51
|
Worthington P, Drake KM, Li Z, Napper AD, Pochan DJ, Langhans SA. Implementation of a High-Throughput Pilot Screen in Peptide Hydrogel-Based Three-Dimensional Cell Cultures. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:714-723. [PMID: 31039326 PMCID: PMC7277073 DOI: 10.1177/2472555219844570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-based high-throughput drug screening (HTS) is a common starting point for the drug discovery and development process. Currently, there is a push to combine complex cell culture systems with HTS to provide more clinically applicable results. However, there are mechanistic requirements inherent to HTS as well as material limitations that make this integration challenging. Here, we used the peptide-based shear-thinning hydrogel MAX8 tagged with the RGDS sequence to create a synthetic extracellular scaffold to culture cells in three dimensions and showed a preliminary implementation of the scaffold within an automated HTS setup using a pilot drug screen targeting medulloblastoma, a pediatric brain cancer. A total of 2202 compounds were screened in the 384-well format against cells encapsulated in the hydrogel as well as cells growing on traditional two-dimensional (2D) plastic. Eighty-two compounds passed the first round of screening at a single point of concentration. Sixteen-point dose-response was done on those 82 compounds, of which 17 compounds were validated. Three-dimensional (3D) cell-based HTS could be a powerful screening tool that allows researchers to finely tune the cell microenvironment, getting more clinically applicable data as a result. Here, we have shown the successful integration of a peptide-based hydrogel into the high-throughput format.
Collapse
Affiliation(s)
- Peter Worthington
- Nemours Center for Cancer Research, Alfred I duPont Hospital of Children, Wilmington, DE 19803, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Katherine M. Drake
- Nemours Center for Cancer Research, Alfred I duPont Hospital of Children, Wilmington, DE 19803, USA
| | - Zhiqin Li
- Nemours Center for Cancer Research, Alfred I duPont Hospital of Children, Wilmington, DE 19803, USA
| | - Andrew D. Napper
- Nemours Center for Cancer Research, Alfred I duPont Hospital of Children, Wilmington, DE 19803, USA
| | - Darrin J. Pochan
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Sigrid A. Langhans
- Nemours Center for Cancer Research, Alfred I duPont Hospital of Children, Wilmington, DE 19803, USA
| |
Collapse
|
52
|
Walck AJ, Harkins KR. Modification of AlphaLISA Excitation Wavelength Leads to Improved Assay Sensitivity for Photosynthetic Tissue Samples. SLAS Technol 2019; 24:429-436. [DOI: 10.1177/2472630318821338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
53
|
Li B, Zhou X, Yang P, Zhu L, Zhong Y, Cai Z, Jiang B, Cai X, Liu J, Jiang X. Photoactivatable Fluorogenic Labeling via Turn-On "Click-Like" Nitroso-Diene Bioorthogonal Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802039. [PMID: 31380178 PMCID: PMC6662066 DOI: 10.1002/advs.201802039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/27/2019] [Indexed: 06/10/2023]
Abstract
Fluorogenic labeling enables imaging cellular molecules of interest with minimal background. This process is accompanied with the notable increase of the quantum yield of fluorophore, thus minimizing the background signals from unactivated profluorophores. Herein, the development of a highly efficient and bioorthogonal nitroso-based Diels-Alder fluorogenic reaction is presented and its usefulness is validated as effective and controllable in fluorescent probes and live-cell labeling strategies for dynamic cellular imaging. It is demonstrated that nitroso-based cycloaddition is an efficient fluorogenic labeling tool through experiments of further UV-activatable fluorescent labeling on proteins and live cells. The ability of tuning the fluorescence of labeled proteins by UV-irradiation enables selective activation of proteins of interest in a particular cell compartment at a given time point, while leaving the remaining labeled molecules untouched.
Collapse
Affiliation(s)
- Bai Li
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Xian‐Hao Zhou
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201210China
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- University of Chinese Academy of SciencesBeijing100049China
| | - Peng‐Yu Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Liping Zhu
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Yuan Zhong
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Zhengjun Cai
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiaoqing Cai
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Xianxing Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
54
|
Weigt D, Parrish CA, Krueger JA, Oleykowski CA, Rendina AR, Hopf C. Mechanistic MALDI-TOF Cell-Based Assay for the Discovery of Potent and Specific Fatty Acid Synthase Inhibitors. Cell Chem Biol 2019; 26:1322-1331.e4. [PMID: 31279605 DOI: 10.1016/j.chembiol.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
Human cancers require fatty acid synthase (FASN)-dependent de novo long-chain fatty acid synthesis for proliferation. FASN is therefore an attractive drug target, but fast technologies for reliable label-free cellular compound profiling are lacking. Recently, MALDI-mass spectrometry (MALDI-MS) has emerged as an effective technology for discovery of recombinant protein target inhibitors. Here we present an automated, mechanistic MALDI-MS cell assay, which monitors accumulation of the FASN substrate, malonyl-coenzyme A (CoA), in whole cells with limited sample preparation. Profiling of inhibitors, including unpublished compounds, identified compound 1 as the most potent FASN inhibitor (1 nM in A549 cells) discovered to date. Moreover, cellular MALDI-MS assays enable parallel profiling of additional pathway metabolites. Surprisingly, several compounds triggered cytidine 5'-diphosphocholine (CDP-choline) but not malonyl-CoA accumulation indicating that they inhibit diacylglycerol generation but not FASN activity. Taken together, our study suggests that MALDI-MS cell assays may become important tools in drug profiling that provide additional mechanistic insights concerning compound action on metabolic pathways.
Collapse
Affiliation(s)
- David Weigt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim Technical University, Paul-Wittsack-Strasse 10, 68163 Mannheim, Germany
| | - Cynthia A Parrish
- Medicinal Chemistry, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Julie A Krueger
- Immuno-Oncology and Combinations Research Unit, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Catherine A Oleykowski
- Immuno-Oncology and Combinations Research Unit, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Alan R Rendina
- Screening, Profiling and Mechanistic Biology, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim Technical University, Paul-Wittsack-Strasse 10, 68163 Mannheim, Germany.
| |
Collapse
|
55
|
Harrill J, Shah I, Setzer RW, Haggard D, Auerbach S, Judson R, Thomas RS. Considerations for Strategic Use of High-Throughput Transcriptomics Chemical Screening Data in Regulatory Decisions. CURRENT OPINION IN TOXICOLOGY 2019; 15:64-75. [PMID: 31501805 DOI: 10.1016/j.cotox.2019.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, numerous organizations, including governmental regulatory agencies in the U.S. and abroad, have proposed using data from New Approach Methodologies (NAMs) for augmenting and increasing the pace of chemical assessments. NAMs are broadly defined as any technology, methodology, approach or combination thereof that can be used to provide information on chemical hazard and risk assessment that avoids the use of intact animals. High-throughput transcriptomics (HTTr) is a type of NAM that uses gene expression profiling as an endpoint for rapidly evaluating the effects of large numbers of chemicals on in vitro cell culture systems. As compared to targeted high-throughput screening (HTS) approaches that measure the effect of chemical X on target Y, HTTr is a non-targeted approach that allows researchers to more broadly characterize the integrated response of an intact biological system to chemicals that may affect a specific biological target or many biological targets under a defined set of treatment conditions (time, concentration, etc.). HTTr screening performed in concentration-response mode can provide potency estimates for the concentrations of chemicals that produce perturbations in cellular response pathways. Here, we discuss study design considerations for HTTr concentration-response screening and present a framework for the use of HTTr-based biological pathway-altering concentrations (BPACs) in a screening-level, risk-based chemical prioritization approach. The framework involves concentration-response modeling of HTTr data, mapping gene level responses to biological pathways, determination of BPACs, in vitro-to-in vivo extrapolation (IVIVE) and comparison to human exposure predictions.
Collapse
Affiliation(s)
- Joshua Harrill
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Imran Shah
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - R Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Derik Haggard
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Scott Auerbach
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, USA
| | - Richard Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Russell S Thomas
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
56
|
Sinclair I, Davies G, Semple H. Acoustic mist ionization mass spectrometry (AMI-MS) as a drug discovery platform. Expert Opin Drug Discov 2019; 14:609-617. [DOI: 10.1080/17460441.2019.1613369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ian Sinclair
- Sample Management, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield, UK
| | - Gareth Davies
- Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield, UK
| | - Hannah Semple
- Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Macclesfield, UK
| |
Collapse
|
57
|
Ahmad S, Murtaza UA, Raza S, Azam SS. Blocking the catalytic mechanism of MurC ligase enzyme from Acinetobacter baumannii: An in Silico guided study towards the discovery of natural antibiotics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
58
|
Heine P, Witt G, Gilardi A, Gribbon P, Kummer L, Plückthun A. High-Throughput Fluorescence Polarization Assay to Identify Ligands Using Purified G Protein-Coupled Receptor. SLAS DISCOVERY 2019; 24:915-927. [PMID: 30925845 DOI: 10.1177/2472555219837344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of cell-free high-throughput (HT) methods to screen and select novel lead compounds remains one of the key challenges in G protein-coupled receptor (GPCR) drug discovery. Mutational approaches have allowed the stabilization of GPCRs in a purified and ligand-free state. The increased intramolecular stability overcomes two major drawbacks for usage in in vitro screening, the low receptor density on cells and the low stability in micelles. Here, an HT fluorescence polarization (FP) assay for the neurotensin receptor type 1 (NTS1) was developed. The assay operates in a 384-well format and is tolerant to DMSO. From a library screen of 1272 compounds, 12 (~1%) were identified as primary hits. These compounds were validated in orthogonal assay formats using surface plasmon resonance (SPR), which confirmed binding of seven compounds (0.6%). One of these compounds showed a clear preference for the orthosteric binding pocket with submicromolar affinity. A second compound revealed binding at a nonorthosteric binding region and showed specific biological activity on NTS1-expressing cells. A search of analogs led to further enhancement of affinity, but at the expense of activity. The identification of GPCR ligands in a cell-free assay should allow the expansion of GPCR pharmaceuticals with antagonistic or agonistic activity.
Collapse
Affiliation(s)
- P Heine
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - G Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Hamburg, Germany
| | - A Gilardi
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Hamburg, Germany
| | - P Gribbon
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Hamburg, Germany
| | - L Kummer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
59
|
Janzen W, Admirand E, Andrews J, Boeckeler M, Jayakody C, Majer C, Porwal G, Sana S, Unkuri S, Zaayenga A. Establishing and Maintaining a Robust Sample Management System. SLAS Technol 2019; 24:256-268. [PMID: 30865569 DOI: 10.1177/2472630319834471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper has been written by the SLAS Sample Management Special Interest Group to serve as a guide to the best practices and methods in establishing and maintaining a high-quality sample management system. The topics covered are applicable to sample types ranging from small molecules to biologics to tissue samples. It has been put together using the collective experience of the authors in start-up companies, small pharma, agricultural research, IT, academia, biorepositories, and large pharma companies. Our hope is that sharing our experience will streamline the process of setting up a new sample management system and help others avoid some of the problems that we have encountered.
Collapse
|
60
|
Veggiani G, Gerpe MCR, Sidhu SS, Zhang W. Emerging drug development technologies targeting ubiquitination for cancer therapeutics. Pharmacol Ther 2019; 199:139-154. [PMID: 30851297 PMCID: PMC7112620 DOI: 10.1016/j.pharmthera.2019.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of effective cancer therapeutic strategies relies on our ability to interfere with cellular processes that are dysregulated in tumors. Given the essential role of the ubiquitin proteasome system (UPS) in regulating a myriad of cellular processes, it is not surprising that malfunction of UPS components is implicated in numerous human diseases, including many types of cancer. The clinical success of proteasome inhibitors in treating multiple myeloma has further stimulated enthusiasm for targeting UPS proteins for pharmacological intervention in cancer treatment, particularly in the precision medicine era. Unfortunately, despite tremendous efforts, the paucity of potent and selective UPS inhibitors has severely hampered attempts to exploit the UPS for therapeutic benefits. To tackle this problem, many groups have been working on technology advancement to rapidly and effectively screen for potent and specific UPS modulators as intracellular probes or early-phase therapeutic agents. Here, we review several emerging technologies for developing chemical- and protein-based molecules to manipulate UPS enzymatic activity, with the aim of providing an overview of strategies available to target ubiquitination for cancer therapy.
Collapse
Affiliation(s)
- Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - María Carla Rosales Gerpe
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G2W1, Canada
| | - Sachdev S Sidhu
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada.
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G2W1, Canada.
| |
Collapse
|
61
|
Rydzek J, Nerreter T, Peng H, Jutz S, Leitner J, Steinberger P, Einsele H, Rader C, Hudecek M. Chimeric Antigen Receptor Library Screening Using a Novel NF-κB/NFAT Reporter Cell Platform. Mol Ther 2019; 27:287-299. [PMID: 30573301 PMCID: PMC6369451 DOI: 10.1016/j.ymthe.2018.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy is under intense preclinical and clinical investigation, and it involves a rapidly increasing portfolio of novel target antigens and CAR designs. We established a platform that enables rapid and high-throughput CAR-screening campaigns with reporter cells derived from the T cell lymphoma line Jurkat. Reporter cells were equipped with nuclear factor κB (NF-κB) and nuclear factor of activated T cells (NFAT) reporter genes that generate a duplex output of enhanced CFP (ECFP) and EGFP, respectively. As a proof of concept, we modified reporter cells with CD19-specific and ROR1-specific CARs, and we detected high-level reporter signals that allowed distinguishing functional from non-functional CAR constructs. The reporter data were highly reproducible, and the time required for completing each testing campaign was substantially shorter with reporter cells (6 days) compared to primary CAR-T cells (21 days). We challenged the reporter platform to a large-scale screening campaign on a ROR1-CAR library, and we showed that reporter cells retrieved a functional CAR variant that was present with a frequency of only 6 in 1.05 × 106. The data illustrate the potential to implement this reporter platform into the preclinical development path of novel CAR-T cell products and to inform and accelerate the selection of lead CAR candidates for clinical translation.
Collapse
Affiliation(s)
- Julian Rydzek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Sabrina Jutz
- Institut für Immunologie, Medizinische Universität Wien, Wien, Austria
| | - Judith Leitner
- Institut für Immunologie, Medizinische Universität Wien, Wien, Austria
| | - Peter Steinberger
- Institut für Immunologie, Medizinische Universität Wien, Wien, Austria
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany.
| |
Collapse
|
62
|
Volochnyuk DM, Ryabukhin SV, Moroz YS, Savych O, Chuprina A, Horvath D, Zabolotna Y, Varnek A, Judd DB. Evolution of commercially available compounds for HTS. Drug Discov Today 2019; 24:390-402. [DOI: 10.1016/j.drudis.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
|
63
|
Stork C, Chen Y, Šícho M, Kirchmair J. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters. J Chem Inf Model 2019; 59:1030-1043. [DOI: 10.1021/acs.jcim.8b00677] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Conrad Stork
- Center for Bioinformatics (ZBH), Department of Computer Science, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, 20146, Germany
| | - Ya Chen
- Center for Bioinformatics (ZBH), Department of Computer Science, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, 20146, Germany
| | - Martin Šícho
- Center for Bioinformatics (ZBH), Department of Computer Science, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, 20146, Germany
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Johannes Kirchmair
- Center for Bioinformatics (ZBH), Department of Computer Science, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, 20146, Germany
- Department of Chemistry, University of Bergen, N-5020 Bergen, Norway
- Computational Biology Unit (CBU), University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
64
|
Sato Y, Yajima S, Taguchi A, Baba K, Nakagomi M, Aiba Y, Nishizawa S. Trimethine cyanine dyes as deep-red fluorescent indicators with high selectivity to the internal loop of the bacterial A-site RNA. Chem Commun (Camb) 2019; 55:3183-3186. [DOI: 10.1039/c9cc00414a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report that TO-PRO-3 functions as a deep-red fluorescent indicator for the internal loop structure of the bacterial (Escherichia coli) A-site, which enables the assessment of A-site binding capability of various test compounds including blue and even-green-emitting compounds.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Sayaka Yajima
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Akifumi Taguchi
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Kyosuke Baba
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Mayu Nakagomi
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Yuri Aiba
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Seiichi Nishizawa
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
65
|
Assessing molecular interactions with biophysical methods using the validation cross. Biochem Soc Trans 2018; 47:63-76. [DOI: 10.1042/bst20180271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 11/17/2022]
Abstract
Abstract
There are numerous methods for studying molecular interactions. However, each method gives rise to false negative- or false positive binding results, stemming from artifacts of the scientific equipment or from shortcomings of the experimental format. To validate an initial positive binding result, additional methods need to be applied to cover the shortcomings of the primary experiment. The aim of such a validation procedure is to exclude as many artifacts as possible to confirm that there is a true molecular interaction that meets the standards for publishing or is worth investing considerable resources for follow-up activities in a drug discovery project. To simplify this validation process, a graphical scheme — the validation cross — can be used. This simple graphic is a powerful tool for identifying blind spots of a binding hypothesis, for selecting the most informative combination of methods to reveal artifacts and, in general, for understanding more thoroughly the nature of a validation process. The concept of the validation cross was originally introduced for the validation of protein–ligand interactions by NMR in drug discovery. Here, an attempt is made to expand the concept to further biophysical methods and to generalize it for binary molecular interactions.
Collapse
|
66
|
Chung CI, Zhang Q, Shu X. Dynamic Imaging of Small Molecule Induced Protein-Protein Interactions in Living Cells with a Fluorophore Phase Transition Based Approach. Anal Chem 2018; 90:14287-14293. [PMID: 30431263 PMCID: PMC6298840 DOI: 10.1021/acs.analchem.8b03476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) mediate signal transduction in cells. Small molecules that regulate PPIs are important tools for biology and biomedicine. Dynamic imaging of small molecule induced PPIs characterizes and verifies these molecules in living cells. It is thus important to develop cellular assays for dynamic visualization of small molecule induced protein-protein association and dissociation in living cells. Here we have applied a fluorophore phase transition based principle and designed a PPI assay named SPPIER (separation of phases-based protein interaction reporter). SPPIER utilizes the green fluorescent protein (GFP) and is thus genetically encoded. Upon small molecule induced PPI, SPPIER rapidly forms highly fluorescent GFP droplets in living cells. SPPIER detects immunomodulatory drug (IMiD) induced PPI between cereblon and the transcription factor Ikaros. It also detects IMiD analogue (e.g., CC-885) induced PPI between cereblon and GSPT1. Furthermore, SPPIER can visualize bifunctional molecules (e.g. PROTAC)-induced PPI between an E3 ubiquitin ligase and a target protein. Lastly, SPPIER can be modified to image small molecule induced protein-protein dissociation, such as nutlin-induced dissociation between HDM2 and p53. The intense brightness and rapid kinetics of SPPIER enable robust and dynamic visualization of PPIs in living cells.
Collapse
Affiliation(s)
- Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California – San Francisco, San Francisco, California, USA
| | - Qiang Zhang
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California – San Francisco, San Francisco, California, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California – San Francisco, San Francisco, California, USA
| |
Collapse
|
67
|
Hamilton G, Rath B. Applicability of tumor spheroids for in vitro chemosensitivity assays. Expert Opin Drug Metab Toxicol 2018; 15:15-23. [DOI: 10.1080/17425255.2019.1554055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
68
|
Bergsdorf C, Wright SK. A Guide to Run Affinity Screens Using Differential Scanning Fluorimetry and Surface Plasmon Resonance Assays. Methods Enzymol 2018; 610:135-165. [PMID: 30390797 DOI: 10.1016/bs.mie.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past 30 years, drug discovery has evolved from a pure phenotypic approach to an integrated target-based strategy. The implementation of high-throughput biochemical and cellular assays has enabled the screening of large compound libraries which has become an important and often times the main source of new chemical matter that serve as starting point for medicinal chemistry efforts. In addition, biophysical methods measuring the physical interaction (affinity) between a low molecular weight ligand and a target protein became an integral part of hit validation/optimization to rule out false positives due to assay artifacts. Recent advances in throughput, robustness, and sensitivity of biophysical affinity screening methods have broadened their application in hit identification and validation such that they can now complement classical functional readouts. As a result, new target classes can be accessed that have not been amenable to functional assays. In this chapter, two affinity screening methods, differential scanning fluorimetry and surface plasmon resonance, which are broadly utilized in both academia and pharmaceutical industry are discussed in respect to their use in hit identification and validation. These methods exemplify how assays which differ in complexity, throughput, and information content can support the hit identification/validation process. This chapter focuses on the practical aspects and caveats of these techniques in order to enable the reader to establish their own affinity-based screens in both formats.
Collapse
Affiliation(s)
| | - S Kirk Wright
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| |
Collapse
|
69
|
Jiang L, Xie C, Lung HL, Lo KW, Law GL, Mak NK, Wong KL. EBNA1-targeted inhibitors: Novel approaches for the treatment of Epstein-Barr virus-associated cancers. Am J Cancer Res 2018; 8:5307-5319. [PMID: 30555548 PMCID: PMC6276081 DOI: 10.7150/thno.26823] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of humans worldwide and establishes lifelong latent infection in the hosts. It is closely associated with endemic forms of a wide range of human cancers and directly contributes to the formation of some. Despite its critical role in cancer development, no EBV- or EBV latent protein-targeted therapy is available. The EBV-encoded latent protein, Epstein-Barr nuclear antigen 1 (EBNA1), is expressed in all EBV-associated tumors and acts as the only latent protein in some of these tumors. This versatile protein functions in the maintenance, replication, and segregation of the EBV genome and can therefore serve as an attractive therapeutic target to treat EBV-associated cancers. In the last decades, efforts have been made for designing specific EBNA1 inhibitors to decrease EBNA1 expression or interfere with EBNA1-dependent functions. In this review, we will briefly introduce the salient features of EBNA1, summarize its functional domains, and focus on the recent developments in the identification and design of EBNA1 inhibitors related to various EBNA1 domains as well as discuss their comparative merits.
Collapse
|
70
|
Chae H, Kwak DK, Lee MK, Chi SW, Kim KB. Solid-state nanopore analysis on conformation change of p53TAD-MDM2 fusion protein induced by protein-protein interaction. NANOSCALE 2018; 10:17227-17235. [PMID: 30191243 DOI: 10.1039/c8nr06423g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although protein-protein interactions (PPIs) are emerging therapeutic targets for human diseases, development of high-throughput screening (HTS) technologies against PPI targets remains challenging. In this study, we propose a protein complex structure to effectively detect conformational changes of protein resulting from PPI using solid-state nanopore for a novel, widely-applicable drug screening method against various PPI targets. To effectively detect conformational changes resulting from PPI, we designed a fusion protein MLP (MDM2-linker-p53TAD), where p53TAD and MDM2 are connected by a 16 amino acid linker. The globular conformation of MLP exhibited a single-peak translocation event, whereas the dumbbell-like conformation of nutlin-3-bound MLP revealed as a double-peak signal. The proportion of double-peak to single-peak signals increased from 9.3% to 23.0% as nutlin-3 concentration increased. The translocation kinetics of the two different MLP conformations with varied applied voltage were analyzed. Further, the fractional current of the intra-peak of the double-peak signal was analyzed, probing the structure of our designed protein complex. This approach of nanopore sensing may be extendedly employed in screening of PPI inhibitors and protein conformation studies.
Collapse
Affiliation(s)
- Hongsik Chae
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea.
| | | | | | | | | |
Collapse
|
71
|
Tabuchi Y, Taki M. Fluorescent "keep-on" type pharmacophore obtained from dynamic combinatorial library of Schiff bases. Anal Bioanal Chem 2018; 410:6713-6717. [PMID: 30099565 DOI: 10.1007/s00216-018-1303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Abstract
We established a novel principle for fluorescence detection of a target protein. A low-molecular-weight fluorescent pharmacophore, as a targeted probe, was selected from a dynamic combinatorial library of Schiff bases. The pharmacophore retains its fluorescence when bound to the hydrophobic site of the target, whereas it loses it because of hydrolysis when unbound. Graphical abstract We describe a novel concept for detection of a target protein (i.e., HSA) by using a keep-on-type fluorescent pharmacophore which is discovered from a dynamic combinatorial library of Schiff bases. When the target is absent, the keep-on-pharmacophore is degraded by hydrolysis, with the result that we can see no fluorescence.
Collapse
Affiliation(s)
- Yudai Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Masumi Taki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
72
|
Niu J, Yang W, Yue DT, Inoue T, Ben-Johny M. Duplex signaling by CaM and Stac3 enhances Ca V1.1 function and provides insights into congenital myopathy. J Gen Physiol 2018; 150:1145-1161. [PMID: 29950399 PMCID: PMC6080896 DOI: 10.1085/jgp.201812005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/23/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023] Open
Abstract
CaV1.1 is essential for skeletal muscle excitation-contraction coupling. Its functional expression is tuned by numerous regulatory proteins, yet underlying modulatory mechanisms remain ambiguous as CaV1.1 fails to function in heterologous systems. In this study, by dissecting channel trafficking versus gating, we evaluated the requirements for functional CaV1.1 in heterologous systems. Although coexpression of the auxiliary β subunit is sufficient for surface-membrane localization, this baseline trafficking is weak, and channels elicit a diminished open probability. The regulatory proteins calmodulin and stac3 independently enhance channel trafficking and gating via their interaction with the CaV1.1 carboxy terminus. Myopathic stac3 mutations weaken channel binding and diminish trafficking. Our findings demonstrate that multiple regulatory proteins orchestrate CaV1.1 function via duplex mechanisms. Our work also furnishes insights into the pathophysiology of stac3-associated congenital myopathy and reveals novel avenues for pharmacological intervention.
Collapse
Affiliation(s)
- Jacqueline Niu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Wanjun Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | | | - Takanari Inoue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY
| |
Collapse
|
73
|
Contreras-Llano LE, Tan C. High-throughput screening of biomolecules using cell-free gene expression systems. Synth Biol (Oxf) 2018; 3:ysy012. [PMID: 32995520 PMCID: PMC7445777 DOI: 10.1093/synbio/ysy012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/31/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
The incorporation of cell-free transcription and translation systems into high-throughput screening applications enables the in situ and on-demand expression of peptides and proteins. Coupled with modern microfluidic technology, the cell-free methods allow the screening, directed evolution and selection of desired biomolecules in minimal volumes within a short timescale. Cell-free high-throughput screening applications are classified broadly into in vitro display and on-chip technologies. In this review, we outline the development of cell-free high-throughput screening methods. We further discuss operating principles and representative applications of each screening method. The cell-free high-throughput screening methods may be advanced by the future development of new cell-free systems, miniaturization approaches, and automation technologies.
Collapse
Affiliation(s)
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
74
|
Hewitt SH, Butler SJ. Application of lanthanide luminescence in probing enzyme activity. Chem Commun (Camb) 2018; 54:6635-6647. [PMID: 29790500 DOI: 10.1039/c8cc02824a] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enzymes play critical roles in the regulation of cellular function and are implicated in numerous disease conditions. Reliable and practicable assays are required to study enzyme activity, to facilitate the discovery of inhibitors and activators of enzymes related to disease. In recent years, a variety of enzyme assays have been devised that utilise luminescent lanthanide(iii) complexes, taking advantage of their high detection sensitivities, long luminescence lifetimes, and line-like emission spectra that permit ratiometric and time-resolved analyses. In this Feature article, we focus on recent progress in the development of enzyme activity assays based on lanthanide(iii) luminescence, covering a variety of strategies including Ln(iii)-labelled antibodies and proteins, Ln(iii) ion encapsulation within defined peptide sequences, reactivity-based Ln(iii) probes, and discrete Ln(iii) complexes. Emerging approaches for monitoring enzyme activity are discussed, including the use of anion responsive lanthanide(iii) complexes, capable of molecular recognition and luminescence signalling of polyphosphate anions.
Collapse
Affiliation(s)
- Sarah H Hewitt
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | | |
Collapse
|
75
|
Wase N, Black P, DiRusso C. Innovations in improving lipid production: Algal chemical genetics. Prog Lipid Res 2018; 71:101-123. [DOI: 10.1016/j.plipres.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
|
76
|
Regnault C, Dheeman DS, Hochstetter A. Microfluidic Devices for Drug Assays. High Throughput 2018; 7:E18. [PMID: 29925804 PMCID: PMC6023517 DOI: 10.3390/ht7020018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, we give an overview of the current state of microfluidic-based high-throughput drug assays. In this highly interdisciplinary research field, various approaches have been applied to high-throughput drug screening, including microtiter plate, droplets microfluidics as well as continuous flow, diffusion and concentration gradients-based microfluidic drug assays. Therefore, we reviewed over 100 recent publications in the field and sorted them according to their microfluidic approach. As a result, we are showcasing, comparing and discussing broadly applied approaches as well as singular promising ones that might contribute to shaping the future of this field.
Collapse
Affiliation(s)
- Clément Regnault
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Dharmendra S Dheeman
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Axel Hochstetter
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| |
Collapse
|
77
|
Abstract
Click chemistry has emerged as a powerful tool in our arsenal for unlocking new biology. This includes its utility in both chemical biology and drug discovery. An emerging application of click chemistry is in the development of biochemical assays for high-throughput screening to identify new chemical probes and drug leads. This Feature Article will discuss the advancements in click chemistry that were necessary for the development of a new class of biochemical assay, catalytic enzyme-linked click chemistry assay or cat-ELCCA. Inspired by enzyme immunoassays, cat-ELCCA was designed as a click chemistry-based amplification assay where bioorthogonally-tagged analytes and enzymes are used in place of the enzyme-linked secondary antibodies used in immunoassays. The result is a robust assay format with demonstrated applicability in several important areas of biology and drug discovery, including post-translational modifications, pre-microRNA maturation, and protein-protein and RNA-protein interactions. Through the use of cat-ELCCA and other related click chemistry-based assays, new chemical probes for interrogating promising drug targets have been discovered. These examples will be discussed, in addition to a future outlook on the impact of this approach in probe and drug discovery.
Collapse
Affiliation(s)
- Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
78
|
Mosquera C, Panay AJ, Montoya G. Pentacyclic Triterpenes from Cecropia telenitida Can Function as Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1. Molecules 2018; 23:molecules23061444. [PMID: 29899225 PMCID: PMC6099733 DOI: 10.3390/molecules23061444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022] Open
Abstract
Plant extracts from the genus Cecropia have been used by Latin-American traditional medicine to treat metabolic disorders and diabetes. Previous results have shown that roots of Cecropia telenitida contain pentacyclic triterpenes and these molecules display a hypoglycemic effect in an insulin-resistant murine model. The pharmacological target of these molecules, however, remains unknown. Several lines of evidence indicate that pentacyclic triterpenes inhibit the 11β-hydroxysteroid dehydrogenase type 1 enzyme, which highlights the potential use of this type of natural product as phytotherapeutic or botanical dietary supplements. The main goal of the study was the evaluation of the inhibitory effect of Cecropia telenitida molecules on 11β-hydroxysteroid dehydrogenase type 1 enzyme activity. A pre-fractionated chemical library was obtained from the roots of Cecropia telenitida using several automated chromatography separation steps and a homogeneous time resolved fluorescence assay was used for the bio-guided isolation of inhibiting molecules. The screening of a chemical library consisting of 125 chemical purified fractions obtained from Cecropia telenitida roots identified one fraction displaying 82% inhibition of the formation of cortisol by the 11β-hydroxysteroid dehydrogenase type 1 enzyme. Furthermore, a molecule displaying IC50 of 0.95 ± 0.09 µM was isolated from this purified fraction and structurally characterized, which confirms that a pentacyclic triterpene scaffold was responsible for the observed inhibition. Our results support the hypothesis that pentacyclic triterpene molecules from Cecropia telenitida can inhibit 11β-hydroxysteroid dehydrogenase type 1 enzyme activity. These findings highlight the potential ethnopharmacological use of plants from the genus Cecropia for the treatment of metabolic disorders and diabetes.
Collapse
Affiliation(s)
- Catalina Mosquera
- Department of Chemical Sciences, Faculty of Natural Sciences, Universidad Icesi, Cali, Valle del Cauca 760031, Colombia.
| | - Aram J Panay
- Department of Chemical Sciences, Faculty of Natural Sciences, Universidad Icesi, Cali, Valle del Cauca 760031, Colombia.
| | - Guillermo Montoya
- Department of Pharmaceutical Sciences, Faculty of Natural Sciences, Universidad Icesi, Calle 18 # 122⁻135, Cali, Valle del Cauca 760031, Colombia.
| |
Collapse
|
79
|
Markossian S, Ang KK, Wilson CG, Arkin MR. Small-Molecule Screening for Genetic Diseases. Annu Rev Genomics Hum Genet 2018; 19:263-288. [PMID: 29799800 DOI: 10.1146/annurev-genom-083117-021452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic determinants of many diseases, including monogenic diseases and cancers, have been identified; nevertheless, targeted therapy remains elusive for most. High-throughput screening (HTS) of small molecules, including high-content analysis (HCA), has been an important technology for the discovery of molecular tools and new therapeutics. HTS can be based on modulation of a known disease target (called reverse chemical genetics) or modulation of a disease-associated mechanism or phenotype (forward chemical genetics). Prominent target-based successes include modulators of transthyretin, used to treat transthyretin amyloidoses, and the BCR-ABL kinase inhibitor Gleevec, used to treat chronic myelogenous leukemia. Phenotypic screening successes include modulators of cystic fibrosis transmembrane conductance regulator, splicing correctors for spinal muscular atrophy, and histone deacetylase inhibitors for cancer. Synthetic lethal screening, in which chemotherapeutics are screened for efficacy against specific genetic backgrounds, is a promising approach that merges phenotype and target. In this article, we introduce HTS technology and highlight its contributions to the discovery of drugs and probes for monogenic diseases and cancer.
Collapse
Affiliation(s)
- Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Kenny K Ang
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Christopher G Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| |
Collapse
|
80
|
Langhans SA. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol 2018; 9:6. [PMID: 29410625 PMCID: PMC5787088 DOI: 10.3389/fphar.2018.00006] [Citation(s) in RCA: 906] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
Drug development is a lengthy and costly process that proceeds through several stages from target identification to lead discovery and optimization, preclinical validation and clinical trials culminating in approval for clinical use. An important step in this process is high-throughput screening (HTS) of small compound libraries for lead identification. Currently, the majority of cell-based HTS is being carried out on cultured cells propagated in two-dimensions (2D) on plastic surfaces optimized for tissue culture. At the same time, compelling evidence suggests that cells cultured in these non-physiological conditions are not representative of cells residing in the complex microenvironment of a tissue. This discrepancy is thought to be a significant contributor to the high failure rate in drug discovery, where only a low percentage of drugs investigated ever make it through the gamut of testing and approval to the market. Thus, three-dimensional (3D) cell culture technologies that more closely resemble in vivo cell environments are now being pursued with intensity as they are expected to accommodate better precision in drug discovery. Here we will review common approaches to 3D culture, discuss the significance of 3D cultures in drug resistance and drug repositioning and address some of the challenges of applying 3D cell cultures to high-throughput drug discovery.
Collapse
Affiliation(s)
- Sigrid A. Langhans
- Nemours Center for Childhood Cancer Research and Nemours Center for Neuroscience Research, Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
81
|
Wleklinski M, Loren BP, Ferreira CR, Jaman Z, Avramova L, Sobreira TJP, Thompson DH, Cooks RG. High throughput reaction screening using desorption electrospray ionization mass spectrometry. Chem Sci 2018; 9:1647-1653. [PMID: 29675211 PMCID: PMC5887808 DOI: 10.1039/c7sc04606e] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/28/2017] [Indexed: 11/21/2022] Open
Abstract
We report the high throughput analysis of reaction mixture arrays using methods and data handling routines that were originally developed for biological tissue imaging.
We report the high throughput analysis of reaction mixture arrays using methods and data handling routines that were originally developed for biological tissue imaging. Desorption electrospray ionization (DESI) mass spectrometry (MS) is applied in a continuous on-line process at rates that approach 104 reactions per h at area densities of up to 1 spot per mm2 (6144 spots per standard microtiter plate) with the sprayer moving at ca. 104 microns per s. Data are analyzed automatically by MS using in-house software to create ion images of selected reagents and products as intensity plots in standard array format. Amine alkylation reactions were used to optimize the system performance on PTFE membrane substrates using methanol as the DESI spray/analysis solvent. Reaction times can be <100 μs when reaction acceleration occurs in microdroplets, enabling the rapid screening of processes like N-alkylation and Suzuki coupling reactions as reported herein. Products and by-products were confirmed by on-line MS/MS upon rescanning of the array.
Collapse
Affiliation(s)
- Michael Wleklinski
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA .
| | - Bradley P Loren
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA .
| | | | - Zinia Jaman
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA .
| | - Larisa Avramova
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA .
| | - Tiago J P Sobreira
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA .
| | - David H Thompson
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA .
| | - R Graham Cooks
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA .
| |
Collapse
|
82
|
Sohtome Y, Shimazu T, Barjau J, Fujishiro S, Akakabe M, Terayama N, Dodo K, Ito A, Yoshida M, Shinkai Y, Sodeoka M. Unveiling epidithiodiketopiperazine as a non-histone arginine methyltransferase inhibitor by chemical protein methylome analyses. Chem Commun (Camb) 2018; 54:9202-9205. [DOI: 10.1039/c8cc03907k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a chemical methylome analysis to evaluate the inhibitory activity of small molecules towards poorly characterized protein methyltransferases.
Collapse
|
83
|
Song JM, Menon A, Mitchell DC, Johnson OT, Garner AL. High-Throughput Chemical Probing of Full-Length Protein-Protein Interactions. ACS COMBINATORIAL SCIENCE 2017; 19:763-769. [PMID: 29112379 PMCID: PMC5939945 DOI: 10.1021/acscombsci.7b00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human biology is regulated by a complex network of protein-protein interactions (PPIs), and disruption of this network has been implicated in many diseases. However, the targeting of PPIs remains a challenging area for chemical probe and drug discovery. Although many methodologies have been put forth to facilitate these efforts, new technologies are still needed. Current biochemical assays for PPIs are typically limited to motif-domain and domain-domain interactions, and assays that will enable the screening of full-length protein systems, which are more biologically relevant, are sparse. To overcome this barrier, we have developed a new assay technology, "PPI catalytic enzyme-linked click chemistry assay" or PPI cat-ELCCA, which utilizes click chemistry to afford catalytic signal amplification. To validate this approach, we have applied PPI cat-ELCCA to the eIF4E-4E-BP1 and eIF4E-eIF4G PPIs, key regulators of cap-dependent mRNA translation. Using these examples, we have demonstrated that PPI cat-ELCCA is amenable to full-length proteins, large (>200 kDa) and small (∼12 kDa), and is readily adaptable to automated high-throughput screening. Thus, PPI cat-ELCCA represents a powerful new tool in the toolbox of assays available to scientists interested in the targeting of disease-relevant PPIs.
Collapse
Affiliation(s)
- James M. Song
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dylan C. Mitchell
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Oleta T. Johnson
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
84
|
Pan S, Jang SY, Liew SS, Fu J, Wang D, Lee JS, Yao SQ. A Vinyl Sulfone-Based Fluorogenic Probe Capable of Selective Labeling of PHGDH in Live Mammalian Cells. Angew Chem Int Ed Engl 2017; 57:579-583. [PMID: 29193627 DOI: 10.1002/anie.201710856] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 11/05/2022]
Abstract
Chemical probes are powerful tools for interrogating small molecule-target interactions. With additional fluorescence Turn-ON functionality, such probes might enable direct measurements of target engagement in live mammalian cells. DNS-pE (and its terminal alkyne-containing version DNS-pE2) is the first small molecule that can selectively label endogenous 3-phosphoglycerate dehydrogenase (PHGDH) from various mammalian cells. Endowed with an electrophilic vinyl sulfone moiety that possesses fluorescence-quenching properties, DNS-pE/DNS-pE2 became highly fluorescent only upon irreversible covalent modification of PHGDH. With an inhibitory property (in vitro Ki =7.4 μm) comparable to that of known PHGDH inhibitors, our probes thus offer a promising approach to simultaneously image endogenous PHGDH activities and study its target engagement in live-cell settings.
Collapse
Affiliation(s)
- Sijun Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Se-Young Jang
- Molecular Recognition Research Center, Bio-Med Program of KIST-School UST, Korea Institute of Science & Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, 136791, Korea
| | - Si Si Liew
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jiaqi Fu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Danyang Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Bio-Med Program of KIST-School UST, Korea Institute of Science & Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, 136791, Korea
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
85
|
Pan S, Jang SY, Liew SS, Fu J, Wang D, Lee JS, Yao SQ. A Vinyl Sulfone-Based Fluorogenic Probe Capable of Selective Labeling of PHGDH in Live Mammalian Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sijun Pan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Se-Young Jang
- Molecular Recognition Research Center; Bio-Med Program of KIST-School UST; Korea Institute of Science & Technology; Hwarangno 14-gil 5 Seongbuk-gu Seoul 136-791 136791 Korea
| | - Si Si Liew
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiaqi Fu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Danyang Wang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Jun-Seok Lee
- Molecular Recognition Research Center; Bio-Med Program of KIST-School UST; Korea Institute of Science & Technology; Hwarangno 14-gil 5 Seongbuk-gu Seoul 136-791 136791 Korea
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
86
|
Wang L, Yang Q, Jaimes A, Wang T, Strobelt H, Chen J, Sliz P. MightyScreen: An Open-Source Visualization Application for Screening Data Analysis. SLAS DISCOVERY 2017; 23:218-223. [PMID: 28937848 DOI: 10.1177/2472555217731983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Screening is a methodology widely used in biological and biomedical research. There are numerous visualization methods to validate screening data quality but very few visualization applications capable of hit selection. Here, we present MightyScreen ( mightyscreen.net ), a novel web-based application designed for visual data evaluation as well as visual hit selection. We believe MightyScreen is an intuitive and interactive addition to conventional hit selection methods. We also provide study cases showing how MightyScreen is used to visually explore screening data and make hit selections.
Collapse
Affiliation(s)
- Longfei Wang
- 1 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Qin Yang
- 1 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Adriana Jaimes
- 1 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tianyu Wang
- 2 Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Hendrik Strobelt
- 3 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jenny Chen
- 4 Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Piotr Sliz
- 1 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
87
|
Kumar BA, Kumari P, Sona C, Yadav PN. GloSensor assay for discovery of GPCR-selective ligands. Methods Cell Biol 2017; 142:27-50. [PMID: 28964338 DOI: 10.1016/bs.mcb.2017.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are modulators of almost every physiological process, and therefore, are most favorite therapeutic target for wide spectrum of diseases. Ideally, high-throughput functional assays should be implemented that allow the screening of large compound libraries in cost-effective manner to identify agonist, antagonist, and allosteric modulators in the same assay. Taking advantage of the increased understanding of the GPCR structure and signaling, several commercially available functional assays based on fluorescence or chemiluminescence detection are being used in both academia and industry. In this chapter, we provide step-by-step method and guidelines to perform cAMP measurement using GloSensor assay. Finally, we have also discussed the analysis and interpretation of results obtained using this assay by providing several examples of Gs- and Gi-coupled GPCRs.
Collapse
Affiliation(s)
- Boda Arun Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Poonam Kumari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
88
|
Blagg J, Workman P. Choose and Use Your Chemical Probe Wisely to Explore Cancer Biology. Cancer Cell 2017; 32:9-25. [PMID: 28697345 PMCID: PMC5511331 DOI: 10.1016/j.ccell.2017.06.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 01/15/2023]
Abstract
Small-molecule chemical probes or tools have become progressively more important in recent years as valuable reagents to investigate fundamental biological mechanisms and processes causing disease, including cancer. Chemical probes have also achieved greater prominence alongside complementary biological reagents for target validation in drug discovery. However, there is evidence of widespread continuing misuse and promulgation of poor-quality and insufficiently selective chemical probes, perpetuating a worrisome and misleading pollution of the scientific literature. We discuss current challenges with the selection and use of chemical probes, and suggest how biologists can and should be more discriminating in the probes they employ.
Collapse
Affiliation(s)
- Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
89
|
Gul S. Epigenetic assays for chemical biology and drug discovery. Clin Epigenetics 2017; 9:41. [PMID: 28439316 PMCID: PMC5399855 DOI: 10.1186/s13148-017-0342-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
The implication of epigenetic abnormalities in many diseases and the approval of a number of compounds that modulate specific epigenetic targets in a therapeutically relevant manner in cancer specifically confirms that some of these targets are druggable by small molecules. Furthermore, a number of compounds are currently in clinical trials for other diseases including cardiovascular, neurological and metabolic disorders. Despite these advances, the approved treatments for cancer only extend progression-free survival for a relatively short time and being associated with significant side effects. The current clinical trials involving the next generation of epigenetic drugs may address the disadvantages of the currently approved epigenetic drugs. The identification of chemical starting points of many drugs often makes use of screening in vitro assays against libraries of synthetic or natural products. These assays can be biochemical (using purified protein) or cell-based (using for example, genetically modified, cancer cell lines or primary cells) and performed in microtiter plates, thus enabling a large number of samples to be tested. A considerable number of such assays are available to monitor epigenetic target activity, and this review provides an overview of drug discovery and chemical biology and describes assays that monitor activities of histone deacetylase, lysine-specific demethylase, histone methyltransferase, histone acetyltransferase and bromodomain. It is of critical importance that an appropriate assay is developed and comprehensively validated for a given drug target prior to screening in order to improve the probability of the compound progressing in the drug discovery value chain.
Collapse
Affiliation(s)
- Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
90
|
Repin M, Pampou S, Karan C, Brenner DJ, Garty G. RABiT-II: Implementation of a High-Throughput Micronucleus Biodosimetry Assay on Commercial Biotech Robotic Systems. Radiat Res 2017; 187:492-498. [PMID: 28231025 DOI: 10.1667/rr011cc.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We demonstrate the use of high-throughput biodosimetry platforms based on commercial high-throughput/high-content screening robotic systems. The cytokinesis-block micronucleus (CBMN) assay, using only 20 μl whole blood from a fingerstick, was implemented on a PerkinElmer cell::explorer and General Electric IN Cell Analyzer 2000. On average 500 binucleated cells per sample were detected by our FluorQuantMN software. A calibration curve was generated in the radiation dose range up to 5.0 Gy using the data from 8 donors and 48,083 binucleated cells in total. The study described here demonstrates that high-throughput radiation biodosimetry is practical using current commercial high-throughput/high-content screening robotic systems, which can be readily programmed to perform and analyze robotics-optimized cytogenetic assays. Application to other commercial high-throughput/high-content screening systems beyond the ones used in this study is clearly practical. This approach will allow much wider access to high-throughput biodosimetric screening for large-scale radiological incidents than is currently available.
Collapse
Affiliation(s)
| | - Sergey Pampou
- b Columbia Genome Center High-Throughput Screening facility, Columbia University Medical Center, New York, New York 10032
| | - Charles Karan
- b Columbia Genome Center High-Throughput Screening facility, Columbia University Medical Center, New York, New York 10032
| | | | - Guy Garty
- a Center for Radiological Research and
| |
Collapse
|
91
|
Ahfeldt T, Litterman NK, Rubin LL. Studying human disease using human neurons. Brain Res 2017; 1656:40-48. [PMID: 27060768 PMCID: PMC5053850 DOI: 10.1016/j.brainres.2016.03.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/25/2023]
Abstract
Utilizing patient derived cells has enormous promise for discovering new drugs for diseases of the nervous system, a goal that has been historically quite challenging. In this review, we will outline the potential of human stem cell derived neuron models for assessing therapeutics and high-throughput screening and compare to more traditional drug discovery strategies. We summarize recent successes of the approach and discuss special considerations for developing human stem cell based assays. New technologies, such as genome editing, offer improvements to help overcome the challenges that remain. Finally, human neurons derived from patient cells have advantages for translational research beyond drug screening as they can also be used to identify individual efficacy and safety prior to clinical testing and for dissecting disease mechanisms. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Tim Ahfeldt
- Department of Stem Cells and Regenerative Biology, Harvard University, Cambridge MA , USA, , Fax: 617-495-3961
| | - Nadia K. Litterman
- Department of Stem Cells and Regenerative Biology, Harvard University, Cambridge MA , USA, , Fax: 617-495-3961
| | - Lee L. Rubin
- Department of Stem Cells and Regenerative Biology, Harvard University, Cambridge MA , USA, , Fax: 617-495-3961
| |
Collapse
|
92
|
Boreham A, Brodwolf R, Walker K, Haag R, Alexiev U. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine. Molecules 2016; 22:molecules22010017. [PMID: 28029135 PMCID: PMC6155873 DOI: 10.3390/molecules22010017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022] Open
Abstract
The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.
Collapse
Affiliation(s)
- Alexander Boreham
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Robert Brodwolf
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
| | - Karolina Walker
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
| | - Ulrike Alexiev
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
| |
Collapse
|
93
|
Hosoya M, Czysz K. Translational Prospects and Challenges in Human Induced Pluripotent Stem Cell Research in Drug Discovery. Cells 2016; 5:cells5040046. [PMID: 28009813 PMCID: PMC5187530 DOI: 10.3390/cells5040046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/27/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Despite continuous efforts to improve the process of drug discovery and development, achieving success at the clinical stage remains challenging because of a persistent translational gap between the preclinical and clinical settings. Under these circumstances, the discovery of human induced pluripotent stem (iPS) cells has brought new hope to the drug discovery field because they enable scientists to humanize a variety of pharmacological and toxicological models in vitro. The availability of human iPS cell-derived cells, particularly as an alternative for difficult-to-access tissues and organs, is increasing steadily; however, their use in the field of translational medicine remains challenging. Biomarkers are an essential part of the translational effort to shift new discoveries from bench to bedside as they provide a measurable indicator with which to evaluate pharmacological and toxicological effects in both the preclinical and clinical settings. In general, during the preclinical stage of the drug development process, in vitro models that are established to recapitulate human diseases are validated by using a set of biomarkers; however, their translatability to a clinical setting remains problematic. This review provides an overview of current strategies for human iPS cell-based drug discovery from the perspective of translational research, and discusses the importance of early consideration of clinically relevant biomarkers.
Collapse
Affiliation(s)
- Masaki Hosoya
- Integrated Technology Research Laboratories, Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Katherine Czysz
- Integrated Technology Research Laboratories, Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
94
|
Garty G, Turner HC, Salerno A, Bertucci A, Zhang J, Chen Y, Dutta A, Sharma P, Bian D, Taveras M, Wang H, Bhatla A, Balajee A, Bigelow AW, Repin M, Lyulko OV, Simaan N, Yao YL, Brenner DJ. THE DECADE OF THE RABiT (2005-15). RADIATION PROTECTION DOSIMETRY 2016; 172:201-206. [PMID: 27412510 PMCID: PMC5225976 DOI: 10.1093/rpd/ncw172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The RABiT (Rapid Automated Biodosimetry Tool) is a dedicated Robotic platform for the automation of cytogenetics-based biodosimetry assays. The RABiT was developed to fulfill the critical requirement for triage following a mass radiological or nuclear event. Starting from well-characterized and accepted assays we developed a custom robotic platform to automate them. We present here a brief historical overview of the RABiT program at Columbia University from its inception in 2005 until the RABiT was dismantled at the end of 2015. The main focus of this paper is to demonstrate how the biological assays drove development of the custom robotic systems and in turn new advances in commercial robotic platforms inspired small modifications in the assays to allow replacing customized robotics with 'off the shelf' systems. Currently, a second-generation, RABiT II, system at Columbia University, consisting of a PerkinElmer cell::explorer, was programmed to perform the RABiT assays and is undergoing testing and optimization studies.
Collapse
Affiliation(s)
- G Garty
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - H C Turner
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - A Salerno
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Pratt & Whitney Canada Corp., 1000 Marie-Victorin, Longueil, QC, Canada J4G 1A1
| | - A Bertucci
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - J Zhang
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Auris Surgical Robotics Inc., 125 Shoreway Rd, San Carlos, CA 94070, USA
| | - Y Chen
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - A Dutta
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
- Present address: BioReliance Corp., 9630 Medical Center Dr, Rockville, MD 20850, USA
| | - P Sharma
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - D Bian
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - M Taveras
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - H Wang
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: General Motors Co., 30500 Mound Road, Warren, MI 48090, USA
| | - A Bhatla
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Curiosity Lab Inc., 54 Mallard Pl. Secaucus, NJ, 07094, USA
| | - A Balajee
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
- Present address: Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Building SC-10, 1299, Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - A W Bigelow
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - M Repin
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - O V Lyulko
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| | - N Simaan
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
- Present address: Department of Mechanical Engineering, Vanderbuilt University, PMB 351592, Nashville, TN, 37235, USA
| | - Y L Yao
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - D J Brenner
- Center for Radiological Research, Columbia University, VC11-230, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
95
|
Abstract
To help define the molecular basis of cellular signalling cascades, and their biological functions, there is considerable value in utilizing a high-quality chemical 'probe' that has a well-defined interaction with a specific cellular protein. Such reagents include inhibitors of protein kinases and small molecule kinases, as well as mimics or antagonists of intracellular signals. The purpose of this review is to consider recent progress and promising future directions for the development of novel molecules that can interrogate and manipulate the cellular actions of inositol pyrophosphates (PP-IPs)--a specialized, 'energetic' group of cell-signalling molecules in which multiple phosphate and diphosphate groups are crammed around a cyclohexane polyol scaffold.
Collapse
|
96
|
Baughman BM, Wang H, An Y, Kireev D, Stashko MA, Jessen HJ, Pearce KH, Frye SV, Shears SB. A High-Throughput Screening-Compatible Strategy for the Identification of Inositol Pyrophosphate Kinase Inhibitors. PLoS One 2016; 11:e0164378. [PMID: 27736936 PMCID: PMC5063353 DOI: 10.1371/journal.pone.0164378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/24/2016] [Indexed: 11/22/2022] Open
Abstract
Pharmacological tools-'chemical probes'-that intervene in cell signaling cascades are important for complementing genetically-based experimental approaches. Probe development frequently begins with a high-throughput screen (HTS) of a chemical library. Herein, we describe the design, validation, and implementation of the first HTS-compatible strategy against any inositol phosphate kinase. Our target enzyme, PPIP5K, synthesizes 'high-energy' inositol pyrophosphates (PP-InsPs), which regulate cell function at the interface between cellular energy metabolism and signal transduction. We optimized a time-resolved, fluorescence resonance energy transfer ADP-assay to record PPIP5K-catalyzed, ATP-driven phosphorylation of 5-InsP7 to 1,5-InsP8 in 384-well format (Z' = 0.82 ± 0.06). We screened a library of 4745 compounds, all anticipated to be membrane-permeant, which are known-or conjectured based on their structures-to target the nucleotide binding site of protein kinases. At a screening concentration of 13 μM, fifteen compounds inhibited PPIP5K >50%. The potency of nine of these hits was confirmed by dose-response analyses. Three of these molecules were selected from different structural clusters for analysis of binding to PPIP5K, using isothermal calorimetry. Acceptable thermograms were obtained for two compounds, UNC10112646 (Kd = 7.30 ± 0.03 μM) and UNC10225498 (Kd = 1.37 ± 0.03 μM). These Kd values lie within the 1-10 μM range generally recognized as suitable for further probe development. In silico docking data rationalizes the difference in affinities. HPLC analysis confirmed that UNC10225498 and UNC10112646 directly inhibit PPIP5K-catalyzed phosphorylation of 5-InsP7 to 1,5-InsP8; kinetic experiments showed inhibition to be competitive with ATP. No other biological activity has previously been ascribed to either UNC10225498 or UNC10112646; moreover, at 10 μM, neither compound inhibits IP6K2, a structurally-unrelated PP-InsP kinase. Our screening strategy may be generally applicable to inhibitor discovery campaigns for other inositol phosphate kinases.
Collapse
Affiliation(s)
- Brandi M. Baughman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Yi An
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael A. Stashko
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University of Freiburg, Freiburg 79104, Germany
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen B. Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
97
|
Plate-based diversity subset screening generation 2: an improved paradigm for high-throughput screening of large compound files. Mol Divers 2016; 20:789-803. [PMID: 27631533 PMCID: PMC5055576 DOI: 10.1007/s11030-016-9692-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/29/2016] [Indexed: 01/07/2023]
Abstract
High-throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time consuming and costly and the use of subsets as an efficient alternative to screening entire compound collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity or biological target focus. Previously, we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second-generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer.
Collapse
|
98
|
Herbrink M, Schellens JHM, Beijnen JH, Nuijen B. Inherent formulation issues of kinase inhibitors. J Control Release 2016; 239:118-27. [PMID: 27578098 DOI: 10.1016/j.jconrel.2016.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/18/2022]
Abstract
The small molecular Kinase Inhibitor (smKI) drug class is very promising and rapidly expanding. All of these drugs are administered orally. The clear relationship between structure and function has led to drugs with a general low intrinsic solubility. The majority of the commercial pharmaceutical formulations of the smKIs are physical mixtures that are limited by the low drug solubility of a salt form. This class of drugs is therefore characterized by an impaired and variable bioavailability rendering them costly and their therapies suboptimal. New formulations are sparingly being reported in literature and patents. The presented data suggests that continued research into formulation design can help to develop more efficient and cost-effective smKI formulation. Moreover, it may also be of help in the future design of the formulations of new smKIs.
Collapse
Affiliation(s)
- M Herbrink
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Louwesweg 6, 1006 BK Amsterdam, The Netherlands.
| | - J H M Schellens
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Louwesweg 6, 1006 BK Amsterdam, The Netherlands
| | - J H Beijnen
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Louwesweg 6, 1006 BK Amsterdam, The Netherlands
| | - B Nuijen
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Louwesweg 6, 1006 BK Amsterdam, The Netherlands
| |
Collapse
|
99
|
Hall MD, Yasgar A, Peryea T, Braisted JC, Jadhav A, Simeonov A, Coussens NP. Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl Fluoresc 2016; 4:022001. [PMID: 28809163 DOI: 10.1088/2050-6120/4/2/022001] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The sensitivity of fluorescence polarization (FP) and fluorescence anisotropy (FA) to molecular weight changes has enabled the interrogation of diverse biological mechanisms, ranging from molecular interactions to enzymatic activity. Assays based on FP/FA technology have been widely utilized in high-throughput screening (HTS) and drug discovery due to the homogenous format, robust performance and relative insensitivity to some types of interferences, such as inner filter effects. Advancements in assay design, fluorescent probes, and technology have enabled the application of FP assays to increasingly complex biological processes. Herein we discuss different types of FP/FA assays developed for HTS, with examples to emphasize the diversity of applicable targets. Furthermore, trends in target and fluorophore selection, as well as assay type and format, are examined using annotated HTS assays within the PubChem database. Finally, practical considerations for the successful development and implementation of FP/FA assays for HTS are provided based on experience at our center and examples from the literature, including strategies for flagging interference compounds among a list of hits.
Collapse
Affiliation(s)
- Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Caldwell GW. In silico tools used for compound selection during target-based drug discovery and development. Expert Opin Drug Discov 2015; 10:901-23. [DOI: 10.1517/17460441.2015.1043885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gary W Caldwell
- Janssen Research & Development LLC, Discovery Sciences, Spring House, PA, USA
| |
Collapse
|