51
|
Rong L, Zhang S, Wang J, Li S, Xie S, Wang G. Phytoremediation of uranium-contaminated soil by perennial ryegrass (Lolium perenne L.) enhanced with citric acid application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33002-33012. [PMID: 35020149 DOI: 10.1007/s11356-022-18600-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) was planted in uranium-contaminated soil mixtures supplemented with different amounts of citric acid to investigate the defense strategies of perennial ryegrass against U and the enhanced mechanism of citric acid on the remediation efficiency in the laboratory. The uranium content in the plant tissues showed that the roots were the predominant tissue for uranium accumulation. In both root and shoot cells, the majority of U was located in the cell wall fraction. Furthermore, antioxidant enzymes were also stimulated when exposed to U stress. These results suggested that perennial ryegrass had evolved defense strategies, such as U sequestration in root tissue, compartmentalization in the cell wall, and antioxidant enzyme systems, to minimize uranium stress. For an enhanced mechanism, the optimal concentration of citric acid was 5 mmol/kg, and the removal efficiency of U in the shoots and roots increased by 47.37% and 30.10%, respectively. The treatment with 5 mmol/kg citric acid had the highest contents of photosynthetic pigment and soluble protein, the highest activity of antioxidant enzymes, and the lowest content of MDA (malondialdehyde) and relative electrical conductivity. Moreover, the TEM (transmission electron microscope) results revealed that after 5 mmol/kg citric acid was added, the cell structure of plant branches partially returned to normal, the number of mitochondria increased, chloroplast surfaces seemed normal, and the cell wall became visible. The damage to the cell ultrastructure of perennial ryegrass was significantly alleviated by treatment with 5 mmol/kg citric acid. All the results above indicated that perennial ryegrass could accumulate uranium with elevated uranium tolerance and enrichment ability with 5 mmol/kg citric acid.
Collapse
Affiliation(s)
- Lishan Rong
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shiqi Zhang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Jiali Wang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shiyou Li
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuibo Xie
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Guohua Wang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
52
|
Chen L, Wang J, Beiyuan J, Guo X, Wu H, Fang L. Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151556. [PMID: 34752878 DOI: 10.1016/j.scitotenv.2021.151556] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Soil pollution by potentially toxic trace elements (PTEs) near uranium (U) mines arouses a growing interest worldwide. However, nearly all studies have focused on a single site or only a few sites, which may not fully represent the soil pollution status at the global scale. In this study, data of U, Cd, Cr, Pb, Cu, Zn, As, Mn, and Ni contents in U mine-associated soils were collected and screened from published articles (2006-2021). Assessments of pollution levels, distributions, ecological, and human health risks of the nine PTEs were analysed. The results revealed that the average contents of the U, Cd, Cr, Pb, Cu, Zn, As, Mn, and Ni were 39.88-, 55.33-, 0.88-, 3.81-, 3.12-, 3.07-, 9.26-, 1.83-, and 1.17-fold greater than those in the upper continental crust, respectively. The pollution assessment showed that most of the studied soils were heavily polluted by U and Cd. Among them, the U mine-associated soils in France, Portugal, and Bulgaria exhibited significantly higher pollution levels of U and Cd when compared to other regions. The average potential ecological risk value for all PTEs was 3358.83, which indicated the presence of remarkably high risks. Among the PTEs, Cd and U contributed more to the potential ecological risk than the other elements. The health risk assessment showed that oral ingestion was the main exposure route for soil PTEs; and the hazard index (HI) values for children were higher than those for adult males and females. For adult males and females, all hazard index values for the noncarcinogenic risks were below the safe level of 1.00. For children, none of the HI values exceeded the safe level, with the exception of U (HI = 3.56) and As (HI = 1.83), but Cu presented unacceptable carcinogenic risks. This study provides a comprehensive analysis that demonstrates the urgent necessity for treating PTE pollution in U mine-associated soils worldwide.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Jingzhe Wang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hao Wu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan 420100, China
| | - Linchuan Fang
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| |
Collapse
|
53
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
54
|
Moreira GC, Carneiro CN, Dos Anjos GL, da Silva F, Santos JLO, Dias FDS. Support vector machine and PCA for the exploratory analysis of Salvia officinalis samples treated with growth regulators based in the agronomic parameters and multielement composition. Food Chem 2022; 373:131345. [PMID: 34715635 DOI: 10.1016/j.foodchem.2021.131345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/02/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022]
Abstract
The objective of this work was to evaluate the influence of different growth regulators on the mineral and total phenolic contents of Salvia officinalis. The samples received the applications of salicylic acid (AS); gibberellic acid (GA3); abscisic acid (ABA) and solution without regulators (control). The exploratory evaluation of the samples was carried out through the Principal Component Analysis (PCA). In addition, has been used supervised learning methods with support vector machine (SVM) algorithms to classify the samples. The phenolic and total flavonoid contents were higher in the plants treated with the regulators. The element found in the highest concentration in Salvia officinalis was N. Plants sprayed with ABA showed higher concentrations of N, K, and Mn; Fe and Al were higher with ABA and gibberellin application, while the application of AS provided the highest accumulation of P. The application of plant regulators improves the nutraceutical properties of Salvia officinalis.
Collapse
Affiliation(s)
- Gisele C Moreira
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz das Almas, 44380-000 Cruz das Almas, Bahia, Brazil
| | - Candice N Carneiro
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz das Almas, 44380-000 Cruz das Almas, Bahia, Brazil
| | - Gilvanda L Dos Anjos
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz das Almas, 44380-000 Cruz das Almas, Bahia, Brazil
| | - Franceli da Silva
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Campus Universitário de Cruz das Almas, 44380-000 Cruz das Almas, Bahia, Brazil
| | - Jorge L O Santos
- Universidade Federal do Oeste da Bahia, Centro Multidisciplinar de Bom Jesus da Lapa, 47600-000 Bom Jesus da Lapa, Bahia, Brasil
| | - Fabio de S Dias
- Universidade Federal da Bahia, Instituto de Ciências Tecnologia e Inovação, Campus Universitário de Camaçari, 42809-000 Camaçari, Bahia, Brazil.
| |
Collapse
|
55
|
Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU, Farooq N, Naveed M, Kucerik J, Brtnicky M, Mustafa A. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:773815. [PMID: 35371142 PMCID: PMC8965506 DOI: 10.3389/fpls.2022.773815] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/02/2022] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Nauman Ali
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Naila Farooq
- Department of Soil and Environmental Science, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
56
|
Khosropour E, Weisany W, Tahir NAR, Hakimi L. Vermicompost and biochar can alleviate cadmium stress through minimizing its uptake and optimizing biochemical properties in Berberis integerrima bunge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17476-17486. [PMID: 34668134 DOI: 10.1007/s11356-021-17073-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Organic substrates are gaining popularity as a means of mitigating the negative effects of cadmium (Cd) stress on plant growth. The aim of the present study was to investigate the physio-biochemical attributes of Berberis integerrima bunge under Cd-contaminated soil. The pot experiment was carried out based on a completely randomized design (CRD) with six replicates. Cd stress was used as cadmium chloride (CdCl2) at 10, 20, and 30 mg Cd kg-1 dry soil. Biochar was applied at the doses of 125 g per pot, and vermicompost was used at the doses of 250 g per pot separately, and for their combination, they were used as 125 g per pot of BC + 250 g per pot of VC. The results showed higher Cd accumulation in both roots and leaves when the soil was polluted with Cd concentrations, but both BC and VC decreased the Cd accumulation in plant tissues. Although chlorophyll content and relative water content (RWC) decreased at 20 and 30 mg Cd kg-1 soil, BC and VC, particularly their combination, increased these traits. The highest total phenolic content (TPC) was observed in plants exposed to 20 mg Cd kg-1 soil and combined BC and VC. The total flavonoid content (TFC) was increased to 20 mg Cd kg-1 soil and then decreased to 30 mg Cd kg-1 soil. In addition, organic fertilizer promoted the plants' high accumulation of TFC. The greater activities of antioxidant enzymes including superoxide dismutase (SOD) and phenylalanine ammonia-lyase (PAL) were observed at 30 mg Cd kg-1 soil when organic substrates were added. The present study suggests the use of combined BC and VC lead to alleviate the adverse effects of Cd stress in B. integerrima.
Collapse
Affiliation(s)
- Esmail Khosropour
- Department of Forestry and Forest Economics, University of Tehran, Tehran, Iran
| | - Weria Weisany
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Nawroz Abdul-Razzak Tahir
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| | - Leila Hakimi
- Department of Agriculture, Islamic Azad University, Saveh Branch, Iran
| |
Collapse
|
57
|
Hua ZL, Li XQ, Zhang JY, Gu L. Removal potential of multiple perfluoroalkyl acids (PFAAs) by submerged macrophytes in aquatic environments: Tolerance of Vallisneria natans and PFAA removal in submerged macrophyte-microbiota systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127695. [PMID: 34775308 DOI: 10.1016/j.jhazmat.2021.127695] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have emerged as a global concern in aquatic environment remediation due to their abundance, persistence, bioaccumulation, and toxicity. To comprehensively understand the removal potential of multiple PFAAs by submerged macrophytes in aquatic environments, systematic investigations into the tolerance of the typical submerged macrophyte Vallisneria natans to 12 typical PFAAs and the removal capacity to PFAAs in V. natans-microbiota systems were carried out. Results showed that although PFAAs could induce the accumulation of hydrogen peroxide and malondialdehyde, V. natans was overall resistant to multiple PFAAs with natural concentrations. Catalase is one of the main strategies of V. natans to alleviate PFAA stress. Microbiota can remove 18.10-30.84% of the PFAAs from the water column. 24.35-73.45% of PFAAs were removed from water in V. natans-microbiota systems. The uptake of plant tissues and the bioaccumulation of microbiota were proposed as the main removal processes. The removal rates were significantly correlated with the perfluorinated carbon atoms numbers (p < 0.05). PFAAs and V. natans increased the relative abundance of Betaproteobacteria, Nostocales, Microscillaceae, Sphingobacteriales, SBR1031, Chlamydiales, Phycisphaerae, Caldilineales, Rhodobacterales, and Verrucomicrobiales. The present study suggested that V. natans can be a potential species to remove multiple PFAAs in aquatic environments, and further providing insights into the PFAAs' remediation.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| |
Collapse
|
58
|
Tochaikul G, Phattanasub A, Khemkham P, Saengthamthawee K, Danthanavat N, Moonkum N. Radioactive waste treatment technology: a review. KERNTECHNIK 2022. [DOI: 10.1515/kern-2021-1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Radioactive waste is generated from activities that utilize nuclear materials such as nuclear medicine or power plants. Depending on their half-life, they emit radiation continuously, ranging from seconds to millions of years. Exposure to ionizing radiation can cause serious harm to humans and the environment. Therefore, special attention is paid to the management of radioactive waste in order to deal with its large quantity and dangerous levels. Current treatment technologies are still being developed to improve efficiency in reducing the hazard level and waste volume, to minimize the impact on living organisms. Thus, the aim of this study was to provide an overview of the global radioactive waste treatment technologies that have been released in 2019–2021.
Collapse
Affiliation(s)
- Gunjanaporn Tochaikul
- Faculty of Radiological Technology, Rangsit University , 52/347 Lak Hok, Mueang Pathum Thani District , Pathum Thani 12000 , Thailand
| | - Archara Phattanasub
- Head of Radioactive Waste Technology and Development Section, Thailand Institute of Nuclear Technology (Public Organization) , Bangkok , Thailand
| | - Piyatida Khemkham
- Faculty of Radiological Technology, Rangsit University , 52/347 Lak Hok, Mueang Pathum Thani District , Pathum Thani 12000 , Thailand
| | - Kanjanaporn Saengthamthawee
- Faculty of Radiological Technology, Rangsit University , 52/347 Lak Hok, Mueang Pathum Thani District , Pathum Thani 12000 , Thailand
| | - Nuttapong Danthanavat
- Faculty of Radiological Technology, Rangsit University , 52/347 Lak Hok, Mueang Pathum Thani District , Pathum Thani 12000 , Thailand
| | - Nutthapong Moonkum
- Faculty of Radiological Technology, Rangsit University , 52/347 Lak Hok, Mueang Pathum Thani District , Pathum Thani 12000 , Thailand
| |
Collapse
|
59
|
Li Y, Chen L, Zhan X, Liu L, Feng F, Guo Z, Wang D, Chen H. Biological effects of gamma-ray radiation on tulip ( Tulipa gesneriana L.). PeerJ 2022; 10:e12792. [PMID: 35111407 PMCID: PMC8783560 DOI: 10.7717/peerj.12792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
Tulip, being an important ornamental plant, generally requires lengthy and laborious procedures to develop new varieties using traditional breeding methods requires. But ionizing radiation potentially accelerates the breeding process of ornamental plant species. The biological effects of γ-ray irradiation on tulip, therefore, were investigated through establishing an irradiation-mediated mutation breeding protocol to accelerate its breeding process. ISSR-PCR molecular marker technique was further used to identify the mutants of phenotypic variation plants. This study showed that low irradiation doses (5 Gy) stimulated bulb germination to improve the survival rate of tulip, while high irradiation doses (20 to 100 Gy) significantly (P < 0.05) inhibited its seed germination and growth, and decreased the flowering rate, petal number, flower stem length and flower diameter. More than 40 Gy significantly (P < 0.05) decreased the total chlorophyll content and increased the malondialdehyde (MDA) content in tulips. Interestingly, three types of both stigma variations and flower pattern variations, and four types of flower colour variations were observed. With increasing the irradiation dose from 5 to 100 Gy, the anthocyanin and flavonoid contents continuously decreased. Scanning electron microscopy (SEM) analysis evidenced that high irradiation doses altered the micromorphology of leaf stomata. Microscopic observations of tulip root apical mitosis further showed the abnormal chromosomal division behaviour occurring at different mitotic phases under irradiation treatment (80 Gy). Increasing the irradiation dose from 20 to 100 Gy enhanced the micronucleus rate. Moreover, the suspected genetic variation in tulips was evaluated by inter-simple sequence repeat (ISSR) analysis, and the percentage of polymorphic bands was 68%. Finally, this study concludes that that 80 Gy may be an appropriate radiation does to better enhance the efficiency of mutagenic breeds in tulip plants. Using γ-ray irradiation, therefore, is expected to offer a theoretical basis for mutation breeding in tulips.
Collapse
Affiliation(s)
- Yirui Li
- Breeding Platform of Sichuan Radiation Mutagenesis Technology, Chengdu, China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Li Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaodie Zhan
- Breeding Platform of Sichuan Radiation Mutagenesis Technology, Chengdu, China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Liang Liu
- Breeding Platform of Sichuan Radiation Mutagenesis Technology, Chengdu, China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Feihong Feng
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zihua Guo
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Dan Wang
- Breeding Platform of Sichuan Radiation Mutagenesis Technology, Chengdu, China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hao Chen
- Breeding Platform of Sichuan Radiation Mutagenesis Technology, Chengdu, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
60
|
Chen Z, Liu Q, Chen S, Zhang S, Wang M, Mujtaba Munir MA, Feng Y, He Z, Yang X. Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118510. [PMID: 34793909 DOI: 10.1016/j.envpol.2021.118510] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 05/22/2023]
Abstract
Plant growth regulators (PGRs) assisted phytoextraction was investigated as a viable phytoremediation technology to increase the phytoextraction efficiency in contaminated soils. This study aimed to evaluate the cadimum (Cd)/lead (Pb)/zinc (Zn) phytoextraction efficiency by a hyperaccumulator Sedum alfredii Hance (S. alfredii) treated with 9 PGRs, including indole-3-acetic acid (IAA), gibberellin (GA3), cytokinin (CKs), abscisic acid (ABA), ethylene (ETH), brassinosteroid (BR), salicylic acid (SA), strigolactones (SL) and jasmonic acid (JA), in slightly or heavily contaminated (SC and HC, respectively) soil. Results demonstrated that PGRs were able to improve S. alfredii biomass, the most significant increases were observed in GA3 and SL for HC soil, while for SC soil, IAA and BR exhibited positive effects. The levels of Cd, Pb and Zn in the shoots of S. alfredii treated with ABA and SL were noticeably greater than in the CK treatment in HC soil, while the uptake of metals were increased by IAA and CKs in SC soil. Combined with the results of biomass and metal contents in shoots, we found that ABA showed the highest Cd removal efficiency and the maximum Pb and Zn removal efficiency was observed with GA3, which was 62.99%, 269.23%, and 41.18%, respectively higher than the control in HC soil. Meanwhile, compared to control, the maximum removal efficiency of Cd by IAA treatment (52.80%), Pb by JA treatment (165.1%), and Zn by BR treatment (44.97%) in the SC soil. Overall, our results suggested that these PGRs, especially, ABA, SL, IAA, BR and GA3 had great potential in improving phytoremediation efficiency of S. alfredii grown in contaminated soils.
Collapse
Affiliation(s)
- Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shaoning Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Shijun Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mei Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mehr Ahmed Mujtaba Munir
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences, Indian River Research and Education Center, Fort Pierce, FL, 34945, United States
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
61
|
Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is a heavy metal present in atmosphere, rocks, sediments, and soils without a known role in plants. It is relatively mobile and can easily enter from soil into groundwater and contaminate the food chain. Its presence in food in excess amounts may cause severe conditions in humans, therefore prevention of cadmium entering the food chain and its removal from contaminated soils are important steps in preserving public health. In the last several years, several approaches for Cd remediation have been proposed, such as the use of soil amendments or biological systems for reduction of Cd contamination. One of the approaches is phytoremediation, which involves the use of plants for soil clean-up. In this review we summarized current data on the use of different plants in phytoremediation of Cd as well as information about different approaches which have been used to enhance phytoremediation. This includes data on the increasing metal bioavailability in the soil, plant biomass, and plant accumulation capacity as well as seed priming as a promising novel approach for phytoremediation enhancing.
Collapse
|
62
|
Wang L, Xie X, Li Q, Yu Z, Hu G, Wang X, Liu J. Accumulation of potentially toxic trace elements (PTEs) by native plant species growing in a typical gold mining area located in the northeast of Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6990-7000. [PMID: 34467488 DOI: 10.1007/s11356-021-16076-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Though gold mines provide significant economic benefits to local governments, mining causes soil pollution by potentially toxic trace elements (PTEs) in mining areas, especially in the Qinghai-Tibet Plateau. Screening of native plant species from mining areas is now an effective, inexpensive, and eco-friendly method for the remediation of PTEs in situ. In the present study, we conducted experiments to assess the accumulation of As, Cd, Pb, and Zn in 12 native plant species growing on a typical gold mining area in the Qinghai-Tibet Plateau. Our results showed that rhizosphere soils have high soil organic matter content, high levels of As, and moderate levels of Cd. Geranium pylzowianum accumulated relatively higher As in its shoots and exhibited translocation factor (TF) higher than 1 for As (4.65), Cd (1.87), and Pb (1.36). Potentilla saundersiana had bioconcentration factor of shoot (BCF-S) higher than 1 for Cd (4.52) and Pb (1.70), whereas its TF was higher than 1 for As, Cd, Pb, and Zn. These plant species exhibit strong tolerance to these PTEs. Furthermore, Elymus nutans accumulated low levels of As, Cd, Pb, and Zn in their shoots and exhibited TF values lower than 1 for the four PTEs. Therefore, G. pylzowianum is a promising candidate for the in situ phytoextraction of As, and P. saundersiana can be used as an effective plant for Cd and Pb phytoextraction. E. nutans is better suited for the phytostabilisation of multiple PTEs. This work is of significant importance for screening native plant species that can provide a reference for phytoremediation of PTE-contaminated soils in this area or other place with similar climate, and has a good potential for developing PTE phytoremediation strategies at mining sites.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xiaorong Xie
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Qifeng Li
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou, 730030, Gansu, People's Republic of China
| | - Zhifeng Yu
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou, 730030, Gansu, People's Republic of China
| | - Guangde Hu
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - XiXi Wang
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
63
|
Saha L, Tiwari J, Bauddh K, Ma Y. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front Microbiol 2021; 12:731723. [PMID: 35002995 PMCID: PMC8733405 DOI: 10.3389/fmicb.2021.731723] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.
Collapse
Affiliation(s)
- Lala Saha
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
64
|
Chen M, Chen X, Xing Y, Liu Y, Zhang S, Zhang D, Zhu J. Arsenic and Cadmium in Soils from a Typical Mining City in Huainan, China: Spatial Distribution, Ecological Risk Assessment and Health Risk Assessment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1080-1086. [PMID: 34125261 DOI: 10.1007/s00128-021-03278-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
In order to determine the ecological risk and health risk of Arsenic (As) and Cadmium (Cd) in soils from a typical mining city in Huainan, a total of 99 soil samples were collected and analyzed. The results showed that the concentrations of As and Cd ranged from 3.2 to 39.50 and 0.01 to 0.19 mg/kg, respectively, which exceeded the soil background values by 6.06 and 14.14%, respectively. The soil pH and content of organic carbon demonstrated no significant (P > 0.05) correlation with the As and Cd concentrations, while the land use types significantly (P < 0.05) affected the As and Cd distribution. According to the Nemero synthesis pollution index, three spot areas were identified as moderately to strongly polluted. The potential ecological risk index ranged from 4.34 to 108.64, which represented that the potential ecological risk was low. In addition, children faced more carcinogenic risk of As. Consequently, mining has increased the concentrations of As and Cd in soils, and the carcinogenic risk of As to children should be paid more attention.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Institute of Environment-Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, 241003, China
| | - Xiaoyang Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China.
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China.
| | - Yazhen Xing
- Institute of Environment-Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, 241003, China
| | - Ying Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China
| | - Shiwen Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area with High Groundwater Level, Huainan, 232001, China
| | - Di Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jianming Zhu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
65
|
Liang Y, Xiao X, Guo Z, Peng C, Zeng P, Wang X. Co-application of indole-3-acetic acid/gibberellin and oxalic acid for phytoextraction of cadmium and lead with Sedum alfredii Hance from contaminated soil. CHEMOSPHERE 2021; 285:131420. [PMID: 34256202 DOI: 10.1016/j.chemosphere.2021.131420] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/09/2021] [Accepted: 06/30/2021] [Indexed: 05/22/2023]
Abstract
Exogenous application of plant-growth promoting substances in combination with chelators is a common way to enhance the phytoextraction of heavy metals. A pot experiment was used to explore the influences of indole-3-acetic acid (IAA)/gibberellin (GA3) alone or together with oxalic acid (OA) on the growth, physiological response, and nutrient contents of hyperaccumulator Sedum alfredii Hance, and cadmium (Cd) and lead (Pb) phytoextraction efficiency. The results showed that a foliar spray of IAA/GA3 alone or together with OA increased plant growth. The largest shoot biomass with increase by 29.7% was produced by the 50 μmol L-1 IAA combined with 2.5 mmol kg-1 OA (50I+2.5OA) treatment as compared with the control treatment (CK). The presence of IAA and GA3 enhanced the chlorophyll a, carotenoid, and potassium contents in leaves and decreased the malondialdehyde content. The Cd content in leaf and the translocation factor (TFshoot) value from 50I+2.5OA treatment was increased by 4.29% and 21.4%, and the Pb content in stem and shoot, and the TFshoot of Pb after applying 50 μmol L-1 GA3 combined with 2.5 mmol kg-1 OA was enhanced by 32.5%, 13.4%, and 57.6%, compared with CK, respectively. The optimal Cd and Pb phytoextraction efficiency occurred from 50I+2.5OA treatment with increase by 82.4% and 79.3% as compared with CK, respectively. Therefore, the results showed that a combined application of 50 μmol L-1 IAA and 2.5 mmol kg-1 OA could effectively enhance S. alfredii Hance phytoremediation of Cd and Pb co-contaminated soil.
Collapse
Affiliation(s)
- Yuqin Liang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Peng Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaoyan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
66
|
Chen X, Wu G, Xiao P, Ma Q, Li Y, Lai J, Luo X, Ji X, Xia J, Yang X. A new perspective on the inhibition of plant photosynthesis by uranium: decrease of root activity and stomatal closure. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1071-1080. [PMID: 34783608 DOI: 10.1080/15226514.2021.2002260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Uranium (U) is difficult to be transported from roots to leaves, but it has been reported to inhabit photosynthesis in leaves, so how does this work? In the present study, the effects of U (0-25 μM) on the development and photosynthesis in V. faba seedlings were studied under hydroponics. The results showed that U significantly inhibited the growth and development of V. faba plants, including decreased biomass, water content, lateral root number and root activity. U also led to a large accumulation of reactive oxygen species (ROS) in the leaves which affects leaf structural traits (e.g., decreased leaf area and chlorophyll a content). When U concentration was 25 μM, the net photosynthetic rate (Pn) and transpiration rate (Tr) were inhibited, which were only 66.53% and 41.89% of the control, respectively. Further analysis showed that the stomatal density of leaves increased with the increase of U concentration, while the stomatal aperture and stomatal conductance (Gs) were on the contrary. The results of chlorophyll fluorescence showed that the non-photochemical quenching coefficient (NPQ) increased and the electron transfer rate (ETR) decreased after U exposure, but fortunately, photosystem II (PSII) suffered little damage overall. In conclusion, the accumulation of U in the roots inhibited the root activity, resulting in water shortage in the plants. To prevent water loss, leaves have to regulated stomatal closure at the cost of weakening photosynthesis. These results provide a new insight into the mechanism by which U affects plant photosynthesis.
Collapse
Affiliation(s)
- Xi Chen
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Guo Wu
- Life Science College, Sichuan Normal University, Chengdu, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, China
| | - Pixian Xiao
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Qiong Ma
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Yi Li
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Jinlong Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xuegang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaohui Ji
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, China
| | - Jianhua Xia
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Xiulin Yang
- Life Science College, Sichuan Normal University, Chengdu, China
| |
Collapse
|
67
|
Garlic and cilantro assisted phytoextraction of zinc using Sansevieria roxburghiana from contaminated soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
68
|
Zeremski T, Ranđelović D, Jakovljević K, Marjanović Jeromela A, Milić S. Brassica Species in Phytoextractions: Real Potentials and Challenges. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112340. [PMID: 34834703 PMCID: PMC8617981 DOI: 10.3390/plants10112340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 05/08/2023]
Abstract
The genus Brassica is recognized for including species with phytoaccumulation potential and a large amount of research has been carried out in this area under a variety of conditions, from laboratory experiments to field trials, with spiked or naturally contaminated soils, using one- or multi-element contaminated soil, generating various and sometimes contradictory results with limited practical applications. To date, the actual field potential of Brassica species and the feasibility of a complete phytoextraction process have not been fully evaluated. Therefore, the aim of this study was to summarize the results of the experiments that have been performed with a view to analyzing real potentials and limitations. The reduced biomass and low metal mobility in the soil have been addressed by the development of chemically or biologically assisted phytoremediation technologies, the use of soil amendments, and the application of crop management strategies. Certain issues, such as the fate of harvested biomass or the performance of species in multi-metal-contaminated soils, remain to be solved by future research. Potential improvements to current experimental settings include testing species grown to full maturity, using a greater amount of soil in experiments, conducting more trials under real field conditions, developing improved crop management systems, and optimizing solutions for harvested biomass disposal.
Collapse
Affiliation(s)
- Tijana Zeremski
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.M.J.); (S.M.)
- Correspondence:
| | - Dragana Ranđelović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey Boulevard 86, 11000 Belgrade, Serbia;
| | - Ksenija Jakovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| | - Ana Marjanović Jeromela
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.M.J.); (S.M.)
| | - Stanko Milić
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.M.J.); (S.M.)
| |
Collapse
|
69
|
Wang J, Wang D, Zhu M, Li F. Exogenous 6-Benzyladenine Improves Waterlogging Tolerance in Maize Seedlings by Mitigating Oxidative Stress and Upregulating the Ascorbate-Glutathione Cycle. FRONTIERS IN PLANT SCIENCE 2021; 12:680376. [PMID: 34539688 PMCID: PMC8446516 DOI: 10.3389/fpls.2021.680376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/04/2021] [Indexed: 05/30/2023]
Abstract
The synthetic cytokinin 6-benzyladenine (6-BA) regulates plant growth and prevents the negative consequences of various forms of abiotic stress, including waterlogging in crop plants. The present study aimed to investigate the effects of exogenous 6-BA on the growth, oxidative stress, and ascorbate-glutathione (AsA-GSH) cycle system in the inbred SY-MY13 (waterlogging-resistant) and SY-XT1 (waterlogging-sensitive) seedlings of waxy corn in conditions of waterlogging stress. The results demonstrated that waterlogging stress causes chlorosis and necrosis in waxy corn leaves, inhibiting growth and leading to the accumulation of reactive oxygen species (ROS), which induces oxidative stress and, in turn, reduces membrane lipid peroxidation and the disruption of membrane homeostasis. This is specifically manifested in the increased concentrations of superoxide anion radicals ( O 2 - ), hydrogen peroxide (H2O2), and malondialdehyde (MDA), in addition to increased relative electrical conductivity (REC%) values. The SY-MY13 strain exhibited growth superior to that of SY-XT1 when waterlogged due to its excellent waterlogging resistance. Thus, exogenous 6-BA was found to be effective in enhancing the growth of plants stressed by waterlogging in terms of the weight of the shoots and roots, shoot height, and leaf area. In addition to this, exogenous 6-BA also reduced the accumulation of O 2 - , H2O2, and MDA, increased ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) activity, and enhanced ascorbic acid (AsA), and reduced glutathione (GSH) concentration through the regulation of the efficiency of the AsA-GSH cycle system in maize plants. Hence, the application of exogenous 6-BA can alleviate waterlogging-induced damage and improve waterlogging tolerance in waxy corn via the activation of the AsA-GSH cycle system and the elimination of ROS.
Collapse
Affiliation(s)
- Ji Wang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Daye Wang
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Min Zhu
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| | - Fenghai Li
- College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
70
|
Huang R, Cui X, Luo X, Mao P, Zhuang P, Li Y, Li Y, Li Z. Effects of plant growth regulator and chelating agent on the phytoextraction of heavy metals by Pfaffia glomerata and on the soil microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117159. [PMID: 33878683 DOI: 10.1016/j.envpol.2021.117159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Pfaffia glomerata is a candidate for the remediation of heavy metal-contaminated soil, but phytoremediation efficiency requires enhancement. In this study, we evaluated how application of DA-6, EDTA, or CA affected the growth and heavy metal accumulation of P. glomerata and soil microorganisms. We found that P. glomerata removed more Cd and Zn than Pb or Cu from contaminated soil. When compared to the control, application of DA-6, CA, or CA + DA-6 increased plant biomass and increased stem Cd concentration by 1.28-, 1.20-, and 1.31-fold respectively; increased leaf Cd concentration by 1.25-, 1.28-, and 1.20-fold, respectively; and increased the total quantity of Cd extracted by 1.37-, 1.37-, and 1.38-fold, respectively. When compared to the control, application EDTA or EDTA + DA-6 significantly increased the soil available metal and Na concentrations, which harmed plant growth. Application of EDTA or EDTA + DA-6 also significantly decreased the Cd concentration in roots and stems. 16S rRNA high-throughput sequencing analysis revealed that application of EDTA or CA alone to soil significantly reduced the richness and diversity of soil bacteria, while foliar spraying of DA-6 combined with EDTA or CA slightly alleviated this reduction. EDTA or CA addition significantly changed the proportion of Actinobacteria and Proteobacteria. In addition, EDTA or CA addition caused changes in soil properties (e.g. heavy metal availability, K concentration, Na concentration, soil pH, soil CEC, and soil DOC concentration) that were associated with changes in the bacterial community. EDTA addition mainly affected the soil bacterial community by changing soil DOC concentration, the soil available Pb and Na concentration, and CA addition mainly affected the soil bacterial community by changing the soil available Ca concentration.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Cui
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianzhen Luo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Peng Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ping Zhuang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yongxing Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yingwen Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhian Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
71
|
Bian F, Zhong Z, Li C, Zhang X, Gu L, Huang Z, Gai X, Huang Z. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125898. [PMID: 34492836 DOI: 10.1016/j.jhazmat.2021.125898] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 05/22/2023]
Abstract
Moso bamboo is considered a potential species for heavy metal (HM) phytoremediation; however, the effect of intercropping on rhizosphere and phytoextraction remains to be elucidated. We comparatively investigated rhizobacteria, soil properties, and phytoextraction efficiency of monoculture and intercropping of Moso bamboo and Sedum plumbizincicola in Cu/Zn/Cd-contaminated soil. Compared with monocultures, intercropping increased the bacterial α-diversity indices (Shannon, Chao1) and the number of biomarkers. Intercropping reduced the contents of soil organic matter (SOM), available nutrients, and Cd and Cu in rhizosphere soils, and reduced the Cd and Zn contents in tissues of sedum. By contrast, Cd and Zn contents in tissues of bamboo increased, and the increase of organic acid in root exudates from intercropping could facilitate the HM absorption. The total amount of Cu, Zn, and Cd removed from the soil in intercropping system was 1.2, 1.9, and 1.8 times than those in monoculture bamboo, respectively. The abundances of Proteobacteria, Acidobacteria, Verrucomicrobia and Actinobacteria were higher in intercropping, playing an important role in soil nutrient cycles and HM remediation. These bacterial communities were closely correlated (P < 0.01) with SOM, available nitrogen, available phosphorus, and HMs. The results suggested this intercropping pattern can increase HM removal efficiency from polluted soils.
Collapse
Affiliation(s)
- Fangyuan Bian
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China.
| | - Chengzhe Li
- Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Zhejiang A & F University, Lin'an 311300, PR China
| | - Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China
| | - Lijian Gu
- Hangzhou Linan Taihuyuan Ornamental Bamboo Planting Garden Co., LTD, Lin'an 311306, PR China
| | - Zichen Huang
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China
| | - Xu Gai
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China
| | - Zhiyuan Huang
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China
| |
Collapse
|
72
|
Jan AU, Hadi F, Shah A, Ditta A, Nawaz MA, Tariq M. Plant growth regulators and EDTA improve phytoremediation potential and antioxidant response of Dysphania ambrosioides (L.) Mosyakin & Clemants in a Cd-spiked soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43417-43430. [PMID: 33830421 DOI: 10.1007/s11356-021-13772-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/29/2021] [Indexed: 05/22/2023]
Abstract
Soil pollution due to potentially toxic elements is a worldwide challenge for health and food security. Chelate-assisted phytoextraction along with the application of plant growth regulators (PGRs) could increase the phytoremediation efficiency of metal-contaminated soils. The present study was conducted to investigate the effect of different PGRs [Gibberellic acid (GA3) and indole acetic acid (IAA)] and synthetic chelator (EDTA) on growth parameters and Cd phytoextraction potential of Dysphania ambrosioides (L.) Mosyakin & Clemants grown under Cd-spiked soil. GA3 (10-7 M) and IAA (10-5 M) were applied four times with an interval of 10 days through a foliar spray, while EDTA (40 mg kg-1 soil) was once added to the soil. The results showed that Cd stress significantly decreased fresh biomass, dry biomass, total water contents, and photosynthetic pigments as compared to control. Application of PGRs significantly enhanced plant growth and Cd phytoextraction. The combined application of GA3 and IAA with EDTA significantly increased Cd accumulation (6.72 mg pot-1 dry biomass) and bioconcentration factor (15.21) as compared to C1 (Cd only). The same treatment significantly increased chlorophyll, proline, phenolic contents, and antioxidant activities (CAT, SOD, and POD) while MDA contents were reduced. In roots, Cd accumulation showed a statistically significant and positive correlation with proline, phenolics, fresh biomass, and dry biomass. Similarly, Cd accumulation showed a positive correlation with antioxidant enzyme activities in leaves. D. ambrosioides showed hyperaccumulation potential for Cd, based on bioconcentration factor (BCF) > 1. In conclusion, exogenous application of GA3 and IAA reduces Cd stress while EDTA application enhances Cd phytoextraction and ultimately the phytoremediation potential of D. ambrosioides.
Collapse
Affiliation(s)
- Amin Ullah Jan
- Department of Biotechnology, Faculty of Science, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa, 18000, Pakistan
| | - Fazal Hadi
- Department of Biotechnology, Faculty of Biological Science, University of Malakand, KPK, Dir Lower, Khyber Pakhtunkhwa, 18000, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Faculty of Science, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa, 18000, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa, 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Faculty of Science, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa, 18000, Pakistan
| | - Muhammad Tariq
- Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian, Beijing, 100875, People's Republic of China
| |
Collapse
|
73
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
74
|
Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:260-278. [PMID: 34020167 DOI: 10.1016/j.plaphy.2021.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
Heavy metal (HM) accumulation in the agricultural soil and its toxicity is a major threat for plant growth and development. HMs disrupt functional integrity of the plants, induces altered phenological and physiological responses and slashes down qualitative crop yield. Chemical messengers such as phytohormones, plant growth regulators and gasotransmitters play a crucial role in regulating plant growth and development under metal toxicity in plants. Understanding the intricate network of these chemical messengers as well as interactions of genes/metabolites/proteins associated with HM toxicity in plants is necessary for deciphering insights into the regulatory circuit involved in HM tolerance. The present review describes (a) the role of chemical messengers in HM-induced toxicity mitigation, (b) possible crosstalk between phytohormones and other signaling cascades involved in plants HM tolerance and (c) the recent advancements in biotechnological interventions including genetic engineering, genome editing and omics approaches to provide a step ahead in making of improved plant against HM toxicities.
Collapse
Affiliation(s)
| | | | | | | | - Sofi Javed Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
75
|
Remediation Techniques for Cadmium-Contaminated Dredged River Sediments after Land Disposal. SUSTAINABILITY 2021. [DOI: 10.3390/su13116093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This paper examines the remediation techniques of cadmium (Cd)-contaminated dredged river sediments after land disposal in a city in East China. Three remediation techniques, including stabilization, soil leaching, and phytoremediation, are compared by analyzing the performance of the techniques for Cd-contaminated soil remediation. The experimental results showed that the stabilization technique reduced the leaching rate of soil Cd from 33.3% to 14.3%, thus effectively reducing the biological toxicity of environmental Cd, but the total amount of Cd in soil did not decrease. Leaching soil with citric acid and oxalic acid achieved Cd removal rates of 90.1% and 92.4%, respectively. Compared with these two remediation techniques, phytoremediation was more efficient and easier to implement and had less secondary pollution, but it took more time, usually several years. In this study, these three remediation techniques were analyzed and discussed from technical, economic, and environmental safety perspectives by comprehensively considering the current status and future plans of the study site. Soil leaching was found to be the best technique for timely treatment of Cd contamination in dredged river sediments after land disposal.
Collapse
|
76
|
Lai JL, Liu ZW, Li C, Luo XG. Analysis of accumulation and phytotoxicity mechanism of uranium and cadmium in two sweet potato cultivars. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124997. [PMID: 33421877 DOI: 10.1016/j.jhazmat.2020.124997] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 05/25/2023]
Abstract
The purpose of this study was to reveal the accumulation and phytotoxicity mechanism of sweet potato (Ipomoea batatas L.) roots following exposure to toxic levels of uranium (U) and cadmium (Cd). We selected two accumulation-type sweet potato cultivars as experimental material. The varietal differences in U and Cd accumulation and physiological metabolism were analyzed by a hydroponic experiment. High concentrations of U and Cd inhibited the growth and development of sweet potato and damaged the microstructure of root. The roots were the main accumulating organs of U and Cd in both sweet potato. Root cell walls and vacuoles (soluble components) were the main distribution sites of U and Cd. The chemical forms of U in the two sweet potato varieties were insoluble and oxalate compounds, while Cd mainly combined with pectin and protein. U and Cd changed the normal mineral nutrition metabolism in the roots, and also significantly inhibited the photosynthetic metabolism of sweet potatoes. RNA-seq showed that the cell wall and plant hormone signal transduction pathways responded to either U or Cd toxicity in both varieties. The inorganic ion transporter and organic compound transporter in roots of both sweet potato varieties are sensitive to U and Cd toxicity.
Collapse
Affiliation(s)
- Jin-Long Lai
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ze-Wei Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chen Li
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China; College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xue-Gang Luo
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
77
|
Ahmad A, Shahzadi I, Mubeen S, Yasin NA, Akram W, Khan WU, Wu T. Karrikinolide alleviates BDE-28, heat and Cd stressors in Brassica alboglabra by correlating and modulating biochemical attributes, antioxidative machinery and osmoregulators. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112047. [PMID: 33601172 DOI: 10.1016/j.ecoenv.2021.112047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
In this study, we have evaluated the role of karrikin (KAR1) against the absorption and translocation of a persistent organic pollutant (POP), 2,4,4'-Tribromodiphenyl ether (BDE-28) in plants, in the presence of two other stressors, cadmium (Cd) and high temperature. Furthermore, it correlates the physiological damages of Brassica alboglabra with the three stresssors separately. The results revealed that the post-germination application of KAR1 successfully augmented the growth (200%) and pertinent physiochemical parameters of B. alboglabra. KAR1 hindered air absorption of BDE-28 in plant tissues, and reduced its translocation coefficient (TF). Moreover, BDE-28 was the most negatively correlated (-0.9) stressor with chlorophyll contents, while the maximum mitigation by KAR1 was also achieved agaist BDE-28. The effect of temperature was more severe on soluble sugars (0.51), antioxidative machinery (-0.43), and osmoregulators (0.24). Cd exhibited a stronger inverse interrelation with the enzymatic antioxidant cascade. Application of KAR1 mitigated the deleterious effects of Cd and temperature stress on plant physiological parameters along with reduced aero-concentration factor, TF, and metal tolerance index. The phytohormone reduced lipid peroxidation by decreasing synthesis of ROS and persuading its breakdown. The stability of cellular membranes was perhaps due to the commotion of KAR1 as a growth-promoting phytohormone. In the same way, KAR1 supplementation augmented the membrane stability index, antioxidant defense factors, and removal efficiency of the pollutants. Consequently, the exogenously applied KAR1 can efficiently alleviate Cd stress, heat stress, and POP toxicity.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Iqra Shahzadi
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Samavia Mubeen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nasim Ahmad Yasin
- Senior Superintendent Gardens, RO II Wing, University of the Punjab, Lahore, Punjab, Pakistan
| | - Waheed Akram
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Waheed Ullah Khan
- Senior Superintendent Gardens, RO II Wing, University of the Punjab, Lahore, Punjab, Pakistan
| | - Tingquan Wu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| |
Collapse
|
78
|
Xu L, Li J, Najeeb U, Li X, Pan J, Huang Q, Zhou W, Liang Z. Synergistic effects of EDDS and ALA on phytoextraction of cadmium as revealed by biochemical and ultrastructural changes in sunflower (Helianthus annuus L.) tissues. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124764. [PMID: 33348204 DOI: 10.1016/j.jhazmat.2020.124764] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
This study explored the phytoremediation potential of sunflower on cadmium (Cd) contaminated soils. We also studied the mechanisms through which a plant growth regulator, 5-aminolevolinic acid (ALA) protected sunflower plants from Cd-induced cellular injury. Six-leaf old sunflower plants were exposed to 0.3 g kg-1 Cd for one week and then treated with chelating agents i.e. trisodium (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS, 5 mmol kg-1) and citric acid (CA,10 mmol kg-1), and 10 mg L-1 ALA. One week after chelators and ALA application, plants were harvested for further analyses. Results suggested that chelators EDDS/CA significantly increased Cd accumulation but inhibited plant growth of sunflower. In contrast, ALA promoted both Cd absorption and biomass accumulation, especially when applied in combination with EDDS. Bioaccumulation quantity and remove efficiency of Cd + EDDS + ALA treated plants was increased by 21.00% and 20.93% as compared with Cd + EDDS treatment. The qRT-PCR results revealed that increased Cd uptake by chelators EDDS/CA and ALA was associated with an increased expression of Cd transport genes e.g. OPT6, HMA3 and Nramp1 in sunflower leaves and roots. Our study suggested that ALA protects sunflower plants from Cd-induced cellular injury by immobilizing Cd ions, modulating activities of antioxidative enzymes and capturing reactive oxygen species.
Collapse
Affiliation(s)
- Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juanjuan Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, The University of Queensland, Toowoomba, QLD 4350, Australia
| | - Xin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianmin Pan
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian Huang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
79
|
Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, A. Elsayed E, El Enshasy HA. Role of Bacillus cereus in Improving the Growth and Phytoextractability of Brassica nigra (L.) K. Koch in Chromium Contaminated Soil. Molecules 2021; 26:1569. [PMID: 33809305 PMCID: PMC7998664 DOI: 10.3390/molecules26061569] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 01/10/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.
Collapse
Affiliation(s)
- Nosheen Akhtar
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University, Islamabad (CUI), Islamabad 46300, Pakistan;
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, and Commerce College, Shahada, Maharashtra 425409, India;
| | - Zuhair Hasnain
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Elsayed A. Elsayed
- Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Natural & Microbial Products Dept., National Research Centre, Dokki, Cairo 1165, Egypt
| | - Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria 21934, Egypt
| |
Collapse
|
80
|
Albert HA, Li X, Jeyakumar P, Wei L, Huang L, Huang Q, Kamran M, Shaheen SM, Hou D, Rinklebe J, Liu Z, Wang H. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142582. [PMID: 33065502 DOI: 10.1016/j.scitotenv.2020.142582] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The application of biochar to soils contaminated with potentially toxic elements (PTEs) has received particular attention due to its ability to reduce PTE uptake by the plants. Therefore, we conducted a meta-analysis to identify Cd and Pb concentrations in plant shoots and roots in response to biochar application and soil properties. We collected data from 65 peer-reviewed journal articles published from 2009 to 2020 in which 66% of manuscripts were published from 2015 to 2020. The data were processed using OpenMEE software. The results pinpointed that addition of biochar to soil caused a significant decrease in shoot and root Cd and Pb concentrations as compared to untreated soils with biochar (control), and the reduction rate was affected by plant types and both biochar and soil properties. The biochar size less than 2 mm, biochar pH higher than 10, pyrolysis temperature of 401-600 °C, and the application rate higher than 2% appeared to be effective in reducing shoot and root Cd and Pb concentration. Soil properties such as pH, SOC, and texture influenced the efficiency of biochar for reducing plant Cd and Pb uptake. Biochar application increased SOC (54.3%), CEC (48.0%), pH (0.08), and EC (59.4%), and reduced soil extractable Cd (42.1%) and Pb (47.1%) concentration in comparison to control. A detailed study on the rhizosphere chemistry and uptake mechanism will help to underpin the biochar application rates and their efficiency reducing PTE mobility and plant uptake.
Collapse
Affiliation(s)
- Houssou Assa Albert
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Xiang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Lan Wei
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Lianxi Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Qing Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Muhammad Kamran
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, Kafr El-Sheikh 33516, Egypt
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
81
|
Mahawar L, Popek R, Shekhawat GS, Alyemeni MN, Ahmad P. Exogenous hemin improves Cd 2+ tolerance and remediation potential in Vigna radiata by intensifying the HO-1 mediated antioxidant defence system. Sci Rep 2021; 11:2811. [PMID: 33531561 PMCID: PMC7854669 DOI: 10.1038/s41598-021-82391-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
The present study evaluated the effects of exogenous hemin on cadmium toxicity in terms of metal accretion and stress resilience in Vigna radiata L. (Wilczek). One-week-old seedlings were treated with CdCl2 (50 μM) alone and in combination with hemin (0.5 mM) in half-strength Hoagland medium for 96 h. The optimum concentrations of Cd and hemin were determined on the basis of haem oxygenase-1 activity. The results demonstrated that under Cd stress, plants accumulated a considerable amount of metal in their tissues, and the accumulation was higher in roots than in leaves, which significantly reduced the plant biomass and chlorophyll content by increasing the oxidative stress (MDA and H2O2 content). However, hemin supplementation under Cd,-stress improved plant growth by enhancing the harvestable biomass and photosynthetic pigments, increasing antioxidant activities (SOD, APX, POD, HO-1 and proline), lowering oxidative damage and increasing Cd tolerance in plants. Furthermore, the application of hemin enhances the removal efficiency of Cd in V. radiata by increasing the uptake of Cd via roots and its translocation from roots to foliar tissues. Thus, the study suggests that hemin has the potential to improve the stress tolerance and phytoremediation ability of heavy metal-tolerant plants so that they can be used instead of hyperaccumulators for remediation of Cd-contaminated environments.
Collapse
Affiliation(s)
- Lovely Mahawar
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Centre for Advanced Studies, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Gyan Singh Shekhawat
- Plant Biotechnology and Molecular Biology Laboratory, Department of Botany, Centre for Advanced Studies, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India.
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
82
|
Kamran M, Danish M, Saleem MH, Malik Z, Parveen A, Abbasi GH, Jamil M, Ali S, Afzal S, Riaz M, Rizwan M, Ali M, Zhou Y. Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake. CHEMOSPHERE 2021; 263:128169. [PMID: 33297138 DOI: 10.1016/j.chemosphere.2020.128169] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 05/07/2023]
Abstract
A hydroponic study was conducted to determine the effects of single and/or combined application of different doses (0, 5 and 10 μM L-1) of abscisic acid (ABA) and 6-benzylaminopurine (BAP) on cobalt (Co) accumulation, morpho-physiological and antioxidative defense attributes of tomato (Solanum lycopersicum L.) exposed to severe Co stress (400 μM L-1). The single Co treatment (T1), prominently decreased tomato growth, relative water contents, photosynthetic pigments (chlorophyll a and chlorophyll b), whereas enhanced oxidative stress and Co accumulation in shoot and root tissues. Nonetheless, the supplementation of ABA and 6-BAP via nutrient media significantly (P < 0.05) enhanced plant biomass, root morphology and chlorophyll contents of tomato, compared to only Co treatment (T1). Moreover, the oxidative stress indicators such as malondialdehyde, proline and H2O2 contents were ameliorated through activation of enzymatic antioxidant activities i.e. ascorbate peroxidase, superoxide dismutase, catalase, and peroxidase, in growth modulator treatments in comparison to T1. The Co uptake, translocation (TF) and bioaccumulation factor (BAF) by shoot and root tissues of tomato were significantly reduced under all the treatments than that of T1. The supply of 6-BAP alone or in combination with ABA at 10 μM L-1 application (T7) rate was found the most effective to reduce Co accumulation in the roots and shoots by 48.4% and 70.2% respectively than T1 treatment. It can be concluded that two plant growth modulators could improve the stress tolerance by inhibition of Co uptake in tomato plants.
Collapse
Affiliation(s)
- Muhammad Kamran
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agriculture University, Wuhan, 430070, Hubei, PR China; Laboratory of Soil Salinity, Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Mohammad Danish
- Laboratory of Soil Salinity, Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan; Division of Sustainability, Department of Sustainable Environment, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zaffar Malik
- Laboratory of Soil Salinity, Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| | - Aasma Parveen
- Laboratory of Soil Salinity, Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Ghulam Hassan Abbasi
- Laboratory of Soil Salinity, Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Moazzam Jamil
- Laboratory of Soil Salinity, Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Sobia Afzal
- Laboratory of Soil Salinity, Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, PR China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Ali
- Laboratory of Soil Salinity, Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, PR China.
| |
Collapse
|
83
|
Liu Q, Zhang Y, Wang Y, Wang W, Gu C, Huang S, Yuan H, Dhankher OP. Quantitative proteomic analysis reveals complex regulatory and metabolic response of Iris lactea Pall. var. chinensis to cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123165. [PMID: 32569986 DOI: 10.1016/j.jhazmat.2020.123165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/13/2020] [Accepted: 06/06/2020] [Indexed: 05/28/2023]
Abstract
Cadmium pollution has become a serious environmental problem. Iris lactea var. chinensis showed strong Cd tolerance and accumulation ability, which has significant potential to be applied for the phytoremediation of Cd-contaminated soil. However, the lack of molecular information on the mechanism of I. lactea response to Cd limited the improvement of phytoremediation efficiency. In this study, label-free proteomics analysis of Cd response in I. lactea showed that there were 163 and 196 differentially expressed proteins (DEPs) in the shoots and roots, respectively. Bioinformatics analysis indicated the DEPs responding to Cd stress mainly involved in signal transduction, ion transport, redox etc., and participate in the pathway of amino acid biosynthesis, lignin biosynthesis, glycerolipid metabolism and glutathione metabolism. Besides, differential expression of seven DEPs was validated via gene expression analysis. Finally, we found that a Cd-induced mannose-specific lectin (IlMSL) from I. lactea enhanced the Cd sensitivity and increased Cd accumulation in yeast. The results of this study will enhance our understanding of the molecular mechanism of Cd tolerance and accumulation in I. lactea and ultimately provide valuable resources for using Cd tolerant genes for developing efficient strategies for phytoremediation of Cd-contaminated soils or limiting Cd accumulation in food crops.
Collapse
Affiliation(s)
- Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yinjie Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Weilin Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Suzhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China.
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
84
|
Lai JL, Zhang-Xuan D, Xiao-Hui JI, Xue-Gang L. Absorption and interaction mechanisms of uranium & cadmium in purple sweet potato(Ipomoea batatas L.). JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123264. [PMID: 32947695 DOI: 10.1016/j.jhazmat.2020.123264] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 05/19/2023]
Abstract
The purpose of this study was to reveal the absorption and interaction mechanisms of uranium (U) & cadmium (Cd) in corps. Purple sweet potato (Ipomoea batatas L.) was selected as the experimental material. The absorption behavior of U and Cd in this crop and the effects on mineral nutrition were analyzed in a pot experiment. The interactions between U and Cd in purple sweet potato were analyzed using UPLC-MS metabolome analysis. The pot experiment confirmed that the root tuber of the purple sweet potato had accumulated U (1.68-5.16 mg kg-1) and Cd (0.78-2.02 mg kg-1) and would pose a health risk if consumed. Both U and Cd significantly interfered with the mineral nutrient of the roots. Metabolomics revealed that a total of 4865 metabolites were identified in roots. 643 (419 up; 224 down), 526 (332 up; 194 down) and 634 (428 up; 214 down) different metabolites (DEMs) were identified in the U, Cd, and U + Cd exposure groups. Metabolic pathway analysis showed that U and Cd induced the expression of plant hormones (the first messengers) and cyclic nucleotides (cAMP and cGMP, second messengers) in cells and regulated the primary/secondary metabolism of roots to induce resistance to U and Cd toxicity.
Collapse
Affiliation(s)
- Jin-Long Lai
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Deng Zhang-Xuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - J I Xiao-Hui
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China; College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Luo Xue-Gang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
85
|
Jing L, Zhang X, Ali I, Chen X, Wang L, Chen H, Han M, Shang R, Wu Y. Usage of microbial combination degradation technology for the remediation of uranium contaminated ryegrass. ENVIRONMENT INTERNATIONAL 2020; 144:106051. [PMID: 32889480 DOI: 10.1016/j.envint.2020.106051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/24/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Post phytoremediation accumulation of heavy metals in plants is causing an environmental issue worldwide. In this study, we investigated the ability of eight different kinds of microorganisms to degrade and release heavy metals from heavy metal enriched ryegrass, including 5 species of bacteria (Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus-I, Bacillus pumilus-II and Bacillus cereus) and 3 of fungi (Phanerochaete chrysosporium, Trichoderma ressei and Pterula sp. strain QD-1), by growing them under uranium stress and assessing their ability to degrade biomass. After 30 days, the degradation ability of fungi was found better than that of bacteria, while the metal leaching ability of bacteria was found better. The highest degradation rate (upto 60%) was obtained by using P. chrysosporium, Pterula sp. strain QD-1 exhibited the best leaching rate for uranium (upto 77%). The overall degradation rate of lignin and cellulose and hemicellulose was found lower (40% and 60%, respectively). According to the antagonistic characteristics of microbes, we combined different dominant species, in which under optimal conditions the T2 combination (P. chrysosporium, T. reesei, and Pterula sp. strain QD-1 and B. subtilis) was able to degrade 80% of the ryegrass, 51% of lignin, 74% of cellulose and hemicellulose, releasing 78% of U, 90% of Pb and the releasing rate of other heavy metals was more than 95%. FTIR analysis showed the least degradation of lignin, while SEM-EDX analysis of the degradation residues displayed the microstructure of ryegrass being greatly damaged. Only a small amount of U was found in the residues of the researched combinations. This study provides efficient Microbial Combined Degradation Technology for heavy metal enriched biomass, which can effectively deal with heavy metal enriched plants, and provide a basis for the recovery and utilization of heavy metals, avoiding secondary pollution in the environment caused by this type of biomass.
Collapse
Affiliation(s)
- Luhuai Jing
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xianghui Zhang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Imran Ali
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan.
| | - Xiaoming Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Li Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Hao Chen
- Sichuan Institute of Atomic Energy, Chengdu 610061, China
| | - Mengwei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ran Shang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Yuewen Wu
- Xinjiang Center for Disease Control and Prevention, Xinjiang 830002, China
| |
Collapse
|
86
|
Performance Evaluation of Enhanced Bioretention Systems in Removing Dissolved Nutrients in Stormwater Runoff. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bioretention has great potential in managing and purifying urban stormwater runoff. However, information regarding the removal of nutrients in bioretention systems with the use of media, plants, and saturated areas is still limited. In this study, three devices of control, conventional bioretention (DS), and strengthened bioretention (SZ) were investigated to enhance the simultaneous removal of nitrogen and phosphorus. The experimental column SZ showed the best performance for total phosphorus (TP), ammonia (NH4+-N) and total nitrogen (TN) removal (85.6–92.4%, 83.1–92.7%, 57.1–74.1%, respectively), whereas DS columns performed poorly for NH4+-N removal (43.6–81.2%) under different conditions. For the removal of nitrate, the columns of Control and DS exhibited negative performance (−14.3% and −8.2%) in a typical event. Further evaluation of water quality revealed that in the early stages of rainfall, the effluent of the SZ column was able to reach quality standards of Grade IV for surface water in China. Moreover, although the ion-exchange and phosphate precipitation occurred on the surface of the media, which were placed in the saturation zone, it did not change the surface crystal structure.
Collapse
|
87
|
The Impact of High-Speed Rail Opening on City Economics along the Silk Road Economic Belt. SUSTAINABILITY 2020. [DOI: 10.3390/su12083176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Achieving transport connectivity is a priority in China’s “Belt and Road Initiative”. In order to further understand the impact of railway infrastructure on city-level economic expansion, we set cities with high-speed rail as the treatment group and those without high-speed rail as the control group, and a difference-in-differences (DID) technique was used to estimate the growth impact and heterogeneity of high-speed rail opening on the economic growth of cities along the New Silk Road Economic Belt. The main results are as follows: First, economic growth in cities with operational high-speed rail lines was significantly higher than those without high-speed rail. Second, the impact of high-speed rail on economic growth exhibited distinct heterogeneity. Large cities tend to have a stronger siphoning effect, resulting in more pronounced impact of high-speed rail opening on urban economic growth. Third, cities with higher marketization levels and higher government efficiency were shown to have stronger economic growth effect.
Collapse
|
88
|
Zhou B, Zhang Z, Wang S, Wu Y, Hu S, Sun R. Batch Adsorption and Column Leaching Studies of Aniline in Chinese Loess Under Different Hydrochemical Conditions. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:511-519. [PMID: 32193570 DOI: 10.1007/s00128-020-02830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Through batch adsorption and column leaching experiments, this study aimed to investigate the adsorption and transport behavior of aniline in loess and related mechanism under different hydrochemical conditions. Batch experiments results indicated that aniline adsorption reached equilibrium after about 120 min, and the adsorption fitted the pseudo-second-order kinetic and Freundlich models well. The adsorption was spontaneous and exothermic process, indicating the aniline adsorbed by inherent colloidal particles (ICPs) tended to transport. Low pH value, ionic strength and temperature benefitted the adsorption. Column experiments results under different ionic strengths (100, 10 and 1 mM) confirmed the potential transport of aniline. The FT-IR spectra have further suggested that aniline was adsorbed by the ICPs through hydrogen-bond, hydrophobic effect and cation exchange interactions. Low ionic strength was advantageous for the adsorption of aniline in loess and the stabilities of ICPs in solution, but enhanced the co-transport probability of ICPs with aniline in loess.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zehong Zhang
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sichang Wang
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yaoguo Wu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Sihai Hu
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ran Sun
- Department of Applied Chemistry, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
89
|
Chen L, Wang D, Long C, Cui ZX. Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium- contaminated soil by Zebrina pendula Schnizl. Sci Rep 2019; 9:19817. [PMID: 31875012 PMCID: PMC6930220 DOI: 10.1038/s41598-019-56262-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022] Open
Abstract
This study investigated the effect of ethylenediamine-N,N'-disuccinic acid (EDDS), oxalic acid (OA), and citric acid (CA) on phytoextraction of U- and Cd-contaminated soil by Z. pendula. In this study, the biomass of tested plant inhibited significantly following treatment with the high concentration (7.5 mmol·kg-1) EDDS treatment. Maximum U and Cd concentration in the single plant was observed with the 5 mmol·kg-1 CA and 7.5 mmol·kg-1 EDDS treatment, respectively, whereas OA treatments had the lowest U and Cd uptake. The translocation factors of U and Cd reached the maximum in the 5 mmol·kg-1 EDDS. The maximum bioaccumulation of U and Cd in the single plants was 1032.14 µg and 816.87 µg following treatment with 5 mmol·kg-1 CA treatment, which was 6.60- and 1.72-fold of the control groups, respectively. Furthermore, the resultant rank order for available U and Cd content in the soil was CA > EDDS > OA (U) and EDDS > CA > OA (Cd). These results suggested that CA could greater improve the capacity of phytoextraction using Z. pendula in U- and Cd- contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dan Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Chan Long
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zheng-Xu Cui
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|