51
|
Spencer DA, Malherbe DC, Vázquez Bernat N, Ádori M, Goldberg B, Dambrauskas N, Henderson H, Pandey S, Cheever T, Barnette P, Sutton WF, Ackerman ME, Kobie JJ, Sather DN, Karlsson Hedestam GB, Haigwood NL, Hessell AJ. Polyfunctional Tier 2-Neutralizing Antibodies Cloned following HIV-1 Env Macaque Immunization Mirror Native Antibodies in a Human Donor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:999-1012. [PMID: 33472907 PMCID: PMC7887735 DOI: 10.4049/jimmunol.2001082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022]
Abstract
Vaccine efforts to combat HIV are challenged by the global diversity of viral strains and shielding of neutralization epitopes on the viral envelope glycoprotein trimer. Even so, the isolation of broadly neutralizing Abs from infected individuals suggests the potential for eliciting protective Abs through vaccination. This study reports a panel of 58 mAbs cloned from a rhesus macaque (Macaca mulatta) immunized with envelope glycoprotein immunogens curated from an HIV-1 clade C-infected volunteer. Twenty mAbs showed neutralizing activity, and the strongest neutralizer displayed 92% breadth with a median IC50 of 1.35 μg/ml against a 13-virus panel. Neutralizing mAbs predominantly targeted linear epitopes in the V3 region in the cradle orientation (V3C) with others targeting the V3 ladle orientation (V3L), the CD4 binding site (CD4bs), C1, C4, or gp41. Nonneutralizing mAbs bound C1, C5, or undetermined conformational epitopes. Neutralization potency strongly correlated with the magnitude of binding to infected primary macaque splenocytes and to the level of Ab-dependent cellular cytotoxicity, but did not predict the degree of Ab-dependent cellular phagocytosis. Using an individualized germline gene database, mAbs were traced to 23 of 72 functional IgHV alleles. Neutralizing V3C Abs displayed minimal nucleotide somatic hypermutation in the H chain V region (3.77%), indicating that relatively little affinity maturation was needed to achieve in-clade neutralization breadth. Overall, this study underscores the polyfunctional nature of vaccine-elicited tier 2-neutralizing V3 Abs and demonstrates partial reproduction of the human donor's humoral immune response through nonhuman primate vaccination.
Collapse
Affiliation(s)
- David A Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Néstor Vázquez Bernat
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Monika Ádori
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | | | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
| | - Heidi Henderson
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Tracy Cheever
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - William F Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | | | - James J Kobie
- Infectious Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA 98105; and
| | | | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR 97239
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006;
| |
Collapse
|
52
|
Lu M. Single-Molecule FRET Imaging of Virus Spike-Host Interactions. Viruses 2021; 13:v13020332. [PMID: 33669922 PMCID: PMC7924862 DOI: 10.3390/v13020332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
As a major surface glycoprotein of enveloped viruses, the virus spike protein is a primary target for vaccines and anti-viral treatments. Current vaccines aiming at controlling the COVID-19 pandemic are mostly directed against the SARS-CoV-2 spike protein. To promote virus entry and facilitate immune evasion, spikes must be dynamic. Interactions with host receptors and coreceptors trigger a cascade of conformational changes/structural rearrangements in spikes, which bring virus and host membranes in proximity for membrane fusion required for virus entry. Spike-mediated viral membrane fusion is a dynamic, multi-step process, and understanding the structure–function-dynamics paradigm of virus spikes is essential to elucidate viral membrane fusion, with the ultimate goal of interventions. However, our understanding of this process primarily relies on individual structural snapshots of endpoints. How these endpoints are connected in a time-resolved manner, and the order and frequency of conformational events underlying virus entry, remain largely elusive. Single-molecule Förster resonance energy transfer (smFRET) has provided a powerful platform to connect structure–function in motion, revealing dynamic aspects of spikes for several viruses: SARS-CoV-2, HIV-1, influenza, and Ebola. This review focuses on how smFRET imaging has advanced our understanding of virus spikes’ dynamic nature, receptor-binding events, and mechanism of antibody neutralization, thereby informing therapeutic interventions.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
53
|
Abstract
The HIV-1 envelope glycoprotein (Env) trimer [(gp120/gp41)3] is a metastable complex expressed at the surface of viral particles and infected cells that samples different conformations. Before engaging CD4, Env adopts an antibody-resistant "closed" conformation (State 1). CD4 binding triggers an intermediate conformation (State 2) and then a more "open" conformation (State 3) that can be recognized by non-neutralizing antibodies (nnAbs) such as those that recognize the coreceptor binding site (CoRBS). Binding of antibodies to the CoRBS permits another family of nnAbs, the anti-cluster A family of Abs which target the gp120 inner domain, to bind and stabilize an asymmetric conformation (State 2A). Cells expressing Env in this conformation are susceptible to antibody-dependent cellular cytotoxicity (ADCC). This conformation can be stabilized by small-molecule CD4 mimetics (CD4mc) or soluble CD4 (sCD4) in combination with anti-CoRBS Ab and anti-cluster A antibodies. The precise stoichiometry of each component that permits this sequential opening of Env remains unknown. Here, we used a cell-based ELISA (CBE) assay to evaluate each component individually. In this assay we used a "trimer mixing" approach by combining wild-type (wt) subunits with subunits impaired for CD4 or CoRBS Ab binding. This enabled us to show that State 2A requires all three gp120 subunits to be bound by sCD4/CD4mc and anti-CoRBS Abs. Two of these subunits can then bind anti-cluster A Abs. Altogether, our data suggests how this antibody vulnerable Env conformation is stabilized.Importance Stabilization of HIV-1 Env State 2A has been shown to sensitize infected cells to ADCC. State 2A can be stabilized by a "cocktail" composed of CD4mc, anti-CoRBS and anti-cluster A Abs. We present evidence that optimal State 2A stabilization requires all three gp120 subunits to be bound by both CD4mc and anti-CoRBS Abs. Our study provides valuable information on how to stabilize this ADCC-vulnerable conformation. Strategies aimed at stabilizing State 2A might have therapeutic utility.
Collapse
|
54
|
Lu M, Uchil PD, Li W, Zheng D, Terry DS, Gorman J, Shi W, Zhang B, Zhou T, Ding S, Gasser R, Prévost J, Beaudoin-Bussières G, Anand SP, Laumaea A, Grover JR, Liu L, Ho DD, Mascola JR, Finzi A, Kwong PD, Blanchard SC, Mothes W. Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles. Cell Host Microbe 2020; 28:880-891.e8. [PMID: 33242391 PMCID: PMC7664471 DOI: 10.1016/j.chom.2020.11.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) mediates viral entry into cells and is critical for vaccine development against coronavirus disease 2019 (COVID-19). Structural studies have revealed distinct conformations of S, but real-time information that connects these structures is lacking. Here we apply single-molecule fluorescence (Förster) resonance energy transfer (smFRET) imaging to observe conformational dynamics of S on virus particles. Virus-associated S dynamically samples at least four distinct conformational states. In response to human receptor angiotensin-converting enzyme 2 (hACE2), S opens sequentially into the hACE2-bound S conformation through at least one on-path intermediate. Conformational preferences observed upon exposure to convalescent plasma or antibodies suggest mechanisms of neutralization involving either competition with hACE2 for binding to the receptor-binding domain (RBD) or allosteric interference with conformational changes required for entry. Our findings inform on mechanisms of S recognition and conformations for immunogen design.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Desheng Zheng
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
55
|
Tuyishime M, Garrido C, Jha S, Moeser M, Mielke D, LaBranche C, Montefiori D, Haynes BF, Joseph S, Margolis DM, Ferrari G. Improved killing of HIV-infected cells using three neutralizing and non-neutralizing antibodies. J Clin Invest 2020; 130:5157-5170. [PMID: 32584790 PMCID: PMC7524508 DOI: 10.1172/jci135557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The correlation of HIV-specific antibody-dependent cellular cytotoxicity (ADCC) responses with protection from and delayed progression of HIV-1 infection provides a rationale to leverage ADCC-mediating antibodies for treatment purposes. We evaluated ADCC mediated by different combinations of 2 to 6 neutralizing and non-neutralizing anti-HIV-1 Envelope (Env) mAbs, using concentrations ≤ 1 μg/mL, to identify combinations effective at targeting latent reservoir HIV-1 viruses from 10 individuals. We found that within 2 hours, combinations of 3 mAbs mediated more than 30% killing of HIV-infected primary CD4+ T cells in the presence of autologous NK cells, with the combination of A32 (C1C2), DH511.2K3 (MPER), and PGT121 (V3) mAbs being the most effective. Increasing the incubation of target and effector cells in the presence of mAb combinations from 2 to 24 hours resulted in increased specific killing of infected cells, even with neutralization-resistant viruses. The same combination eliminated reactivated latently HIV-1-infected cells in an ex vivo quantitative viral outgrowth assay. Therefore, administration of a combination of 3 mAbs should be considered in planning in vivo studies seeking to eliminate persistently HIV-1-infected cells.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Shalini Jha
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Matt Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dieter Mielke
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine and
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah Joseph
- UNC HIV Cure Center and
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology and
| | - David M. Margolis
- UNC HIV Cure Center and
- Department of Microbiology and Immunology and
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
56
|
Sherburn R, Tolbert WD, Gottumukkala S, Beaudoin-Bussières G, Finzi A, Pazgier M. Effects of gp120 Inner Domain (ID2) Immunogen Doses on Elicitation of Anti-HIV-1 Functional Fc-Effector Response to C1/C2 (Cluster A) Epitopes in Mice. Microorganisms 2020; 8:microorganisms8101490. [PMID: 32998443 PMCID: PMC7650682 DOI: 10.3390/microorganisms8101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023] Open
Abstract
Fc-mediated effector functions of antibodies, including antibody-dependent cytotoxicity (ADCC), have been shown to contribute to vaccine-induced protection from HIV-1 infection, especially those directed against non-neutralizing, CD4 inducible (CD4i) epitopes within the gp120 constant 1 and 2 regions (C1/C2 or Cluster A epitopes). However, recent passive immunization studies have not been able to definitively confirm roles for these antibodies in HIV-1 prevention mostly due to the complications of cross-species Fc–FcR interactions and suboptimal dosing strategies. Here, we use our stabilized gp120 Inner domain (ID2) immunogen that displays the Cluster A epitopes within a minimal structural unit of HIV-1 Env to investigate an immunization protocol that induces a fine-tuned antibody repertoire capable of an effective Fc-effector response. This includes the generation of isotypes and the enhanced antibody specificity known to be vital for maximal Fc-effector activities, while minimizing the induction of isotypes know to be detrimental for these functions. Although our studies were done in in BALB/c mice we conclude that when optimally titrated for the species of interest, ID2 with GLA-SE adjuvant will elicit high titers of antibodies targeting the Cluster A region with potent Fc-mediated effector functions, making it a valuable immunogen candidate for testing an exclusive role of non-neutralizing antibody response in HIV-1 protection in vaccine settings.
Collapse
Affiliation(s)
- Rebekah Sherburn
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
- Correspondence: ; Tel.: +301-295-3291; Fax: +301-295-355
| |
Collapse
|
57
|
Lu M, Uchil PD, Li W, Zheng D, Terry DS, Gorman J, Shi W, Zhang B, Zhou T, Ding S, Gasser R, Prevost J, Beaudoin-Bussieres G, Anand SP, Laumaea A, Grover JR, Lihong L, Ho DD, Mascola J, Finzi A, Kwong PD, Blanchard SC, Mothes W. Real-time conformational dynamics of SARS-CoV-2 spikes on virus particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32935100 DOI: 10.1101/2020.09.10.286948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SARS-CoV-2 spike (S) mediates entry into cells and is critical for vaccine development against COVID-19. S is synthesized as a precursor, processed into S1 and S2 by furin proteases, and activated for fusion when human angiotensin-converting enzyme 2 (hACE2) engages the receptor-binding domain (RBD) and when the N-terminus of S2 is proteolytically processed. Structures of soluble ectodomains and native virus particles have revealed distinct conformations of S, including a closed trimer with all RBD oriented downward, trimers with one or two RBDs up, and hACE2-stabilized conformations with up to three RBD oriented up. Real-time information that connects these structures, however, has been lacking. Here we apply single-molecule Forster Resonance Energy Transfer (smFRET) imaging to observe conformational dynamics of S on virus particles. Virus-associated S dynamically samples at least four distinct conformational states. In response to hACE2, S opens into the hACE2-bound S conformation through at least one on-path intermediate, with trypsin partially activating S. Conformational preferences of convalescent patient plasma and monoclonal antibodies suggest mechanisms of neutralization involving either direct competition with hACE2 for binding to RBD or allosteric interference with conformational changes required for entry. Our findings inform on mechanisms of S recognition and on conformations for immunogen design.
Collapse
|
58
|
Lu M, Ma X, Reichard N, Terry DS, Arthos J, Smith AB, Sodroski JG, Blanchard SC, Mothes W. Shedding-Resistant HIV-1 Envelope Glycoproteins Adopt Downstream Conformations That Remain Responsive to Conformation-Preferring Ligands. J Virol 2020; 94:e00597-20. [PMID: 32522853 PMCID: PMC7431789 DOI: 10.1128/jvi.00597-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer of gp120-gp41 heterodimers mediates virus entry into CD4-positive (CD4+) cells. Single-molecule fluorescence resonance energy transfer (smFRET) has revealed that native Env on the surface of viruses predominantly exists in a pretriggered conformation (state 1) that is preferentially recognized by many broadly neutralizing antibodies (bNAbs). Env is activated by binding receptor CD4, which drives transitions through a default intermediate conformation (state 2) into the three-CD4-bound open conformation (state 3). The application of smFRET to assess the conformational state of existing Env constructs and ligand complexes recently revealed that all current high-resolution structures correspond to downstream states 2 and 3. The structure of state 1, therefore, remains unknown. We sought to identify conditions whereby HIV-1 Env could be stabilized in the pretriggered state 1 for possible structural characterization. Shedding of gp120, known to severely complicate structural studies, can be prevented by using the uncleaved gp160JR-FL precursor with alterations in the protease cleavage site (R508S/R511S) or by introducing a disulfide bridge between gp120 and gp41 designated "SOS" (A501C/T605C). smFRET demonstrated that both shedding-preventing modifications shifted the conformational landscape of Env downstream toward states 2 and 3. However, both membrane-bound Env proteins on the surface of intact viruses remained conformationally dynamic, responsive to state-stabilizing ligands, and able to be stabilized in state 1 by specific ligands such as the Bristol-Myers Squibb (BMS) entry inhibitors. The here-described identification of state 1-stabilizing conditions may enable structural characterization of the state 1 conformation of HIV-1 Env.IMPORTANCE The HIV-1 envelope glycoprotein (Env) opens in response to receptor CD4 binding from a pretriggered (state 1) conformation through a necessary intermediate to the three-CD4-bound conformation. The application of smFRET to test the conformational state of existing Env constructs and ligand complexes used for high-resolution structures recently revealed that they correspond to the downstream conformations. The structure of the pretriggered Env conformation, preferentially recognized by broadly neutralizing antibodies, remains unknown. Here, we identify experimental conditions that stabilize membrane-bound and shedding-resistant virus Env trimers in state 1, potentially facilitating structural characterization of this unknown conformational state.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nick Reichard
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
59
|
Opening the HIV envelope: potential of CD4 mimics as multifunctional HIV entry inhibitors. Curr Opin HIV AIDS 2020; 15:300-308. [PMID: 32769632 DOI: 10.1097/coh.0000000000000637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Close to 2 million individuals globally become infected with HIV-1 each year and just over two-thirds will have access to life-prolonging antivirals. However, the rapid development of drug resistance creates challenges, such that generation of more effective therapies is not only warranted but a necessary endeavour. This review discusses a group of HIV-1 entry inhibitors known as CD4 mimics which exploit the highly conserved relationship between the HIV-1 envelope glycoprotein and the receptor, CD4. RECENT FINDINGS We review the structure/function guided evolution of these inhibitors, vital mechanistic insights that underpin broad and potent functional antagonism, recent evidence of utility demonstrated in animal and physiologically relevant in-vitro models, and current progress towards effective new-generation inhibitors. SUMMARY The current review highlights the promising potential of CD4 mimetics as multifunctional therapeutics.
Collapse
|
60
|
Differential Pressures of SERINC5 and IFITM3 on HIV-1 Envelope Glycoprotein over the Course of HIV-1 Infection. J Virol 2020; 94:JVI.00514-20. [PMID: 32493821 DOI: 10.1128/jvi.00514-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022] Open
Abstract
Infection of human immunodeficiency virus type 1 (HIV-1) is subject to restriction by cellular factors. Serine incorporator 5 (SERINC5) and interferon-inducible transmembrane 3 (IFITM3) proteins represent two of these restriction factors, which inhibit HIV-1 entry into target cells. Both proteins impede fusion of the viral membrane with the cellular membrane and the formation of a viral fusion pore, and both are countered by the HIV-1 envelope glycoprotein (Env). Given the immense and lasting pressure which Env endures from host adaptive immune responses, it is important to understand whether and how HIV-1 Env is able to maintain the resistance to SERINC5 and IFITM3 throughout the course of infection. We have thus examined a panel of HIV-1 Env clones that were isolated at different stages of viral infection-transmission, acute, and chronic. While HIV-1 Env clones from the transmission stage are resistant to both SERINC5 and IFITM3, as infection progresses into the acute and chronic stages, the resistance to IFITM3 but not to SERINC5 is gradually lost. We further discovered a significant correlation between the resistance of HIV-1 Env to soluble CD4 inhibition and the resistance to SERINC5 but not to IFITM3. Interestingly, the miniprotein CD4 mimetic M48U1 sensitizes HIV-1 Env to the inhibition by SERINC5 but not IFITM3. Together, these data indicate that SERINC5 and IFITM3 exert differential inhibitory pressures on HIV-1 Env over different stages of HIV-1 infection and that HIV-1 Env uses varied strategies to resist these two restriction factors.IMPORTANCE HIV-1 Env protein is exposed to the inhibition not only by humoral response, but also by host restriction factors, including serine incorporator 5 (SERINC5) and interferon-inducible transmembrane 3 (IFITM3). This study investigates how HIV-1 envelope glycoprotein (Env) manages to overcome the pressures from all these different host inhibition mechanisms over the long course of viral infection. HIV-1 Env preserves the resistance to SERINC5 but becomes sensitive to IFITM3 when infection progresses into the chronic stage. Our study also supports the possibility of using CD4 mimetic compounds to sensitize HIV-1 Env to the inhibition by SERINC5 as a potential therapeutic strategy.
Collapse
|
61
|
Tolbert WD, Sherburn R, Gohain N, Ding S, Flinko R, Orlandi C, Ray K, Finzi A, Lewis GK, Pazgier M. Defining rules governing recognition and Fc-mediated effector functions to the HIV-1 co-receptor binding site. BMC Biol 2020; 18:91. [PMID: 32693837 PMCID: PMC7374964 DOI: 10.1186/s12915-020-00819-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/22/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The binding of HIV-1 Envelope glycoproteins (Env) to host receptor CD4 exposes vulnerable conserved epitopes within the co-receptor binding site (CoRBS) which are required for the engagement of either CCR5 or CXCR4 co-receptor to allow HIV-1 entry. Antibodies against this region have been implicated in the protection against HIV acquisition in non-human primate (NHP) challenge studies and found to act synergistically with antibodies of other specificities to deliver effective Fc-mediated effector function against HIV-1-infected cells. Here, we describe the structure and function of N12-i2, an antibody isolated from an HIV-1-infected individual, and show how the unique structural features of this antibody allow for its effective Env recognition and Fc-mediated effector function. RESULTS N12-i2 binds within the CoRBS utilizing two adjacent sulfo-tyrosines (TYS) for binding, one of which binds to a previously unknown TYS binding pocket formed by gp120 residues of high sequence conservation among HIV-1 strains. Structural alignment with gp120 in complex with the co-receptor CCR5 indicates that the new pocket corresponds to TYS at position 15 of CCR5. In addition, structure-function analysis of N12-i2 and other CoRBS-specific antibodies indicates a link between modes of antibody binding within the CoRBS and Fc-mediated effector activities. The efficiency of antibody-dependent cellular cytotoxicity (ADCC) correlated with both the level of antibody binding and the mode of antibody attachment to the epitope region, specifically with the way the Fc region was oriented relative to the target cell surface. Antibodies with poor Fc access mediated the poorest ADCC whereas those with their Fc region readily accessible for interaction with effector cells mediated the most potent ADCC. CONCLUSION Our data identify a previously unknown binding site for TYS within the assembled CoRBS of the HIV-1 virus. In addition, our combined structural-modeling-functional analyses provide new insights into mechanisms of Fc-effector function of antibodies against HIV-1, in particular, how antibody binding to Env antigen affects the efficiency of ADCC response.
Collapse
Affiliation(s)
- William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Neelakshi Gohain
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Robin Flinko
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Chiara Orlandi
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Krishanu Ray
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - George K Lewis
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA.
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|
62
|
Recognition Patterns of the C1/C2 Epitopes Involved in Fc-Mediated Response in HIV-1 Natural Infection and the RV114 Vaccine Trial. mBio 2020; 11:mBio.00208-20. [PMID: 32605979 PMCID: PMC7327165 DOI: 10.1128/mbio.00208-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Antibodies (Abs) specific for CD4-induced envelope (Env) epitopes within constant region 1 and 2 (C1/C2) were induced in the RV144 vaccine trial, where antibody-dependent cellular cytotoxicity (ADCC) correlated with reduced risk of HIV-1 infection. We combined X-ray crystallography and fluorescence resonance energy transfer-fluorescence correlation spectroscopy to describe the molecular basis for epitopes of seven RV144 Abs and compared them to A32 and C11, C1/C2 Abs induced in HIV infection. Our data indicate that most vaccine Abs recognize the 7-stranded β-sandwich of gp120, a unique hybrid epitope bridging A32 and C11 binding sites. Although primarily directed at the 7-stranded β-sandwich, some accommodate the gp120 N terminus in C11-bound 8-stranded conformation and therefore recognize a broader range of CD4-triggered Env conformations. Our data also suggest that Abs of RV144 and RV305, the RV144 follow-up study, although likely initially induced by the ALVAC-HIV prime encoding full-length gp120, matured through boosting with truncated AIDSVAX gp120 variants.IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) correlated with a reduced risk of infection from HIV-1 in the RV144 vaccine trial, the only HIV-1 vaccine trial to date to show any efficacy. Antibodies specific for CD4-induced envelope (Env) epitopes within constant region 1 and 2 (cluster A region) were induced in the RV144 trial and their ADCC activities were implicated in the vaccine efficacy. We present structural analyses of the antigen epitope targets of several RV144 antibodies specific for this region and C11, an antibody induced in natural infection, to show what the differences are in epitope specificities, mechanism of antigen recognition, and ADCC activities of antibodies induced by vaccination and during the course of HIV infection. Our data suggest that the truncated AIDSVAX gp120 variants used in the boost of the RV144 regimen may have shaped the vaccine response to this region, which could also have contributed to vaccine efficacy.
Collapse
|
63
|
Prévost J, Tolbert WD, Medjahed H, Sherburn RT, Madani N, Zoubchenok D, Gendron-Lepage G, Gaffney AE, Grenier MC, Kirk S, Vergara N, Han C, Mann BT, Chénine AL, Ahmed A, Chaiken I, Kirchhoff F, Hahn BH, Haim H, Abrams CF, Smith AB, Sodroski J, Pazgier M, Finzi A. The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. mBio 2020; 11:e00280-20. [PMID: 32457241 PMCID: PMC7251204 DOI: 10.1128/mbio.00280-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope glycoproteins (Env) undergo conformational changes upon interaction of the gp120 exterior glycoprotein with the CD4 receptor. The gp120 inner domain topological layers facilitate the transition of Env to the CD4-bound conformation. CD4 engages gp120 by introducing its phenylalanine 43 (Phe43) in a cavity ("the Phe43 cavity") located at the interface between the inner and outer gp120 domains. Small CD4-mimetic compounds (CD4mc) can bind within the Phe43 cavity and trigger conformational changes similar to those induced by CD4. Crystal structures of CD4mc in complex with a modified CRF01_AE gp120 core revealed the importance of these gp120 inner domain layers in stabilizing the Phe43 cavity and shaping the CD4 binding site. Our studies reveal a complex interplay between the gp120 inner domain and the Phe43 cavity and generate useful information for the development of more-potent CD4mc.IMPORTANCE The Phe43 cavity of HIV-1 envelope glycoproteins (Env) is an attractive druggable target. New promising compounds, including small CD4 mimetics (CD4mc), were shown to insert deeply into this cavity. Here, we identify a new network of residues that helps to shape this highly conserved CD4 binding pocket and characterize the structural determinants responsible for Env sensitivity to small CD4 mimetics.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - William D Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | | | - Rebekah T Sherburn
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daria Zoubchenok
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Althea E Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa C Grenier
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sharon Kirk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha Vergara
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Changze Han
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brendan T Mann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Agnès L Chénine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
64
|
The Conformational States of the HIV-1 Envelope Glycoproteins. Trends Microbiol 2020; 28:655-667. [PMID: 32418859 DOI: 10.1016/j.tim.2020.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
During HIV-1 entry into target cells, binding of the virus to host receptors, CD4 and CCR5/CXCR4, triggers serial conformational changes in the envelope glycoprotein (Env) trimer that result in the fusion of the viral and cell membranes. Recent discoveries have refined our knowledge of Env conformational states, allowing characterization of the targets of small-molecule HIV-1 entry inhibitors and neutralizing antibodies, and identifying a novel off-pathway conformation (State 2A). Here, we provide an overview of the current understanding of these conformational states, focusing on (i) the events during HIV-1 entry; (ii) conformational preferences of HIV-1 Env ligands; (iii) evasion of the host antibody response; and (iv) potential implications for therapy and prevention of HIV-1 infection.
Collapse
|
65
|
Beaudoin-Bussières G, Prévost J, Gendron-Lepage G, Melillo B, Chen J, Smith Iii AB, Pazgier M, Finzi A. Elicitation of Cluster A and Co-Receptor Binding Site Antibodies are Required to Eliminate HIV-1 Infected Cells. Microorganisms 2020; 8:E710. [PMID: 32403312 PMCID: PMC7285120 DOI: 10.3390/microorganisms8050710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 01/01/2023] Open
Abstract
HIV-1-infected individuals raise a polyclonal antibody response targeting multiple envelope glycoprotein (Env) epitopes. Interestingly, two classes of non-neutralizing CD4-induced (CD4i) antibodies, present in the majority of HIV-1-infected individuals have been described to mediate antibody-dependent cellular cytotoxicity (ADCC) in the presence of small CD4 mimetic compounds (CD4mc). These antibodies recognize the coreceptor binding site (CoRBS) and the constant region one and two (C1C2 or inner domain cluster A) of the gp120. In combination with CD4mc they have been shown to stabilize an antibody-vulnerable Env conformation, known as State 2A. Here we evaluated the importance of these two families of Abs in ADCC responses by immunizing guinea pigs with gp120 immunogens that have been modified to elicit or not these types of antibodies. Underlying the importance of anti-CoRBS and anti-cluster A Abs in stabilizing State 2A, ADCC responses were only observed in the presence of these two types of CD4i antibodies. Altogether, our results suggest that these two families of CD4i antibodies must be taken into account when considering future strategies relying on the use of CD4mc to eliminate HIV-1-infected cells in vivo.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | | | - Bruno Melillo
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Junhua Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Amos B Smith Iii
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
66
|
Long-Acting BMS-378806 Analogues Stabilize the State-1 Conformation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. J Virol 2020; 94:JVI.00148-20. [PMID: 32161177 DOI: 10.1128/jvi.00148-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/21/2020] [Indexed: 01/14/2023] Open
Abstract
During human immunodeficiency virus type 1 (HIV-1) entry into cells, the viral envelope glycoprotein (Env) trimer [(gp120/gp41)3] binds the receptors CD4 and CCR5 and fuses the viral and cell membranes. CD4 binding changes Env from a pretriggered (state-1) conformation to more open downstream conformations. BMS-378806 (here called BMS-806) blocks CD4-induced conformational changes in Env important for entry and is hypothesized to stabilize a state-1-like Env conformation, a key vaccine target. Here, we evaluated the effects of BMS-806 on the conformation of Env on the surface of cells and virus-like particles. BMS-806 strengthened the labile, noncovalent interaction of gp120 with the Env trimer, enhanced or maintained the binding of most broadly neutralizing antibodies, and decreased the binding of poorly neutralizing antibodies. Thus, in the presence of BMS-806, the cleaved Env on the surface of cells and virus-like particles exhibits an antigenic profile consistent with a state-1 conformation. We designed novel BMS-806 analogues that stabilized the Env conformation for several weeks after a single application. These long-acting BMS-806 analogues may facilitate enrichment of the metastable state-1 Env conformation for structural characterization and presentation to the immune system.IMPORTANCE The envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) mediates the entry of the virus into host cells and is also the target for antibodies. During virus entry, Env needs to change shape. Env flexibility also contributes to the ability of HIV-1 to evade the host immune response; many shapes of Env raise antibodies that cannot recognize the functional Env and therefore do not block virus infection. We found that an HIV-1 entry inhibitor, BMS-806, stabilizes the functional shape of Env. We developed new variants of BMS-806 that stabilize Env in its natural state for long periods of time. The availability of such long-acting stabilizers of Env shape will allow the natural Env conformation to be characterized and tested for efficacy as a vaccine.
Collapse
|
67
|
Pollara J, Edwards RW, Jha S, Lam CYK, Liu L, Diedrich G, Nordstrom JL, Huffman T, Pickeral JA, Denny TN, Permar SR, Ferrari G. Redirection of Cord Blood T Cells and Natural Killer Cells for Elimination of Autologous HIV-1-Infected Target Cells Using Bispecific DART® Molecules. Front Immunol 2020; 11:713. [PMID: 32373131 PMCID: PMC7186435 DOI: 10.3389/fimmu.2020.00713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Mother-to-child transmission of HIV-1 remains a major global health challenge. Currently, HIV-1-infected infants require strict lifelong adherence to antiretroviral therapy to prevent replication of virus from reservoirs of infected cells, and to halt progression of disease. There is a critical need for immune interventions that can be deployed shortly after infection to eliminate HIV-1-infected cells in order to promote long-term remission of viremia, or to potentially cure pediatric HIV-1-infection. Bispecific HIV × CD3 DART® molecules able to co-engage the HIV-1 envelope protein on the surface of infected cells and CD3 on cytolytic T cells have been previously shown to eliminate HIV-1 infected cells in vitro and are candidates for passive immunotherapy to reduce the virus reservoir. However, their potential utility as therapy for infant HIV-1 infection is unclear as the ability of these novel antibody-based molecules to work in concert with cells of the infant immune system had not been assessed. Here, we use human umbilical cord blood as a model of the naïve neonatal immune system to evaluate the ability of HIV x CD3 DART molecules to recruit and redirect neonatal effector cells for elimination of autologous CD4+ T cells infected with HIV-1 encoding an envelope gene sequenced from a mother-to-child transmission event. We found that HIV × CD3 DART molecules can redirect T cells present in cord blood for elimination of HIV-infected CD4+ T cells. However, we observed reduced killing by T cells isolated from cord blood when compared to cells isolated from adult peripheral blood-likely due to the absence of the memory and effector CD8+ T cells that are most cytolytic when redirected by bispecific DART molecules. We also found that newly developed HIV × CD16 DART molecules were able to recruit CD16-expressing natural killer cells from cord blood to eliminate HIV-infected cells, and the activity of cord blood natural killer cells could be substantially increased by priming with IL-15. Our results support continued development of HIV-specific DART molecules using relevant preclinical animal models to optimize strategies for effective use of this immune therapy to reduce HIV-1 infection in pediatric populations.
Collapse
Affiliation(s)
- Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - R Whitney Edwards
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | | | - Liqin Liu
- Macrogenics, Inc., Rockville, MD, United States
| | | | | | - Tori Huffman
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Joy A Pickeral
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Thomas N Denny
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Sallie R Permar
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
68
|
Comparisons of Antibody Populations in Different Pre-Fusion F VLP-Immunized Cotton Rat Dams and Their Offspring. Vaccines (Basel) 2020; 8:vaccines8010133. [PMID: 32197348 PMCID: PMC7157610 DOI: 10.3390/vaccines8010133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 01/16/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection poses a significant risk for infants. Since the direct vaccination of infants is problematic, maternal vaccination may provide a safer, more effective approach to their protection. In the cotton rat (CR) model, we have compared the immunization of pregnant CR dams with virus-like particles assembled with the prototype mutation stabilized pre-fusion F protein, DS-Cav1, as well two alternative mutation stabilized pre-fusion proteins (UC-2 F, UC-3 F) and showed that the alternative pre-fusion F VLPs protected the offspring of immunized dams significantly better than DS-Cav1 F VLPs (Blanco, et al. J. Virol. 93: e00914). Here, we have addressed the reasons for this increased protection by characterizing the specificities of antibodies in the sera of both immunized dams and their offspring. The approach was to measure the levels of total anti-pre-F IgG serum antibodies that would block the binding of representative pre-fusion specific monoclonal antibodies to soluble pre-fusion F protein targets. Strikingly, we found that the sera in most offspring of DS-Cav1 F VLP-immunized dams had no mAb D25-blocking antibodies, although their dams had robust levels. In contrast, all offspring of UC-3 F VLP-immunized dams had robust levels of these D25-blocking antibodies. Both sets of pup sera had significant levels of mAb AM14-blocking antibodies, indicating that all pups received maternal antibodies. A lack of mAb D25-blocking antibodies in the offspring of DS-Cav1 F VLP-immunized dams may account for the lower protection of their pups from challenge compared to the offspring of UC-3 F VLP-immunized dams.
Collapse
|
69
|
Grenier M, Ding S, Vézina D, Chapleau JP, Tolbert WD, Sherburn R, Schön A, Somisetti S, Abrams CF, Pazgier M, Finzi A, Smith AB. Optimization of Small Molecules That Sensitize HIV-1 Infected Cells to Antibody-Dependent Cellular Cytotoxicity. ACS Med Chem Lett 2020; 11:371-378. [PMID: 32184972 PMCID: PMC7074219 DOI: 10.1021/acsmedchemlett.9b00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022] Open
Abstract
With approximately 37 million people living with HIV worldwide and an estimated 2 million new infections reported each year, the need to derive novel strategies aimed at eradicating HIV-1 infection remains a critical worldwide challenge. One potential strategy would involve eliminating infected cells via antibody-dependent cellular cytotoxicity (ADCC). HIV-1 has evolved sophisticated mechanisms to conceal epitopes located in its envelope glycoprotein (Env) that are recognized by ADCC-mediating antibodies present in sera from HIV-1 infected individuals. Our aim is to circumvent this evasion via the development of small molecules that expose relevant anti-Env epitopes and sensitize HIV-1 infected cells to ADCC. Rapid elaboration of an initial screening hit using parallel synthesis and structure-based optimization has led to the development of potent small molecules that elicit this humoral response. Efforts to increase the ADCC activity of this class of small molecules with the aim of increasing their therapeutic potential was based on our recent cocrystal structures with gp120 core.
Collapse
Affiliation(s)
- Melissa
C. Grenier
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et
Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et
Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et
Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - William D. Tolbert
- Infections Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Rebekah Sherburn
- Infections Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Arne Schön
- Department of Biology, The Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - Sambasivarao Somisetti
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Marzena Pazgier
- Infections Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et
Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
70
|
Jones LD, Moody MA, Thompson AB. Innovations in HIV-1 Vaccine Design. Clin Ther 2020; 42:499-514. [PMID: 32035643 PMCID: PMC7102617 DOI: 10.1016/j.clinthera.2020.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The field of HIV-1 vaccinology has evolved during the last 30 years from the first viral vector HIV gene insert constructs to vaccination regimens using a myriad of strategies. These strategies now include germline-targeting, lineage-based, and structure-guided immunogen design. This narrative review outlines the historical context of HIV vaccinology and subsequently highlights the scientific discoveries during the last 6 years that promise to propel the field forward. METHODS We conducted a search of 2 electronic databases, PubMed and EMBASE, for experimental studies that involved new HIV immunogen designs between 2013 and 2019. During the title and abstract reviews, publications were excluded if they were written in language other than English and/or were a letter to the editor, a commentary, or a conference-only presentation. We then used ClinicalTrials.gov to identify completed and ongoing clinical trials using these strategies. FINDINGS The HIV vaccinology field has undergone periods of significant growth during the last 3 decades. Findings elucidated in preclinical studies have revealed the importance of the interaction between the cellular and humoral immune system. As a result, several new rationally designed vaccine strategies have been developed and explored in the last 6 years, including native-like envelope trimers, nanoparticle, and mRNA vaccine design strategies among others. Several of these strategies have shown enough promise in animal models to progress toward first-in-human Phase I clinical trials. IMPLICATIONS Rapid developments in preclinical and early-phase clinical studies suggest that a tolerable and effective HIV vaccine may be on the horizon.
Collapse
Affiliation(s)
- Letitia D Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - M Anthony Moody
- Duke University School of Medicine and Duke Human Vaccine Institute, Durham, NC, USA
| | - Amelia B Thompson
- Duke University School of Medicine and Duke Human Vaccine Institute, Durham, NC, USA.
| |
Collapse
|
71
|
Flow Cytometry Analysis of HIV-1 Env Conformations at the Surface of Infected Cells and Virions: Role of Nef, CD4, and SERINC5. J Virol 2020; 94:JVI.01783-19. [PMID: 31852789 DOI: 10.1128/jvi.01783-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
The HIV-1 Env protein is exposed at the surface of virions and infected cells. Env fluctuates between different closed and open structural states and these conformations influence both viral infectivity and sensitivity to antibody binding and neutralization. We established a flow virometry assay to visualize Env proteins at the surface of human immunodeficiency virus type 1 (HIV-1) virions. The assay is performed on ultracentrifuged fluorescent viral particles that are stained with a panel of broadly neutralizing antibodies (bNAbs) and nonneutralizing antibodies (nnAbs) that probe different epitopes of Env. We used this assay to compare Env at the surface of producer cells and viral particles and to analyze the effect of Nef, CD4, and SERINC5 on Env accessibility to antibodies. We studied the laboratory-adapted strain NL4-3 and two transmitted/founder viruses, THRO and CH058. We confirm that antibody accessibility varies between viral strains and show that Nef, CD4, and SERINC5 additively impact Env conformations. We further demonstrate that the Env accessibility profile on virions is globally similar to that observed on HIV-1-infected cells, with some noticeable differences. For instance, nnAbs bind to virions more efficiently than to producer cells, likely reflecting changes in Env conformational states on mature viral particles. This test complements other techniques and provides a convenient and simple tool for quantifying and probing the structure of Env at the virion surface and to analyze the impact of viral and cellular proteins on these parameters.IMPORTANCE HIV-1 Env conformation is one of the key parameters determining viral infectivity. The flow virometry-based assay developed in this study allows for the characterization of proteins incorporated in HIV-1 particles. We studied the conformation of HIV-1 Env and the impact that the viral protein Nef and the cellular proteins CD4 and SERINC5 have on Env accessibility to antibodies. Our assay permitted us to highlight some noticeable differences in the conformation of Env between producer cells and viral particles. It contributes to a better understanding of the actual composition of HIV-1 particles.
Collapse
|
72
|
Abstract
The HIV-1 Envelope (Env) is a metastable protein that displays several conformational states. In recent works, Lu et al. (2019) in Nature and Alsahafi et al. (2019) in Cell Host & Microbe show that antibodies displaying neutralization or antibody-dependent cellular cytotoxicity (ADCC) target different conformations of the viral glycoprotein.
Collapse
Affiliation(s)
- Timothée Bruel
- Virus & Immunity Unit, Institut Pasteur, UMR 3569, CNRS, Paris 75015, France; Vaccine Research Institute, Créteil, France.
| | - Olivier Schwartz
- Virus & Immunity Unit, Institut Pasteur, UMR 3569, CNRS, Paris 75015, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
73
|
Naiman NE, Slyker J, Richardson BA, John-Stewart G, Nduati R, Overbaugh JM. Antibody-dependent cellular cytotoxicity targeting CD4-inducible epitopes predicts mortality in HIV-infected infants. EBioMedicine 2020; 47:257-268. [PMID: 31501077 PMCID: PMC6796543 DOI: 10.1016/j.ebiom.2019.08.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antibody-dependent cellular cytotoxicity (ADCC) has been associated with improved infant outcome in mother-to-child transmission (MTCT) of HIV-1. Epitopes of these ADCC-mediating antibodies remain unidentified. CD4-inducible (CD4i) epitopes on gp120 are common ADCC targets in natural infection and vaccination. We tested whether CD4i epitope-specific ADCC mediated by maternal antibodies or passively-acquired antibodies in infants is associated with reduced MTCT and improved infant survival. METHODS We used variants of CD4i cluster A-specific antibodies, A32 and C11, and a cluster C-specific antibody, 17b, with mutations abolishing Fc-Fc receptor interactions as inhibitors in a competition rapid and fluorometric ADCC assay using gp120-coated CEM-nkr target cells with plasma from 51 non-transmitting and 21 transmitting breastfeeding mother-infant pairs. FINDINGS Cluster A-specific ADCC was common. Individually, neither A32-like nor C11-like ADCC was statistically significantly associated with risk of MTCT or infected infant survival. In combination, total maternal cluster A-specific ADCC was statistically significantly associated with decreased infected infant survival in a log-rank test (p = 0·017). There was a non-significant association for infant passively-acquired total cluster A-specific ADCC and decreased infected infant survival (p = 0·14). Surprisingly, plasma ADCC was enhanced in the presence of the defective Fc 17b competitor. Defective Fc 17b competitor-mediated maternal ADCC enhancement was statistically significantly associated with reduced infected infant survival (p = 0·011). A non-significant association was observed for passively-acquired infant ADCC enhancement and decreased survival (p = 0·19). INTERPRETATIONS These data suggest that ADCC targeting CD4i epitopes is not associated with protection against breast milk HIV transmission but is associated with decreased survival of infected infants. FUND: This study was funded by NIH grant R01AI076105 and NIH fellowship F30AI136636.
Collapse
Affiliation(s)
- Nicole E Naiman
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America; Molecular and Cellular Biology Program, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America; Medical Scientist Training Program, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America
| | - Jennifer Slyker
- Department of Global Health, University of Washington, 325 9(th) Avenue, Seattle, WA 98104, United States of America; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America
| | - Barbra A Richardson
- Department of Global Health, University of Washington, 325 9(th) Avenue, Seattle, WA 98104, United States of America; Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, United States of America; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America
| | - Grace John-Stewart
- Department of Global Health, University of Washington, 325 9(th) Avenue, Seattle, WA 98104, United States of America; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America; Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America; Department of Pediatrics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States of America
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Julie M Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States of America.
| |
Collapse
|
74
|
Dufloo J, Guivel‐Benhassine F, Buchrieser J, Lorin V, Grzelak L, Dupouy E, Mestrallet G, Bourdic K, Lambotte O, Mouquet H, Bruel T, Schwartz O. Anti-HIV-1 antibodies trigger non-lytic complement deposition on infected cells. EMBO Rep 2020; 21:e49351. [PMID: 31833228 PMCID: PMC10563447 DOI: 10.15252/embr.201949351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 11/09/2022] Open
Abstract
The effect of anti-HIV-1 antibodies on complement activation at the surface of infected cells remains partly understood. Here, we show that a subset of anti-Envelope (Env) broadly neutralizing antibodies (bNAbs), targeting the CD4 binding site and the V3 loop, triggers C3 deposition and complement-dependent cytotoxicity (CDC) on Raji cells engineered to express high surface levels of HIV-1 Env. Primary CD4 T cells infected with laboratory-adapted or primary HIV-1 strains and treated with bNAbs are susceptible to C3 deposition but not to rapid CDC. The cellular protein CD59 and viral proteins Vpu and Nef protect infected cells from CDC mediated by bNAbs or by polyclonal IgGs from HIV-positive individuals. However, complement deposition accelerates the disappearance of infected cells within a few days of culture. Altogether, our results uncover the contribution of complement to the antiviral activity of anti-HIV-1 bNAbs.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Virus & Immunity UnitDepartment of VirologyInstitut PasteurParisFrance
- CNRS UMR 3569ParisFrance
- Sorbonne Paris CitéParis Diderot UniversityParisFrance
| | | | - Julian Buchrieser
- Virus & Immunity UnitDepartment of VirologyInstitut PasteurParisFrance
- CNRS UMR 3569ParisFrance
| | - Valérie Lorin
- Laboratory of Humoral ImmunologyDepartment of ImmunologyInstitut PasteurParisFrance
- INSERM U1222ParisFrance
| | - Ludivine Grzelak
- Virus & Immunity UnitDepartment of VirologyInstitut PasteurParisFrance
- CNRS UMR 3569ParisFrance
| | - Emilie Dupouy
- Virus & Immunity UnitDepartment of VirologyInstitut PasteurParisFrance
- CNRS UMR 3569ParisFrance
| | - Guillaume Mestrallet
- Virus & Immunity UnitDepartment of VirologyInstitut PasteurParisFrance
- CNRS UMR 3569ParisFrance
| | - Katia Bourdic
- CEA, DSV/IMETI, IDMITFontenay‐aux‐RosesFrance
- Université Paris SudUMR‐1184Le Kremlin‐BicêtreFrance
- Inserm, U1184Center for Immunology of Viral Infections and Autoimmune DiseasesLe Kremlin‐BicêtreFrance
- APHPService de Médecine Interne‐Immunologie CliniqueHôpitaux Universitaires Paris SudLe Kremlin‐BicêtreFrance
| | - Olivier Lambotte
- CEA, DSV/IMETI, IDMITFontenay‐aux‐RosesFrance
- Université Paris SudUMR‐1184Le Kremlin‐BicêtreFrance
- Inserm, U1184Center for Immunology of Viral Infections and Autoimmune DiseasesLe Kremlin‐BicêtreFrance
- APHPService de Médecine Interne‐Immunologie CliniqueHôpitaux Universitaires Paris SudLe Kremlin‐BicêtreFrance
| | - Hugo Mouquet
- Laboratory of Humoral ImmunologyDepartment of ImmunologyInstitut PasteurParisFrance
- INSERM U1222ParisFrance
- Vaccine Research InstituteCréteilFrance
| | - Timothée Bruel
- Virus & Immunity UnitDepartment of VirologyInstitut PasteurParisFrance
- CNRS UMR 3569ParisFrance
- Vaccine Research InstituteCréteilFrance
| | - Olivier Schwartz
- Virus & Immunity UnitDepartment of VirologyInstitut PasteurParisFrance
- CNRS UMR 3569ParisFrance
- Vaccine Research InstituteCréteilFrance
| |
Collapse
|
75
|
Easterhoff D, Pollara J, Luo K, Tolbert WD, Young B, Mielke D, Jha S, O'Connell RJ, Vasan S, Kim J, Michael NL, Excler JL, Robb ML, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Nitayaphan S, Sinangil F, Tartaglia J, Phogat S, Kepler TB, Alam SM, Wiehe K, Saunders KO, Montefiori DC, Tomaras GD, Moody MA, Pazgier M, Haynes BF, Ferrari G. Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. J Virol 2020; 94:e01120-19. [PMID: 31776278 PMCID: PMC6997759 DOI: 10.1128/jvi.01120-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Induction of protective antibodies is a critical goal of HIV-1 vaccine development. One strategy is to induce nonneutralizing antibodies (NNAbs) that kill virus-infected cells, as these antibody specificities have been implicated in slowing HIV-1 disease progression and in protection. HIV-1 Env constant region 1 and 2 (C1C2) monoclonal antibodies (MAbs) frequently mediate potent antibody-dependent cellular cytotoxicity (ADCC), making them an important vaccine target. Here, we explore the effect of delayed and repetitive boosting of RV144 vaccine recipients with AIDSVAX B/E on the C1C2-specific MAb repertoire. It was found that boosting increased clonal lineage-specific ADCC breadth and potency. A ligand crystal structure of a vaccine-induced broad and potent ADCC-mediating C1C2-specific MAb showed that it bound a highly conserved Env gp120 epitope. Thus, boosting to affinity mature these types of IgG C1C2-specific antibody responses may be one method by which to make an improved HIV vaccine with higher efficacy than that seen in the RV144 trial.IMPORTANCE Over one million people become infected with HIV-1 each year, making the development of an efficacious HIV-1 vaccine an important unmet medical need. The RV144 human HIV-1 vaccine regimen is the only HIV-1 clinical trial to date to demonstrate vaccine efficacy. An area of focus has been on identifying ways by which to improve upon RV144 vaccine efficacy. The RV305 HIV-1 vaccine regimen was a follow-up boost of RV144 vaccine recipients that occurred 6 to 8 years after the conclusion of RV144. Our study focused on the effect of delayed boosting in humans on the vaccine-induced Env constant region 1 and 2 (C1C2)-specific antibody repertoire. It was found that boosting with an HIV-1 Env vaccine increased C1C2-specific antibody-dependent cellular cytotoxicity potency and breadth.
Collapse
Affiliation(s)
| | | | - Kan Luo
- Duke University, Durham, North Carolina, USA
| | - William D Tolbert
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brianna Young
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | | - Shalini Jha
- Duke University, Durham, North Carolina, USA
| | | | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- U.S. Army Medical Directorate, AFRIMS, Bangkok, Thailand
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jerome Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jean-Louis Excler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | | | - Faruk Sinangil
- Global Solutions of Infectious Diseases, South San Francisco, California, USA
| | | | | | | | | | - Kevin Wiehe
- Duke University, Durham, North Carolina, USA
| | | | | | | | | | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | |
Collapse
|
76
|
Broadly neutralizing antibodies and vaccine design against HIV-1 infection. Front Med 2019; 14:30-42. [PMID: 31858368 PMCID: PMC8320319 DOI: 10.1007/s11684-019-0721-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Remarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I (HIV-1) through antiretroviral therapy. However, vaccine development has remained challenging. Recent discoveries in broadly neutralizing monoclonal antibodies (bNAbs) has led to the development of multiple novel vaccine approaches for inducing bNAbs-like antibody response. Structural and dynamic studies revealed several vulnerable sites and states of the HIV-1 envelop glycoprotein (Env) during infection. Our review aims to highlight these discoveries and rejuvenate our endeavor in HIV-1 vaccine design and development.
Collapse
|
77
|
Antibody-Dependent Cellular Cytotoxicity-Competent Antibodies against HIV-1-Infected Cells in Plasma from HIV-Infected Subjects. mBio 2019; 10:mBio.02690-19. [PMID: 31848282 PMCID: PMC6918083 DOI: 10.1128/mbio.02690-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Measuring Envelope (Env)-specific antibody (Ab)-dependent cellular cytotoxicity (ADCC)-competent Abs in HIV+ plasma is challenging because Env displays distinctive epitopes when present in a native closed trimeric conformation on infected cells or in a CD4-bound conformation on uninfected bystander cells. We developed an ADCC model which distinguishes Env-specific ADCC-competent Abs based on their capacity to eliminate infected, bystander, or Env rgp120-coated cells as a surrogate for shed gp120 on bystander cells. A panel of monoclonal Abs (MAbs), used to opsonize these target cells, showed that infected cells were preferentially recognized/eliminated by MAbs to CD4 binding site, V3 loop, and viral spike epitopes whereas bystander/coated cells were preferentially recognized/eliminated by Abs to CD4-induced (CD4i) epitopes. In HIV-positive (HIV+) plasma, Env-specific Abs recognized and supported ADCC of infected cells, though a majority were directed toward CD4i epitopes on bystander cells. For ADCC activity to be effective in HIV control, ADCC-competent Abs need to target genuinely infected cells.IMPORTANCE HIV Env-specific nonneutralizing Abs (NnAbs) able to mediate ADCC have been implicated in protection from HIV infection. However, Env-specific NnAbs have the capacity to support ADCC of both HIV-infected and HIV-uninfected bystander cells, potentially leading to misinterpretations when the assay used to measure ADCC does not distinguish between the two target cell types present in HIV cultures. Using a novel ADCC assay, which simultaneously quantifies the killing activity of Env-specific Abs on both infected and uninfected bystander cells, we observed that only a minority of Env-specific Abs in HIV+ plasma mediated ADCC of genuinely HIV-infected cells displaying Env in its native closed conformation. This assay can be used for the development of vaccine strategies aimed at eliciting Env-specific Ab responses capable of controlling HIV infection.
Collapse
|
78
|
Da LT, Lin M. Opening dynamics of HIV-1 gp120 upon receptor binding is dictated by a key hydrophobic core. Phys Chem Chem Phys 2019; 21:26003-26016. [PMID: 31764922 DOI: 10.1039/c9cp04613e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HIV-1 entry is mediated firstly by the molecular recognition between the viral glycoprotein gp120 and its receptor CD4 on host T-cells. As a key antigen that can be targeted by neutralizing antibodies, gp120 has been a focus for extensive studies with efforts to understand its structural properties and conformational dynamics upon receptor binding. An atomistic-level revelation of gp120 opening dynamics activated by CD4, however, is still unknown. Here, by constructing a Markov State Model (MSM) based on hundreds of Molecular Dynamics (MD) simulations with an aggregated simulation time of ∼20 microseconds (μs), we identify the key metastable states of gp120 during its opening dynamics upon CD4 binding. The MSM provides a clear dynamic model whereby the identified metastable states coexist and can reach an equilibrium. More importantly, a hydrophobic core flanked by variable loops (V1V2 and V3) and the β20/21 region plays an essential role in triggering the gp120 opening. Any destabilizing effects introduced into the hydrophobic core, therefore, can be expected to promote transition of gp120 to an open state. Moreover, the variable loops demonstrate high flexibilities in fully open gp120. In particular, the V3 region is capable of exploring both closed and open conformations, even with the V1/V2 loops largely adopting an open form. In addition, the bridging sheet formation in gp120 is likely induced by the incoming co-receptor/antibody recognitions, since the V1/V2 structure is highly heterogeneous so that the bridging-sheet formed conformation is not the most populated state. Our studies provide deep insights into the dynamic features of gp120 and its molecular recognitions to the broadly neutralizing antibodies, which guides future attempts to design more effective gp120 immunogens.
Collapse
Affiliation(s)
- Lin-Tai Da
- Key Laboratory of System Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | |
Collapse
|
79
|
Ding S, Grenier MC, Tolbert WD, Vézina D, Sherburn R, Richard J, Prévost J, Chapleau JP, Gendron-Lepage G, Medjahed H, Abrams C, Sodroski J, Pazgier M, Smith AB, Finzi A. A New Family of Small-Molecule CD4-Mimetic Compounds Contacts Highly Conserved Aspartic Acid 368 of HIV-1 gp120 and Mediates Antibody-Dependent Cellular Cytotoxicity. J Virol 2019; 93:e01325-19. [PMID: 31554684 PMCID: PMC6880173 DOI: 10.1128/jvi.01325-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer mediates virus entry into cells. The "closed" conformation of Env is resistant to nonneutralizing antibodies (nnAbs). These antibodies mostly recognize occluded epitopes that can be exposed upon binding of CD4 or small-molecule CD4 mimetics (CD4mc). Here, we describe a new family of small molecules that expose Env to nnAbs and sensitize infected cells to antibody-dependent cellular cytotoxicity (ADCC). These compounds have a limited capacity to inhibit virus infection directly but are able to sensitize viral particles to neutralization by otherwise nonneutralizing antibodies. Structural analysis shows that some analogs of this family of CD4mc engage the gp120 Phe43 cavity by contacting the highly conserved D368 residue, making them attractive scaffolds for drug development.IMPORTANCE HIV-1 has evolved multiple strategies to avoid humoral responses. One efficient mechanism is to keep its envelope glycoprotein (Env) in its "closed" conformation. Here, we report on a new family of small molecules that are able to "open up" Env, thus exposing vulnerable epitopes. This new family of molecules binds in the Phe43 cavity and contacts the highly conserved D368 residue. The structural and biological attributes of molecules of this family make them good candidates for drug development.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Melissa C Grenier
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William D Tolbert
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Rebekah Sherburn
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
80
|
Blanco JCG, Fernando LR, Zhang W, Kamali A, Boukhvalova MS, McGinnes-Cullen L, Morrison TG. Alternative Virus-Like Particle-Associated Prefusion F Proteins as Maternal Vaccines for Respiratory Syncytial Virus. J Virol 2019; 93:e00914-19. [PMID: 31511382 PMCID: PMC6854499 DOI: 10.1128/jvi.00914-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/03/2019] [Indexed: 01/09/2023] Open
Abstract
Maternal vaccination may be the most effective and safest approach to the protection of infants from respiratory syncytial virus (RSV) infection, a severe acute lower respiratory tract disease in infants and young children worldwide. We previously compared five different virus-like particle (VLP)-associated, mutation-stabilized prefusion F (pre-F) proteins, including the prototype DS-Cav1 F VLPs. We showed that alternative versions of prefusion F proteins have different conformations and induce different populations of anti-F protein antibodies. Two of these alternative pre-F VLPs, the UC-2 F and UC-3 F VLPs, stimulated in mice higher titers of neutralizing antibodies than DS-Cav1 F VLPs (M. L. Cullen, R. M. Schmidt, M. G. Torres, A. A. Capoferri, et al., Vaccines 7:21-41, 2019, https://doi.org/10.3390/vaccines7010021). Here we describe a comparison of these two pre-F VLPs with DS-Cav1 F VLPs as maternal vaccines in cotton rats and report that UC-3 F VLPs significantly increased the neutralizing antibody (NAb) titers in pregnant dams compared to DS-Cav1 F VLPs. The neutralizing antibody titers in the sera of the offspring of the dams immunized with UC-3 F VLPs were significantly higher than those in the sera of the offspring of dams immunized with DS-Cav1 VLPs. This increase in serum NAb titers translated to a 6- to 40-fold lower virus titer in the lungs of the RSV-challenged offspring of dams immunized with UC-3 F VLPs than in the lungs of the RSV-challenged offspring of dams immunized with DS-Cav1 F VLPs. Importantly, the offspring of UC-3 F VLP-immunized dams showed significant protection from lung pathology and from induction of inflammatory lung cytokine mRNA expression after RSV challenge. Immunization with UC-3 F VLPs also induced durable levels of high-titer neutralizing antibodies in dams.IMPORTANCE Respiratory syncytial virus (RSV) is a significant human pathogen severely impacting neonates and young children, but no vaccine exists to protect this vulnerable population. Furthermore, direct vaccination of neonates is likely ineffective due to the immaturity of their immune system, and neonate immunization is potentially unsafe. Maternal vaccination may be the best and safest approach to the protection of neonates through the passive transfer of maternal neutralizing antibodies in utero to the fetus after maternal immunization. Here we report that immunization of pregnant cotton rats, a surrogate model for human maternal immunization, with novel RSV virus-like particle (VLP) vaccine candidates containing stabilized prefusion RSV F proteins provides significant levels of protection of the offspring of immunized dams from RSV challenge. We also found that antibodies induced by VLPs containing different versions of the prefusion F protein varied by 40-fold in the extent of protection provided to the offspring of vaccinated dams upon RSV challenge.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- Sigmovir Biosystems Inc., Rockville, Maryland, USA
| | - Arash Kamali
- Sigmovir Biosystems Inc., Rockville, Maryland, USA
| | | | - Lori McGinnes-Cullen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Trudy G Morrison
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Program in Microbiology and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
81
|
Fisher L, Zinter M, Stanfield-Oakley S, Carpp LN, Edwards RW, Denny T, Moodie Z, Laher F, Bekker LG, McElrath MJ, Gilbert PB, Corey L, Tomaras G, Pollara J, Ferrari G. Vaccine-Induced Antibodies Mediate Higher Antibody-Dependent Cellular Cytotoxicity After Interleukin-15 Pretreatment of Natural Killer Effector Cells. Front Immunol 2019; 10:2741. [PMID: 31827470 PMCID: PMC6890556 DOI: 10.3389/fimmu.2019.02741] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The secondary analyses for correlates of risk of infection in the RV144 HIV-1 vaccine trial implicated vaccine-induced antibody-dependent cellular cytotoxicity (ADCC) responses in the observed protection, highlighting the importance of assessing such responses in ongoing and future HIV-1 vaccine trials. However, in vitro assays that detect ADCC activity in plasma from HIV-1 infected seropositive individuals are not always effective at detecting ADCC activity in plasma from HIV-1 vaccine recipients. In vivo, ADCC-mediating antibodies must operate at the site of infection, where effector cells are recruited and activated by a local milieu of chemokines and cytokines. Based on previous findings that interleukin 15 (IL-15) secretion increases during acute HIV-1 infection and enhances NK cell-mediated cytotoxicity, we hypothesized that IL-15 pretreatment of NK effector cells could be used to improve killing of infected cells by vaccine-induced antibodies capable of mediating ADCC. Using the HIV-1 infectious molecular clone (IMC)-infected target cell assay along with plasma samples from HIV-1 vaccine recipients, we found that IL-15 treatment of effector cells improved the ability of the vaccine-induced antibodies to recruit effector cells for ADCC. Through immunophenotyping experiments, we showed that this improved killing was likely due to IL-15 mediated activation of NK effector cells and higher intracellular levels of perforin and granzyme B in the IL-15 pretreated NK cells. We also found that using a 4-fold dilution series of plasma and subtraction of pre-vaccination responses resulted in lowest response rates among placebo recipients and significant separation between treatment groups. This represents the first attempt to utilize IL-15-treated effector cells and optimized analytical approaches to improve the detection of HIV-1 vaccine-induced ADCC responses and will inform analyses of future HIV vaccine clinical trials.
Collapse
Affiliation(s)
- Leigh Fisher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Melissa Zinter
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | | | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - R Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Thomas Denny
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Soweto, South Africa
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Georgia Tomaras
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
82
|
Ding S, Gasser R, Gendron-Lepage G, Medjahed H, Tolbert WD, Sodroski J, Pazgier M, Finzi A. CD4 Incorporation into HIV-1 Viral Particles Exposes Envelope Epitopes Recognized by CD4-Induced Antibodies. J Virol 2019; 93:e01403-19. [PMID: 31484748 PMCID: PMC6819941 DOI: 10.1128/jvi.01403-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
CD4 downregulation on infected cells is a highly conserved function of primate lentiviruses. It has been shown to positively impact viral replication by a variety of mechanisms, including enhanced viral release and infectivity, decrease of cell reinfection, and protection from antibody-dependent cellular cytotoxicity (ADCC), which is often mediated by antibodies that require CD4 to change envelope (Env) conformation. Here, we report that incorporation of CD4 into HIV-1 viral particles affects Env conformation resulting in the exposure of occluded epitopes recognized by CD4-induced antibodies. This translates into enhanced neutralization susceptibility by these otherwise nonneutralizing antibodies but is prevented by the HIV-1 Nef accessory protein. Altogether, these findings suggest that another functional consequence of Nef-mediated CD4 downregulation is the protection of viral particles from neutralization by commonly elicited CD4-induced antibodies.IMPORTANCE It has been well established that Env-CD4 complexes expose epitopes recognized by commonly elicited CD4-induced antibodies at the surface of HIV-1-infected cells, rendering them vulnerable to ADCC responses. Here, we show that CD4 incorporation has a profound impact on Env conformation at the surface of viral particles. Incorporated CD4 exposes CD4-induced epitopes on Env, rendering HIV-1 susceptible to neutralization by otherwise nonneutralizing antibodies.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | - William D Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
83
|
Developments in single-molecule and single-particle fluorescence-based approaches for studying viral envelope glycoprotein dynamics and membrane fusion. Adv Virus Res 2019; 104:123-146. [PMID: 31439147 DOI: 10.1016/bs.aivir.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fusion of viral and cellular membranes is an essential step in the entry pathway of all enveloped viruses. This is a dynamic and multistep process, which has been extensively studied, resulting in the endpoints of the reaction being firmly established, and many essential cellular factors identified. What remains is to elucidate the dynamic events that underlie this process, including the order and timing of glycoprotein conformational changes, receptor-binding events, and movement of the glycoprotein on the surface of the virion. Due to the inherently asynchronous nature of these dynamics, there has been an increased focus on the study of single virions and single molecules. These techniques provide researchers the high precision and resolution necessary to bridge the gaps in our understanding of viral membrane fusion. This review highlights the advancement of single-molecule and single-particle fluorescence-based techniques, with a specific focus on how these techniques have been used to study the dynamic nature of the viral fusion pathway.
Collapse
|
84
|
Abstract
Single-molecule Förster resonance energy transfer (smFRET) imaging has emerged as a powerful tool to probe conformational dynamics of viral proteins, identify novel structural intermediates that are hiding in averaging population-based measurements, permit access to the energetics of transitions and as such to the precise molecular mechanisms of viral replication. One strength of smFRET is the capability of characterizing biological molecules in their fully hydrated/native state, which are not necessarily available to other structural methods. Elegant experimental design for physiologically relevant conditions, such as intact virions, has permitted the detection of previously unknown conformational states of viral glycoproteins, revealed asymmetric intermediates, and allowed access to the real-time imaging of conformational changes during viral fusion. As more laboratories are applying smFRET, our understanding of the molecular mechanisms and the dynamic nature of viral proteins throughout the virus life cycle are predicted to improve and assist the development of novel antiviral therapies and vaccine design.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
85
|
Tuen M, Bimela JS, Banin AN, Ding S, Harkins GW, Weiss S, Itri V, Durham AR, Porcella SF, Soni S, Mayr L, Meli J, Torimiro JN, Tongo M, Wang X, Kong XP, Nádas A, Kaufmann DE, Brumme ZL, Nanfack AJ, Quinn TC, Zolla-Pazner S, Redd AD, Finzi A, Gorny MK, Nyambi PN, Duerr R. Immune Correlates of Disease Progression in Linked HIV-1 Infection. Front Immunol 2019; 10:1062. [PMID: 31139189 PMCID: PMC6527802 DOI: 10.3389/fimmu.2019.01062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
Genetic and immunologic analyses of epidemiologically-linked HIV transmission enable insights into the impact of immune responses on clinical outcomes. Human vaccine trials and animal studies of HIV-1 infection have suggested immune correlates of protection; however, their role in natural infection in terms of protection from disease progression is mostly unknown. Four HIV-1+ Cameroonian individuals, three of them epidemiologically-linked in a polygamous heterosexual relationship and one incidence-matched case, were studied over 15 years for heterologous and cross-neutralizing antibody responses, antibody binding, IgA/IgG levels, antibody-dependent cellular cytotoxicity (ADCC) against cells expressing wild-type or CD4-bound Env, viral evolution, Env epitopes, and host factors including HLA-I alleles. Despite viral infection with related strains, the members of the transmission cluster experienced contrasting clinical outcomes including cases of rapid progression and long-term non-progression in the absence of strongly protective HLA-I or CCR5Δ32 alleles. Slower progression and higher CD4/CD8 ratios were associated with enhanced IgG antibody binding to native Env and stronger V1V2 antibody binding responses in the presence of viruses with residue K169 in V2. ADCC against cells expressing Env in the CD4-bound conformation in combination with low Env-specific IgA/IgG ratios correlated with better clinical outcome. This data set highlights for the first time that V1V2-directed antibody responses and ADCC against cells expressing open, CD4-exposed Env, in the presence of low plasma IgA/IgG ratios, can correlate with clinical outcome in natural infection. These parameters are comparable to the major correlates of protection, identified post-hoc in the RV144 vaccine trial; thus, they may also modulate the rate of clinical progression once infected. The findings illustrate the potential of immune correlate analysis in natural infection to guide vaccine development.
Collapse
Affiliation(s)
- Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Jude S Bimela
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon
| | - Andrew N Banin
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Gordon W Harkins
- South African MRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Svenja Weiss
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vincenza Itri
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Allison R Durham
- Division of Intramural Research, National Institutes of Health-National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Branch, Division of Intramural Research, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States
| | - Sonal Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Luzia Mayr
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Josephine Meli
- Medical Diagnostic Center, Yaoundé, Cameroon.,Yaoundé General Hospital, Yaoundé, Cameroon
| | - Judith N Torimiro
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.,"Chantal Biya" International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases, Institute of Medical Research and Study of Medicinal Plants, Yaoundé, Cameroon.,School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, KwaZulu-Natal Research Innovation and Sequencing Platform, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xiaohong Wang
- Veterans Affairs New York Harbor Healthcare Systems, New York, NY, United States
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Arthur Nádas
- New York University School of Medicine, Institute of Environmental Medicine, New York, NY, United States
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.,British Columbia Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, BC, Canada
| | - Aubin J Nanfack
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Medical Diagnostic Center, Yaoundé, Cameroon.,"Chantal Biya" International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Thomas C Quinn
- Division of Intramural Research, National Institutes of Health-National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States.,Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Susan Zolla-Pazner
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew D Redd
- Division of Intramural Research, National Institutes of Health-National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States.,Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Phillipe N Nyambi
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Veterans Affairs New York Harbor Healthcare Systems, New York, NY, United States
| | - Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|