51
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
52
|
Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem Rev 2022; 122:13636-13708. [PMID: 35867555 PMCID: PMC9413269 DOI: 10.1021/acs.chemrev.2c00198] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain,R.M.-M.: email,
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,V.M.-C.:
email,
| |
Collapse
|
53
|
Bierschenk SM, Pan JY, Settineri NS, Warzok U, Bergman RG, Raymond KN, Toste FD. Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. J Am Chem Soc 2022; 144:11425-11433. [PMID: 35700232 DOI: 10.1021/jacs.2c04182] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly enantioselective aza-Darzens reaction (up to 99% ee) catalyzed by an enantiopure supramolecular host has been discovered. To understand the role of host structure on reaction outcome, nine new gallium(III)-based enantiopure supramolecular assemblies were prepared via substitution of the external chiral amide. Despite the distal nature of the substitution in these catalysts, changes in enantioselectivity (61 to 90% ee) in the aziridine product were observed. The enantioselectivities were correlated to the flexibility of the supramolecular host scaffold as measured by the kinetics of exchange of a model cationic guest. This correlation led to the development of a best-in-class catalyst by substituting the gallium(III)-based host with one based on indium(III), which generated the most flexible and selective catalyst.
Collapse
Affiliation(s)
- Stephen M Bierschenk
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Judy Y Pan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ulrike Warzok
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
54
|
Comanescu C. Recent Development in Nanoconfined Hydrides for Energy Storage. Int J Mol Sci 2022; 23:7111. [PMID: 35806115 PMCID: PMC9267122 DOI: 10.3390/ijms23137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen is the ultimate vector for a carbon-free, sustainable green-energy. While being the most promising candidate to serve this purpose, hydrogen inherits a series of characteristics making it particularly difficult to handle, store, transport and use in a safe manner. The researchers' attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane, tetrahydridoborates/borohydrides, tetrahydridoaluminates/alanates or reactive hydride composites). Even then, the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both), and an efficient tool to overcome these issues is through nanoconfinement. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field, and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning H2 production and storage are discussed, and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances, the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1 Polizu St., 011061 Bucharest, Romania
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Magurele, Romania
| |
Collapse
|
55
|
Anthracene-Containing Metallacycles and Metallacages: Structures, Properties, and Applications. INORGANICS 2022. [DOI: 10.3390/inorganics10070088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Due to its highly conjugated panel-like structure and unique photophysical and chemical features, anthracene has been widely used for fabricating attractive and functional supramolecular assemblies, including two-dimensional metallacycles and three-dimensional metallacages. The embedded anthracenes in these assemblies often show synergistic effects on enhancing the desired supramolecular and luminescent properties. This review focuses on the metallasupramolecular architectures with anthracene-containing building blocks, as well as their applications in host-guest chemistry, stimulus response, molecular sensing, light harvesting, and biomedical science.
Collapse
|
56
|
Benchimol E, Nguyen BNT, Ronson TK, Nitschke JR. Transformation networks of metal-organic cages controlled by chemical stimuli. Chem Soc Rev 2022; 51:5101-5135. [PMID: 35661155 PMCID: PMC9207707 DOI: 10.1039/d0cs00801j] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/29/2022]
Abstract
The flexibility of biomolecules enables them to adapt and transform as a result of signals received from the external environment, expressing different functions in different contexts. In similar fashion, coordination cages can undergo stimuli-triggered transformations owing to the dynamic nature of the metal-ligand bonds that hold them together. Different types of stimuli can trigger dynamic reconfiguration of these metal-organic assemblies, to switch on or off desired functionalities. Such adaptable systems are of interest for applications in switchable catalysis, selective molecular recognition or as transformable materials. This review highlights recent advances in the transformation of cages using chemical stimuli, providing a catalogue of reported strategies to transform cages and thus allow the creation of new architectures. Firstly we focus on strategies for transformation through the introduction of new cage components, which trigger reconstitution of the initial set of components. Secondly we summarize conversions triggered by external stimuli such as guests, concentration, solvent or pH, highlighting the adaptation processes that coordination cages can undergo. Finally, systems capable of responding to multiple stimuli are described. Such systems constitute composite chemical networks with the potential for more complex behaviour. We aim to offer new perspectives on how to design transformation networks, in order to shed light on signal-driven transformation processes that lead to the preparation of new functional metal-organic architectures.
Collapse
Affiliation(s)
- Elie Benchimol
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Bao-Nguyen T Nguyen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
57
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
58
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
59
|
Wang Y, Wu H, Hu W, Stoddart JF. Color-Tunable Supramolecular Luminescent Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105405. [PMID: 34676928 DOI: 10.1002/adma.202105405] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Constructing multicolor photoluminescent materials with tunable properties is an attractive research objective on account of their abundant applications in materials science and biomedical engineering. By comparison with covalent synthesis, supramolecular chemistry has provided a more competitive and promising strategy for the production of organic materials and the regulation of their photophysical properties. By taking advantage of dynamic and reversible noncovalent bonding interactions, supramolecular strategies can, not only simplify the design and fabrication of organic materials, but can also endow them with dynamic reversibility and stimuli responsiveness, making it much easier to adjust the superstructures and properties of the materials. Occasionally, it is possible to introduce emergent properties into these materials, which are absent in their precursor compounds, broadening their potential applications. In an attempt to highlight the state-of-the-art noncovalent strategies available for the construction of smart luminescent materials, an overview of color-tunable materials is presented in this Review, with the emphasis being placed on the examples drawn from host-guest complexes, supramolecular assemblies and crystalline materials. The noncovalent synthesis of room-temperature phosphorescent materials and the modulation of their luminescent properties are also described. Finally, future directions and scientific challenges in the emergent field of color-tunable supramolecular emissive materials are discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
60
|
Lu YL, Song JQ, Qin YH, Guo J, Huang YH, Zhang XD, Pan M, Su CY. A Redox-Active Supramolecular Fe 4L 6 Cage Based on Organic Vertices with Acid-Base-Dependent Charge Tunability for Dehydrogenation Catalysis. J Am Chem Soc 2022; 144:8778-8788. [PMID: 35507479 DOI: 10.1021/jacs.2c02692] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular cage chemistry is of lasting interest because, as artificial blueprints of natural enzymes, the self-assembled cage structures not only provide substrate-hosting biomimetic environments but also can integrate active sites in the confined nanospaces for function synergism. Herein, we demonstrate a vertex-directed organic-clip chelation assembly strategy to construct a metal-organic cage Fe4L68+ (MOC-63) incorporating 12 imidazole proton donor-acceptor motifs and four redox-active Fe centers in an octahedral coordination nanospace. Different from regular supramolecular cages assembled with coordination metal vertices, MOC-63 comprises six ditopic organic-clip ligands as vertices and four tris-chelating Fe(N∩N)3 moieties as faces, thus improving its acid, base, and redox robustness by virtue of cage-stabilized dynamics in solution. Improved dehydrogenation catalysis of 1,2,3,4-tetrahydroquinoline derivatives is accomplished by MOC-63 owing to a supramolecular cage effect that synergizes multiple Fe centers and radical species to expedite intermediate conversion of the multistep reactions in a cage-confined nanospace. The acid-base buffering imidazole motifs play a vital role in modulating the total charge state to resist pH variation and tune the solubility among varied solvents, thereby enhancing reaction acceleration in acidic conditions and rendering a facile recycling catalytic process.
Collapse
Affiliation(s)
- Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Qi Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Han Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jing Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin-Hui Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
61
|
Negro C, Escamilla P, Bruno R, Ferrando‐Soria J, Armentano D, Pardo E. Metal-Organic Frameworks as Unique Platforms to Gain Insight of σ-Hole Interactions for the Removal of Organic Dyes from Aquatic Ecosystems. Chemistry 2022; 28:e202200034. [PMID: 35188315 PMCID: PMC9314587 DOI: 10.1002/chem.202200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/08/2022]
Abstract
The combination of high crystallinity and rich host-guest chemistry in metal-organic frameworks (MOFs), have situated them in an advantageous position, with respect to traditional porous materials, to gain insight on specific weak noncovalent supramolecular interactions. In particular, sulfur σ-hole interactions are known to play a key role in the biological activity of living beings as well as on relevant molecular recognitions processes. However, so far, they have been barely explored. Here, we describe both how the combination of the intrinsic features of MOFs, especially the possibility of using single-crystal X-ray crystallography (SCXRD), can be an extremely valuable tool to gain insight on sulfur σ-hole interactions, and how their rational exploitation can be enormously useful in the efficient removal of harmful organic molecules from aquatic ecosystems. Thus, we have used a MOF, prepared from the amino acid L-methionine and possessing channels decorated with -CH2 CH2 SCH3 thioalkyl chains, to remove a family of organic dyes at very low concentrations (10 ppm) from water. This MOF is able to efficiently capture the four dyes in a very fast manner, reaching within five minutes nearly the maximum removal. Remarkably, the crystal structure of the different organic dyes within MOFs channels could be determined by SCXRD. This has enabled us to directly visualize the important role sulfur σ-hole interactions play on the removal of organic dyes from aqueous solutions, representing one of the first studies on the rational exploitation of σ-hole interactions for water remediation.
Collapse
Affiliation(s)
- Cristina Negro
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| | - Paula Escamilla
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| | - Rosaria Bruno
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della Calabria87030Rende, CosenzaItaly
| | - Jesus Ferrando‐Soria
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della Calabria87030Rende, CosenzaItaly
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| |
Collapse
|
62
|
Percástegui EG. Metal-organic cages against toxic chemicals and pollutants. Chem Commun (Camb) 2022; 58:5055-5071. [PMID: 35383805 DOI: 10.1039/d2cc00604a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continuous release of toxic chemicals and pollutants into the atmosphere and natural waters threatens, directly and indirectly, human health, the sustainability of the planet, and the future of society. Materials capable of capturing or chemically inactivating hazardous substances, which are harmful to humans and the environment, are critical in the modern age. Metal-organic cages (MOCs) show great promise as materials against harmful agents both in solution and in solid state. This Highlight features examples of MOCs that selectively encapsulate, adsorb, or remove from a medium noxious gases, toxic organophosphorus compounds, water pollutant oxoanions, and some emerging organic contaminants. Remarkably, the toxicity of interacting contaminants may be lowered by MOCs as well. Specific cases pertaining to the use of these cages for the chemical degradation of some harmful substances are presented. This Highlight thus aims to provide an overview of the possibilities of MOCs in this area and new methodological insights into their operation for enhancing their activity and the engineering of further remediation applications.
Collapse
Affiliation(s)
- Edmundo G Percástegui
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, Mexico. .,Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco km 14.5, 50200 Toluca, Estado de México, Mexico
| |
Collapse
|
63
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
64
|
Liu J, Wang Z, Cheng P, Zaworotko MJ, Chen Y, Zhang Z. Post-synthetic modifications of metal–organic cages. Nat Rev Chem 2022; 6:339-356. [PMID: 37117929 DOI: 10.1038/s41570-022-00380-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Metal-organic cages (MOCs) are discrete, supramolecular entities that consist of metal nodes and organic linkers, which can offer solution processability and high porosity. Thereby, their predesigned structures can undergo post-synthetic modifications (PSMs) to introduce new functional groups and properties by modifying the linker, metal node, pore or surface environment. This Review explores current PSM strategies used for MOCs, including covalent, coordination and noncovalent methods. The effects of newly introduced functional groups or generated complexes upon the PSMs of MOCs are also detailed, such as improving structural stability or endowing desired functionalities. The development of the aforementioned design principles has enabled systematic approaches for the development and characterization of families of MOCs and, thereby, provides insight into structure-function relationships that will guide future developments.
Collapse
|
65
|
Encapsulation within a coordination cage modulates the reactivity of redox-active dyes. Commun Chem 2022; 5:44. [PMID: 36697669 PMCID: PMC9814915 DOI: 10.1038/s42004-022-00658-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/18/2022] [Indexed: 02/08/2023] Open
Abstract
Confining molecules within well-defined nanosized spaces can profoundly alter their physicochemical characteristics. For example, the controlled aggregation of chromophores into discrete oligomers has been shown to tune their optical properties whereas encapsulation of reactive species within molecular hosts can increase their stability. The resazurin/resorufin pair has been widely used for detecting redox processes in biological settings; yet, how tight confinement affects the properties of these two dyes remains to be explored. Here, we show that a flexible PdII6L4 coordination cage can efficiently encapsulate both resorufin and resazurin in the form of dimers, dramatically modulating their optical properties. Furthermore, binding within the cage significantly decreases the reduction rate of resazurin to resorufin, and the rate of the subsequent reduction of resorufin to dihydroresorufin. During our studies, we also found that upon dilution, the PdII6L4 cage disassembles to afford PdII2L2 species, which lacks the ability to form inclusion complexes - a process that can be reversed upon the addition of the strongly binding resorufin/resazurin guests. We expect that the herein disclosed ability of a water-soluble cage to reversibly modulate the optical and chemical properties of a molecular redox probe will expand the versatility of synthetic fluorescent probes in biologically relevant environments.
Collapse
|
66
|
Zhou XC, Wu LX, Wang XZ, Lai YL, Ge YY, Su J, Zhou XP, Li D. Self-Assembly of a Pd 4Cu 8L 8 Cage for Epoxidation of Styrene and Its Derivatives. Inorg Chem 2022; 61:5196-5200. [PMID: 35324197 DOI: 10.1021/acs.inorgchem.2c00283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein we report a discrete heterometallic Pd4Cu8L8 cage with a tubular structure, which was synthesized by the assembly of copper metalloligands and PdII ions in a stepwise manner. The Pd4Cu8L8 cage has been unequivocally characterized by single-crystal X-ray diffraction, electrospray ionization-mass spectroscopy, and energy dispersive spectroscopy. The cage showed excellent catalytic activity in the epoxidation of styrene and its derivatives under conditions without using additional solvent, providing potential material for catalyzing the oxidation reactions.
Collapse
Affiliation(s)
- Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Le-Xiong Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ya-Liang Lai
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying-Ying Ge
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Juan Su
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
67
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
68
|
Chen B, Holstein JJ, Platzek A, Schneider L, Wu K, Clever GH. Cooperativity of steric bulk and H-bonding in coordination sphere engineering: heteroleptic Pd II cages and bowls by design. Chem Sci 2022; 13:1829-1834. [PMID: 35282629 PMCID: PMC8826863 DOI: 10.1039/d1sc06931d] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/16/2022] [Indexed: 12/24/2022] Open
Abstract
Recently developed self-assembly strategies allow to rationally reduce the symmetry of metallosupramolecular architectures. In addition, the combination of multiple ligand types without creating compound mixtures has become possible. Among several approaches to realize non-statistical heteroleptic assembly, Coordination Sphere Engineering (CSE) makes use of secondary repulsive or attractive interactions in direct vicinity of the metal nodes. Previously, we used steric congestion to turn dinuclear [Pd2L4] cages with fourfold symmetry into [Pd2L3X2] (X = solvent, halide) bowl structures. Here, we introduce a new subtype of this strategy based on balancing hydrogen bonding and repulsive interactions between ligands carrying quinoline (LQu) and 1,8-naphthyridine (LNa) donors to generate trans-[Pd2L2] and [Pd2L3L'] cages, assisted by templation of encapsulated fullerenes. Combined with steric congestion caused by acridine (LAc) donors, we further report the first example of a heteroleptic [Pd2L2L'X2] bowl. Formation, structure and fullerene binding ability of these metallo-supramolecular hosts were studied by NMR, mass spectrometry and single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Bin Chen
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Straße 6 44227 Dortmund Germany
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 China
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Straße 6 44227 Dortmund Germany
| | - André Platzek
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Straße 6 44227 Dortmund Germany
| | - Laura Schneider
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Straße 6 44227 Dortmund Germany
| | - Kai Wu
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Straße 6 44227 Dortmund Germany
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn Straße 6 44227 Dortmund Germany
| |
Collapse
|
69
|
|
70
|
Katagiri Y, Tsuchida Y, Matsuo Y, Yoshizawa M. An Adamantane Capsule and its Efficient Uptake of Spherical Guests up to 3 nm in Water. J Am Chem Soc 2021; 143:21492-21496. [PMID: 34913691 DOI: 10.1021/jacs.1c11021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient uptake of small to large guests, with a large difference in relative size, is quite rare for synthetic host compounds. Herein we designed and prepared a micellar capsule, composed of bent amphiphiles bearing two adamantyl groups, as a new host with a well-defined nanostructure. Unlike previous covalent, coordination, and hydrogen-bonding hosts, the adamantane-based capsule displays unusual uptake abilities toward spherical molecules with small (∼0.6 nm in diameter; e.g., adamantane) to medium size (∼1 nm; e.g., fullerene) as well as large size (∼3 nm; i.e., metal-organic polyhedra (MOP)), where the size differences are up to 5-fold, in water. Moreover, the resultant MOP-uptaking capsule incorporates medium-sized molecules (e.g., perylene and eosin Y) into the polyhedral cavity to generate ternary core-shell structures.
Collapse
Affiliation(s)
- Yuri Katagiri
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yamato Tsuchida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yutaka Matsuo
- Department of Chemical System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
71
|
Sayed M, Pal H. An overview from simple host-guest systems to progressively complex supramolecular assemblies. Phys Chem Chem Phys 2021; 23:26085-26107. [PMID: 34787121 DOI: 10.1039/d1cp03556h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular chemistry involving macrocyclic hosts is a highly interdisciplinary and fast-growing research field in chemistry, biochemistry, and materials science. Host-guest based supramolecular assemblies, as constructed through non-covalent interactions, are highly dynamic in nature, and can be tuned easily using their responses to various external stimuli, providing a convenient approach to achieve excellent functional materials. Macrocyclic hosts, particularly cyclodextrins, cucurbit[n]urils, and calix[n]arenes, which have unique features like possessing hydrophobic cavities of different sizes, along with hydrophilic external surfaces, which are also amenable towards easy derivatizations, are versatile cavitands or host molecules to encapsulate diverse guest molecules to form stable host-guest complexes with many unique structures and properties. Interestingly, host-guest complexes possessing amphiphilic properties can easily lead to the formation of various advanced supramolecular assemblies, like pseudorotaxanes, rotaxanes, polyrotaxanes, supramolecular polymers, micelles, vesicles, supramolecular nanostructures, and so on. Moreover, these supramolecular assemblies, with varied morphologies and responsiveness towards external stimuli, have immense potential for applications in nanotechnology, materials science, biosensors, drug delivery, analytical chemistry and biomedical sciences. In this perspective, we present a stimulating overview, discussing simple host-guest systems to complex supramolecular assemblies in a systematic manner, aiming to encourage future researchers in this fascinating area of supramolecular chemistry to develop advanced supramolecular materials with superior functionalities, for their deployment in diverse applied areas.
Collapse
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.,Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| |
Collapse
|
72
|
Liu Q, Tian X, Shen Y, Huang X, Wang K, Hu XY. Influence of water-soluble pillararene hosts on Kemp elimination. RSC Adv 2021; 11:38115-38119. [PMID: 35498077 PMCID: PMC9044046 DOI: 10.1039/d1ra07958a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 01/02/2023] Open
Abstract
Since pillar[5]arene was first discovered in 2008, it has developed into a multifunctional supramolecular host. Its application covers many fields from drug delivery and chemical sensing to the construction of molecular machines, and so on. Supramolecular catalysis based on pillar[n]arenes is one of the hot research topics that has emerged in recent years. In this paper, we have synthesized two water-soluble pillar[5]arenes with peripheral rims bearing opposite charges and investigated their influence on Kemp elimination reaction of 1,2-phenylisoxazole derivatives. It is found that both hosts have a moderate rate acceleration effect on the reaction, and the positively charged host H1 has a greater impact on the reaction rate than the negatively charged host H2. Water-soluble pillar[5]arenes with different rim charges have been successfully used to catalyze Kemp elimination reaction of 1,2-phenylisoxazole derivatives.![]()
Collapse
Affiliation(s)
- Qian Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Yuhong Shen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xingyi Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| |
Collapse
|
73
|
Dumele O, Grabicki N. Confining the Inner Space of Strained Carbon Nanorings. Synlett 2021. [DOI: 10.1055/s-0040-1719853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractStrained aromatic macrocycles based on cycloparaphenylenes (CPPs) are the shortest repeating units of armchair single-walled carbon nanotubes. Since the development of several new synthetic methodologies for accessing these structures, their properties have been extensively studied. Besides the fundamental interest in these novel molecular scaffolds, their application in the field of materials science is an ongoing topic of research. Most of the reported CPP-type macrocycles display strong binding toward fullerenes, due to the perfect match between the convex and concave π-surfaces of fullerenes and CPPs, respectively. Highly functionalized CPP derivatives capable of supramolecular binding with other molecules are rarely reported. The synthesis of highly functionalized [n]cyclo-2,7-pyrenylenes leads to CPP-type macrocycles with a defined cavity capable of binding non-fullerene guests with high association constants.
Collapse
|
74
|
Abstract
New synthetic routes are presented to derivatives of a (known) M8L12 cubic coordination cage in which a range of different substituents are attached at the C4 position of the pyridyl rings at either end of the bis(pyrazolyl-pyridine) bridging ligands. The substituents are (i) –CN groups (new ligand LCN), (ii) –CH2OCH2–CCH (containing a terminal alkyne) groups (new ligand LCC); and (iii) –(CH2OCH2)3CH2OMe (tri-ethyleneglycol monomethyl ether) groups (new ligand LPEG). The resulting functionalised ligands combine with M2+ ions (particularly Co2+, Ni2+, Cd2+) to give isostructural [M8L12]16+ cage cores bearing 24 external functional groups; the cages based on LCN (with M2+ = Cd2+) and LCC (with M2+ = Ni2+) have been crystallographically characterised. The value of these is twofold: (i) exterior nitrile or alkene substituents can provide a basis for further synthetic opportunities via ‘Click’ reactions allowing in principle a diverse range of functionalisation of the cage exterior surface; (ii) the exterior –(CH2OCH2)3CH2OMe groups substantially increase cage solubility in both water and in organic solvents, allowing binding constants of cavity-binding guests to be measured under an increased range of conditions.
Collapse
|
75
|
Yan DN, Cai LX, Cheng PM, Hu SJ, Zhou LP, Sun QF. Photooxidase Mimicking with Adaptive Coordination Molecular Capsules. J Am Chem Soc 2021; 143:16087-16094. [PMID: 34553600 DOI: 10.1021/jacs.1c06390] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One important feature of enzyme catalysis is the induced-fit conformational change after binding substrates. Herein, we report a biomimetic water-soluble molecular capsule featuring adaptive structural change toward substrate binding, which offers an ideal platform for efficient photocatalysis. The molecular capsule was coordination-assembled from three anthracene-bridged bis-TPT [TPT = 2,4,6-tris(4-pyridyl)-1,3,5-triazine] ligands and six (bpy)Pd(NO3)2 (bpy = 2,2'-bipyridine). Once substrates bind to its hydrophobic cavity, this capsule would undergo quantitative capsule-to-bowl transformation. Visible-light absorption brought about by both the anthracene units and the charge-transfer absorption on the late-formed quintuple π-π stacked host-guest complex efficiently facilitates aerobic photooxidation for the sulfide guests by visible-light irradiation under mild conditions. Desired turnover numbers and product selectivity (sulfoxide over sulfone) have been achieved by the transformable nature of the catalyst and the hydrophilicity of the sulfoxide product. Such a photocatalytic process enabled by an adaptive coordination capsule and substrates as the allosteric effector paves the way for constructing artificial systems to mimic enzyme catalysis.
Collapse
Affiliation(s)
- Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
76
|
Liu W, Tan Y, Jones LO, Song B, Guo QH, Zhang L, Qiu Y, Feng Y, Chen XY, Schatz GC, Stoddart JF. PCage: Fluorescent Molecular Temples for Binding Sugars in Water. J Am Chem Soc 2021; 143:15688-15700. [PMID: 34505510 DOI: 10.1021/jacs.1c06333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Leighton O Jones
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Long Zhang
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
77
|
Affiliation(s)
- Edmundo G. Percástegui
- Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria Ciudad de México 04510 México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM Carretera Toluca-Atlacomulco km 14.5, Toluca Estado de México 50200 México
| |
Collapse
|
78
|
Nguyen BN, Thoburn JD, Grommet AB, Howe DJ, Ronson TK, Ryan HP, Bolliger JL, Nitschke JR. Coordination Cages Selectively Transport Molecular Cargoes Across Liquid Membranes. J Am Chem Soc 2021; 143:12175-12180. [PMID: 34337947 PMCID: PMC8397303 DOI: 10.1021/jacs.1c04799] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/27/2022]
Abstract
Chemical purifications are critical processes across many industries, requiring 10-15% of humanity's global energy budget. Coordination cages are able to catch and release guest molecules based upon their size and shape, providing a new technological basis for achieving chemical separation. Here, we show that aqueous solutions of FeII4L6 and CoII4L4 cages can be used as liquid membranes. Selective transport of complex hydrocarbons across these membranes enabled the separation of target compounds from mixtures under ambient conditions. The kinetics of cage-mediated cargo transport are governed by guest binding affinity. Using sequential transport across two consecutive membranes, target compounds were isolated from a mixture in a size-selective fashion. The selectivities of both cages thus enabled a two-stage separation process to isolate a single compound from a mixture of physicochemically similar molecules.
Collapse
Affiliation(s)
| | - John D. Thoburn
- Randolph-Macon
College, Department of Chemistry, Ashland, Virginia 23005, United States
| | - Angela B. Grommet
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Duncan J. Howe
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Hugh P. Ryan
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | - Jeanne L. Bolliger
- University
of Cambridge, Department of Chemistry, Cambridge CB2 1EW, U.K.
| | | |
Collapse
|
79
|
Wan J, Zhang Z, Wang Y, Zhao J, Qi Y, Zhang X, Liu K, Yu C, Yan X. Synergistic covalent-and-supramolecular polymers connected by [2]pseudorotaxane moieties. Chem Commun (Camb) 2021; 57:7374-7377. [PMID: 34231574 DOI: 10.1039/d1cc02873a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synergistic covalent-and-supramolecular polymers, in which covalent polymers and supramolecular polymers connect with each other through [2]pseudorotaxane moieties, are designed and synthesized. The unique topological structure effectively enhances the synergistic effect between these two polymers, thereby generating a novel class of mechanically adaptive materials.
Collapse
Affiliation(s)
- Junjun Wan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yumeng Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
80
|
Czernek J, Brus J. On the Many-Body Expansion of an Interaction Energy of Some Supramolecular Halogen-Containing Capsules. Molecules 2021; 26:4431. [PMID: 34361581 PMCID: PMC8347495 DOI: 10.3390/molecules26154431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
A tetramer model was investigated of a remarkably stable iodine-containing supramolecular capsule that was most recently characterized by other authors, who described emergent features of the capsule's formation. In an attempt to address the surprising fact that no strong pair-wise interactions between any of the respective components were experimentally detected in condensed phases, the DFT (density-functional theory) computational model was used to decompose the total stabilization energy as a sum of two-, three- and four-body contributions. This model considers complexes formed between either iodine or bromine and the crucial D4d-symmetric form of octaaryl macrocyclic compound cyclo[8](1,3-(4,6-dimethyl)benzene that is surrounded by arenes of a suitable size, namely, either corannulene or coronene. A significant enthalpic gain associated with the formation of investigated tetramers was revealed. Furthermore, it is shown that the total stabilization of these complexes is dominated by binary interactions. Based on these findings, comments are made regarding the experimentally observed behavior of related multicomponent mixtures.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square, 16206 Prague, Czech Republic;
| | | |
Collapse
|
81
|
Lloyd Williams OH, Rijs NJ. Reaction Monitoring and Structural Characterisation of Coordination Driven Self-Assembled Systems by Ion Mobility-Mass Spectrometry. Front Chem 2021; 9:682743. [PMID: 34169059 PMCID: PMC8217442 DOI: 10.3389/fchem.2021.682743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023] Open
Abstract
Nature creates exquisite molecular assemblies, required for the molecular-level functions of life, via self-assembly. Understanding and harnessing these complex processes presents an immense opportunity for the design and fabrication of advanced functional materials. However, the significant industrial potential of self-assembly to fabricate highly functional materials is hampered by a lack of knowledge of critical reaction intermediates, mechanisms, and kinetics. As we move beyond the covalent synthetic regime, into the domain of non-covalent interactions occupied by self-assembly, harnessing and embracing complexity is a must, and non-targeted analyses of dynamic systems are becoming increasingly important. Coordination driven self-assembly is an important subtype of self-assembly that presents several wicked analytical challenges. These challenges are "wicked" due the very complexity desired confounding the analysis of products, intermediates, and pathways, therefore limiting reaction optimisation, tuning, and ultimately, utility. Ion Mobility-Mass Spectrometry solves many of the most challenging analytical problems in separating and analysing the structure of both simple and complex species formed via coordination driven self-assembly. Thus, due to the emerging importance of ion mobility mass spectrometry as an analytical technique tackling complex systems, this review highlights exciting recent applications. These include equilibrium monitoring, structural and dynamic analysis of previously analytically inaccessible complex interlinked structures and the process of self-sorting. The vast and largely untapped potential of ion mobility mass spectrometry to coordination driven self-assembly is yet to be fully realised. Therefore, we also propose where current analytical approaches can be built upon to allow for greater insight into the complexity and structural dynamics involved in self-assembly.
Collapse
Affiliation(s)
| | - Nicole J. Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|