51
|
Albrecht M, Zitta K, Groenendaal F, van Bel F, Peeters-Scholte C. Neuroprotective strategies following perinatal hypoxia-ischemia: Taking aim at NOS. Free Radic Biol Med 2019; 142:123-131. [PMID: 30818057 DOI: 10.1016/j.freeradbiomed.2019.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
Abstract
Perinatal asphyxia is characterized by oxygen deprivation and lack of perfusion in the perinatal period, leading to hypoxic-ischemic encephalopathy and sequelae such as cerebral palsy, mental retardation, cerebral visual impairment, epilepsy and learning disabilities. On cellular level PA is associated with a decrease in oxygen and glucose leading to ATP depletion and a compromised mitochondrial function. Upon reoxygenation and reperfusion, the renewed availability of oxygen gives rise to not only restoration of cell function, but also to the activation of multiple detrimental biochemical pathways, leading to secondary energy failure and ultimately, cell death. The formation of reactive oxygen species, nitric oxide and peroxynitrite plays a central role in the development of subsequent neurological damage. In this review we give insight into the pathophysiology of perinatal asphyxia, discuss its clinical relevance and summarize current neuroprotective strategies related to therapeutic hypothermia, ischemic postconditioning and pharmacological interventions. The review will also focus on the possible neuroprotective actions and molecular mechanisms of the selective neuronal and inducible nitric oxide synthase inhibitor 2-iminobiotin that may represent a novel therapeutic agent for the treatment of hypoxic-ischemic encephalopathy, both in combination with therapeutic hypothermia in middle- and high-income countries, as well as stand-alone treatment in low-income countries.
Collapse
Affiliation(s)
- Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frank van Bel
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cacha Peeters-Scholte
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Neurophyxia BV, 's Hertogenbosch, the Netherlands.
| |
Collapse
|
52
|
Kubrova E, Qu W, Galvan ML, Paradise CR, Yang J, Dietz AB, Dudakovic A, Smith J, van Wijnen AJ. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 2019; 722:144058. [PMID: 31494240 DOI: 10.1016/j.gene.2019.144058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Adipose-derived mesenchymal stem cells (MSCs) are attractive biological agents in regenerative medicine. To optimize cell therapies, it is necessary to determine the most effective delivery method for MSCs. Therefore, we evaluated the biological properties of MSCs after exposure to various temperatures to define optimal storage conditions prior to therapeutic delivery of MSCs. DESIGN Prospective observational study. METHODS AND MATERIALS Adherent and non-adherent MSCs were incubated at multiple temperatures (i.e., 4, 23 and 37 °C) in Lactated Ringers (LR) solution lacking essential cell growth ingredients, or in culture media which is optimized for cell growth. Cells were assessed either after the temperature changes (4 h) or after recovery (24 h). Metabolic activity of MSCs, cell number and expression of representative mRNA biomarkers were evaluated to assess the biological effects of temperature. We monitored changes in mRNAs expression related to cytoprotective- or stress-related responses (e.g., FOS, JUN, ATF1, ATF4, EGR1, EGR2, MYC), proliferation (e.g., HIST2H4, CCNB2), and extracellular matrix production (ECM; e.g., COL3A1, COL1A1) by quantitative real time reverse-transcriptase polymerase chain reaction (RT-qPCR) analysis. RESULTS Our study demonstrates that storing MSCs in Lactated Ringers (LR) solution for 4 h decreases cell number and metabolic activity. The number of viable MSCs decreased significantly when cultured at physiological temperature (37 °C) and severe hypothermia (4 °C), while cells grown at ambient temperature (23 °C) exhibited the least detrimental effects. There were no appreciable biological differences in mRNA markers for proliferation or ECM deposition at any of the temperatures. However, biomarkers related to cytoprotective- or stress-responses were selectively elevated depending on temperature or media type (i.e., LR versus standard media). CONCLUSION The biological impact of nutrient-free media and temperature changes after 4 h exposure persists after a 24 h recovery period. Hence, storage temperature and media conditions should be optimized to improve effective dosing of MSCs.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Wenchun Qu
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Juan Yang
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jay Smith
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
53
|
Abbasi H, Bennet L, Gunn AJ, Unsworth CP. Latent Phase Detection of Hypoxic-Ischemic Spike Transients in the EEG of Preterm Fetal Sheep Using Reverse Biorthogonal Wavelets & Fuzzy Classifier. Int J Neural Syst 2019; 29:1950013. [PMID: 31184228 DOI: 10.1142/s0129065719500138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxic-ischemic (HI) studies in preterms lack reliable prognostic biomarkers for diagnostic tests of HI encephalopathy (HIE). Our group's observations from in utero fetal sheep models suggest that potential biomarkers of HIE in the form of developing HI micro-scale epileptiform transients emerge along suppressed EEG/ECoG background during a latent phase of 6-7h post-insult. However, having to observe for the whole of the latent phase disqualifies any chance of clinical intervention. A precise automatic identification of these transients can help for a well-timed diagnosis of the HIE and to stop the spread of the injury before it becomes irreversible. This paper reports fusion of Reverse-Biorthogonal Wavelets with Type-1 Fuzzy classifiers, for the accurate real-time automatic identification and quantification of high-frequency HI spike transients in the latent phase, tested over seven in utero preterm sheep. Considerable high performance of 99.78 ± 0.10% was obtained from the Rbio-Wavelet Type-1 Fuzzy classifier for automatic identification of HI spikes tested over 42h of high-resolution recordings (sampling-freq:1024Hz). Data from post-insult automatic time-localization of high-frequency HI spikes reveals a promising trend in the average rate of the HI spikes, even in the animals with shorter occlusion periods, which highlights considerable higher number of transients within the first 2h post-insult.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
54
|
Toro-Urrego N, Vesga-Jiménez DJ, Herrera MI, Luaces JP, Capani F. Neuroprotective Role of Hypothermia in Hypoxic-ischemic Brain Injury: Combined Therapies using Estrogen. Curr Neuropharmacol 2019; 17:874-890. [PMID: 30520375 PMCID: PMC7052835 DOI: 10.2174/1570159x17666181206101314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/26/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic brain injury is a complex network of factors, which is mainly characterized by a decrease in levels of oxygen concentration and blood flow, which lead to an inefficient supply of nutrients to the brain. Hypoxic-ischemic brain injury can be found in perinatal asphyxia and ischemic-stroke, which represent one of the main causes of mortality and morbidity in children and adults worldwide. Therefore, knowledge of underlying mechanisms triggering these insults may help establish neuroprotective treatments. Selective Estrogen Receptor Modulators and Selective Tissue Estrogenic Activity Regulators exert several neuroprotective effects, including a decrease of reactive oxygen species, maintenance of cell viability, mitochondrial survival, among others. However, these strategies represent a traditional approach of targeting a single factor of pathology without satisfactory results. Hence, combined therapies, such as the administration of therapeutic hypothermia with a complementary neuroprotective agent, constitute a promising alternative. In this sense, the present review summarizes the underlying mechanisms of hypoxic-ischemic brain injury and compiles several neuroprotective strategies, including Selective Estrogen Receptor Modulators and Selective Tissue Estrogenic Activity Regulators, which represent putative agents for combined therapies with therapeutic hypothermia.
Collapse
Affiliation(s)
- Nicolás Toro-Urrego
- Address correspondence to this author at the Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; E-mail:
| | | | | | | | | |
Collapse
|
55
|
Barata L, Arruza L, Rodríguez MJ, Aleo E, Vierge E, Criado E, Sobrino E, Vargas C, Ceprián M, Gutiérrez-Rodríguez A, Hind W, Martínez-Orgado J. Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2018; 146:1-11. [PMID: 30468796 DOI: 10.1016/j.neuropharm.2018.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Hypothermia, the gold standard after a hypoxic-ischemic insult, is not beneficial in all treated newborns. Cannabidiol is neuroprotective in animal models of newborn hypoxic-ischemic encephalopathy. This study compared the relative efficacies of cannabidiol and hypothermia in newborn hypoxic-ischemic piglets and assessed whether addition of cannabidiol augments hypothermic neuroprotection. METHODS One day-old HI (carotid clamp and FiO2 10% for 20 min) piglets were randomized to vehicle or cannabidiol 1 mg/kg i.v. u.i.d. for three doses after being submitted to normothermia or 48 h-long hypothermia with a subsequent rewarming period of 6 h. Non-manipulated piglets (naïve) served as controls. Hemodynamic or respiratory parameters as well as brain activity (aEEG amplitude) were monitored throughout the experiment. Following termination, brains were obtained for histological (TUNEL staining, apoptosis; immunohistochemistry for Iba-1, microglia), biochemical (protein carbonylation, oxidative stress; and TNFα concentration, neuroinflammation) or proton magnetic resonance spectroscopy (Lac/NAA: metabolic derangement; Glu/NAA: excitotoxicity). RESULTS HI led to sustained depressed brain activity and increased microglial activation, which was significantly improved by cannabidiol alone or with hypothermia but not by hypothermia alone. Hypoxic-ischemic-induced increases in Lac/NAA, Glu/NAA, TNFα or apoptosis were not reversed by either hypothermia or cannabidiol alone, but combination of the therapies did. No treatment modified the effects of HI on oxidative stress or astroglial activation. Cannabidiol treatment was well tolerated. CONCLUSIONS cannabidiol administration after hypoxia-ischemia in piglets offers some neuroprotective effects but the combination of cannabidiol and hypothermia shows some additive effect leading to more complete neuroprotection than cannabidiol or hypothermia alone.
Collapse
Affiliation(s)
- Lorena Barata
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Instituto de Investigación Puerta de Hierro Majadahonda, Spain
| | - Luis Arruza
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | | | - Esther Aleo
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Eva Vierge
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Enrique Criado
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Elena Sobrino
- Instituto de Investigación Puerta de Hierro Majadahonda, Spain
| | - Carlos Vargas
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - María Ceprián
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | - José Martínez-Orgado
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain.
| |
Collapse
|
56
|
Benedetti GM, Silverstein FS. Targeted Temperature Management in Pediatric Neurocritical Care. Pediatr Neurol 2018; 88:12-24. [PMID: 30309737 DOI: 10.1016/j.pediatrneurol.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022]
Abstract
Targeted temperature management encompasses a range of clinical interventions to regulate systemic temperature, and includes both induction of varying degrees of hypothermia and fever prevention ("targeted normothermia"). Targeted temperature management plays a key role in the contemporary management of critically ill neonates and children with acute brain injury. Yet, many unanswered questions remain regarding optimal temperature management in pediatric neurocritical care. The introduction highlights experimental studies that have evaluated the neuroprotective efficacy of therapeutic hypothermia and explored possible mechanisms of action in several brain injury models. The next section focuses on three major clinical conditions in which therapeutic hypothermia has been evaluated in randomized controlled trials in pediatric populations: neonatal hypoxic-ischemic encephalopathy, postcardiac arrest encephalopathy, and traumatic brain injury. Clinical implications of targeted temperature management in pediatric neurocritical care are also discussed. The final section examines some of the factors that may underlie the limited neuroprotective efficacy of hypothermia that has been observed in several major pediatric clinical trials, and outlines important directions for future research.
Collapse
Affiliation(s)
- Giulia M Benedetti
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois.
| | - Faye S Silverstein
- Departments of Pediatrics and Neurology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
57
|
Tsuda K, Iwata S, Mukai T, Shibasaki J, Takeuchi A, Ioroi T, Sano H, Yutaka N, Takahashi A, Takenouchi T, Osaga S, Tokuhisa T, Takashima S, Sobajima H, Tamura M, Hosono S, Nabetani M, Iwata O. Body Temperature, Heart Rate, and Short-Term Outcome of Cooled Infants. Ther Hypothermia Temp Manag 2018; 9:76-85. [PMID: 30230963 PMCID: PMC6434598 DOI: 10.1089/ther.2018.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Therapeutic hypothermia following neonatal encephalopathy is neuroprotective. However, approximately one in two cooled infants still die or develop permanent neurological impairments. Further understanding of variables associated with the effectiveness of cooling is important to improve the therapeutic regimen. To identify clinical factors associated with short-term outcomes of cooled infants, clinical data of 509 cooled infants registered to the Baby Cooling Registry of Japan between 2012 and 2014 were evaluated. Independent variables of death during the initial hospitalization and survival discharge from the cooling hospital at ≤28 days of life were assessed. Death was associated with higher Thompson scores at admission (p < 0.001); higher heart rates after 3-72 hours of cooling (p < 0.001); and higher body temperature after 24 hours of cooling (p = 0.002). Survival discharge was associated with higher 10 minutes Apgar scores (p < 0.001); higher blood pH and base excess (both p < 0.001); lower Thompson scores (at admission and after 24 hours of cooling; both p < 0.001); lower heart rates at initiating cooling (p = 0.003) and after 24 hours of cooling (p < 0.001) and lower average values after 3-72 hours of cooling (p < 0.001); higher body temperature at admission (p < 0.001); and lower body temperature after 24 hours and lower mean values after 3-72 hours of cooling (both p < 0.001). Survival discharge was best explained by higher blood pH (p < 0.05), higher body temperature at admission (p < 0.01), and lower body temperature and heart rate after 24 hours of cooling (p < 0.01 and <0.001, respectively). Lower heart rate, higher body temperature at admission, and lower body temperature during cooling were associated with favorable short-term outcomes.
Collapse
Affiliation(s)
- Kennosuke Tsuda
- 1 Center for Human Development and Family Science, Department of Neonatology and Pediatrics, Nagoya City University Graduate School of Medical Sciences , Aichi, Japan
| | - Sachiko Iwata
- 1 Center for Human Development and Family Science, Department of Neonatology and Pediatrics, Nagoya City University Graduate School of Medical Sciences , Aichi, Japan
| | - Takeo Mukai
- 2 Center for Advanced Medical Research, Institute of Medical Science, University of Tokyo , Tokyo, Japan
| | - Jun Shibasaki
- 3 Department of Neonatology, Kanagawa Children's Medical Center , Kanagawa, Japan
| | - Akihito Takeuchi
- 4 Division of Neonatology, National Hospital Organization Okayama Medical Center , Okayama, Japan
| | - Tomoaki Ioroi
- 5 Department of Pediatrics, Perinatal Medical Center , Himeji Red Cross Hospital, Hyogo, Japan
| | - Hiroyuki Sano
- 6 Department of Pediatrics, Yodogawa Christian Hospital , Osaka, Japan
| | - Nanae Yutaka
- 6 Department of Pediatrics, Yodogawa Christian Hospital , Osaka, Japan
| | - Akihito Takahashi
- 7 Department of Pediatrics, Kurashiki Central Hospital , Okayama, Japan
| | - Toshiki Takenouchi
- 8 Department of Pediatrics, Keio University School of Medicine , Tokyo, Japan
| | - Satoshi Osaga
- 9 Clinical Research Management Center, Nagoya City University Hospital , Aichi, Japan
| | - Takuya Tokuhisa
- 10 Division of Neonatology, Perinatal Medical Center , Kagoshima City Hospital, Kagoshima, Japan
| | - Sachio Takashima
- 11 Yanagawa Institute for Developmental Disabilities, International University of Health and Welfare , Fukuoka, Japan
| | - Hisanori Sobajima
- 12 Division of Neonatology, Center for Maternal, Fetal and Neonatal Medicine, Saitama Medical Center, Saitama Medical University , Saitama, Japan
| | - Masanori Tamura
- 13 Department of Pediatrics, Saitama Medical Center, Saitama Medical University , Saitama, Japan
| | - Shigeharu Hosono
- 14 Division of Neonatology, Nihon University Itabashi Hospital , Tokyo, Japan
| | - Makoto Nabetani
- 6 Department of Pediatrics, Yodogawa Christian Hospital , Osaka, Japan
| | - Osuke Iwata
- 1 Center for Human Development and Family Science, Department of Neonatology and Pediatrics, Nagoya City University Graduate School of Medical Sciences , Aichi, Japan
| | | |
Collapse
|
58
|
Pisani F, Pavlidis E. What is new: Talk about status epilepticus in the neonatal period. Eur J Paediatr Neurol 2018; 22:757-762. [PMID: 29861333 DOI: 10.1016/j.ejpn.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/30/2018] [Accepted: 05/20/2018] [Indexed: 10/16/2022]
Abstract
Nowadays, no general consensus was achieved regarding neonatal status epilepticus and its definition. Indeed, different criteria (mainly based on seizure duration) were used. Whereas a recent proposal has been developed to define status epilepticus in older ages, it seems that the peculiar characteristics of neonatal seizures and of the immature brain make difficult to find a tailored definition for this period of life. Achieving a consensus on this entity would mean to make the first step toward a targeted therapeutic strategy of intervention.
Collapse
Affiliation(s)
- Francesco Pisani
- Child Neuropsychiatry Unit, Medicine & Surgery Department, University of Parma, Italy
| | - Elena Pavlidis
- Child Neuropsychiatry Unit, Medicine & Surgery Department, University of Parma, Italy.
| |
Collapse
|
59
|
Lemyre B, Chau V. L’hypothermie pour les nouveau-nés atteints d’encéphalopathie hypoxo-ischémique. Paediatr Child Health 2018. [DOI: 10.1093/pch/pxy051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brigitte Lemyre
- Société canadienne de pédiatrie, comité d’étude du fœtus et du nouveau-né, Ottawa (Ontario)
| | - Vann Chau
- Société canadienne de pédiatrie, comité d’étude du fœtus et du nouveau-né, Ottawa (Ontario)
| |
Collapse
|
60
|
Lemyre B, Chau V. Hypothermia for newborns with hypoxic-ischemic encephalopathy. Paediatr Child Health 2018; 23:285-291. [PMID: 30657134 DOI: 10.1093/pch/pxy028] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Therapeutic hypothermia is a standard of care for infants ≥36 weeks gestational age (GA) with moderate-to-severe hypoxic-ischemic encephalopathy. Because some studies included infants born at 35 weeks GA, hypothermia should be considered if they meet other criteria. Cooling for infants <35 weeks GA is not recommended. Passive cooling should be started promptly in community centres, in consultation with a tertiary care centre neonatologist, while closely monitoring the infant's temperature. Best evidence suggests that maintaining core body temperature between 33°C and 34°C for 72 hours, followed by a period of rewarming of 6 to 12 hours, is optimal. Antiepileptic medications should be used when clinical or electrographic seizures are present. Maintaining serum electrolytes and glucose within normal ranges, and avoiding hypo- or hypercarbia and hyperoxia, are important adjunct treatments. A brain magnetic resonance image (MRI) is advised shortly after rewarming and, in cases where earlier findings do not match the clinical picture, a repeat MRI after 10 days of life is suggested. Multidisciplinary neurodevelopmental follow-up is recommended.
Collapse
Affiliation(s)
- Brigitte Lemyre
- Canadian Paediatric Society, Fetus and Newborn Committee, Ottawa, Ontario
| | - Vann Chau
- Canadian Paediatric Society, Fetus and Newborn Committee, Ottawa, Ontario
| |
Collapse
|
61
|
Descripción de una cohorte de pacientes neonatos con diagnóstico de asfixia perinatal, tratados con hipotermia terapéutica. 2017. PERINATOLOGÍA Y REPRODUCCIÓN HUMANA 2018. [DOI: 10.1016/j.rprh.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
62
|
Wang W, Hua T, Li H, Wu X, Bradley J, Peberdy MA, Ornato JP, Tang W. Decreased cAMP Level and Decreased Downregulation of β 1-Adrenoceptor Expression in Therapeutic Hypothermia-Resuscitated Myocardium Are Associated With Improved Post-Resuscitation Myocardial Function. J Am Heart Assoc 2018; 7:JAHA.117.006573. [PMID: 29572320 PMCID: PMC5907536 DOI: 10.1161/jaha.117.006573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Epinephrine administered during cardiopulmonary resuscitation (CPR) is associated with severe post‐resuscitation myocardial dysfunction. We previously demonstrated that therapeutic hypothermia reduced the severity of post‐resuscitation myocardial dysfunction caused by epinephrine; however, the relationship between myocardial adrenoceptor expression and myocardial protective effects by hypothermia remains unclear. Methods and Results Rats weighing between 450 and 550 g were randomized into 5 groups: (1) normothermic placebo, (2) normothermic epinephrine, (3) hypothermic placebo, (4) hypothermic epinephrine, and (5) sham (not subject to cardiac arrest and resuscitation). Ventricular fibrillation was induced and untreated for 8 minutes for all other groups. Hypothermia was initiated coincident with the start of CPR and maintained at 33±0.2°C for 4 hours. Placebo or epinephrine was administered 5 minutes after the start of CPR and 3 minutes before defibrillation. Post‐resuscitation ejection fraction was measured hourly for 4 hours then hearts were harvested. Epinephrine increased coronary perfusion pressure during CPR (27±6 mm Hg versus 21±2 mm Hg P<0.05). Post‐resuscitation myocardial function was impaired in the normothermic epinephrine group compared with other groups. The concentration of myocardial cAMP doubled in the normothermic epinephrine group (655.06±447.63 μmol/L) compared with the hypothermic epinephrine group (302.51±97.98 μmol/L; P<0.05). Myocardial β1‐adrenoceptor expression decreased with normothermia cardiac arrest but not with hypothermia regardless of epinephrine. Conclusions Epinephrine, administered during normothermic CPR, increased the severity of post‐resuscitation myocardial dysfunction. This adverse effect was inhibited by intra‐arrest hypothermia resuscitation. Declined cAMP with more preserved β1‐adrenoceptors in hypothermia‐resuscitated myocardium is associated with improved post‐resuscitated myocardial function in vivo.
Collapse
Affiliation(s)
- Wei Wang
- The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA
| | - Tianfeng Hua
- The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA
| | - Hao Li
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA
| | - Xiaobo Wu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA
| | - Jennifer Bradley
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA
| | - Mary Ann Peberdy
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA.,Departments of Internal Medicine and Emergency Medicine, Virginia Commonwealth University, Richmond, VA
| | - Joseph P Ornato
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA.,Department of Emergency Medicine, Virginia Commonwealth University, Richmond, VA
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA .,Department of Emergency Medicine, Virginia Commonwealth University, Richmond, VA.,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
63
|
Kuter N, Aysit-Altuncu N, Ozturk G, Ozek E. The Neuroprotective Effects of Hypothermia on Bilirubin-Induced Neurotoxicity in vitro. Neonatology 2018; 113:360-365. [PMID: 29510380 DOI: 10.1159/000487221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/27/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND In high-risk newborns indirect hyperbilirubinemia can lead to acute bilirubin encephalopathy and kernicterus. Despite the current therapeutic modalities, preventing or reversing the neurotoxicity cannot be achieved in all infants. OBJECTIVE To investigate the neuroprotective effects of hypothermia on bilirubin-induced toxicity in primary mouse neuronal cell cultures. METHODS Hippocampal cell cultures, isolated from newborn mouse brains, were incubated with unconjugated bilirubin (UCB) at 3 days in vitro (DIV) and immediately exposed to varying degrees of hypothermia. Neuronal viability and mitochondrial health were compared between the normothermia (37°C), mild (34°C), moderate (32°C) and severe (29°C) hypothermia groups. Confocal microscopy and fluorescent dyes (propidium iodide and JC-1) were used for cell evaluation. To determine the late effects of hypothermia, the cultures were also examined at 7 DIV after returning to normothermic conditions. RESULTS Induction of any degree of hypothermia increased the neuronal survival after 24 h of UCB treatment. Neuronal death rate and mitochondrial membrane potential loss were lowest in the neurons exposed to moderate hypothermia. We also observed that mild to moderate hypothermia had late protective effects on neuronal cell viability, whereas deep hypothermia did not improve neuronal survival. CONCLUSIONS We conclude that hypothermia reduces the cell death induced by bilirubin toxicity in neuronal cells. Although moderate hypothermia has a better outcome than mild hypothermia, deep hypothermia as low as 29°C has adverse effects on neuronal cell viability.
Collapse
Affiliation(s)
- Nazli Kuter
- Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nese Aysit-Altuncu
- Department of Physiology, School of Medicine, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medicine Research Center (REMER), Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Eren Ozek
- Division of Neonatology, Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
64
|
Abstract
Implementing evolving science into clinical practice remains challenging. Assimilating new scientific evidence into clinical protocols and best practice recommendations, in a timely manner, can be difficult. In this article, we examine the value of partnering with a captive medical malpractice insurance company and its Patient Safety Organization to use data and convening opportunities to build upon the principles of implementation science and foster efficient and widespread adoption of the most current evidence-based interventions. Analyses of medical malpractice and root-cause analysis data set the context for this partnership and acted as a catalyst for creating best practice guidelines for adopting therapeutic hypothermia in the treatment of neonatal encephalopathy. What follows is a powerful example of successfully leveraging the collective wisdom of healthcare providers across specialties and institutional lines to move patient safety forward while managing risk.
Collapse
|
65
|
Fei YX, Zhang TH, Zhao J, Ren H, Du YN, Yu CL, Wang Q, Li S, Ren TL, Jian Q, Fei SY, Zhang ZQ, Zhang Y. In vitro and in vivo evaluation of hypothermia on pharmacokinetics and pharmacodynamics of nimodipine in rabbits. J Int Med Res 2018; 46:335-347. [PMID: 28851258 PMCID: PMC6011315 DOI: 10.1177/0300060517720056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate the effect of hypothermia on the pharmacokinetics and pharmacodynamics of nimodipine in rabbits using in vivo and in vitro methods. Methods Five healthy New Zealand rabbits received a single dose of nimodipine (0.5 mg/kg) intravenously under normothermic and hypothermic conditions. Doppler ultrasound was used to monitor cerebral blood flow, vascular resistance, and heart rate. In vitro evaluations of protein binding, hepatocyte uptake and intrinsic clearance of liver microsomes at different temperatures were also conducted. Results Plasma concentrations of nimodipine were significantly higher in hypothermia than in normothermia. Nimodipine improved cerebral blood flow under both conditions, but had a longer effective duration during the hypothermic period. Low temperature decreased the intrinsic clearance of liver microsomes, with no change in protein binding or hepatocyte uptake of nimodipine. Conclusion Nimodipine is eliminated at a slower rate during hypothermia than during normothermia, mainly due to the decreased activity of cytochrome P450 enzymes. This results in elevated system exposure with little enhancement in pharmacological effect.
Collapse
Affiliation(s)
- Yu-xing Fei
- Department of Cardiology, Navy General Hospital of PLA, Beijing, PR China
| | - Tian-hong Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Jing Zhao
- Department of Pharmacy, Navy General Hospital of PLA, Beijing, PR China
| | - He Ren
- Department of Ultrasound, Navy General Hospital of PLA, Beijing, PR China
| | - Ya-nan Du
- Department of Neurosurgery, Navy General Hospital of PLA, Beijing, PR China
| | - Chun-ling Yu
- Department of Pharmacy, Navy General Hospital of PLA, Beijing, PR China
| | - Qiang Wang
- Department of Pharmacy, Navy General Hospital of PLA, Beijing, PR China
| | - Shu Li
- Department of Pharmacy, Navy General Hospital of PLA, Beijing, PR China
| | - Ting-lin Ren
- Department of Pharmacy, Navy General Hospital of PLA, Beijing, PR China
| | - Qiang Jian
- Department of Pharmacy, Navy General Hospital of PLA, Beijing, PR China
| | - Shu-yang Fei
- Grade 2013, Clinical Medical College, Capital Medical University, Beijing, PR China
| | - Zhen-qing Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, PR China
| | - Yi Zhang
- Department of Pharmacy, Navy General Hospital of PLA, Beijing, PR China
| |
Collapse
|
66
|
Galinsky R, Davidson JO, Dean JM, Green CR, Bennet L, Gunn AJ. Glia and hemichannels: key mediators of perinatal encephalopathy. Neural Regen Res 2018; 13:181-189. [PMID: 29557357 PMCID: PMC5879879 DOI: 10.4103/1673-5374.226378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Perinatal encephalopathy remains a major cause of disability, such as cerebral palsy. Therapeutic hypothermia is now well established to partially reduce risk of disability in late preterm/term infants. However, new and complementary therapeutic targets are needed to further improve outcomes. There is increasing evidence that glia play a key role in neural damage after hypoxia-ischemia and infection/inflammation. In this review, we discuss the role of astrocytic gap junction (connexin) hemichannels in the spread of neural injury after hypoxia-ischemia and/or infection/inflammation. Potential mechanisms of hemichannel mediated injury likely involve impaired intracellular calcium handling, loss of blood-brain barrier integrity and release of adenosine triphosphate (ATP) resulting in over-activation of purinergic receptors. We propose the hypothesis that inflammation-induced opening of connexin hemichannels is a key regulating event that initiates a vicious cycle of excessive ATP release, which in turn propagates activation of purinergic receptors on microglia and astrocytes. This suggests that developing new neuroprotective strategies for preterm infants will benefit from a detailed understanding of glial and connexin hemichannel responses.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, University of Auckland, Auckland, New Zealand; The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
67
|
Eroğlu O, Deniz T, Kisa Ü, Atasoy P, Aydinuraz K. Effect of hypothermia on apoptosis in traumatic brain injury and hemorrhagic shock model. Injury 2017; 48:2675-2682. [PMID: 29061477 DOI: 10.1016/j.injury.2017.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/28/2017] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The neuroprotective mechanisms of therapeutic hypothermia against trauma-related injury have not been fully understood yet. In this study, we aimed to investigate the effects of therapeutic hypothermia on biochemical and histopathological markers of apoptosis using Traumatic brain injury (TBI) and hemorrhagic shock (HS) model. METHODS A total of 50 male albino-wistar rats were divided into five groups: Group isolated TBI, Group NT (HT+HS+normothermia), Group MH (HT+HS+mild hypothermia), Group MoH (HT+HS+moderate hypothermia) and Group C (control). Neurological deficit scores were assessed at baseline and at 24h. The rats were, then, sacrificed to collect serum and brain tissue samples. Levels of Caspase-3,6,8, proteoglycan-4 (PG-4), malondialdehyde (MDA), and nitric oxide (NO) were measured in serum and brain tissue samples. Histopathological examination was performed in brain tissue. RESULTS There were significant differences in the serum levels of Caspase-3 between Group NT and Group C (p=0.018). The serum levels of Caspase-6 in Group NT (0.70±0.58) were lower than Group MH (1.39±0.28), although the difference was not statistically significant (p=0.068). There were significant differences in the brain tissue samples for Caspase-3 levels between Group NT and Group C (p=0.049). A significant difference in the Caspase-8 brain tissue levels was also observed between Group NT and Group C (p=0.022). Group NT had significantly higher scores of all the pathological variables (for edema p<0.017; for gliosis p<0.001; for congestion p<0.003, for hemorrhage p<0.011) than Group C. CONCLUSION Our study results suggest that hypothermia may exert its neuroprotective effects by reducing markers of apoptotic pathway, particularly Caspase-3 on TBI and HS.
Collapse
Affiliation(s)
- Oğuz Eroğlu
- Kırıkkale University, Faculty of Medicine, Department of Emergency Medicine, Kırıkkale, Turkey.
| | - Turgut Deniz
- Kırıkkale University, Faculty of Medicine, Department of Emergency Medicine, Kırıkkale, Turkey.
| | - Üçler Kisa
- Kırıkkale University, Faculty of Medicine, Medical Biochemistry, Kırıkkale, Turkey.
| | - Pınar Atasoy
- Kırıkkale University, Faculty of Medicine, Pathology, Kırıkkale, Turkey.
| | - Kuzey Aydinuraz
- Kırıkkale University, Faculty of Medicine, Department of General Surgery, Kırıkkale, Turkey.
| |
Collapse
|
68
|
Vishwakarma SK, Bardia A, Fathima N, Chandrakala L, Rahamathulla S, Raju N, Srinivas G, Raj A, Sandhya A, Satti V, Tiwari SK, Paspala SAB, Khan AA. Protective Role of Hypothermia Against Heat Stress in Differentiated and Undifferentiated Human Neural Precursor Cells: A Differential Approach for the Treatment of Traumatic Brain Injury. Basic Clin Neurosci 2017; 8:453-466. [PMID: 29942429 PMCID: PMC6010658 DOI: 10.29252/nirp.bcn.8.6.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction: The present study aimed to explore protective mechanisms of hypothermia against mild cold and heat stress on highly proliferative homogeneous human Neural Precursor Cells (NPCs) derived from Subventricular Zone (SVZ) of human fetal brain. Methods: CD133+ve enriched undifferentiated and differentiated human NPCs were exposed to heat stress at 42°C. Then, Western-blot quantification was performed using Hsp-70 (70 kilodalton heat shock proteins) recombinant protein. Finally, changes in pluripotency and Hsp-70 expression were measured using immunofluorescence staining and RT-qPCR (Quantitative reverse transcription PCR) analysis, respectively. Results: Heat stress resulted in abnormal neurospheres development. The apoptosis rate was enhanced during long-term in vitro culture of neurospheres. Neurogenic differentiation reduced and showed aberrent phenotypes during heat stress. After hypothermia treatment significant improvement in neurospheres and neuronal cell morphology was observed. Conclusion: Mild-hypothermia treatment induces attenuated heat shock response against heat stress resulting in induced HSP-70 expression that significantly improves structure and function of both undifferentiated human NPCs and differentiated neurons.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Nusrath Fathima
- Department of Genetics, Faculty of Science, Osmania University, Hyderabad, India
| | - Lakkireddy Chandrakala
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Syed Rahamathulla
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Nagarapu Raju
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Gunda Srinivas
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Avinash Raj
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Annamaneni Sandhya
- Department of Genetics, Faculty of Science, Osmania University, Hyderabad, India
| | - Vishnupriya Satti
- Department of Genetics, Faculty of Science, Osmania University, Hyderabad, India
| | - Santosh Kumar Tiwari
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| |
Collapse
|
69
|
Rodríguez-Fanjul J, Durán Fernández-Feijóo C, Lopez-Abad M, Lopez Ramos MG, Balada Caballé R, Alcántara-Horillo S, Camprubí Camprubí M. Neuroprotection with hypothermia and allopurinol in an animal model of hypoxic-ischemic injury: Is it a gender question? PLoS One 2017; 12:e0184643. [PMID: 28931035 PMCID: PMC5606927 DOI: 10.1371/journal.pone.0184643] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of neonatal brain injury. Therapeutic hypothermia (TH) is the standard treatment for term newborns after perinatal hypoxic ischemic injury (HI). Despite this, TH does not provide complete neuroprotection. Allopurinol seems to be a good neuroprotector in several animal studies, but it has never been tested in combination with hypothermia. Clinical findings show that male infants with (HI) fare more poorly than matched females in cognitive outcomes. However, there are few studies about neuroprotection taking gender into account in the results. The aim of the present study was to evaluate the potential additive neuroprotective effect of allopurinol when administrated in association with TH in a rodent model of moderate HI. Gender differences in neuroprotection were also evaluated. METHODS P10 male and female rat pups were subjected to HI (Vannucci model) and randomized into five groups: sham intervention (Control), no treatment (HI), hypothermia (HIH), allopurinol (HIA), and dual therapy (hypothermia and allopurinol) (HIHA). To evaluate a treatment's neuroprotective efficiency, 24 hours after the HI event caspase3 activation was measured. Damaged area and hippocampal volume were also measured 72 hours after the HI event. Negative geotaxis test was performed to evaluate early neurobehavioral reflexes. Learning and spatial memory were assessed via Morris Water Maze (MWM) test at 25 days of life. RESULTS Damaged area and hippocampal volume were different among treatment groups (p = 0.001). The largest tissue lesion was observed in the HI group, followed by HIA. There were no differences between control, HIH, and HIHA. When learning process was analyzed, no differences were found. Females from the HIA group had similar results to the HIH and HIHA groups. Cleaved caspase 3 expression was increased in both HI and HIA. Despite this, in females cleaved caspase-3 was only differently increased in the HI group. All treated animals present an improvement in short-term (Negative geotaxis) and long-term (WMT) functional tests. Despite this, treated females present better long-term outcome. In short-term outcome no sex differences were observed. CONCLUSIONS Our results suggest that dual therapy confers great neuroprotection after an HI event. There were functional, histological, and molecular improvements in all treated groups. These differences were more important in females than in males. No statistically significant differences were found between HIHA and HIH; both of them present a great improvement. Our results support the idea of different regulation mechanisms and pathways of cell death, depending on gender.
Collapse
Affiliation(s)
| | | | - Míriam Lopez-Abad
- Department of Neonatology, BCNatal, Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | | | - Rafael Balada Caballé
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Biomedical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Soledad Alcántara-Horillo
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Biomedical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
70
|
Vishwakarma SK, Bardia A, Chandrakala L, Arshiya S, Paspala SAB, Satti V, Khan AA. Enhanced neuroprotective effect of mild-hypothermia with VPA against ethanol-mediated neuronal injury. Tissue Cell 2017; 49:638-647. [PMID: 28947065 DOI: 10.1016/j.tice.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Progress in understanding pathophysiological mechanisms and the development of targeted regenerative strategies have been hampered by the lack of predictive disease models, specifically for the conditions to which affected cell types are inaccessible. The present study has aimed to unearth the role of valproic acid (VPA) and mild hypothermia (MH) as promising strategy to enhance the neuroprotective mechanisms in undifferentiated and differentiated human neural precursor cells (hNPCs) against ethanol-induced damage. METHODS 5mM VPA alone or in combination with MH (33°C) was used to prevent the damage in proliferating and differentiating hNPCs. CD133+ve enriched hNPCs were cultured in vitro and exposed to 1M chronic ethanol concentration for 72h and followed by VPA and MH treatment for 24h. Morphometric analysis was performed to identify changes in neurospheres development and neuronal cell phenotypes. Flow cytometry and RT-qPCR analysis was performed to investigate alterations in key molecular pathways involved in cell survival and signaling. RESULTS Combination of VPA with MH displayed higher proportion of neuronal cell viability as compared to single treatment. Combination treatment was most effective in reducing apoptosis and reactive oxygen species levels in both the undifferentiated and differentiated hNPCs. VPA with MH significantly improved neuronal cell phenotype, active chromatin modeling, chaperon and multi-drug resistant pumps activity and expression of neuronal signaling molecules. CONCLUSION The study provided an efficient and disease specific in vitro model and demonstrated that combined treatment with VPA and MH activates several neuroprotective mechanisms and provides enhanced protection against ethanol-induced damage in cultured undifferentiated and differentiated hNPCs.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, CLRD, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational Medicine, CLRD, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - L Chandrakala
- Central Laboratory for Stem Cell Research and Translational Medicine, CLRD, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Sana Arshiya
- Central Laboratory for Stem Cell Research and Translational Medicine, CLRD, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational Medicine, CLRD, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | | | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, CLRD, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India.
| |
Collapse
|
71
|
Effects of therapeutic hypothermia on white matter injury from murine neonatal hypoxia-ischemia. Pediatr Res 2017; 82:518-526. [PMID: 28561815 PMCID: PMC5570671 DOI: 10.1038/pr.2017.75] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
BackgroundTherapeutic hypothermia (TH) is the standard of care for neonates with hypoxic-ischemic encephalopathy, but it is not fully protective in the clinical setting. Hypoxia-ischemia (HI) may cause white matter injury (WMI), leading to neurological and cognitive dysfunction.MethodsP9 mice were subjected to HI as previously described. Pups underwent 3.5 h of systemic hypothermia or normothermia. Cresyl violet and Perl's iron staining for histopathological scoring of brain sections was completed blindly on all brains. Immunocytochemical (ICC) staining for myelin basic protein (MBP), microglia (Iba1), and astrocytes (glia fibrillary acidic protein (GFAP)) was performed on adjacent sections. Volumetric measurements of MBP coverage were used for quantitative analysis of white matter.ResultsTH provided neuroprotection by injury scoring for the entire group (n=44; P<0.0002). ICC analysis of a subset of brains showed that the lateral caudate was protected from WMI (P<0.05). Analysis revealed decreased GFAP and Iba1 staining in hippocampal regions, mostly CA2/CA3. GFAP and Iba1 directly correlated with injury scores of normothermic brains.ConclusionTH reduced injury, and qualitative data suggest that hippocampus and lateral caudate are protected from HI. Mildly injured brains may better show the benefits of TH. Overall, these data indicate regional differences in WMI susceptibility and inflammation in a P9 murine HI model.
Collapse
|
72
|
Lakadia MJ, Abbasi H, Gunn AJ, Unsworth CP, Bennet L. Examining the effect of MgSO4 on sharp wave transient activity in the hypoxic-ischemic fetal sheep model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:908-911. [PMID: 28268471 DOI: 10.1109/embc.2016.7590848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) due to lack of oxygen is a debilitating disorder experienced by a significant number of preterm infants during birth. Studies show that the brain undergoes different phases of injury following hypoxic insult, but the first 6-8 hours (known as a latent phase) are the key to treatment efficacy. Cerebral hypothermia is one known treatment, and for it to be effective it must be started during the latent phase and continued for several days. In order to determine the effectiveness of treatment it is important to pinpoint the time of insult. Monitoring of sharp wave transient activity in the hypoxic-ischemic (HI) electroencephalogram (EEG) could be a predictor for time of hypoxic insult. Due to practicality, it is optimal if this monitoring is performed automatically. Further, MgSO4 is a drug given to an increasing number of women in labor, due to its neuroprotective properties. This drug may influence transient activity in the HI fetal sheep EEG, leading to further complications in predicting hypoxic insult. This paper explores the effect of MgSO4 on sharp wave transient activity in the EEG of a HI fetal sheep. Demonstrated in this paper is the usage of a Wavelet-Type-II Fuzzy classifier to detect sharp wave transients during the latent phase of a control group fetal sheep and an MgSO4-treated fetal sheep. This detection was performed with an average overall performance of 93.21%±5.49 over 660 minutes of latent phase, post occlusion. There were no significant differences in number of sharp wave transients in the early- and mid-latent phases of injury for both fetal sheep. However, in the late-latent phase the MgSO4-treated fetal sheep had significantly fewer sharp wave transients than the control fetal sheep.
Collapse
|
73
|
Galinsky R, Davidson JO, Lear CA, Bennet L, Green CR, Gunn AJ. Connexin hemichannel blockade improves survival of striatal GABA-ergic neurons after global cerebral ischaemia in term-equivalent fetal sheep. Sci Rep 2017; 7:6304. [PMID: 28740229 PMCID: PMC5524909 DOI: 10.1038/s41598-017-06683-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 11/17/2022] Open
Abstract
Basal ganglia injury at term remains a major cause of disability, such as cerebral palsy. In this study we tested the hypotheses that blockade of astrocytic connexin hemichannels with a mimetic peptide would improve survival of striatal phenotypic neurons after global cerebral ischaemia in term-equivalent fetal sheep, and that neuronal survival would be associated with electrophysiological recovery. Fetal sheep (0.85 gestation) were randomly assigned to receive a short or long (1 or 25 h) intracerebroventricular infusion of a mimetic peptide or vehicle, starting 90 minutes after 30 minutes of cerebral ischaemia. Sheep were killed 7 days after ischaemia. Cerebral ischaemia was associated with reduced numbers of calbindin-28k, calretinin, parvalbumin and GAD positive striatal neurons (P < 0.05 ischaemia + vehicle, n = 6 vs. sham ischaemia, n = 6) but not ChAT or nNOS positive neurons. Short infusion of peptide (n = 6) did not significantly improve survival of any striatal phenotype. Long infusion of peptide (n = 6) was associated with increased survival of calbindin-28k, calretinin, parvalbumin and GAD positive neurons (P < 0.05 vs. ischaemia + vehicle). Neurophysiological recovery was associated with improved survival of calbindin-28k, calretinin and parvalbumin positive striatal neurons (P < 0.05 for all). In conclusion, connexin hemichannel blockade after cerebral ischaemia in term-equivalent fetal sheep improves survival of striatal GABA-ergic neurons.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, The University of Auckland, Auckland, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
74
|
Sung IK. Therapeutic Hypothermia for Hypoxic-Ischemic Encephalopathy in Newborn Infants. NEONATAL MEDICINE 2017. [DOI: 10.5385/nm.2017.24.4.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- In Kyung Sung
- Department of Pediatrics, Collge of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
75
|
Cytokine changes in newborns with therapeutic hypothermia after hypoxic ischemic encephalopathy. J Perinatol 2016; 36:1092-1096. [PMID: 27583390 DOI: 10.1038/jp.2016.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE This study aimed to examine changes in cytokines according to therapeutic hypothermia (TH) for newborn hypoxic ischemic encephalopathy (HIE). STUDY DESIGN We studied 20 neonates who were admitted with a diagnosis of HIE in the neonatal intensive care unit. Cytokine concentration assay was carried out for neonates (n=12) who received TH and neonates (n=8) who were not treated with hypothermia by collecting blood sample at 12, 48 and 120 h after birth. RESULTS At 48 h after birth, interleukin (IL)-6 in the normothermia group was higher than that in the hypothermia group (P=0.010). At 48 h after birth, IL-10 was higher in the hypothermia group than in the normothermia group (P=0.038). CONCLUSION This study confirmed that TH performs a role in the prevention of inflammatory process by way of maintaining proinflammatory cytokine IL-6 at low levels and anti-inflammatory cytokines IL-10 at high levels.
Collapse
|
76
|
Kharoshankaya L, Stevenson NJ, Livingstone V, Murray DM, Murphy BP, Ahearne CE, Boylan GB. Seizure burden and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy. Dev Med Child Neurol 2016; 58:1242-1248. [PMID: 27595841 PMCID: PMC5214689 DOI: 10.1111/dmcn.13215] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 01/12/2023]
Abstract
AIM To examine the relationship between electrographic seizures and long-term outcome in neonates with hypoxic-ischemic encephalopathy (HIE). METHOD Full-term neonates with HIE born in Cork University Maternity Hospital from 2003 to 2006 (pre-hypothermia era) and 2009 to 2012 (hypothermia era) were included in this observational study. All had early continuous electroencephalography monitoring. All electrographic seizures were annotated. The total seizure burden and hourly seizure burden were calculated. Outcome (normal/abnormal) was assessed at 24 to 48 months in surviving neonates using either the Bayley Scales of Infant and Toddler Development, Third Edition or the Griffiths Mental Development Scales; a diagnosis of cerebral palsy or epilepsy was also considered an abnormal outcome. RESULTS Continuous electroencephalography was recorded for a median of 57.1 hours (interquartile range 33.5-80.5h) in 47 neonates (31 males, 16 females); 29 out of 47 (62%) had electrographic seizures and 25 out of 47 (53%) had an abnormal outcome. The presence of seizures per se was not associated with abnormal outcome (p=0.126); however, the odds of an abnormal outcome increased over ninefold (odds ratio [OR] 9.56; 95% confidence interval [95% CI] 2.43-37.67) if a neonate had a total seizure burden of more than 40 minutes (p=0.001), and eightfold (OR: 8.00; 95% CI: 2.06-31.07) if a neonate had a maximum hourly seizure burden of more than 13 minutes per hour (p=0.003). Controlling for electrographic HIE grade or treatment with hypothermia did not change the direction of the relationship between seizure burden and outcome. INTERPRETATION In HIE, a high electrographic seizure burden is significantly associated with abnormal outcome, independent of HIE severity or treatment with hypothermia.
Collapse
Affiliation(s)
- Liudmila Kharoshankaya
- Irish Centre for Fetal and Neonatal Translational Research (INFANT)CorkIreland,Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Nathan J Stevenson
- Irish Centre for Fetal and Neonatal Translational Research (INFANT)CorkIreland
| | - Vicki Livingstone
- Irish Centre for Fetal and Neonatal Translational Research (INFANT)CorkIreland
| | - Deirdre M Murray
- Irish Centre for Fetal and Neonatal Translational Research (INFANT)CorkIreland,Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Brendan P Murphy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT)CorkIreland,Department of NeonatologyCork University Maternity HospitalCorkIreland
| | - Caroline E Ahearne
- Irish Centre for Fetal and Neonatal Translational Research (INFANT)CorkIreland,Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| | - Geraldine B Boylan
- Irish Centre for Fetal and Neonatal Translational Research (INFANT)CorkIreland,Department of Paediatrics and Child HealthUniversity College CorkCorkIreland
| |
Collapse
|
77
|
Abbasi H, Bennet L, Gunn AJ, Unsworth CP. Robust Wavelet Stabilized 'Footprints of Uncertainty' for Fuzzy System Classifiers to Automatically Detect Sharp Waves in the EEG after Hypoxia Ischemia. Int J Neural Syst 2016; 27:1650051. [PMID: 27760476 DOI: 10.1142/s0129065716500519] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Currently, there are no developed methods to detect sharp wave transients that exist in the latent phase after hypoxia-ischemia (HI) in the electroencephalogram (EEG) in order to determine if these micro-scale transients are potential biomarkers of HI. A major issue with sharp waves in the HI-EEG is that they possess a large variability in their sharp wave profile making it difficult to build a compact 'footprint of uncertainty' (FOU) required for ideal performance of a Type-2 fuzzy logic system (FLS) classifier. In this paper, we develop a novel computational EEG analysis method to robustly detect sharp waves using over 30[Formula: see text]h of post occlusion HI-EEG from an equivalent, in utero, preterm fetal sheep model cohort. We demonstrate that initial wavelet transform (WT) of the sharp waves stabilizes the variation in their profile and thus permits a highly compact FOU to be built, hence, optimizing the performance of a Type-2 FLS. We demonstrate that this method leads to higher overall performance of [Formula: see text] for the clinical [Formula: see text] sampled EEG and [Formula: see text] for the high resolution [Formula: see text] sampled EEG that is improved upon over conventional standard wavelet [Formula: see text] and [Formula: see text], respectively, and fuzzy approaches [Formula: see text] and [Formula: see text], respectively, when performed in isolation.
Collapse
Affiliation(s)
- Hamid Abbasi
- 1 Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- 2 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- 2 Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- 1 Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
78
|
Abbasi H, Bennet L, Gunn AJ, Unsworth CP. Identifying stereotypic evolving micro-scale seizures (SEMS) in the hypoxic-ischemic EEG of the pre-term fetal sheep with a wavelet type-II fuzzy classifier. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:973-976. [PMID: 28268486 DOI: 10.1109/embc.2016.7590864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) around the time of birth due to lack of oxygen can lead to debilitating neurological conditions such as epilepsy and cerebral palsy. Experimental data have shown that brain injury evolves over time, but during the first 6-8 hours after HIE the brain has recovered oxidative metabolism in a latent phase, and brain injury is reversible. Treatments such as therapeutic cerebral hypothermia (brain cooling) are effective when started during the latent phase, and continued for several days. Effectiveness of hypothermia is lost if started after the latent phase. Post occlusion monitoring of particular micro-scale transients in the hypoxic-ischemic (HI) Electroencephalogram (EEG), from an asphyxiated fetal sheep model in utero, could provide precursory evidence to identify potential biomarkers of injury when brain damage is still treatable. In our studies, we have reported how it is possible to automatically detect HI EEG transients in the form of spikes and sharp waves during the latent phase of the HI EEG of the preterm fetal sheep. This paper describes how to identify stereotypic evolving micro-scale seizures (SEMS) which have a relatively abrupt onset and termination in a frequency range of 1.8-3Hz (Delta waves) superimposed on a suppressed EEG amplitude background post occlusion. This research demonstrates how a Wavelet Type-II Fuzzy Logic System (WT-Type-II-FLS) can be used to automatically identify subtle abnormal SEMS that occur during the latent phase with a preliminary average validation overall performance of 78.71%±6.63 over the 390 minutes of the latent phase, post insult, using in utero pre-term hypoxic fetal sheep models.
Collapse
|
79
|
Lafuente H, Pazos MR, Alvarez A, Mohammed N, Santos M, Arizti M, Alvarez FJ, Martinez-Orgado JA. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia. Front Neurosci 2016; 10:323. [PMID: 27462203 PMCID: PMC4940392 DOI: 10.3389/fnins.2016.00323] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022] Open
Abstract
Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult.
Collapse
Affiliation(s)
- Hector Lafuente
- Neonatology Research Group, Biocruces Health Research InstituteBizkaia, Spain
| | - Maria R. Pazos
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Antonia Alvarez
- Department of Cell Biology, University of the Basque CountryLeioa, Spain
| | - Nagat Mohammed
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Martín Santos
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Maialen Arizti
- Neonatology Research Group, Biocruces Health Research InstituteBizkaia, Spain
| | | | - Jose A. Martinez-Orgado
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
- Department of Neonatology, Hospital Clínico San Carlos–Instituto de Investigación Sanitaria San Carlos (IdISSC)Madrid, Spain
| |
Collapse
|
80
|
Buchmann EJ, Stones W, Thomas N. Preventing deaths from complications of labour and delivery. Best Pract Res Clin Obstet Gynaecol 2016; 36:103-115. [PMID: 27427491 DOI: 10.1016/j.bpobgyn.2016.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 11/17/2022]
Abstract
The process of labour and delivery remains an unnecessary and preventable cause of death of women and babies around the world. Although the rates of maternal and perinatal death are declining, there are large disparities between rich and poor countries, and sub-Saharan Africa has not seen the scale of decline as seen elsewhere. In many areas, maternity services remain sparse and under-equipped, with insufficient and poorly trained staff. Priorities for reducing the mortality burden are provision of safe caesarean section, prevention of sepsis and appropriate care of women in labour in line with the current best practices, appropriately and affordably delivered. A concern is that large-scale recourse to caesarean delivery has its own dangers and may present new dominant causes for maternal mortality. An area of current neglect is newborn care. However, innovative training methods and appropriate technologies offer opportunities for affordable and effective newborn resuscitation and follow-up management in low-income settings.
Collapse
Affiliation(s)
- Eckhart J Buchmann
- Department of Obstetrics and Gynaecology, Chris Hani Baragwanath Academic Hospital, PO Bertsham 2013, Johannesburg, South Africa.
| | - William Stones
- School of Medicine, University of St Andrews and College of Medicine, University of Malawi, Fife KY16 9JT, UK.
| | - Niranjan Thomas
- Department of Neonatology, Christian Medical College, Vellore 632004, India.
| |
Collapse
|
81
|
Dietz RM, Deng G, Orfila JE, Hui X, Traystman RJ, Herson PS. Therapeutic hypothermia protects against ischemia-induced impairment of synaptic plasticity following juvenile cardiac arrest in sex-dependent manner. Neuroscience 2016; 325:132-41. [PMID: 27033251 DOI: 10.1016/j.neuroscience.2016.03.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Pediatric cardiac arrest (CA) often leads to poor neurologic outcomes, including deficits in learning and memory. The only approved treatment for CA is therapeutic hypothermia, although its utility in the pediatric population remains unclear. This study analyzed the effect of mild therapeutic hypothermia after CA in juvenile mice on hippocampal neuronal injury and the cellular model of learning and memory, termed long-term potentiation (LTP). Juvenile mice were subjected to cardiac arrest and cardiopulmonary resuscitation (CA/CPR) followed by normothermia (37°C) and hypothermia (30°C, 32°C). Histological injury of hippocampal CA1 neurons was performed 3days after resuscitation using hematoxylin and eosin (H&E) staining. Field excitatory post-synaptic potentials (fEPSPs) were recorded from acute hippocampal slices 7days after CA/CPR to determine LTP. Synaptic function was impaired 7days after CA/CPR. Mice exposed to hypothermia showed equivalent neuroprotection, but exhibited sexually dimorphic protection against ischemia-induced impairment of LTP. Hypothermia (32°C) protects synaptic plasticity more effectively in females, with males requiring a deeper level of hypothermia (30°C) for equivalent protection. In conclusion, male and female juvenile mice exhibit equivalent neuronal injury following CA/CPR and hypothermia protects both males and females. We made the surprising finding that juvenile mice have a sexually dimorphic response to mild therapeutic hypothermia protection of synaptic function, where males may need a deeper level of hypothermia for equivalent synaptic protection.
Collapse
Affiliation(s)
- R M Dietz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - G Deng
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - J E Orfila
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - X Hui
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - R J Traystman
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - P S Herson
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
82
|
Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia. Sci Rep 2016; 6:23430. [PMID: 26997257 PMCID: PMC4800445 DOI: 10.1038/srep23430] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
Abstract
Therapeutic hypothermia (HT) is standard care for moderate and severe neonatal hypoxic-ischaemic encephalopathy (HIE), the leading cause of permanent brain injury in term newborns. However, the optimal temperature for HT is still unknown, and few preclinical studies have compared multiple HT treatment temperatures. Additionally, HT may not benefit infants with severe encephalopathy. In a neonatal rat model of unilateral hypoxia-ischaemia (HI), the effect of five different HT temperatures was investigated after either moderate or severe injury. At postnatal-day seven, rat pups underwent moderate or severe HI followed by 5 h at normothermia (37 °C), or one of five HT temperatures: 33.5 °C, 32 °C, 30 °C, 26 °C, and 18 °C. One week after treatment, neuropathological analysis of hemispheric and hippocampal area loss, and CA1 hippocampal pyramidal neuron count, was performed. After moderate injury, a significant reduction in hemispheric and hippocampal loss on the injured side, and preservation of CA1 pyramidal neurons, was seen in the 33.5 °C, 32 °C, and 30 °C groups. Cooling below 33.5 °C did not provide additional neuroprotection. Regardless of treatment temperature, HT was not neuroprotective in the severe HI model. Based on these findings, and previous experience translating preclinical studies into clinical application, we propose that milder cooling should be considered for future clinical trials.
Collapse
|
83
|
Krone L, Frase L, Piosczyk H, Selhausen P, Zittel S, Jahn F, Kuhn M, Feige B, Mainberger F, Klöppel S, Riemann D, Spiegelhalder K, Baglioni C, Sterr A, Nissen C. Top-down control of arousal and sleep: Fundamentals and clinical implications. Sleep Med Rev 2016; 31:17-24. [PMID: 26883160 DOI: 10.1016/j.smrv.2015.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/07/2023]
Abstract
Mammalian sleep emerges from attenuated activity in the ascending reticular arousal system (ARAS), the main arousal network of the brain. This system originates in the brainstem and activates the thalamus and cortex during wakefulness via a well-characterized 'bottom-up' pathway. Recent studies propose that a less investigated cortico-thalamic 'top-down' pathway also regulates sleep. The present work integrates the current evidence on sleep regulation with a focus on the 'top-down' pathway and explores the potential to translate this information into clinically relevant interventions. Specifically, we elaborate the concept that arousal and sleep continuity in humans can be modulated by non-invasive brain stimulation (NIBS) techniques that increase or decrease cortical excitability. Based on preclinical studies, the modulatory effects of the stimulation are thought to extend to subcortical arousal networks. Further exploration of the 'top-down' regulation of sleep and its modulation through non-invasive brain stimulation techniques may contribute to the development of novel treatments for clinical conditions of disrupted arousal and sleep, which are among the major health problems worldwide.
Collapse
Affiliation(s)
- Lukas Krone
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Hannah Piosczyk
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Peter Selhausen
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Sulamith Zittel
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Friederike Jahn
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Marion Kuhn
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Bernd Feige
- Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Florian Mainberger
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany
| | - Dieter Riemann
- Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Kai Spiegelhalder
- Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Chiara Baglioni
- Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | | | - Christoph Nissen
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany.
| |
Collapse
|
84
|
Talypov AE, Kordonsky AY, Krylov VV. International multicenter studies of treatment of severe traumatic brain injury. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:113-121. [DOI: 10.17116/jnevro201611611113-121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
85
|
Non-additive effects of delayed connexin hemichannel blockade and hypothermia after cerebral ischemia in near-term fetal sheep. J Cereb Blood Flow Metab 2015; 35:2052-61. [PMID: 26174327 PMCID: PMC4671127 DOI: 10.1038/jcbfm.2015.171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/07/2015] [Accepted: 06/09/2015] [Indexed: 12/31/2022]
Abstract
Hypothermia is partially neuroprotective after neonatal hypoxic-ischemic encephalopathy. Blockade of connexin hemichannels can improve recovery of brain activity and cell survival after ischemia in near-term fetal sheep. In this study, we investigated whether combining delayed hypothermia with connexin hemichannel blockade with intracerebroventricular infusion of a mimetic peptide can further improve outcomes after cerebral ischemia. Fetal sheep (0.85 gestation) received 30 minutes of cerebral ischemia followed by a 3-hour recovery period before treatment was started. Fetuses were randomized to one of the following treatment groups: normothermia (n=8), hypothermia for 3 days (n=8), connexin hemichannel blockade (50 μmol/L intracerebroventricular over 1 hour followed by 50 μmol/L over 24 hours, n=8) or hypothermia plus hemichannel blockade (n=7). After 7 days recovery, hypothermia was associated with reduced seizure burden, improved electroencephalographic (EEG) power, and a significant increase in neuronal and oligodendrocyte survival and reduced induction of Iba1-positive microglia. In contrast, although hemichannel blockade reduced seizure burden, there was no effect on EEG power or histology (P<0.05). There was no further improvement in outcomes with combined hypothermia plus hemichannel blockade. In conclusion, these data show that there is no additive neuroprotection with combined hypothermia and hemichannel blockade after cerebral ischemia in near-term fetal sheep.
Collapse
|
86
|
Abstract
BACKGROUND Patients undergoing neurosurgery are at risk of cerebral ischaemia with resultant cerebral hypoxia and neuronal cell death. This can increase both the risk of mortality and long term neurological disability. Induced hypothermia has been shown to reduce the risk of cerebral ischaemic damage in both animal studies and in humans who have been resuscitated following cardiac arrest. This had lead to an increasing interest in its neuroprotective potential in neurosurgical patients. This review was originally published in 2011 and did not find any evidence of either effectiveness or harm in these patients. This updated review was designed to capture current evidence to readdress these issues. OBJECTIVES To evaluate the effectiveness and safety profile of induced hypothermia versus normothermia for neuroprotection in patients undergoing brain surgery. Effectiveness was to be measured in terms of short and long term mortality and functional neurological outcomes. Safety was to be assessed in terms of the rate of the adverse events infection, myocardial infarction, ischaemic stroke, congestive cardiac failure and any other adverse events reported by the authors of the included studies. SEARCH METHODS For the original review, the authors searched the databases Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (OvidSP), EMBASE (OvidSP) and LILACS to November 2010. For the updated review all these databases were re-searched from November 2010 to May 2014.For both the original and updated versions, grey literature was sought by searching reference lists of identified studies and relevant review articles, and conference proceedings. No language restrictions were applied. SELECTION CRITERIA As in the original review, we included randomized controlled trials (RCTs) of induced hypothermia versus normothermia for neuroprotection in patients of any age and gender undergoing brain surgery, which addressed mortality, neurological morbidity or adverse event outcomes. DATA COLLECTION AND ANALYSIS Three review authors independently extracted data and two independently assessed the risk of bias of the included studies. Any discrepancies were resolved by discussion between authors. MAIN RESULTS In this updated review, one new ongoing study was found but no new eligible completed studies were identified. This update was therefore conducted using the same four studies included in the original review. These studies included a total of 1219 participants, mean age 40 to 54 years. All included studies were reported as RCTs. Two were multicentred, together including a total of 1114 patients who underwent cerebral aneurysm clipping, and were judged to have an overall low risk of bias. The other two studies were single centred. One included 80 patients who had a craniotomy following severe traumatic brain injury and was judged to have an unclear or low risk of bias. The other study included 25 patients who underwent hemicranicectomy to relieve oedema following cerebral infarction and was judged to have an unclear or high risk of bias. All studies assessed hypothermia versus normothermia. Overall 608 participants received hypothermia with target temperatures ranging from 32.5 °C to 35 °C, and 611 were assigned to normothermia with the actual temperatures recorded in this group ranging form 36.5 °C to 38 °C. For those who were cooled, 556 had cooling commenced immediately after induction of anaesthesia that was continued until the surgical objective of aneurysm clipping was achieved, and 52 had cooling commenced immediately after surgery and continued for 48 to 96 hours.Pooled estimates of effect were calculated for the outcomes mortality during treatment or follow-up (ranging from in-hospital to one year); neurological outcome measured in terms of the Glasgow Outcome Score (GOS) of 3 or less; and adverse events of infections, myocardial infarction, ischaemic stroke and congestive cardiac failure. With regards to mortality, the risk of dying if allocated to hypothermia compared to normothermia was not statistically significantly different (risk ratio (RR) 0.87, 95% confidence interval (CI) 0.59 to 1.27, P = 0.47). There was no indication that the time at which cooling was started affected the risk of dying (RR with intraoperative cooling 0.95, 95% CI 0.60 to 1.51, P = 0.83; RR for cooling postoperatively 0.67, 95% CI 0.34 to 1.35, P = 0.26). For the neurological outcome, the risk of having a poor outcome with a GOS of 3 or less was not statistically different in those who received hypothermia versus normothermia (RR 0.80, 95% CI 0.61 to 1.04, P = 0.09). Again there was no indication that the time at which cooling was started affected this result. Regarding adverse events, there was no statistically significant difference in the incidence in those allocated to hypothermia versus normothermia for risk of surgical infection (RR 1.20, 95% CI 0.73 to 1.97, P = 0.48), myocardial infarction (RR 1.86, 95% CI 0.69 to 4.98, P = 0.22), ischaemic stroke (RR 0.93, 95% CI 0.82 to 1.05, P = 0.24) or congestive heart failure (RR 0.85, 95% CI 0.60 to 1.21, P = 0.38). In contrast to other outcomes, where time of application of cooling did not change the statistical significance of the effect estimates, there was a weak statistically significant increased risk of infection in those who were cooled postoperatively versus those who were not cooled (RR 1.77, 95% CI 1.05 to 2.98, P = 0.03). Overall, as in the original review, no evidence was found that the use of induced hypothermia was either beneficial or harmful in patients undergoing neurosurgery. AUTHORS' CONCLUSIONS We found no evidence that the use of induced hypothermia was associated with a significant reduction in mortality or severe neurological disability, or an increase in harm in patients undergoing neurosurgery.
Collapse
Affiliation(s)
| | - Ron Levy
- Kingston General HospitalDepartment of NeurosurgeryDept of Surgery, Room 304 , Victory 3 ,76 Stuart StreetKingstonONCanadaK7L 2V7
| | - J. Gordon Boyd
- Kingston General HospitalDepartment of Medicine (Neurology) and Critical CareDept of Medicine , Davies 276 Stuart StreetKingstonONCanadaK7L 2V7
| | - Andrew G Day
- Kingston General HospitalClinical Research CentreAngada 4, Room 5‐42176 Stuart StreetKingstonONCanadaK7L 2V7
| | - Micheal C Wallace
- Kingston General HospitalDepartment of NeurosurgeryDept of Surgery, Room 304 , Victory 3 ,76 Stuart StreetKingstonONCanadaK7L 2V7
| | | |
Collapse
|
87
|
Schmitt KRL, Tong G, Berger F. Mechanisms of hypothermia-induced cell protection in the brain. Mol Cell Pediatr 2014; 1:7. [PMID: 26567101 PMCID: PMC4530563 DOI: 10.1186/s40348-014-0007-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Therapeutic hypothermia is an effective cytoprotectant and promising intervention shown to improve outcome in patients following cardiac arrest and neonatal hypoxia-ischemia. However, despite our clinical and experimental experiences, the protective molecular mechanisms of therapeutic hypothermia remain to be elucidated. Therefore, in this brief overview we discuss both the clinical evidence and molecular mechanisms of therapeutic hypothermia in order to provide further insights into this promising intervention.
Collapse
Affiliation(s)
- Katharina Rose Luise Schmitt
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Giang Tong
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. .,Department of Pediatric Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
88
|
Lear CA, Koome ME, Davidson JO, Drury PP, Quaedackers JS, Galinsky R, Gunn AJ, Bennet L. The effects of dexamethasone on post-asphyxial cerebral oxygenation in the preterm fetal sheep. J Physiol 2014; 592:5493-505. [PMID: 25384775 DOI: 10.1113/jphysiol.2014.281253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to clinical doses of the glucocorticoid dexamethasone increases brain activity and causes seizures in normoxic preterm fetal sheep without causing brain injury. In contrast, the same treatment after asphyxia increased brain injury. We hypothesised that increased injury was in part mediated by a mismatch between oxygen demand and oxygen supply. In preterm fetal sheep at 0.7 gestation we measured cerebral oxygenation using near-infrared spectroscopy, electroencephalographic (EEG) activity, and carotid blood flow (CaBF) from 24 h before until 72 h after asphyxia induced by 25 min of umbilical cord occlusion. Ewes received dexamethasone intramuscularly (12 mg 3 ml(-1)) or saline 15 min after the end of asphyxia. Fetuses were studied for 3 days after occlusion. During the first 6 h of recovery after asphyxia, dexamethasone treatment was associated with a significantly greater fall in CaBF (P < 0.05), increased carotid vascular resistance (P < 0.001) and a greater fall in cerebral oxygenation as measured by the difference between oxygenated and deoxygenated haemoglobin (delta haemoglobin; P < 0.05). EEG activity was similarly suppressed in both groups. From 6 to 10 h onward, dexamethasone treatment was associated with a return of CaBF to saline control levels, increased EEG power (P < 0.005), greater epileptiform transient activity (P < 0.001), increased oxidised cytochrome oxidase (P < 0.05) and an attenuated increase in [delta haemoglobin] (P < 0.05). In conclusion, dexamethasone treatment after asphyxia is associated with greater hypoperfusion in the critical latent phase, leading to impaired intracerebral oxygenation that may exacerbate neural injury after asphyxia.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Miriam E Koome
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Josine S Quaedackers
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
89
|
Check Hayden E. Cooling protects oxygen-deprived infants. Nature 2014. [DOI: 10.1038/nature.2014.15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|