J Mol Sci 2019; 20:ijms20163877. [PMID: 31398943 PMCID: PMC6721249 DOI: 10.3390/ijms20163877] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
The immune response is essential to protect organisms from infection and an altered self. An organism’s overall metabolic status is now recognized as an important and long-overlooked mediator of immunity and has spurred new explorations of immune-related metabolic abnormalities. Peroxisomes are essential metabolic organelles with a central role in the synthesis and turnover of complex lipids and reactive species. Peroxisomes have recently been identified as pivotal regulators of immune functions and inflammation in the development and during infection, defining a new branch of immunometabolism. This review summarizes the current evidence that has helped to identify peroxisomes as central regulators of immunity and highlights the peroxisomal proteins and metabolites that have acquired relevance in human pathologies for their link to the development of inflammation, neuropathies, aging and cancer. This review then describes how peroxisomes govern immune signaling strategies such as phagocytosis and cytokine production and their relevance in fighting bacterial and viral infections. The mechanisms by which peroxisomes either control the activation of the immune response or trigger cellular metabolic changes that activate and resolve immune responses are also described.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Pierre Andreoletti
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Doriane Trompier
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Anne Vejux
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Margret H Bülow
- Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Julia Sellin
- Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Gérard Lizard
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Mustapha Cherkaoui-Malki
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France.
| |
Collapse
|
58
|
Bouska M, Huang K, Kang P, Bai H. Organelle aging: Lessons from model organisms. J Genet Genomics 2019; 46:171-185. [PMID: 31080045 PMCID: PMC6553499 DOI: 10.1016/j.jgg.2019.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 01/07/2023]
Abstract
Most cellular processes descend into failure during aging. While a large collection of longevity pathways has been identified in the past decades, the mechanism for age-related decline of cellular homeostasis and organelle function remains largely unsolved. It is known that many organelles undergo structural and functional changes during normal aging, which significantly contributes to the decline of tissue function at old ages. Since recent studies have revealed an emerging role of organelles as regulatory hubs in maintaining cellular homeostasis, understanding of organelle aging will provide important insights into the cellular basis of organismal aging. Here we review current progress on the characterization of age-dependent structural and functional alterations in the more well-studied organelles, as well as the known mechanisms governing organelle aging in model organisms, with a special focus on the fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Mark Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
59
|
Son HG, Altintas O, Kim EJE, Kwon S, Lee SV. Age-dependent changes and biomarkers of aging in Caenorhabditis elegans. Aging Cell 2019; 18:e12853. [PMID: 30734981 PMCID: PMC6413654 DOI: 10.1111/acel.12853] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans is an exceptionally valuable model for aging research because of many advantages, including its genetic tractability, short lifespan, and clear age‐dependent physiological changes. Aged C. elegans display a decline in their anatomical and functional features, including tissue integrity, motility, learning and memory, and immunity. Caenorhabditis elegans also exhibit many age‐associated changes in the expression of microRNAs and stress‐responsive genes and in RNA and protein quality control systems. Many of these age‐associated changes provide information on the health of the animals and serve as valuable biomarkers for aging research. Here, we review the age‐dependent changes in C. elegans and their utility as aging biomarkers indicative of the physiological status of aging.
Collapse
Affiliation(s)
- Heehwa G. Son
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang South Korea
| | - Eun Ji E. Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Sujeong Kwon
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Seung‐Jae V. Lee
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang South Korea
| |
Collapse
|
60
|
Huang K, Chen W, Zhu F, Li PWL, Kapahi P, Bai H. RiboTag translatomic profiling of Drosophila oenocytes under aging and induced oxidative stress. BMC Genomics 2019; 20:50. [PMID: 30651069 PMCID: PMC6335716 DOI: 10.1186/s12864-018-5404-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, liver shows age-related dysregulation of lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. However, the mechanisms for these age-related changes still remain unclear. In the fruit fly, Drosophila melanogaster, liver-like functions are controlled by two distinct tissues, fat body and oenocytes. Compared to fat body, little is known about how oenocytes age and what are their roles in aging regulation. To characterize age- and stress-regulated gene expression in oenocytes, we performed cell-type-specific ribosome profiling (RiboTag) to examine the impacts of aging and oxidative stress on oenocyte translatome in Drosophila. RESULTS We show that aging and oxidant paraquat significantly increased the levels of reactive oxygen species (ROS) in adult oenocytes of Drosophila, and aged oenocytes exhibited reduced sensitivity to paraquat treatment. Through RiboTag sequencing, we identified 3324 and 949 differentially expressed genes in oenocytes under aging and paraquat treatment, respectively. Aging and paraquat exhibit both shared and distinct regulations on oenocyte translatome. Among all age-regulated genes, oxidative phosphorylation, ribosome, proteasome, fatty acid metabolism, and cytochrome P450 pathways were down-regulated, whereas DNA replication and immune response pathways were up-regulated. In addition, most of the peroxisomal genes were down-regulated in aged oenocytes, including genes involved in peroxisomal biogenesis factors and fatty acid beta-oxidation. Many age-related mRNA translational changes in oenocytes are similar to aged mammalian liver, such as up-regulation of innate immune response and Ras/MAPK signaling pathway and down-regulation of peroxisome and fatty acid metabolism. Furthermore, oenocytes highly expressed genes involving in liver-like processes (e.g., ketogenesis). CONCLUSIONS Our oenocyte-specific translatome analysis identified many genes and pathways that are shared between Drosophila oenocytes and mammalian liver, highlighting the molecular and functional similarities between the two tissues. Many of these genes were altered in both oenocytes and liver during aging. Thus, our translatome analysis provide important genomic resource for future dissection of oenocyte function and its role in lipid metabolism, stress response and aging regulation.
Collapse
Affiliation(s)
- Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Wenhao Chen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
61
|
Witting M, Hastings J, Rodriguez N, Joshi CJ, Hattwell JPN, Ebert PR, van Weeghel M, Gao AW, Wakelam MJO, Houtkooper RH, Mains A, Le Novère N, Sadykoff S, Schroeder F, Lewis NE, Schirra HJ, Kaleta C, Casanueva O. Modeling Meets Metabolomics-The WormJam Consensus Model as Basis for Metabolic Studies in the Model Organism Caenorhabditis elegans. Front Mol Biosci 2018; 5:96. [PMID: 30488036 PMCID: PMC6246695 DOI: 10.3389/fmolb.2018.00096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023] Open
Abstract
Metabolism is one of the attributes of life and supplies energy and building blocks to organisms. Therefore, understanding metabolism is crucial for the understanding of complex biological phenomena. Despite having been in the focus of research for centuries, our picture of metabolism is still incomplete. Metabolomics, the systematic analysis of all small molecules in a biological system, aims to close this gap. In order to facilitate such investigations a blueprint of the metabolic network is required. Recently, several metabolic network reconstructions for the model organism Caenorhabditis elegans have been published, each having unique features. We have established the WormJam Community to merge and reconcile these (and other unpublished models) into a single consensus metabolic reconstruction. In a series of workshops and annotation seminars this model was refined with manual correction of incorrect assignments, metabolite structure and identifier curation as well as addition of new pathways. The WormJam consensus metabolic reconstruction represents a rich data source not only for in silico network-based approaches like flux balance analysis, but also for metabolomics, as it includes a database of metabolites present in C. elegans, which can be used for annotation. Here we present the process of model merging, correction and curation and give a detailed overview of the model. In the future it is intended to expand the model toward different tissues and put special emphasizes on lipid metabolism and secondary metabolism including ascaroside metabolism in accordance to their central role in C. elegans physiology.
Collapse
Affiliation(s)
- Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universtität München, Freising, Germany
| | - Janna Hastings
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Nicolas Rodriguez
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Chintan J. Joshi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jake P. N. Hattwell
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R. Ebert
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Arwen W. Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | | | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Abraham Mains
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Nicolas Le Novère
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Sean Sadykoff
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | | | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Novo Nordisk Foundation Center for Biosustainability at University of California, San Diego, La Jolla, CA, United States
| | | | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Olivia Casanueva
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
62
|
Cascarina SM, Ross ED. Proteome-scale relationships between local amino acid composition and protein fates and functions. PLoS Comput Biol 2018; 14:e1006256. [PMID: 30248088 PMCID: PMC6171957 DOI: 10.1371/journal.pcbi.1006256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/04/2018] [Accepted: 08/16/2018] [Indexed: 11/26/2022] Open
Abstract
Proteins with low-complexity domains continue to emerge as key players in both normal and pathological cellular processes. Although low-complexity domains are often grouped into a single class, individual low-complexity domains can differ substantially with respect to amino acid composition. These differences may strongly influence the physical properties, cellular regulation, and molecular functions of low-complexity domains. Therefore, we developed a bioinformatic approach to explore relationships between amino acid composition, protein metabolism, and protein function. We find that local compositional enrichment within protein sequences is associated with differences in translation efficiency, abundance, half-life, protein-protein interaction promiscuity, subcellular localization, and molecular functions of proteins on a proteome-wide scale. However, local enrichment of related amino acids is sometimes associated with opposite effects on protein regulation and function, highlighting the importance of distinguishing between different types of low-complexity domains. Furthermore, many of these effects are discernible at amino acid compositions below those required for classification as low-complexity or statistically-biased by traditional methods and in the absence of homopolymeric amino acid repeats, indicating that thresholds employed by classical methods may not reflect biologically relevant criteria. Application of our analyses to composition-driven processes, such as the formation of membraneless organelles, reveals distinct composition profiles even for closely related organelles. Collectively, these results provide a unique perspective and detailed insights into relationships between amino acid composition, protein metabolism, and protein functions. Low-complexity domains in protein sequences are regions that are composed of only a few amino acids in the protein “alphabet”. These domains often have unique chemical properties and play important biological roles in both normal and disease-related processes. While a number of approaches have been developed to define low-complexity domains, these methods each possess conceptual limitations. Therefore, we developed a complementary approach that focuses on local amino acid composition (i.e. the amino acid composition within small regions of proteins). We find that high local composition of individual amino acids is associated with pervasive effects on protein metabolism, subcellular localization, and molecular function on a proteome-wide scale. Importantly, the nature of the effects depend on the type of amino acid enriched within the examined domains, and are observable in the absence of classically-defined low-complexity (and related) domains. Furthermore, we define the compositions of proteins involved in the formation of membraneless, protein-rich organelles such as stress granules and P-bodies. Our results provide a coherent view and unprecedented resolution of the effects of local amino acid enrichment on protein biology.
Collapse
Affiliation(s)
- Sean M. Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States of America
- * E-mail: (SMC); (EDR)
| | - Eric D. Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States of America
- * E-mail: (SMC); (EDR)
| |
Collapse
|
63
|
Denzel MS, Lapierre LR, Mack HID. Emerging topics in C. elegans aging research: Transcriptional regulation, stress response and epigenetics. Mech Ageing Dev 2018; 177:4-21. [PMID: 30134144 PMCID: PMC6696993 DOI: 10.1016/j.mad.2018.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Key discoveries in aging research have been made possible with the use of model organisms. Caenorhabditis elegans is a short-lived nematode that has become a well-established system to study aging. The practicality and powerful genetic manipulations associated with this metazoan have revolutionized our ability to understand how organisms age. 25 years after the publication of the discovery of the daf-2 gene as a genetic modifier of lifespan, C. elegans remains as relevant as ever in the quest to understand the process of aging. Nematode aging research has proven useful in identifying transcriptional regulators, small molecule signals, cellular mechanisms, epigenetic modifications associated with stress resistance and longevity, and lifespan-extending compounds. Here, we review recent discoveries and selected topics that have emerged in aging research using this incredible little worm.
Collapse
Affiliation(s)
- Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | | |
Collapse
|
64
|
Deori NM, Kale A, Maurya PK, Nagotu S. Peroxisomes: role in cellular ageing and age related disorders. Biogerontology 2018; 19:303-324. [PMID: 29968207 DOI: 10.1007/s10522-018-9761-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022]
Abstract
Peroxisomes are dynamic organelles essential for optimum functioning of a eukaryotic cell. Biogenesis of these organelles and the diverse functions performed by them have been extensively studied in the past decade. Their ability to perform functions depending on the cell type and growth conditions is unique and remarkable. Oxidation of fatty acids and reactive oxygen species metabolism are the two most important functions of these ubiquitous organelles. They are often referred to as both source and sink of reactive oxygen species in a cell. Recent research connects peroxisome dysfunction to fatal oxidative damage associated with ageing-related diseases/disorders. It is now widely accepted that mitochondria and peroxisomes are required to maintain oxidative balance in a cell. However, our understanding on the inter-dependence of these organelles to maintain cellular homeostasis of reactive oxygen species is still in its infancy. Herein, we summarize findings that highlight the role of peroxisomes in cellular reactive oxygen species metabolism, ageing and age-related disorders.
Collapse
Affiliation(s)
- Nayan M Deori
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Avinash Kale
- UM-DAE, Centre for Excellence in Basic Sciences, Health Centre, University of Mumbai, Mumbai, 400098, India
| | - Pawan K Maurya
- Interdisciplinary Laboratory for Clinical Neuroscience (LiNC), Universidade Federal de Sao Paulo-UNIFESP, Sao Paulo, Brazil
| | - Shirisha Nagotu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
65
|
Multilayered Reprogramming in Response to Persistent DNA Damage in C. elegans. Cell Rep 2018; 20:2026-2043. [PMID: 28854356 PMCID: PMC5583510 DOI: 10.1016/j.celrep.2017.08.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/30/2017] [Accepted: 08/04/2017] [Indexed: 11/23/2022] Open
Abstract
DNA damage causally contributes to aging and age-related diseases. Mutations in nucleotide excision repair (NER) genes cause highly complex congenital syndromes characterized by growth retardation, cancer susceptibility, and accelerated aging in humans. Orthologous mutations in Caenorhabditis elegans lead to growth delay, genome instability, and accelerated functional decline, thus allowing investigation of the consequences of persistent DNA damage during development and aging in a simple metazoan model. Here, we conducted proteome, lipidome, and phosphoproteome analysis of NER-deficient animals in response to UV treatment to gain comprehensive insights into the full range of physiological adaptations to unrepaired DNA damage. We derive metabolic changes indicative of a tissue maintenance program and implicate an autophagy-mediated proteostatic response. We assign central roles for the insulin-, EGF-, and AMPK-like signaling pathways in orchestrating the adaptive response to DNA damage. Our results provide insights into the DNA damage responses in the organismal context.
Collapse
|
66
|
|
67
|
Xia T, Horton ER, Salcini AE, Pocock R, Cox TR, Erler JT. Proteomic Characterization of Caenorhabditis elegans Larval Development. Proteomics 2017; 18. [PMID: 29178193 DOI: 10.1002/pmic.201700238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/03/2017] [Indexed: 11/06/2022]
Abstract
The nematode Caenorhabditis elegans is widely used as a model organism to study cell and developmental biology. Quantitative proteomics of C. elegans is still in its infancy and, so far, most studies have been performed on adult worm samples. Here, we used quantitative mass spectrometry to characterize protein level changes across the four larval developmental stages (L1-L4) of C. elegans. In total, we identified 4130 proteins, and quantified 1541 proteins that were present across all four stages in three biological replicates from independent experiments. Using hierarchical clustering and functional ontological analyses, we identified 21 clusters containing proteins with similar protein profiles across the four stages, and highlighted the most overrepresented biological functions in each of these protein clusters. In addition, we used the dataset to identify putative larval stage-specific proteins in each individual developmental stage, as well as in the early and late developmental stages. In summary, this dataset provides system-wide analysis of protein level changes across the four C. elegans larval developmental stages, which serves as a useful resource for the C. elegans research community. MS data were deposited in ProteomeXchange (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the primary accession identifier PXD006676.
Collapse
Affiliation(s)
- Tian Xia
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Edward R Horton
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - Roger Pocock
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Thomas R Cox
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Cancer Division, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Janine T Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
68
|
Weir HJ, Yao P, Huynh FK, Escoubas CC, Goncalves RL, Burkewitz K, Laboy R, Hirschey MD, Mair WB. Dietary Restriction and AMPK Increase Lifespan via Mitochondrial Network and Peroxisome Remodeling. Cell Metab 2017; 26:884-896.e5. [PMID: 29107506 PMCID: PMC5718936 DOI: 10.1016/j.cmet.2017.09.024] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/18/2017] [Accepted: 09/27/2017] [Indexed: 01/01/2023]
Abstract
Mitochondrial network remodeling between fused and fragmented states facilitates mitophagy, interaction with other organelles, and metabolic flexibility. Aging is associated with a loss of mitochondrial network homeostasis, but cellular processes causally linking these changes to organismal senescence remain unclear. Here, we show that AMP-activated protein kinase (AMPK) and dietary restriction (DR) promote longevity in C. elegans via maintaining mitochondrial network homeostasis and functional coordination with peroxisomes to increase fatty acid oxidation (FAO). Inhibiting fusion or fission specifically blocks AMPK- and DR-mediated longevity. Strikingly, however, preserving mitochondrial network homeostasis during aging by co-inhibition of fusion and fission is sufficient itself to increase lifespan, while dynamic network remodeling is required for intermittent fasting-mediated longevity. Finally, we show that increasing lifespan via maintaining mitochondrial network homeostasis requires FAO and peroxisomal function. Together, these data demonstrate that mechanisms that promote mitochondrial homeostasis and plasticity can be targeted to promote healthy aging.
Collapse
Affiliation(s)
- Heather J Weir
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Pallas Yao
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Frank K Huynh
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC 27701, USA
| | - Caroline C Escoubas
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Renata L Goncalves
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Raymond Laboy
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC 27701, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
69
|
Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging. Int J Mol Sci 2017; 18:ijms18112329. [PMID: 29113067 PMCID: PMC5713298 DOI: 10.3390/ijms18112329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 12/25/2022] Open
Abstract
DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.
Collapse
|
70
|
Ewald CY, Castillo-Quan JI, Blackwell TK. Untangling Longevity, Dauer, and Healthspan in Caenorhabditis elegans Insulin/IGF-1-Signalling. Gerontology 2017; 64:96-104. [PMID: 28934747 DOI: 10.1159/000480504] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/22/2017] [Indexed: 01/18/2023] Open
Abstract
The groundbreaking discovery that lower levels of insulin/IGF-1 signaling (IIS) can induce lifespan extension was reported 24 years ago in the nematode Caenorhabditis elegans. In this organism, mutations in the insulin/IGF-1 receptor gene daf-2 or other genes in this pathway can double lifespan. Subsequent work has revealed that reduced IIS (rIIS) extends lifespan across diverse species, possibly including humans. In C. elegans, IIS also regulates development into the diapause state known as dauer, a quiescent larval form that enables C. elegans to endure harsh environments through morphological adaptation, improved cellular repair, and slowed metabolism. Considerable progress has been made uncovering mechanisms that are affected by C. elegans rIIS. However, from the beginning it has remained unclear to what extent rIIS extends C. elegans lifespan by mobilizing dauer-associated mechanisms in adults. As we discuss, recent work has shed light on this question by determining that rIIS can extend C. elegans lifespan comparably through downstream processes that are either dauer-related or -independent. Importantly, these two lifespan extension programs can be distinguished genetically. It will now be critical to tease apart these programs, because each may involve different longevity-promoting mechanisms that may be relevant to higher organisms. A recent analysis of organismal "healthspan" has questioned the value of C. elegans rIIS as a paradigm for understanding healthy aging, as opposed to simply extending life. We discuss other work that argues strongly that C. elegans rIIS is indeed an invaluable model and consider the likely possibility that dauer-related processes affect parameters associated with health under rIIS conditions. Together, these studies indicate that C. elegans and analyses of rIIS in this organism will continue to provide unexpected and exciting results, and new paradigms that will be valuable for understanding healthy aging in humans.
Collapse
Affiliation(s)
- Collin Yvès Ewald
- Eidgenössische Technische Hochschule (ETH) Zürich, Health Sciences and Technology, Schwerzenbach, Switzerland
| | | | | |
Collapse
|
71
|
Wilhelm T, Byrne J, Medina R, Kolundžić E, Geisinger J, Hajduskova M, Tursun B, Richly H. Neuronal inhibition of the autophagy nucleation complex extends life span in post-reproductive C. elegans. Genes Dev 2017; 31:1561-1572. [PMID: 28882853 PMCID: PMC5630021 DOI: 10.1101/gad.301648.117] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Abstract
Here, Wilhelm et al. performed an RNAi screen in C. elegans to identify genes mediating post-reproductive longevity. They found that the inhibition of vesicle nucleation in the post-reproductive animal prevents age-associated neuronal degeneration, which leads to increased health and life span. Autophagy is a ubiquitous catabolic process that causes cellular bulk degradation of cytoplasmic components and is generally associated with positive effects on health and longevity. Inactivation of autophagy has been linked with detrimental effects on cells and organisms. The antagonistic pleiotropy theory postulates that some fitness-promoting genes during youth are harmful during aging. On this basis, we examined genes mediating post-reproductive longevity using an RNAi screen. From this screen, we identified 30 novel regulators of post-reproductive longevity, including pha-4. Through downstream analysis of pha-4, we identified that the inactivation of genes governing the early stages of autophagy up until the stage of vesicle nucleation, such as bec-1, strongly extend both life span and health span. Furthermore, our data demonstrate that the improvements in health and longevity are mediated through the neurons, resulting in reduced neurodegeneration and sarcopenia. We propose that autophagy switches from advantageous to harmful in the context of an age-associated dysfunction.
Collapse
Affiliation(s)
- Thomas Wilhelm
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Jonathan Byrne
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Rebeca Medina
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ena Kolundžić
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC), 13125 Berlin, Germany
| | - Johannes Geisinger
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Martina Hajduskova
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC), 13125 Berlin, Germany
| | - Baris Tursun
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC), 13125 Berlin, Germany
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
72
|
Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9860841. [PMID: 28811869 PMCID: PMC5546064 DOI: 10.1155/2017/9860841] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are the main intracellular sources for reactive oxygen species. At the same time, both organelles are critical for the maintenance of a healthy redox balance in the cell. Consequently, failure in the function of both organelles is causally linked to oxidative stress and accelerated aging. However, it has become clear that peroxisomes and mitochondria are much more intimately connected both physiologically and structurally. Both organelles share common fission components to dynamically respond to environmental cues, and the autophagic turnover of both peroxisomes and mitochondria is decisive for cellular homeostasis. Moreover, peroxisomes can physically associate with mitochondria via specific protein complexes. Therefore, the structural and functional connection of both organelles is a critical and dynamic feature in the regulation of oxidative metabolism, whose dynamic nature will be revealed in the future. In this review, we will focus on fundamental aspects of the peroxisome-mitochondria interplay derived from simple models such as yeast and move onto discussing the impact of an impaired peroxisomal and mitochondrial homeostasis on ROS production, aging, and disease in humans.
Collapse
|
73
|
Harvald EB, Sprenger RR, Dall KB, Ejsing CS, Nielsen R, Mandrup S, Murillo AB, Larance M, Gartner A, Lamond AI, Færgeman NJ. Multi-omics Analyses of Starvation Responses Reveal a Central Role for Lipoprotein Metabolism in Acute Starvation Survival in C. elegans. Cell Syst 2017; 5:38-52.e4. [PMID: 28734827 DOI: 10.1016/j.cels.2017.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/03/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Starvation causes comprehensive metabolic changes, which are still not fully understood. Here, we used quantitative proteomics and RNA sequencing to examine the temporal starvation responses in wild-type Caenorhabditis elegans and animals lacking the transcription factor HLH-30. Our findings show that starvation alters the abundance of hundreds of proteins and mRNAs in a temporal manner, many of which are involved in central metabolic pathways, including lipoprotein metabolism. We demonstrate that premature death of hlh-30 animals under starvation can be prevented by knockdown of either vit-1 or vit-5, encoding two different lipoproteins. We further show that the size and number of intestinal lipid droplets under starvation are altered in hlh-30 animals, which can be rescued by knockdown of vit-1. Taken together, this indicates that survival of hlh-30 animals under starvation is closely linked to regulation of intestinal lipid stores. We provide the most detailed poly-omic analysis of starvation responses to date, which serves as a resource for further mechanistic studies of starvation.
Collapse
Affiliation(s)
- Eva Bang Harvald
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Kathrine Brændgaard Dall
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Ronni Nielsen
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Alejandro Brenes Murillo
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Mark Larance
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
74
|
Dhondt I, Petyuk VA, Bauer S, Brewer HM, Smith RD, Depuydt G, Braeckman BP. Changes of Protein Turnover in Aging Caenorhabditis elegans. Mol Cell Proteomics 2017; 16:1621-1633. [PMID: 28679685 DOI: 10.1074/mcp.ra117.000049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
Protein turnover rates severely decline in aging organisms, including C. elegans However, limited information is available on turnover dynamics at the individual protein level during aging. We followed changes in protein turnover at one-day resolution using a multiple-pulse 15N-labeling and accurate mass spectrometry approach. Forty percent of the proteome shows gradual slowdown in turnover with age, whereas only few proteins show increased turnover. Decrease in protein turnover was consistent for only a minority of functionally related protein subsets, including tubulins and vitellogenins, whereas randomly diverging turnover patterns with age were the norm. Our data suggests increased heterogeneity of protein turnover of the translation machinery, whereas protein turnover of ubiquitin-proteasome and antioxidant systems are well-preserved over time. Hence, we presume that maintenance of quality control mechanisms is a protective strategy in aging worms, although the ultimate proteome collapse is inescapable.
Collapse
Affiliation(s)
- Ineke Dhondt
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium
| | - Vladislav A Petyuk
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sophie Bauer
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium
| | - Heather M Brewer
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Geert Depuydt
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium.,¶Laboratory for Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Bart P Braeckman
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium;
| |
Collapse
|
75
|
François JC, Aïd S, Chaker Z, Lacube P, Xu J, Fayad R, Côté F, Even P, Holzenberger M. Disrupting IGF Signaling in Adult Mice Conditions Leanness, Resilient Energy Metabolism, and High Growth Hormone Pulses. Endocrinology 2017; 158:2269-2283. [PMID: 28881863 DOI: 10.1210/en.2017-00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
Growth hormone (GH) and insulinlike growth factor (IGF) promote aging and age-related pathologies. Inhibiting this pathway by targeting IGF receptor (IGF-1R) is a promising strategy to extend life span, alleviate age-related diseases, and reduce tumor growth. Although anti-IGF-1R agents are being developed, long-term effects of IGF-1R blockade remain unknown. In this study, we used ubiquitous inducible IGF-1R knockout (UBIKOR) to suppress signaling in all adult tissues and screened health extensively. Surprisingly, UBIKOR mice showed no overt defects and presented with rather inconspicuous health, including normal cognition. Endocrine GH and IGF-1 were strongly upregulated without causing acromegaly. UBIKOR mice were strikingly lean with coordinate changes in body composition and organ size. They were insulin resistant but preserved physiological energy expenditure and displayed enhanced fasting metabolic flexibility. Thus, long-term IGF-1R blockade generated beneficial effects on aging-relevant metabolism, but exposed to high GH. This needs to be considered when targeting IGF-1R to protect from neurodegeneration, retard aging, or fight cancer.
Collapse
Affiliation(s)
| | - Saba Aïd
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| | - Zayna Chaker
- INSERM Research Center Unité 938, 75012 Paris, France
- Faculty of Medicine, University Paris Descartes, 75006 Paris, France
| | | | - Jie Xu
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| | - Racha Fayad
- INSERM Research Center Unité 938, 75012 Paris, France
- Faculty of Medicine, University Paris Descartes, 75006 Paris, France
| | - Francine Côté
- Institut Imagine INSERM Unité 1163/CNRS Equipe 8254, Necker Enfants Malades Hospital, 75015 Paris, France
| | - Patrick Even
- AgroParisTech, INRA, Université Paris Saclay, Nutrition Physiology and Ingestive Behavior Unité 914, 75005 Paris, France
| | - Martin Holzenberger
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| |
Collapse
|
76
|
Okada M, Kusunoki S, Ishibashi Y, Kito K. Proteomics analysis for asymmetric inheritance of preexisting proteins between mother and daughter cells in budding yeast. Genes Cells 2017; 22:591-601. [PMID: 28503907 DOI: 10.1111/gtc.12497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 11/28/2022]
Abstract
In budding yeast, a mother cell can produce a finite number of daughter cells over its life. The accumulation of a variety of types of damaged components has an impact on the aging process. Asymmetrical inheritance during cell division causes these aberrant intracellular constituents to be retained in mother cells and prevents them from segregating to daughter cells. However, the understanding of asymmetrical inheritance of individual proteins that are damaged or old age, and their relevance to the aging process, has been limited. The aim of this study is to propose a proteomics strategy for asymmetrical inheritance of preexisting proteins between mother and daughter cells. During synchronous culture for one generation, newly synthesized proteins were labeled with stable isotope amino acids to discriminate preexisting proteins originally expressed in mother cells, followed by separation of mother and daughter cells using a conventional method based on biotin labeling. Isotope incorporation ratios for individual proteins were quantified using mass spectrometry. We successfully identified 21 proteins whose preexisting versions were asymmetrically inherited in mother cells, including plasma membrane transporter involved in the aging process and organelle-anchoring proteins related to the stress response to misfolded proteins. Thus, our approach would be useful for making catalog of asymmetrically inherited proteins.
Collapse
Affiliation(s)
- Mitsuhiro Okada
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Shunta Kusunoki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Yuko Ishibashi
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| |
Collapse
|
77
|
Cipolla CM, Lodhi IJ. Peroxisomal Dysfunction in Age-Related Diseases. Trends Endocrinol Metab 2017; 28:297-308. [PMID: 28063767 PMCID: PMC5366081 DOI: 10.1016/j.tem.2016.12.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Peroxisomes carry out many key functions related to lipid and reactive oxygen species (ROS) metabolism. The fundamental importance of peroxisomes for health in humans is underscored by the existence of devastating genetic disorders caused by impaired peroxisomal function or lack of peroxisomes. Emerging studies suggest that peroxisomal function may also be altered with aging and contribute to the pathogenesis of a variety of diseases, including diabetes and its related complications, neurodegenerative disorders, and cancer. With increasing evidence connecting peroxisomal dysfunction to the pathogenesis of these acquired diseases, the possibility of targeting peroxisomal function in disease prevention or treatment becomes intriguing. Here, we review recent developments in understanding the pathophysiological implications of peroxisomal dysfunctions outside the context of inherited peroxisomal disorders.
Collapse
Affiliation(s)
- Cynthia M Cipolla
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
78
|
Evans TD, Sergin I, Zhang X, Razani B. Target acquired: Selective autophagy in cardiometabolic disease. Sci Signal 2017; 10:eaag2298. [PMID: 28246200 PMCID: PMC5451512 DOI: 10.1126/scisignal.aag2298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accumulation of damaged or excess proteins and organelles is a defining feature of metabolic disease in nearly every tissue. Thus, a central challenge in maintaining metabolic homeostasis is the identification, sequestration, and degradation of these cellular components, including protein aggregates, mitochondria, peroxisomes, inflammasomes, and lipid droplets. A primary route through which this challenge is met is selective autophagy, the targeting of specific cellular cargo for autophagic compartmentalization and lysosomal degradation. In addition to its roles in degradation, selective autophagy is emerging as an integral component of inflammatory and metabolic signaling cascades. In this Review, we focus on emerging evidence and key questions about the role of selective autophagy in the cell biology and pathophysiology of metabolic diseases such as obesity, diabetes, atherosclerosis, and steatohepatitis. Essential players in these processes are the selective autophagy receptors, defined broadly as adapter proteins that both recognize cargo and target it to the autophagosome. Additional domains within these receptors may allow integration of information about autophagic flux with critical regulators of cellular metabolism and inflammation. Details regarding the precise receptors involved, such as p62 and NBR1, and their predominant interacting partners are just beginning to be defined. Overall, we anticipate that the continued study of selective autophagy will prove to be informative in understanding the pathogenesis of metabolic diseases and to provide previously unrecognized therapeutic targets.
Collapse
Affiliation(s)
- Trent D Evans
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiangyu Zhang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|