51
|
Patel N, Shahane S, Shivam, Majumdar R, Mishra U. Mode of Action, Properties, Production, and Application of Laccase: A Review. Recent Pat Biotechnol 2019; 13:19-32. [PMID: 30147019 DOI: 10.2174/1872208312666180821161015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022]
Abstract
Background and Source: Laccase belongs to the blue multi-copper oxidases, which are widely distributed in fungi and higher plants. It is present in Ascomycetes, Deuteromycetes, and Basidiomycetes and found abundantly in white-rot fungi. Applications: Laccase enzymes because of their potential have acquired more importance and application in the area of textile, pulp and paper, and food industry. Recently, it is being used in developing biosensors for detection and removal of toxic pollutants, designing of biofuel cells and medical diagnostics tool. Laccase is also being used as a bioremediation agent as they have been found potent enough in cleaning up herbicides pesticides and certain explosives in soil. Because of having the ability to oxidize phenolic, non-phenolic lignin-related compounds and highly fractious environmental pollutants, laccases have drawn the attention of researchers in the last few decades. Commercially, laccases have been used to determine the difference between codeine and morphine, produce ethanol and are also being employed in de-lignify woody tissues. We have revised patents related to applicability of laccases. We have revised all the patents related to its wide applicability. Conclusion: For fulfillment of these wide applications, one of the major concerns is to develop a system for efficient production of these enzymes at a broad scale. Research in the field of laccases has been accelerated because of its wide diversity, utility, and enzymology. This paper deals with recent trends in implementation of the laccases in all practical possibilities with the help of optimizing various parameters and techniques which are responsible for mass production of the enzyme in industries.
Collapse
Affiliation(s)
- Naveen Patel
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Shraddha Shahane
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Shivam
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Ria Majumdar
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Umesh Mishra
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| |
Collapse
|
52
|
Ike PTL, Birolli WG, Dos Santos DM, Porto ALM, Souza DHF. Biodegradation of anthracene and different PAHs by a yellow laccase from Leucoagaricus gongylophorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8675-8684. [PMID: 30706277 DOI: 10.1007/s11356-019-04197-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Laccases produced by Leucoagaricus gongylophorus act in lignocellulose degradation and detoxification processes. Therefore, the use of L. gongylophorus laccase (Lac1Lg) was proposed in this work for degradation of anthracene and others polycyclic aromatic hydrocarbons without the use of mediators. Degradation reactions were performed in buffer aqueous solution with 10 ppm of anthracene and other PAHs, Tween-20 in 0.25% v/v and a laccase preparation of 50 U. The optimum condition (pH 6.0 and 30 °C) was determined by response surface methodology with an excellent coefficient of determination (R2) of 0.97 and an adjusted coefficient of determination (R2adj) of 0.93. In addition, the employment of the mediator ABTS decreased the anthracene biodegradation from 44 ± 1% to 30 ± 1%. This optimum pH of 6.0 suggests that the reaction occurs by a hydrogen atom transfer mechanism. Additionally, in 24 h Lac1Lg biodegraded 72 ± 1% anthracene, 40 ± 3% fluorene and 25 ± 3% phenanthrene. The yellow laccase from L. gongylophorus biodegraded anthracene and produced anthrone and anthraquinone, which are interesting compounds for industrial applications. Moreover, this enzyme also biodegraded the PAHs phenanthrene and fluorene justifying the study of Lac1Lg for bioremediation of these compounds in the environment.
Collapse
Affiliation(s)
- Priscila Tomie Leme Ike
- Centro de Ciências Exatas e de Tecnologia, Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
- Instituto Federal do Paraná, Rua Antonio Carlos Rodrigues, 453, Porto Seguro, Paranaguá, PR, 87703-539, Brazil
| | - Willian Garcia Birolli
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Danilo Martins Dos Santos
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - André Luiz Meleiro Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, São Carlos, SP, 13563-120, Brazil.
| | - Dulce Helena Ferreira Souza
- Centro de Ciências Exatas e de Tecnologia, Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
53
|
Yuan P, Li X, Wang W, Liu H, Yan Y, Yang H, Yue Y, Bao X. Tailored Design of Differently Modified Mesoporous Materials To Deeply Understand the Adsorption Mechanism for Polycyclic Aromatic Hydrocarbons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15708-15718. [PMID: 30495966 DOI: 10.1021/acs.langmuir.8b03299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A series of SBA-15 with different modifications have been successfully prepared and applied as adsorbents to remove polycyclic aromatic hydrocarbons (PAHs) from aqueous solutions. The morphology and structural properties of the chemically modified materials are all similar to those of pure SBA-15, and thus the difference of PAHs adsorption capacity can be directly attributed to the different functional groups, which is favorable to deeply explore the adsorption mechanism. Adsorption kinetics and isotherm experiments for naphthalene (Nap), anthracene (Ant), and pyrene (Pyr) were carried out, and the results reveal that the adsorption processes follow a pseudo-second-order rate equation and the equilibrium can be achieved within 120 min for Nap and Ant, whereas only 90 min for Pyr, indicating that the more hydrophobic molecules, the easier and faster adsorption can be obtained. All of the adsorption isotherms fit well with the Freundlich model, suggesting the unevenly distributed active sites on adsorbents. The phenyl-functionalized materials possess the highest adsorption capacity, implying that the π-π interaction is the most primary interaction and plays the predominant role in the studied PAHs adsorption, superior to the acidic and hydrophobic interaction. Our research sheds light on the design and synthesis of advanced and highly efficient adsorbents to remove PAHs from aqueous solutions.
Collapse
Affiliation(s)
- Pei Yuan
- National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical Engineering , Fuzhou University , Fuzhou 350002 , China
| | - Xiaoling Li
- National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical Engineering , Fuzhou University , Fuzhou 350002 , China
| | - Wangyang Wang
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Beijing 102249 , China
| | - Haiyan Liu
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Beijing 102249 , China
| | - Yan Yan
- Chinese Academy of Inspection and Quarantine , Beijing 100176 , China
| | - Haifeng Yang
- Chinese Academy of Inspection and Quarantine , Beijing 100176 , China
| | - Yuanyuan Yue
- National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical Engineering , Fuzhou University , Fuzhou 350002 , China
| | - Xiaojun Bao
- State Key Laboratory of Photocatalysis on Energy & Environment , Fuzhou University , Fuzhou 350116 , China
| |
Collapse
|
54
|
Sharma A, Ahmad J, Flora SJS. Application of advanced oxidation processes and toxicity assessment of transformation products. ENVIRONMENTAL RESEARCH 2018; 167:223-233. [PMID: 30055452 DOI: 10.1016/j.envres.2018.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Advanced Oxidation Processes (AOPs) are the techniques employed for oxidation of various organic contaminants in polluted water with the objective of making it suitable for human consumption like household and drinking purpose. AOPs use potent chemical oxidants to bring down the contaminant level in the water. In addition to this function, these processes are also capable to kills microbes (as disinfectant) and remove odor as well as improve taste of the drinking water. The non-photochemical AOPs methods include generation of hydroxyl radical in absence of light either by ozonation or through Fenton reaction. The photochemical AOPs methods use UV light along with H2O2, O3 and/or Fe+2 to generate reactive hydroxyl radical. Non-photochemical method is the commonly used whereas, photochemical method is used when conventional O3 and H2O2 cannot completely oxidize organic pollutants. However, the choice of AOPs methods is depended upon the type of contaminant to be removed. AOPs cause loss of biological activity of the pollutant present in drinking water without generation of any toxicity. Conventional ozonation and AOPs can inactivate estrogenic compounds, antiviral compounds, antibiotics, and herbicides. However, the study of different AOPs methods for the treatment of drinking water has shown that oxidation of parent compound can also lead to the generation of a degradation/transformation product having biological activity/chemical toxicity similar to or different from the parent compound. Furthermore, an increased toxicity can also occur in AOPs treated drinking water. This review discusses various methods of AOPs, their merits, its application in drinking water treatment, the related issue of the evolution of toxicity in AOPs treated drinking water, biocatalyst, and analytical methods for identification of pollutants /transformed products and provides future directions to address such an issue.
Collapse
Affiliation(s)
- Abha Sharma
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India
| | - Javed Ahmad
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research, Shree Bhawani Paper Mill Road, ITI Compound, Raebareli 229010, Uttar Pradesh, India.
| |
Collapse
|
55
|
Guan ZB, Luo Q, Wang HR, Chen Y, Liao XR. Bacterial laccases: promising biological green tools for industrial applications. Cell Mol Life Sci 2018; 75:3569-3592. [PMID: 30046841 PMCID: PMC11105425 DOI: 10.1007/s00018-018-2883-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/30/2018] [Accepted: 07/19/2018] [Indexed: 11/26/2022]
Abstract
Multicopper oxidases (MCOs) are a pervasive family of enzymes that oxidize a wide range of phenolic and nonphenolic aromatic substrates, concomitantly with the reduction of dioxygen to water. MCOs are usually divided into two functional classes: metalloxidases and laccases. Given their broad substrate specificity and eco-friendliness (molecular oxygen from air as is used as the final electron acceptor and they only release water as byproduct), laccases are regarded as promising biological green tools for an array of applications. Among these laccases, those of bacterial origin have attracted research attention because of their notable advantages, including broad substrate spectrum, wide pH range, high thermostability, and tolerance to alkaline environments. This review aims to summarize the significant research efforts on the properties, mechanisms and structures, laccase-mediator systems, genetic engineering, immobilization, and biotechnological applications of the bacteria-source laccases and laccase-like enzymes, which principally include Bacillus laccases, actinomycetic laccases and some other species of bacterial laccases. In addition, these enzymes may offer tremendous potential for environmental and industrial applications.
Collapse
Affiliation(s)
- Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Quan Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao-Ran Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yu Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
56
|
Yang J, Gao M, Li M, Li Z, Li H, Li H. Bacillus amyloliquefaciensCotA degradation of the lignin model compound guaiacylglycerol-β-guaiacyl ether. Lett Appl Microbiol 2018; 67:491-496. [DOI: 10.1111/lam.13060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/21/2018] [Accepted: 08/01/2018] [Indexed: 11/29/2022]
Affiliation(s)
- J. Yang
- College of Life Science; Hebei Agricultural University; Baoding Hebei China
| | - M.Y. Gao
- College of Life Science; Hebei Agricultural University; Baoding Hebei China
| | - M. Li
- College of Life Science; Hebei Agricultural University; Baoding Hebei China
| | - Z.Z. Li
- College of Life Science; Hebei Agricultural University; Baoding Hebei China
| | - H. Li
- College of Life Science; Hebei Agricultural University; Baoding Hebei China
| | - H.Y. Li
- College of Life Science; Hebei Agricultural University; Baoding Hebei China
| |
Collapse
|
57
|
Wei K, Yin H, Peng H, Lu G, Dang Z. Bioremediation of triphenyl phosphate by Brevibacillus brevis: Degradation characteristics and role of cytochrome P450 monooxygenase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1389-1395. [PMID: 30857102 DOI: 10.1016/j.scitotenv.2018.02.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 06/09/2023]
Abstract
Triphenyl phosphate (TPHP) has been detected with increasing frequency in environmental samples, which has aroused great attention regarding its potential adverse effects. In this study, biodegradation of TPHP by Brevibacillus brevis was investigated. The results revealed that the highest degradation efficiency of 3μmol/L TPHP by B. brevis reached 92.1% at pH7 and 30°C. The major metabolites of TPHP, diphenyl phosphate and phenyl phosphate were detected within 5days of incubation with the maximum concentrations at 308.2 and 11.8nmol/L, respectively. The activities of superoxide dismutase and catalase along with malondialdehyde content also increased significantly, indicating that TPHP caused a severe oxidative stress on B. brevis. Meanwhile, the addition of cytochrome P450 (CYP) inhibitor piperonyl butoxide markedly decreased the degradation of TPHP by B. brevis. Further transcription studies using quantitative real-time RT-PCR confirmed that the expression of CYP gene in B. brevis were significantly down-regulated. These findings demonstrated the important role of CYP in the degradation of TPHP. To our best knowledge, this is the first report about the biodegradation of TPHP by B. brevis. Overall, this study provides new insights into the potential mechanisms of TPHP biodegradation by microorganisms.
Collapse
Affiliation(s)
- Kun Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| |
Collapse
|
58
|
Jiang L, Cheng Z, Zhang D, Song M, Wang Y, Luo C, Yin H, Li J, Zhang G. The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:173-181. [PMID: 28800486 DOI: 10.1016/j.envpol.2017.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Primitive electronic waste (e-waste) recycling releases large amounts of organic pollutants and heavy metals into the environment. As crucial moderators of geochemical cycling processes and pollutant remediation, soil microbes may be affected by these contaminants. We collected soil samples heavily contaminated by e-waste recycling in China and Pakistan, and analyzed the indigenous microbial communities. The results of this work revealed that the microbial community composition and diversity, at both whole and core community levels, were affected significantly by polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and heavy metals (e.g., Cu, Zn, and Pb). The geographical distance showed limited impacts on microbial communities compared with geochemical factors. The constructed ecological network of soil microbial communities illustrated microbial co-occurrence, competition and antagonism across soils, revealing the response of microbes to soil properties and pollutants. Two of the three main modules constructed with core operational taxonomic units (OTUs) were sensitive to nutrition (total organic carbon and total nitrogen) and pollutants. Five key OTUs assigned to Acidobacteria, Proteobacteria, and Nitrospirae in ecological network were identified. This is the first study to report the effects of e-waste pollutants on soil microbial network, providing a deeper understanding of the ecological influence of crude e-waste recycling activities on soil ecological functions.
Collapse
Affiliation(s)
- Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhineng Cheng
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
| | - Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jun Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
59
|
Immobilized Cerrena sp. laccase: preparation, thermal inactivation, and operational stability in malachite green decolorization. Sci Rep 2017; 7:16429. [PMID: 29180686 PMCID: PMC5703875 DOI: 10.1038/s41598-017-16771-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/17/2017] [Indexed: 11/15/2022] Open
Abstract
Laccases are polyphenol oxidases with widespread applications in various industries. In the present study, the laccase from Cerrena sp. HYB07 was immobilized with four methods, namely entrapment in alginate, covalently binding to chitosan as well as formation of cross-linked enzyme aggregates (CLEAs) and magnetic CLEAs (M-CLEAs). The activity recovery rates of the immobilized laccases ranged from 29% to 68%. Immobilization elevated the reaction temperature optimum and reduced substrate specificity, but not necessarily the turnover rate. pH stability of immobilized laccases was improved compared with that of the free laccase, especially at acidic pH values. Thermal inactivation of all laccases followed a simple first-order exponential decay model, and immobilized laccases displayed higher thermostability, as manifested by lower thermal inactivation rate constants and longer enzyme half-life time. Operational stability of the immobilized laccase was demonstrated by decolorization of the triphenylmethane dye malachite green (MG) at 60 °C. MG decolorization with free laccase was accompanied by a shift of the absorption peak and accumulation of a stable, colored intermediate tetradesmethyl MG, probably due to lower thermostability of the free laccase and premature termination of the degradation pathway. In contrast, complete decolorization of MG was achieved with laccase CLEAs at 60 °C.
Collapse
|
60
|
Yue Q, Yang Y, Zhao J, Zhang L, Xu L, Chu X, Liu X, Tian J, Wu N. Identification of bacterial laccase cueO mutation from the metagenome of chemical plant sludge. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0178-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
61
|
Mate DM, Alcalde M. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 2017; 10:1457-1467. [PMID: 27696775 PMCID: PMC5658592 DOI: 10.1111/1751-7915.12422] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022] Open
Abstract
Laccases are multicopper containing enzymes capable of performing one electron oxidation of a broad range of substrates. Using molecular oxygen as the final electron acceptor, they release only water as a by-product, and as such, laccases are eco-friendly, versatile biocatalysts that have generated an enormous biotechnological interest. Indeed, this group of enzymes has been used in different industrial fields for very diverse purposes, from food additive and beverage processing to biomedical diagnosis, and as cross-linking agents for furniture construction or in the production of biofuels. Laccases have also been studied intensely in nanobiotechnology for the development of implantable biosensors and biofuel cells. Moreover, their capacity to transform complex xenobiotics makes them useful biocatalysts in enzymatic bioremediation. This review summarizes the most significant recent advances in the use of laccases and their future perspectives in biotechnology.
Collapse
Affiliation(s)
- Diana M. Mate
- Department of BiocatalysisInstitute of CatalysisCSICCantoblanco28049MadridSpain
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSICCantoblanco28049MadridSpain
| |
Collapse
|
62
|
Wang X, Cao A, Zhao G, Zhou C, Xu R. Microbial community structure and diversity in a municipal solid waste landfill. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 66:79-87. [PMID: 28442259 DOI: 10.1016/j.wasman.2017.04.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/05/2017] [Accepted: 04/09/2017] [Indexed: 05/21/2023]
Abstract
Municipal solid waste (MSW) landfills are the most prevalent waste disposal method and constitute one of the largest sources of anthropogenic methane emissions in the world. Microbial activities in disposed waste play a crucial role in greenhouse gas emissions; however, only a few studies have examined metagenomic microbial profiles in landfills. Here, the MiSeq high-throughput sequencing method was applied for the first time to examine microbial diversity of the cover soil and stored waste located at different depths (0-150cm) in a typical MSW landfill in Yangzhou City, East China. The abundance of microorganisms in the cover soil (0-30cm) was the lowest among all samples, whereas that in stored waste decreased from the top to the middle layer (30-90cm) and then increased from the middle to the bottom layer (90-150cm). In total, 14 phyla and 18 genera were found in the landfill. A microbial diversity analysis showed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla, whereas Halanaerobium, Methylohalobius, Syntrophomonas, Fastidiosipila, and Spirochaeta were the dominant genera. Methylohalobius (methanotrophs) was more abundant in the cover layers of soil than in stored waste, whereas Syntrophomonas and Fastidiosipila, which affect methane production, were more abundant in the middle to bottom layers (90-150cm) in stored waste. A canonical correlation analysis showed that microbial diversity in the landfill was most strongly correlated with the conductivity, organic matter, and moisture content of the stored waste.
Collapse
Affiliation(s)
- Xiaolin Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Aixin Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guozhu Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Chuanbin Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rui Xu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
63
|
Qiao W, Chu J, Ding S, Song X, Yu L. Characterization of a thermo-alkali-stable laccase from Bacillus subtilis cjp3 and its application in dyes decolorization. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:710-717. [PMID: 28358283 DOI: 10.1080/10934529.2017.1301747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, a novel bacterial strain exhibiting laccase activity was isolated from black liquor and identified as Bacillus subtilis cjp3. The CotA-laccase gene was cloned from strain cjp3 and expressed in Escherichia coli. The purified recombinant laccase has a maximum activity of 7320 U/L, maintaining high stabilities under a wide pH range and high temperature conditions. Nearly no loss of laccase activity was observed even at pH 9.0 after 10 h of incubation. Reactive blue 19, reactive black 5 and indigo carmine could be efficiently decolorized by the purified laccase in the presence of a mediator ABTS. More than 86% of tested dyes were removed in 4 h at pH = 9.0. The recombinant laccase can work well in a broad range of temperatures of 20-80°C(>80% relative activity). These special properties indicated the potential use of the CotA-laccase in treating wastewater containing synthetic dyes.
Collapse
Affiliation(s)
- Weichuan Qiao
- a Department of Environmental Engineering , Nanjing Forestry University , Nanjing , China
| | - Jingping Chu
- a Department of Environmental Engineering , Nanjing Forestry University , Nanjing , China
| | - Shaojun Ding
- b Department of Chemical Engineering , Nanjing Forestry University , Nanjing , China
| | - Xin Song
- c Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Science , Nanjing , China
| | - Lei Yu
- a Department of Environmental Engineering , Nanjing Forestry University , Nanjing , China
| |
Collapse
|
64
|
Yang J, Li W, Ng TB, Deng X, Lin J, Ye X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front Microbiol 2017; 8:832. [PMID: 28559880 PMCID: PMC5432550 DOI: 10.3389/fmicb.2017.00832] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023] Open
Abstract
Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Wenjuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong KongShatin, Hong Kong
| | - Xiangzhen Deng
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou UniversityFujian, China
| |
Collapse
|
65
|
The synergistic adsorption of pyrene and copper onto Fe(III) functionalized mesoporous silica from aqueous solution. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
66
|
Jin X, Tian W, Liu Q, Qiao K, Zhao J, Gong X. Biodegradation of the benzo[a]pyrene-contaminated sediment of the Jiaozhou Bay wetland using Pseudomonas sp. immobilization. MARINE POLLUTION BULLETIN 2017; 117:283-290. [PMID: 28187968 DOI: 10.1016/j.marpolbul.2017.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 05/02/2023]
Abstract
To remove benzo[a]pyrene (BaP) that has accumulated in the Jiaozhou Bay wetland sediment, two strains (JB1 and JB2) were selected from the BaP-contaminated the wetland sediment and immobilized in coal cinder and chitosan beads using entrapping and surface adsorption methods. Biodegradation of BaP in sediment was carried out in pots. The results showed that, supported by the coal cinder and chitosan beads, 71.9, 65.5, 58.9 and 66.1% of the BaP in the immobilized cells was degraded after 40d. These percentages were clearly higher than the 47.7% that degraded from free cells. Kinetic analysis indicated that the immobilized gel-beads might remove BaP by multiple control steps. Compared to the chitosan, coal cinder-entrapping beads exhibited a higher removal rate for BaP; however, the degradation rates from coal cinder- and chitosan-surface adsorption beads were almost the same. This result indicates that in addition to the BaP-degrading bacteria, carrier materials and immobilizing methods play an important role in determining the success of a biodegradation strategy.
Collapse
Affiliation(s)
- Xin Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| | - Qing Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Kaili Qiao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jing Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaoxi Gong
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|