51
|
Wakatsuki S, Takahashi Y, Shibata M, Adachi N, Numakawa T, Kunugi H, Araki T. Small noncoding vault RNA modulates synapse formation by amplifying MAPK signaling. J Cell Biol 2021; 220:211679. [PMID: 33439240 PMCID: PMC7809882 DOI: 10.1083/jcb.201911078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 09/04/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
The small noncoding vault RNA (vtRNA) is a component of the vault complex, a ribonucleoprotein complex found in most eukaryotes. Emerging evidence suggests that vtRNAs may be involved in the regulation of a variety of cellular functions when unassociated with the vault complex. Here, we demonstrate a novel role for vtRNA in synaptogenesis. Using an in vitro synapse formation model, we show that murine vtRNA (mvtRNA) promotes synapse formation by modulating the MAPK signaling pathway. mvtRNA is transported to the distal region of neurites as part of the vault complex. Interestingly, mvtRNA is released from the vault complex in the neurite by a mitotic kinase Aurora-A–dependent phosphorylation of MVP, a major protein component of the vault complex. mvtRNA binds to and activates MEK1 and thereby enhances MEK1-mediated ERK activation in neurites. These results suggest the existence of a regulatory mechanism of the MAPK signaling pathway by vtRNAs as a new molecular basis for synapse formation.
Collapse
Affiliation(s)
- Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Takahashi
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Megumi Shibata
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoki Adachi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| | - Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
52
|
Miningou Zobon NT, Jędrzejewska-Szmek J, Blackwell KT. Temporal pattern and synergy influence activity of ERK signaling pathways during L-LTP induction. eLife 2021; 10:e64644. [PMID: 34374340 PMCID: PMC8363267 DOI: 10.7554/elife.64644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Long-lasting long-term potentiation (L-LTP) is a cellular mechanism of learning and memory storage. Studies have demonstrated a requirement for extracellular signal-regulated kinase (ERK) activation in L-LTP produced by a diversity of temporal stimulation patterns. Multiple signaling pathways converge to activate ERK, with different pathways being required for different stimulation patterns. To answer whether and how different temporal patterns select different signaling pathways for ERK activation, we developed a computational model of five signaling pathways (including two novel pathways) leading to ERK activation during L-LTP induction. We show that calcium and cAMP work synergistically to activate ERK and that stimuli given with large intertrial intervals activate more ERK than shorter intervals. Furthermore, these pathways contribute to different dynamics of ERK activation. These results suggest that signaling pathways with different temporal sensitivities facilitate ERK activation to diversity of temporal patterns.
Collapse
Affiliation(s)
| | - Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatic, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience, Bioengineering Department, George Mason UniversityFairfaxUnited States
- Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
| |
Collapse
|
53
|
Walsh KS, Wolters PL, Widemann BC, Del Castillo A, Sady MD, Inker T, Roderick MC, Martin S, Toledo-Tamula MA, Struemph K, Paltin I, Collier V, Mullin K, Fisher MJ, Packer RJ. Impact of MEK Inhibitor Therapy on Neurocognitive Functioning in NF1. NEUROLOGY-GENETICS 2021; 7:e616. [PMID: 34377779 PMCID: PMC8351286 DOI: 10.1212/nxg.0000000000000616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022]
Abstract
Background and Objectives Neurofibromatosis type 1 (NF1)-associated cognitive impairments carry significant lifelong morbidity. The lack of targeted biologic treatments remains a significant unmet need. We examine changes in cognition in patients with NF1 in the first 48 weeks of mitogen-activated protein kinase inhibitor (MEKi) treatment. Methods Fifty-nine patients with NF1 aged 5–27 years on an MEKi clinical trial treating plexiform neurofibroma underwent pretreatment and follow-up cognitive assessments over 48 weeks of treatment. Performance tasks (Cogstate) and observer-reported functioning (BRIEF) were the primary outcomes. Group-level (paired t tests) and individual-level analyses (Reliable Change Index, RCI) were used. Results Analysis showed statistically significant improvements on BRIEF compared with baseline (24-week Behavioral Regulation Index: t(58) = 3.03, p = 0.004, d = 0.24; 48-week Metacognition Index: t(39) = 2.70, p = 0.01, d = 0.27). RCI indicated that more patients had clinically significant improvement at 48 weeks than expected by chance (χ2 = 11.95, p = 0.001, odds ratio [OR] = 6.3). Group-level analyses indicated stable performance on Cogstate (p > 0.05). RCI statistics showed high proportions of improved working memory (24-week χ2 = 8.36, p = 0.004, OR = 4.6, and 48-week χ2 = 9.34, p = 0.004, OR = 5.3) but not visual learning/memory. Patients with baseline impairments on BRIEF were more likely to show significant improvement than nonimpaired patients (24 weeks 46% vs 8%; χ2 = 9.54, p = 0.008, OR = 9.22; 48 weeks 63% vs 16%; χ2 = 7.50, p = 0.02, OR = 9.0). Discussion Our data show no evidence of neurotoxicity in 48 weeks of treatment with an MEKi and a potential clinical signal supporting future research of MEKi as a cognitive intervention.
Collapse
Affiliation(s)
- Karin S Walsh
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Pamela L Wolters
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Brigitte C Widemann
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Allison Del Castillo
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Maegan D Sady
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Tess Inker
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Marie Claire Roderick
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Staci Martin
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Mary Anne Toledo-Tamula
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Kari Struemph
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Iris Paltin
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Victoria Collier
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Kathy Mullin
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Michael J Fisher
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| | - Roger J Packer
- Children's National Medical Center (K.S.W., A.C., M.D.S., T.I., R.J.P.), Washington, DC; National Cancer Institute (P.L.W., B.C.W., M.C.R., S.M., K.S.), Bethesda, MD; Clinical Research Directorate (M.A.T.-T.), Frederick National Library for Cancer Research, MD; and Children's Hospital of Philadelphia (I.P., V.C., K.M., M.J.F.), Philadelphia
| |
Collapse
|
54
|
Abstract
Intrauterine growth restriction is a condition that prevents normal fetal development, and previous studies have reported that intrauterine growth restriction is caused by adverse intrauterine factors. This condition affects both short- and long-term neurodevelopmental disorders. Studies have revealed that neurodevelopmental disorders can contribute to gray and white matter damage and decrease the brain volume of affected individuals. Further, these disorders are associated with increased risks of mental retardation, cognitive impairment, and cerebral palsy, which seriously affect the quality of life. Although the mechanisms underlying the neurologic injury associated with intrauterine growth restriction are not completely clear, studies have revealed that neuronal apoptosis, neuroinflammation, oxidative stress, excitatory toxicity, disruption of blood-brain barrier, and epigenetics may be involved in this process. This article reviews the manifestations and possible mechanisms underlying neurologic injury in intrauterine growth restriction and provides a theoretical basis for the effective prevention and treatment of this condition.
Collapse
Affiliation(s)
- Lijia Wan
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Kaiju Luo
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Pingyang Chen
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| |
Collapse
|
55
|
May V, Johnson GC, Hammack SE, Braas KM, Parsons RL. PAC1 Receptor Internalization and Endosomal MEK/ERK Activation Is Essential for PACAP-Mediated Neuronal Excitability. J Mol Neurosci 2021; 71:1536-1542. [PMID: 33675454 PMCID: PMC8450765 DOI: 10.1007/s12031-021-01821-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) activation of PAC1 receptors (Adcyap1r1) can significantly increase the excitability of diverse neurons through differential mechanisms. For guinea pig cardiac neurons, the modulation of excitability can be mediated in part by PAC1 receptor plasma membrane G protein-dependent activation of adenylyl cyclase and downstream signaling cascades. By contrast, PAC1 receptor-mediated excitability of hippocampal dentate gyrus granule cells appears independent of membrane-delimited AC/cAMP/PKA and PLC/PKC signaling. For both neuronal types, there is mechanistic convergence demonstrating that endosomal PAC1 receptor signaling has prominent roles. In these models, neuronal exposure to Pitstop2 to inhibit β-arrestin/clathrin-mediated PAC1 receptor internalization eliminates PACAP modulation of excitability. β-arrestin is a scaffold for a number of effectors especially MEK/ERK and notably, paradigms that inhibit PAC1 receptor endosome formation and ERK signaling also blunt the PACAP-induced increase in excitability. Detailed PAC1 receptor internalization and endosomal ERK signaling mechanisms have been confirmed in HEK PAC1R-EGFP cells and shown to be long lasting which appear to recapitulate the sustained electrophysiological responses. Thus, PAC1 receptor internalization/endosomal recruitment efficiently and efficaciously activates MEK/ERK signaling and appears to represent a singular and critical common denominator in regulating neuronal excitability by PACAP.
Collapse
Affiliation(s)
- Victor May
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Gregory C Johnson
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Karen M Braas
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Rodney L Parsons
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
56
|
Chaaya N, Wang J, Jacques A, Beecher K, Chaaya M, Battle AR, Johnson LR, Chehrehasa F, Belmer A, Bartlett SE. Contextual Fear Memory Maintenance Changes Expression of pMAPK, BDNF and IBA-1 in the Pre-limbic Cortex in a Layer-Specific Manner. Front Neural Circuits 2021; 15:660199. [PMID: 34295224 PMCID: PMC8291085 DOI: 10.3389/fncir.2021.660199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating and chronic fear-based disorder. Pavlovian fear conditioning protocols have long been utilised to manipulate and study these fear-based disorders. Contextual fear conditioning (CFC) is a particular Pavlovian conditioning procedure that pairs fear with a particular context. Studies on the neural mechanisms underlying the development of contextual fear memories have identified the medial prefrontal cortex (mPFC), or more specifically, the pre-limbic cortex (PL) of the mPFC as essential for the expression of contextual fear. Despite this, little research has explored the role of the PL in contextual fear memory maintenance or examined the role of neuronal mitogen-activated protein kinase (pMAPK; ERK 1/2), brain-derived neurotrophic factor (BDNF), and IBA-1 in microglia in the PL as a function of Pavlovian fear conditioning. The current study was designed to evaluate how the maintenance of two different long-term contextual fear memories leads to changes in the number of immune-positive cells for two well-known markers of neural activity (phosphorylation of MAPK and BDNF) and microglia (IBA-1). Therefore, the current experiment is designed to assess the number of immune-positive pMAPK and BDNF cells, microglial number, and morphology in the PL following CFC. Specifically, 2 weeks following conditioning, pMAPK, BDNF, and microglia number and morphology were evaluated using well-validated antibodies and immunohistochemistry (n = 12 rats per group). A standard CFC protocol applied to rats led to increases in pMAPK, BDNF expression and microglia number as compared to control conditions. Rats in the unpaired fear conditioning (UFC) procedure, despite having equivalent levels of fear to context, did not have any change in pMAPK, BDNF expression and microglia number in the PL compared to the control conditions. These data suggest that alterations in the expression of pMAPK, BDNF, and microglia in the PL can occur for up to 2 weeks following CFC. Together the data suggest that MAPK, BDNF, and microglia within the PL of the mPFC may play a role in contextual fear memory maintenance.
Collapse
Affiliation(s)
- Nicholas Chaaya
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael Chaaya
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew Raymond Battle
- Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Luke R Johnson
- Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Center for the Study of Traumatic Stress, Department of Psychiatry, USU School of Medicine, Bethesda, MD, United States
| | - Fatemeh Chehrehasa
- Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
57
|
Gostolupce D, Iordanova MD, Lay BPP. Mechanisms of higher-order learning in the amygdala. Behav Brain Res 2021; 414:113435. [PMID: 34197867 DOI: 10.1016/j.bbr.2021.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Adaptive behaviour is under the potent control of environmental cues. Such cues can acquire value by virtue of their associations with outcomes of motivational significance, be they appetitive or aversive. There are at least two ways through which an environmental cue can acquire value, through first-order and higher-order conditioning. In first-order conditioning, a neutral cue is directly paired with an outcome of motivational significance. In higher-order conditioning, a cue is indirectly associated with motivational events via a directly conditioned first-order stimulus. The present article reviews some of the associations that support learning in first- and higher-order conditioning, as well as the role of the BLA and the molecular mechanisms involved in these two types of learning.
Collapse
Affiliation(s)
- Dilara Gostolupce
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Mihaela D Iordanova
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Belinda P P Lay
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
58
|
Karthikkeyan G, Pervaje R, Pervaje SK, Prasad TSK, Modi PK. Prevention of MEK-ERK-1/2 hyper-activation underlines the neuroprotective effect of Glycyrrhiza glabra L. (Yashtimadhu) against rotenone-induced cellular and molecular aberrations. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114025. [PMID: 33775804 DOI: 10.1016/j.jep.2021.114025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/07/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yashtimadhu choorna (powder) is prepared from the dried root of Glycyrrhiza glabra L., commonly known as licorice. The Indian Ayurvedic system classifies Yashtimadhu as a Medhya Rasayana that can enhance brain function, improves memory, and possess neuroprotective functions, which can be used against neurodegenerative diseases like Parkinson's disease (PD). AIM OF THE STUDY We aimed to decipher the neuroprotective effects of G. glabra L., i.e., Yashtimadhu, in a rotenone-induced PD model. MATERIALS AND METHODS Retinoic acid-differentiated IMR-32 cells were treated with rotenone (PD model) and Yashtimadhu, and were assessed for cellular toxicity, live-dead staining, cell cycle, oxidative stress, protein abundance, and kinase phosphorylation. RESULTS Yashtimadhu conferred protection against rotenone-induced cytotoxicity, countered cell death, reduced expression of pro-apoptotic proteins (cleaved-caspases-9, and 3, cleaved-PARP, BAX, and BAK) and increased anti-apoptotic protein, BCL-2. Rotenone-induced cell cycle re-entry (G2/M transition), was negated by Yashtimadhu and was confirmed with PCNA levels. Yashtimadhu countered rotenone-mediated activation of mitochondrial proteins involved in oxidative stress, cytochrome-C, PDHA1, and HSP60. Inhibition of rotenone-induced ERK-1/2 hyperphosphorylation prevented activation of apoptosis, which was confirmed with MEK-inhibitor, highlighted the action of Yashtimadhu via ERK-1/2 modulation. CONCLUSIONS We provide the evidence for neuroprotection conferred by G. glabra L. (Yashtimadhu) and its mechanism via inhibiting MEK-ERK-1/2 hyper-phosphorylation, prevention of mitochondrial stress, and subsequent prevention of apoptosis. The study highlights Yashtimadhu as a promising candidate with neuroprotective effects, the potential of which can be harnessed for identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | | | - Sameera Krishna Pervaje
- Yenepoya Medical College and Hospital, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | | | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
59
|
Zhao Y, Yang S, Guo Q, Guo Y, Zheng Y, Ji E. Shashen-Maidong Decoction improved chronic intermittent hypoxia-induced cognitive impairment through regulating glutamatergic signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114040. [PMID: 33794336 DOI: 10.1016/j.jep.2021.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/03/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH), which is associated with cognitive impairment. Previous study suggested CIH exposure could induce similar symptoms and signs to the clinical features of Deficiency of both Qi and Yin Syndrome (DQYS) in Traditional Chinese Medicine (TCM). Shashen-Maidong Decoction (SMD) has been applied clinically for DQYS for hundred years. However, SMD treatment could be beneficial to CIH induced cognitive impairment is still unclear. AIM OF THE STUDY Therefore, the aim of this study was to investigate the effect of SMD treatment on CIH induced cognitive impairment, and to explore the related neuroprotective mechanism. MATERIALS AND METHODS Mice were exposed to CIH for 5 weeks (8 h/day) and were orally treated with either vehicle or SMD (5.265 g/kg/day) 30 min before CIH exposure. Spatial memory was evaluated by Morris Water Maze and Y-Maze test. Synaptic morphology in hippocampus was observed by Golgi-Cox staining and Electron microscope, and NR2B-ERK signaling pathway were detected by western blotting. RESULTS Our results showed that SMD treatment improved performance in either Morris Water Maze or Y-Maze test in mice exposed to CIH, increased spine density and postsynaptic density (PSD) thickness in hippocampus. SMD treatment suppressed the over-activation of NR2B/CaMKII/SynGAP induced by CIH exposure, enhanced ERK/CREB phosphorylation and increased PSD-95 and BDNF expression. CONCLUSION SMD attenuates the CIH-induced cognitive impairment through regulating NR2B-ERK signaling pathway. Additionally, our findings provided that DQYS may be the potential therapeutic target for neurocognitive diseases in patients with OSA.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China
| | - Qiuhong Guo
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China
| | - Yajing Guo
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
60
|
Mahaman YAR, Huang F, Embaye KS, Wang X, Zhu F. The Implication of STEP in Synaptic Plasticity and Cognitive Impairments in Alzheimer's Disease and Other Neurological Disorders. Front Cell Dev Biol 2021; 9:680118. [PMID: 34195199 PMCID: PMC8236946 DOI: 10.3389/fcell.2021.680118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a tyrosine phosphatase that has been implicated in Alzheimer’s disease (AD), the most common form of dementia, and many other neurological diseases. The protein level and activity of STEP have been found to be elevated in most of these disorders, and specifically in AD as a result of dysregulation of different pathways including PP2B/DARPP32/PP1, PKA as well as impairments of both proteasomal and lysosomal systems. The upregulation in STEP leads to increased binding to, and dephosphorylation of, its substrates which are mainly found to be synaptic plasticity and thus learning and memory related proteins. These proteins include kinases like Fyn, Pyk2, ERK1/2 and both NMDA and AMPA receptor subunits GluN2B and GluA2. The dephosphorylation of these molecules results in inactivation of these kinases and internalization of NMDA and AMPA receptor complexes leading to synapse loss and cognitive impairments. In this study, we aim to review STEP regulation and its implications in AD as well as other neurological disorders and then summarize data on targeting STEP as therapeutic strategy in these diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kidane Siele Embaye
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
61
|
Navarro-Lobato I, Masmudi-Martín M, Quiros-Ortega ME, Gaona-Romero C, Carretero-Rey M, Rey Blanes C, Khan ZU. 14-3-3ζ is crucial for the conversion of labile short-term object recognition memory into stable long-term memory. J Neurosci Res 2021; 99:2305-2317. [PMID: 34115908 DOI: 10.1002/jnr.24894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 11/07/2022]
Abstract
The consolidation of new memories into long-lasting memories is multistage process characterized by distinct temporal dynamics. However, our understanding on the initial stage of transformation of labile memory of recent experience into stable memory remains elusive. Here, with the use of rats and mice overexpressing a memory enhancer called regulator of G protein signaling 14 of 414 amino acids (RGS14414 ) as a tool, we show that the expression of RGS14414 in male rats' perirhinal cortex (PRh), which is a brain area crucial for object recognition memory (ORM), enhanced the ORM to the extent that it caused the conversion of labile short-term ORM (ST-ORM) expected to last for 40 min into stable long-term ORM (LT-ORM) traceable after a delay of 24 hr, and that the temporal window of 40 to 60 min after object exposure not only was key for this conversion but also was the time frame when a surge in 14-3-3ζ protein was observed. A knockdown of 14-3-3ζ gene abrogated both the increase in 14-3-3ζ protein and the formation of LT-ORM. Furthermore, this 14-3-3ζ upregulation increased brain-derived growth factor (BDNF) levels in the time frame of 60 min and 24 hr and 14-3-3ζ knockdown decreased the BDNF levels, and a deletion of BDNF gene produced loss in mice ability to form LT-ORM. Thus, within 60 min of object exposure, 14-3-3ζ facilitated the conversion of labile ORM into stable ORM, whereas beyond the 60 min, it mediated the consolidation of the stable memory into long-lasting ORM by regulating BDNF signaling.
Collapse
Affiliation(s)
- Irene Navarro-Lobato
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, The Netherlands
| | - Mariam Masmudi-Martín
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- Brain Metastasis Group, National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Maria E Quiros-Ortega
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Celia Gaona-Romero
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Marta Carretero-Rey
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Cristina Rey Blanes
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Zafar U Khan
- Laboratory of Neurobiology, CIMES, University of Malaga, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
- CIBERNED, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
62
|
Altered nociception in Alzheimer disease is associated with striatal-enriched protein tyrosine phosphatase signaling. Pain 2021; 162:1669-1680. [PMID: 33433143 DOI: 10.1097/j.pain.0000000000002180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023]
Abstract
ABSTRACT Alzheimer disease (AD) is the most common form of dementia, accounting for approximately 60% of cases. In addition to memory loss, changes in pain sensitivity are found in a substantial proportion of patients with AD. However, the mechanism of nociception deficits in AD is still unclear. Here, we hypothesize that the nociception abnormality in AD is due to the aberrant activation of striatal-enriched protein tyrosine phosphatase (STEP) signaling, which modulates proteins related to nociception transduction. Our results indicated that the transgenic mice carrying human amyloid precursor protein (APP) gene had lower sensitivity to mechanical and thermal stimulation than the wild-type group at the ages of 6, 9, and 12 months. These APP mice exhibited elevated STEP activity and decreased phosphorylation of proteins involved in nociception transduction in hippocampi. The pharmacological inhibition of STEP activity using TC-2153 further reversed nociception and cognitive deficits in the APP mice. Moreover, the phosphorylation of nociception-related proteins in the APP mice was also rescued after STEP inhibitor treatment, indicating the key role of STEP in nociception alteration. In summary, this study identifies a mechanism for the reduced nociceptive sensitivity in an AD mouse model that could serve as a therapeutic target to improve the quality of life for patients with AD.
Collapse
|
63
|
Abstract
The small non-coding vault RNA (vtRNA) is a component of the vault complex, a ribonucleoprotein complex found in most eukaryotes. vtRNAs regulate a variety of cellular functions when unassociated with the vault complex. Human has four vtRNA paralogs (hvtRNA1-1, hvtRNA1-2, hvtRNA1-3, hvtRNA2-1), which are highly similar and differ only slightly in primary and secondary structure. Despite the increasing research on vtRNAs, a feature that distinguishes one hvtRNA from the others has not been recognized. Recently, we demonstrated that murine vtRNA (mvtRNA) promotes synapse formation by modulating the MAPK signaling pathway. Here we showed that expression ofhvtRNA1-1, but not hvtRNA2-1 increases the expression of synaptic marker proteins, ERK phosphorylation and the number of PSD95 and Synapsin I double positive puncta to an extent similar to that of mvtRNA, suggesting that hvtRNA1-1 may enhance synapse formation. This finding opens new perspectives to uncover the function of the different vtRNA paralogs.
Collapse
Affiliation(s)
- Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Moeka Ohno
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
64
|
Khuleshwari K, Vijay P. Genistein enhances expression of extracellular regulated kinases (ERK) 1/2, and learning and memory of mouse. IBRO Neurosci Rep 2021; 10:90-95. [PMID: 33842915 PMCID: PMC8019993 DOI: 10.1016/j.ibneur.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Genistein (GEN) is a well known phytoestrogen. It acts through estrogen receptor (ER) and performs plethora of functions in the brain. ERK1/2 is an activated kinase which involves in neuron differentiation, adult neurogenesis and several brain functions including learning and memory. However, GEN dependent expression of ERK1/2 and its effect in learning and memory of mice are unknown. In this study, Swiss albino male mice of 25weeks weighing 30 g were used for the experiments. Mice were placed in two groups- control (C) and genistein treated (GEN). Treated group received GEN dissolved in sesame oil (1 mg/kg/day) whereas the control group received sesame oil only. To study the effects of GEN on learning and memory, open-field (OF) test and novel object recognition (NOR) test were performed. Moreover, immunoblotting (IB) was performed to check the expression of ERK1/2 in the mouse brain of both groups. In the OF test, no significant change was observed in motor activity and anxiety in GEN treated mice as compared to control. Moreover, NOR test suggested that entry towards the dissimilar object was higher in case of GEN treated mice as compared to control. These findings suggest higher learning and memory of GEN treated mice than of control. IB showed that the expression of ERK1/2 was significantly high in GEN treated mouse brain as compared to control. Such study may be helpful to understand GEN mediated learning and memory involving ERK1/2.
Collapse
Affiliation(s)
- Kurrey Khuleshwari
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, MP-484 887, India
| | - Paramanik Vijay
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, MP-484 887, India
| |
Collapse
|
65
|
Avchalumov Y, Mandyam CD. Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci 2021; 11:404. [PMID: 33810204 PMCID: PMC8004884 DOI: 10.3390/brainsci11030404] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.
Collapse
Affiliation(s)
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
66
|
Chronic Cyanuric Acid Exposure Depresses Hippocampal LTP but Does Not Disrupt Spatial Learning or Memory in the Morris Water Maze. Neurotox Res 2021; 39:1148-1159. [PMID: 33751468 DOI: 10.1007/s12640-021-00355-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 01/03/2023]
Abstract
Exposure to cyanuric acid (CA) causes multiple organ failure accompanied by the involvement in kinds of target proteins, which are detectable and play central roles in the CNS. The hippocampus has been identified as a brain area which was especially vulnerable in developmental condition associated with cognitive dysfunction. No studies have examined the effects of CA on hippocampal function after in vitro or in vivo treatment. Here, we aimed to examine hippocampal synaptic function and adverse behavioral effects using a rat model administered CA intraperitoneally or intrahippocampally. We found that infusion of CA induced a depression in the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), miniature excitatory postsynaptic currents (mEPSCs), or N-methyl-D-aspartate (NMDA)-mediated excitatory postsynaptic currents (EPSCs) of the CA1 neurons in dose-dependent pattern. Both intraperitoneal and intrahippocampal injections of CA suppressed hippocampal LTP from Schaffer collaterals to CA1 regions. Paired-pulse facilitation (PPF), a presynaptic phenomenon, was enhanced while the total and phosphorylated expression of NMDA-GluN1, NMDA-GluN2A, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-GluA1 subunits were comparable between CA-treated and control groups. In Morris water maze test, both groups could effectively learn and retain spatial memory. Our studies provide the first evidence for the neurotoxic effect of CA and the insight into its potential mechanisms.
Collapse
|
67
|
Differential role of SIRT1/MAPK pathway during cerebral ischemia in rats and humans. Sci Rep 2021; 11:6339. [PMID: 33737560 PMCID: PMC7973546 DOI: 10.1038/s41598-021-85577-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Cerebral ischemia (CI) is a severe cause of neurological dysfunction and mortality. Sirtuin-1 (Silent information regulator family protein 1, SIRT1), an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, plays an important role in protection against several neurodegenerative disorders. The present study aims to investigate the protective role of SIRT1 after CI in experimental young and aged rats and humans. Also, the study examines the possible regulatory mechanisms of neuronal death in CI settings. Immunoblotting and immunohistochemistry were used to evaluate changes in the expression of SIRT1, JNK/ERK/MAPK/AKT signaling, and pro-apoptotic caspase-3 in experimental rats and CI patients. The study findings demonstrated that, in aged experimental rats, SIRT1 activation positively influenced JNK and ERK phosphorylation and modulated neuronal survival in AKT-dependent manner. Further, the protection conferred by SIRT1 was effectively reversed by JNK inhibition and increased pro-apoptotic caspase-3 expression. In young experimental rats, SIRT1 activation decreased the phosphorylation of stress-induced JNK, ERK, caspase-3, and increased the phosphorylation of AKT after CI. Inhibition of SIRT1 reversed the protective effect of resveratrol. More importantly, in human patients, SIRT1 expression, phosphorylation of JNK/ERK/MAPK/AKT signaling and caspase-3 were up-regulated. In conclusion, SIRT1 could possibly be involved in the modulation of JNK/ERK/MAPK/AKT signaling pathway in experimental rats and humans after CI.
Collapse
|
68
|
Barros II, Leão V, Santis JO, Rosa RCA, Brotto DB, Storti CB, Siena ÁDD, Molfetta GA, Silva WA. Non-Syndromic Intellectual Disability and Its Pathways: A Long Noncoding RNA Perspective. Noncoding RNA 2021; 7:ncrna7010022. [PMID: 33799572 PMCID: PMC8005948 DOI: 10.3390/ncrna7010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Non-syndromic intellectual disability (NS-ID or idiopathic) is a complex neurodevelopmental disorder that represents a global health issue. Although many efforts have been made to characterize it and distinguish it from syndromic intellectual disability (S-ID), the highly heterogeneous aspect of this disorder makes it difficult to understand its etiology. Long noncoding RNAs (lncRNAs) comprise a large group of transcripts that can act through various mechanisms and be involved in important neurodevelopmental processes. In this sense, comprehending the roles they play in this intricate context is a valuable way of getting new insights about how NS-ID can arise and develop. In this review, we attempt to bring together knowledge available in the literature about lncRNAs involved with molecular and cellular pathways already described in intellectual disability and neural function, to better understand their relevance in NS-ID and the regulatory complexity of this disorder.
Collapse
Affiliation(s)
- Isabela I. Barros
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Vitor Leão
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Jessica O. Santis
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Reginaldo C. A. Rosa
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Danielle B. Brotto
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Camila B. Storti
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Ádamo D. D. Siena
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Greice A. Molfetta
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Wilson A. Silva
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Center for Integrative Systems Biology-CISBi, NAP/USP, Ribeirão Preto Medical School, University of São Paulo, Rua Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Department of Medicine at the Midwest State University of Paraná-UNICENTRO, and Guarapuava Institute for Cancer Research, Rua Fortim Atalaia, 1900, Cidade dos Lagos, Guarapuava 85100-000, Brazil
- Correspondence: ; Tel.: +55-16-3315-3293
| |
Collapse
|
69
|
Xiong S, Ma M, Xu Y, Wei F, Gu Q, He X, Xu X. Protective effects of peptide FK18 against neuro-excitotoxicity in SH-SY5Y cells. Exp Ther Med 2021; 21:451. [PMID: 33747186 DOI: 10.3892/etm.2021.9880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Excitotoxic neuronal injury is associated with numerous acute and chronic neurological disorders, such as Alzheimer's disease and glaucoma. Neuroprotection is a direct and effective therapeutic approach, with small-molecule bioactive peptides displaying certain advantages, including high membrane permeability, low immunogenicity and convenient synthesis and modification. FK18 is a novel peptide derived from basic fibroblast growth factor, which is a protein with neuroprotective effects. The present study aims to evaluate the neuroprotective effect of FK18 against excitotoxic injury. For this purpose, cell viability was determined by the MTS assay, cell apoptosis was assessed by flow cytometry and the TUNEL assay; expression of antiapoptotic proteins Bcl-2, proapoptotic protein Bax and caspase-3 as well as the phosphorylation of Akt and Erk was estimated by western blotting. The results of the present study demonstrated that FK18 effectively increased the viability of, and attenuated glutamate-induced apoptosis of SH-SY5Y cells. In addition, FK18 significantly increased Akt phosphorylation and decreased Erk phosphorylation in SH-SY5Y cells. FK18 also increased the Bcl-2/Bax ratio and decreased the level of cleaved-caspase-3 in SY5Y cells, which was reversed by the Akt pathway inhibitor LY294002, but not by the Erk pathway inhibitor U0126. The findings of the present study suggested that FK18 may be a promising therapeutic agent for the inhibition of neuronal cell death in multiple neurological diseases involving excitotoxicity.
Collapse
Affiliation(s)
- Shuyu Xiong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| | - Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| | - Xiangui He
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, P.R. China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China.,Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai 200080, P.R. China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P.R. China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, P.R. China
| |
Collapse
|
70
|
Tan B, Babur E, Aşçıoğlu M, Süer C. Effect of L-thyroxine administration on long-term potentiation and accompanying mitogen-activated protein kinases in rats. Int J Dev Neurosci 2021; 81:259-269. [PMID: 33576121 DOI: 10.1002/jdn.10097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
The present study investigated the differences in the activation of c-Jun NH2-terminal kinases (JNK), p38 mitogen-activated protein kinases (p38MAPK ), and extracellular signal-regulated kinases 1/2 (Erk1/2) 1 hr after the induction of long-term potentiation (LTP) between rats with hyperthyroidism that was produced at two different stages of development. Hyperthyroidism was produced in rats by daily injections of L-thyroxine (T4, ip., 0.2 mg/kg) to their dams for lactation period or to the rats itself during the young adult period. LTP was induced by application of high-frequency stimulation protocol. Five-min averages of the excitatory postsynaptic potential (EPSP) slopes and population spike (PS) amplitudes at the end of recording were averaged to measure the magnitude of LTP. Total and phosphorylated levels of Erk1/2, JNK, and P38-MAPK were assessed via western blotting in these hippocampi. LTP was found to be impaired in both groups of hyperthyroidisms, but this impairment observed together with increased expression and phosphorylation of ERK1/2, and increased phosphorylation of JNK in rats treated maternally with T4 compared to those treated adultly. These results suggest that excessiveness of thyroid hormone has longstanding effects on hippocampal function and may account for failed LTP in both early and relatively late stage of development depending on various molecular pathways, such as ERK1/2 and JNK.
Collapse
Affiliation(s)
- Burak Tan
- Department of Physiology, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Ercan Babur
- Department of Physiology, Medical Faculty, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Meral Aşçıoğlu
- Department of Physiology, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Cem Süer
- Department of Physiology, Medical Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
71
|
Abstract
Neurological disorders, including neurodegenerative diseases, have a significant negative impact on both patients and society at large. Since the prevalence of most of these disorders increases with age, the consequences for our aging population are only going to grow. It is now acknowledged that neurological disorders are multi-factorial involving disruptions in multiple cellular systems. While each disorder has specific initiating mechanisms and pathologies, certain common pathways appear to be involved in most, if not all, neurological disorders. Thus, it is becoming increasingly important to identify compounds that can modulate the multiple pathways that contribute to disease development or progression. One of these compounds is the flavonol fisetin. Fisetin has now been shown in preclinical models to be effective at preventing the development and/or progression of multiple neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, stroke (both ischemic and hemorrhagic) and traumatic brain injury as well as to reduce age-associated changes in the brain. These beneficial effects stem from its actions on multiple pathways associated with the different neurological disorders. These actions include its well characterized anti-inflammatory and anti-oxidant effects as well as more recently described effects on the regulated cell death oxytosis/ferroptosis pathway, the gut microbiome and its senolytic activity. Therefore, the growing body of pre-clinical data, along with fisetin’s ability to modulate a large number of pathways associated with brain dysfunction, strongly suggest that it would be worthwhile to pursue its therapeutic effects in humans.
Collapse
Affiliation(s)
- Pamela Maher
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA
| |
Collapse
|
72
|
Tahir MS, Almezgagi M, Zhang Y, Bashir A, Abdullah HM, Gamah M, Wang X, Zhu Q, Shen X, Ma Q, Ali M, Solangi ZA, Malik WS, Zhang W. Mechanistic new insights of flavonols on neurodegenerative diseases. Biomed Pharmacother 2021; 137:111253. [PMID: 33545661 DOI: 10.1016/j.biopha.2021.111253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023] Open
Abstract
With a large and increasing elderly population, neurodegenerative diseases such as Parkinson's disease (PD), Huntington disease (HD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and Multiple sclerosis (MS) have become a major and growing health problem. During the past few decades, the elderly population has grown 2.5 % every year. Unfortunately, there are no specific therapeutic remedies available to slow the onset or development of these diseases. An aging brain causes many pathophysiological changes and is the major risk factor for most of the neurodegenerative disorders. Polyphenolic compounds such as flavonols have shown therapeutic potential and can contribute to the treatment of these diseases. In this review, evidence for the beneficial neuroprotective effect of multiple flavonols is discussed and their multifactorial cellular pathways for the progressions of age-associated brain changes are identified. Moreover, the animal models of these diseases support the neuroprotective effect and target the potential of flavonols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Shoaib Tahir
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Maged Almezgagi
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Adnan Bashir
- Department of Pharmacology, Fatima Memorial College of Medicine and Dentistry, Punjab Lahore, 54000, Pakistan
| | - Hasnat Mazhar Abdullah
- Department of Emergency Medicine, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, MK6 5BY, United Kingdom
| | - Mohammed Gamah
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Xiaozhou Wang
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China
| | - Qinfang Zhu
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China
| | - Xiangqun Shen
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Qianqian Ma
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Muhammad Ali
- Department of Hepatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai, Xining, 810001, China
| | - Zeeshan Ahmed Solangi
- Department of Crop Genetics and Breeding, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Waseem Sami Malik
- Department of Hepatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai, Xining, 810001, China
| | - Wei Zhang
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China.
| |
Collapse
|
73
|
Costanzo F, Alfieri P, Caciolo C, Bergonzini P, Perrino F, Zampino G, Leoni C, Menghini D, Digilio MC, Tartaglia M, Vicari S, Carlesimo GA. Recognition Memory in Noonan Syndrome. Brain Sci 2021; 11:169. [PMID: 33572736 PMCID: PMC7910957 DOI: 10.3390/brainsci11020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/17/2022] Open
Abstract
Noonan syndrome (NS) and the clinically related NS with multiple lentiginous (NMLS) are genetic conditions characterized by upregulated RAS mitogen activated protein kinase (RAS-MAPK) signaling, which is known to impact hippocampus-dependent memory formation and consolidation. The aim of the present study was to provide a detailed characterization of the recognition memory of children and adolescents with NS/NMLS. We compared 18 children and adolescents affected by NS and NMLS with 22 typically developing (TD) children, matched for chronological age and non-verbal Intelligence Quotient (IQ), in two different experimental paradigms, to assess familiarity and recollection: a Process Dissociation Procedure (PDP) and a Task Dissociation Procedure (TDP). Differences in verbal skills between groups, as well as chronological age, were considered in the analysis. Participants with NS and NSML showed reduced recollection in the PDP and impaired associative recognition in the TDP, compared to controls. These results indicate poor recollection in the recognition memory of participants with NS and NSML, which cannot be explained by intellectual disability or language deficits. These results provide evidence of the role of mutations impacting RAS-MAPK signaling in the disruption of hippocampal memory formation and consolidation.
Collapse
Affiliation(s)
- Floriana Costanzo
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
| | - Paolo Alfieri
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
| | - Cristina Caciolo
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
| | - Paola Bergonzini
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
| | - Francesca Perrino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.P.); (G.Z.); (C.L.)
- Rehabilitation Center UILMD Lazio Onlus, 00167 Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.P.); (G.Z.); (C.L.)
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.P.); (G.Z.); (C.L.)
| | - Deny Menghini
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.T.)
- Medical Genetics, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.T.)
| | - Stefano Vicari
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giovanni Augusto Carlesimo
- Laboratory of Clinical and Behavioral Neurology, Santa Lucia Foundation, 00179 Rome, Italy;
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
74
|
Tadjalli A, Seven YB, Perim RR, Mitchell GS. Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity. J Neuroinflammation 2021; 18:28. [PMID: 33468163 PMCID: PMC7816383 DOI: 10.1186/s12974-021-02074-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation undermines multiple forms of neuroplasticity. Although inflammation and its influence on plasticity in multiple neural systems has been extensively studied, its effects on plasticity of neural networks controlling vital life functions, such as breathing, are less understood. In this study, we investigated the signaling mechanisms whereby lipopolysaccharide (LPS)-induced systemic inflammation impairs plasticity within the phrenic motor system—a major spinal respiratory motor pool that drives contractions of the diaphragm muscle. Here, we tested the hypotheses that lipopolysaccharide-induced systemic inflammation (1) blocks phrenic motor plasticity by a mechanism that requires cervical spinal okadaic acid-sensitive serine/threonine protein phosphatase (PP) 1/2A activity and (2) prevents phosphorylation/activation of extracellular signal-regulated kinase 1/2 mitogen activated protein kinase (ERK1/2 MAPK)—a key enzyme necessary for the expression of phrenic motor plasticity. Methods To study phrenic motor plasticity, we utilized a well-characterized model for spinal respiratory plasticity called phrenic long-term facilitation (pLTF). pLTF is characterized by a long-lasting, progressive enhancement of inspiratory phrenic nerve motor drive following exposures to moderate acute intermittent hypoxia (mAIH). In anesthetized, vagotomized and mechanically ventilated adult Sprague Dawley rats, we examined the effect of inhibiting cervical spinal serine/threonine PP 1/2A activity on pLTF expression in sham-vehicle and LPS-treated rats. Using immunofluorescence optical density analysis, we compared mAIH-induced phosphorylation/activation of ERK 1/2 MAPK with and without LPS-induced inflammation in identified phrenic motor neurons. Results We confirmed that mAIH-induced pLTF is abolished 24 h following low-dose systemic LPS (100 μg/kg, i.p.). Cervical spinal delivery of the PP 1/2A inhibitor, okadaic acid, restored pLTF in LPS-treated rats. LPS also prevented mAIH-induced enhancement in phrenic motor neuron ERK1/2 MAPK phosphorylation. Thus, a likely target for the relevant okadaic acid-sensitive protein phosphatases is ERK1/2 MAPK or its upstream activators. Conclusions This study increases our understanding of fundamental mechanisms whereby inflammation disrupts neuroplasticity in a critical population of motor neurons necessary for breathing, and highlights key roles for serine/threonine protein phosphatases and ERK1/2 MAPK kinase in the plasticity of mammalian spinal respiratory motor circuits.
Collapse
Affiliation(s)
- Arash Tadjalli
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Raphael R Perim
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA.
| |
Collapse
|
75
|
Carbamazepine Restores Neuronal Signaling, Protein Synthesis, and Cognitive Function in a Mouse Model of Fragile X Syndrome. Int J Mol Sci 2020; 21:ijms21239327. [PMID: 33297570 PMCID: PMC7731004 DOI: 10.3390/ijms21239327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Fragile X syndrome (FXS) is a leading genetic disorder of intellectual disability caused by the loss of the functional fragile X mental retardation protein (FMRP). To date, there is no efficacious mechanism-based medication for FXS. With regard to potential disease mechanisms in FXS, it is widely accepted that the lack of FMRP causes elevated protein synthesis and deregulation of neuronal signaling. Abnormal enhancement of the ERK½ (extracellular signal-regulated kinase ½) and PI3K-Akt (Phosphoinositide 3 kinase-protein kinase B) signaling pathways has been identified in both FXS patients and FXS mouse models. In this study, we show that carbamazepine, which is an FDA-approved drug and has been mainly used to treat seizure and neuropathic pain, corrects cognitive deficits including passive avoidance and object location memory in FXS mice. Carbamazepine also rescues hyper locomotion and social deficits. At the cellular level, carbamazepine dampens the elevated level of ERK½ and Akt signaling as well as protein synthesis in FXS mouse neurons. Together, these results advocate repurposing carbamazepine for FXS treatment.
Collapse
|
76
|
Porru S, Maccioni R, Bassareo V, Peana AT, Salamone JD, Correa M, Acquas E. Effects of caffeine on ethanol-elicited place preference, place aversion and ERK phosphorylation in CD-1 mice. J Psychopharmacol 2020; 34:1357-1370. [PMID: 33103552 DOI: 10.1177/0269881120965892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Epidemiological studies indicate a rise in the combined consumption of caffeinated and alcoholic beverages, which can lead to increased risk of alcoholic-beverage overconsumption. However, the effects of the combination of caffeine and ethanol in animal models related to aspects of drug addiction are still underexplored. AIMS To characterize the pharmacological interaction between caffeine and ethanol and establish if caffeine can affect the ability of ethanol (2 g/kg) to elicit conditioned place preference and conditioned place aversion, we administered caffeine (3 or 15 mg/kg) to male CD-1 mice before saline or ethanol. Moreover, we determined if these doses of caffeine could affect ethanol (2 g/kg) elicited extracellular signal-regulated kinase phosphorylation in brain areas, nucleus accumbens, bed nucleus of stria terminalis, central nucleus of the amygdala, and basolateral amygdala, previously associated with this type of associative learning. RESULTS In the place-conditioning paradigm, caffeine did not have an effect on its own, whereas ethanol elicited significant conditioned-place preference and conditioned-place aversion. Caffeine (15 mg/kg) significantly prevented the acquisition of ethanol-elicited conditioned-place preference and, at both doses, also prevented the acquisition of ethanol-elicited conditioned-place aversion. Moreover, both doses of caffeine also prevented ethanol-elicited extracellular signal-regulated kinase phosphorylation expression in all brain areas examined. CONCLUSIONS The present data indicate a functional antagonistic action of caffeine and ethanol on associative learning and extracellular signal-regulated kinase phosphorylation after an acute interaction. These results could provide exciting grounds for further studies, also in a translational perspective, of their pharmacological interaction modulating other processes involved in drug consumption and addiction.
Collapse
Affiliation(s)
- Simona Porru
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy.,Department of Psychobiology, University Jaume I, Castelló, Spain
| | - Riccardo Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, USA
| | - Mercè Correa
- Department of Psychobiology, University Jaume I, Castelló, Spain
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy.,Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| |
Collapse
|
77
|
Chen B, Zhao J, Zhang R, Zhang L, Zhang Q, Yang H, An J. Neuroprotective effects of natural compounds on neurotoxin-induced oxidative stress and cell apoptosis. Nutr Neurosci 2020; 25:1078-1099. [PMID: 33164705 DOI: 10.1080/1028415x.2020.1840035] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species, along with the failure of balancing effects of endogenous antioxidant defenses result in destruction of cellular structures, lipids, proteins, and genetic material, which lead to oxidative stress. Oxidative stress-induced neuronal apoptosis plays a pivotal role in pathogenesis of neurodegeneration. Antioxidants represent one of the medical choice strategies for protecting against this unbalanced oxidation-antioxidation status. Recently, natural compounds with neuroprotective potential that can scavenge free radicals and protect cells from oxidative damage have received extensive attention. METHODS In this review, we summarized the detailed research progress on the medicinal plants-derived natural compounds with potential anti-oxidation effects and their molecular mechanisms on modulating the neurotoxin (6-OHDA, H2O2, glutamate, Aβ)-induced oxidative stress and cell apoptosis. RESULTS The natural compounds that efficacious in modulating reactive species production and mitochondrial function include flavonoids, glucosides, alkaloids, polyphenols, lignans, coumarins, terpenoids, quinones and others. They decreased the neurotoxin-induced oxidative damage and apoptosis by (1) decreasing ROS/RNS generation, lipid peroxidation, caspase-3 and caspase-9 activities, LDH release, the ratio of Bax/Bcl-2, Ca2+ influx and cytochrome c release, (2) elevating MMP, and (3) restoring endogenous antioxidant enzymatic activities (CAT, GSH-Px, GSR, SOD). And they exerted neuroprotective effects against cell damages and apoptosis by modulating the oxidative cascades of different signaling pathways (Nrf2/HO-1, NF-κB, MAPKs, PI3K/Akt, GSK-3β) and preventing mitochondria-dependent apoptosis pathways. DISCUSSION The present work reviews the role of oxidative stress in neurodegeneration, highlighting the potential anti-oxidation effects of natural compounds as a promising approach to develop innovative neuroprotective strategy.
Collapse
Affiliation(s)
- Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Jingjing Zhao
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Rui Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Lingling Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Qian Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| |
Collapse
|
78
|
Liu A, Ji H, Ren Q, Meng Y, Zhang H, Collingride G, Xie W, Jia Z. The Requirement of the C-Terminal Domain of GluA1 in Different Forms of Long-Term Potentiation in the Hippocampus Is Age-Dependent. Front Synaptic Neurosci 2020; 12:588785. [PMID: 33192442 PMCID: PMC7661473 DOI: 10.3389/fnsyn.2020.588785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Long-term potentiation (LTP) at glutamatergic synapses is an extensively studied form of long-lasting synaptic plasticity widely regarded as the cellular basis for learning and memory. At the CA1 synapse, there are multiple forms of LTP with distinct properties. Although AMPA glutamate receptors (AMPARs) are a key target of LTP expression, whether they are required in all forms of LTP remains unclear. To address this question, we have used our recently developed mouse line, GluA1C2KI, where the c-terminal domain (CTD) of the endogenous GluA1 is replaced by that of GluA2. Unlike traditional GluA1 global or conditional KO mice, GluA1C2KI mice have no changes in basal AMPAR properties or synaptic transmission allowing a better assessment of GluA1 in synaptic plasticity. We previously showed that these mice are impaired in LTP induced by high-frequency stimulation (HFS-LTP), but whether other forms of LTP are also affected in these mice is unknown. In this study, we compared various forms of LTP at CA1 synapses between GluA1C2KI and wild-type littermates by using several induction protocols. We show that HFS-LTP is impaired in both juvenile and adult GluA1C2KI mice. The LTP induced by theta-burst stimulation (TBS-LTP) is also abolished in juvenile GluA1C2KI mice. Interestingly, TBS-LTP can still be induced in adult GluA1C2KI mice, but its mechanisms are altered becoming more sensitive to protein synthesis and the extracellular signal-regulated kinase (ERK) inhibitors compared to wild type (WT) control. The GluA1C2KI mice are also differentially altered in several forms of LTP induced under whole-cell recording paradigms. These results indicate that the CTD of GluA1 is differentially involved in different forms of LTP at CA1 synapse highlighting the complexity and adaptative potential of LTP expression mechanisms in the hippocampus.
Collapse
Affiliation(s)
- An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Jiangsu Co-Innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Hong Ji
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Jiangsu Co-Innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Qiaoyun Ren
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Jiangsu Co-Innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Yanghong Meng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haiwang Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Graham Collingride
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Jiangsu Co-Innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Zhengping Jia
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
79
|
Brakatselos C, Delis F, Asprogerakas MZ, Lekkas P, Tseti I, Tzimas PS, Petrakis EA, Halabalaki M, Skaltsounis LA, Antoniou K. Cannabidiol Modulates the Motor Profile and NMDA Receptor-related Alterations Induced by Ketamine. Neuroscience 2020; 454:105-115. [PMID: 32950556 DOI: 10.1016/j.neuroscience.2020.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/01/2023]
Abstract
Cannabidiol (CBD) is a non-addictive ingredient of cannabis with antipsychotic potential, while ketamine (KET), an uncompetitive NMDA receptor inhibitor, has been extensively used as a psychotomimetic. Only few studies have focused on the role of CBD on the KET-induced motor profile, while no study has investigated the impact of CBD on KET-induced alterations in NMDA receptor subunit expression and ERK phosphorylation state, in brain regions related to the neurobiology and treatment of schizophrenia. Therefore, the aim of the present study is to evaluate the role of CBD on KET-induced motor response and relevant glutamatergic signaling in the prefrontal cortex, the nucleus accumbens, the dorsal and ventral hippocampus. The present study demonstrated that CBD pre-administration did not reverse KET-induced short-lasting hyperactivity, but it prolonged it over time. CBD alone decreased motor activity at the highest dose tested (30 mg/kg) while KET increased motor activity at the higher doses (30, 60 mg/kg). Moreover, KET induced regionally-dependent alterations in NR1 and NR2B expression and ERK phosphorylation that were reversed by CBD pre-administration. Interestingly, in the nucleus accumbens KET per se reduced NR2B and p-ERK levels, while the CBD/KET combination increased NR2B and p-ERK levels, as compared to control. This study is the first to show that CBD prolongs KET-induced motor stimulation and restores KET-induced effects on glutamatergic signaling and neuroplasticity-related markers. These findings contribute to the understanding of CBD effects on the behavioral and neurobiological profiles of psychotogenic KET.
Collapse
Affiliation(s)
- Charalampos Brakatselos
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Michail-Zois Asprogerakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Lekkas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ioulia Tseti
- INTERMED: Pharmaceutical Laboratories Ioulia and Eirini Tseti, Kaliftaki 27, 14564 Athens, Greece
| | - Petros S Tzimas
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Eleftherios A Petrakis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Leandros A Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
80
|
Dhuriya YK, Sharma D. Neuronal Plasticity: Neuronal Organization is Associated with Neurological Disorders. J Mol Neurosci 2020; 70:1684-1701. [PMID: 32504405 DOI: 10.1007/s12031-020-01555-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Stimuli from stressful events, attention in the classroom, and many other experiences affect the functionality of the brain by changing the structure or reorganizing the connections between neurons and their communication. Modification of the synaptic transmission is a vital mechanism for generating neural activity via internal or external stimuli. Neuronal plasticity is an important driving force in neuroscience research, as it is the basic process underlying learning and memory and is involved in many other functions including brain development and homeostasis, sensorial training, and recovery from brain injury. Indeed, neuronal plasticity has been explored in numerous studies, but it is still not clear how neuronal plasticity affects the physiology and morphology of the brain. Thus, unraveling the molecular mechanisms of neuronal plasticity is essential for understanding the operation of brain functions. In this timeline review, we discuss the molecular mechanisms underlying different forms of synaptic plasticity and their association with neurodegenerative/neurological disorders as a consequence of alterations in neuronal plasticity.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India. .,CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology-Delhi (IIT-D), Delhi, 110016, India.
| |
Collapse
|
81
|
Charsouei S, Jabalameli MR, Karimi-Moghadam A. Molecular insights into the role of AMPA receptors in the synaptic plasticity, pathogenesis and treatment of epilepsy: therapeutic potentials of perampanel and antisense oligonucleotide (ASO) technology. Acta Neurol Belg 2020; 120:531-544. [PMID: 32152997 DOI: 10.1007/s13760-020-01318-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Glutamate is considered as the predominant excitatory neurotransmitter in the mammalian central nervous systems (CNS). Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the main glutamate-gated ionotropic channels that mediate the majority of fast synaptic excitation in the brain. AMPARs are highly dynamic that constitutively move into and out of the postsynaptic membrane. Changes in the postsynaptic number of AMPARs play a key role in controlling synaptic plasticity and also brain functions such as memory formation and forgetting development. Impairments in the regulation of AMPAR function, trafficking, and signaling pathway may also contribute to neuronal hyperexcitability and epileptogenesis process, which offers AMPAR as a potential target for epilepsy therapy. Over the last decade, various types of AMPAR antagonists such as perampanel and talampanel have been developed to treat epilepsy, but they usually show limited efficacy at low doses and produce unwanted cognitive and motor side effects when administered at higher doses. In the present article, the latest findings in the field of molecular mechanisms controlling AMPAR biology, as well as the role of these mechanism dysfunctions in generating epilepsy will be reviewed. Also, a comprehensive summary of recent findings from clinical trials with perampanel, in treating epilepsy, glioma-associated epilepsy and Parkinson's disease is provided. Finally, antisense oligonucleotide therapy as an alternative strategy for the efficient treatment of epilepsy is discussed.
Collapse
Affiliation(s)
- Saeid Charsouei
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - M Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Amin Karimi-Moghadam
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, IR, Iran.
| |
Collapse
|
82
|
Wang J, Gao X, Wang Y, Wang M, Ge C, Liu Z, Xie XE, Chen Z, Song J, Lu C. The physiological modulation by intracellular kinases of hippocampal γ-oscillation in vitro. Am J Physiol Cell Physiol 2020; 318:C879-C888. [PMID: 32023074 DOI: 10.1152/ajpcell.00199.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hippocampal network oscillations at gamma frequency band (γ-oscillation, 20-80 Hz) are synchronized synaptic activities generated by the interactions between the excitatory and inhibitory interneurons and are associated with higher brain function such as learning and memory. Despite extensive studies about the modulation of intracellular kinases on synaptic transmission and plasticity, little is known about the effects of these kinases on γ-oscillations. In this study, we examined the effects of several critical intracellular kinases such as cyclic AMP-dependent protein kinase (PKA), protein kinase B (PKB)/Akt, protein kinase C (PKC), extracellular-regulated protein kinases (ERK) and AMP-activated protein kinase (AMPK), known to regulate synaptic transmission, on hippocampal γ-oscillations in vitro. We found that AMPK inhibitor but not PKA, PKC, or ERK inhibitor, strongly enhanced the power of γ-oscillation (γ-power) and that Akt inhibitor weakly increased γ-power. Western blot analysis confirmed that AMPK inhibitor reduced the expression of p-AMPK but not total AMPK. By using the slice whole cell voltage-clamp technique, we found that AMPK inhibitor increased the frequency but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSC) and had no effect on either frequency or amplitude of spontaneous excitatory postsynaptic currents (sEPSC). Therefore, AMPK activation negatively modulates hippocampal γ-oscillation via modulation of the inhibitory neurons.
Collapse
Affiliation(s)
- JianGang Wang
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Neurorestoratology, The first Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People's Republic of China.,The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - XiaHuan Gao
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - YaLi Wang
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - MengMeng Wang
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - ChunBo Ge
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - ZhiHua Liu
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Xin-E Xie
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - ZhengYue Chen
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - JingGui Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - ChengBiao Lu
- International Joint Lab of Noninvasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
83
|
Guinart D, Moreno E, Galindo L, Cuenca-Royo A, Barrera-Conde M, Pérez EJ, Fernández-Avilés C, Correll CU, Canela EI, Casadó V, Cordomi A, Pardo L, de la Torre R, Pérez V, Robledo P. Altered Signaling in CB1R-5-HT2AR Heteromers in Olfactory Neuroepithelium Cells of Schizophrenia Patients is Modulated by Cannabis Use. Schizophr Bull 2020; 46:1547-1557. [PMID: 32249318 PMCID: PMC7846100 DOI: 10.1093/schbul/sbaa038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Schizophrenia (SCZ) has been associated with serotonergic and endocannabinoid systems dysregulation, but difficulty in obtaining in vivo neurological tissue has limited its exploration. We investigated CB1R-5-HT2AR heteromer expression and functionality via intracellular pERK and cAMP quantification in olfactory neuroepithelium (ON) cells of SCZ patients non-cannabis users (SCZ/nc), and evaluated whether cannabis modulated these parameters in patients using cannabis (SCZ/c). Results were compared vs healthy controls non-cannabis users (HC/nc) and healthy controls cannabis users (HC/c). Further, antipsychotic effects on heteromer signaling were tested in vitro in HC/nc and HC/c. Results indicated that heteromer expression was enhanced in both SCZ groups vs HC/nc. Additionally, pooling all 4 groups together, heteromer expression correlated with worse attentional performance and more neurological soft signs (NSS), indicating that these changes may be useful markers for neurocognitive impairment. Remarkably, the previously reported signaling properties of CB1R-5-HT2AR heteromers in ON cells were absent, specifically in SCZ/nc treated with clozapine. These findings were mimicked in cells from HC/nc exposed to clozapine, suggesting a major role of this antipsychotic in altering the quaternary structure of the CB1R-5-HT2AR heteromer in SCZ/nc patients. In contrast, cells from SCZ/c showed enhanced heteromer functionality similar to HC/c. Our data highlight a molecular marker of the interaction between antipsychotic medication and cannabis use in SCZ with relevance for future studies evaluating its association with specific neuropsychiatric alterations.
Collapse
Affiliation(s)
- Daniel Guinart
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, Barcelona, Spain,Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain,Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, New York, NY
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Galindo
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, Barcelona, Spain,Department of Psychiatry, University of Cambridge, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Aida Cuenca-Royo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Marta Barrera-Conde
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain,Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Ezequiel J Pérez
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, Barcelona, Spain
| | | | - Christoph U Correll
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, New York, NY,Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Arnau Cordomi
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor Pérez
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, Barcelona, Spain,Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental G21, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Research Institute, Barcelona, Spain,Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain,To whom correspondence should be addressed; IMIM-Hospital del Mar Research Institute, PRBB, Calle Dr. Aiguader 88, Barcelona 08003, Spain; telephone: +34 93 316 0455; e-mail:
| |
Collapse
|
84
|
Behavioral abnormalities and phosphorylation deficits of extracellular signal-regulated kinases 1 and 2 in rat offspring of the maternal immune activation model. Physiol Behav 2020; 217:112805. [DOI: 10.1016/j.physbeh.2020.112805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/31/2022]
|
85
|
Specificity of synapse formation in Aplysia: paracrine and autocrine signaling regulates bidirectional molecular interactions between sensory and non-target motor neurons. Sci Rep 2020; 10:5222. [PMID: 32251363 PMCID: PMC7089980 DOI: 10.1038/s41598-020-62099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/02/2020] [Indexed: 12/01/2022] Open
Abstract
The formation of appropriate neural connections during development is critical for the proper wiring and functioning of the brain. Although considerable research suggests that the specificity of synapse formation is supported by complex intercellular signaling between potential presynaptic and postsynaptic partners, the extracellular factors and the intracellular signal transduction pathways engaged in this process remain largely unknown. Using the sensory-motor neural circuit that contributes to learning in defensive withdrawal reflexes in Aplysia californica, we investigated the molecular processes governing the interactions between sensory neurons and both target and non-target motor neurons during synapse formation in culture. We found that evolutionarily-conserved intercellular and intracellular signaling mechanisms critical for learning-related plasticity are also engaged during synaptogenesis in this in vitro model system. Our results reveal a surprising bidirectional regulation of molecular signaling between sensory neurons and non-target motor neurons. This regulation is mediated by signaling via both paracrine and autocrine diffusible factors that induce differential effects on transcription and on protein expression/activation in sensory neurons and in target and non-target motor neurons. Collectively, our data reveal novel molecular mechanisms that could underlie the repression of inappropriate synapse formation, and suggest mechanistic similarities between developmental and learning-related plasticity.
Collapse
|
86
|
Youssef MM, Abd El-Latif HA, El-Yamany MF, Georgy GS. Aliskiren and captopril improve cognitive deficits in poorly controlled STZ-induced diabetic rats via amelioration of the hippocampal P-ERK, GSK3β, P-GSK3β pathway. Toxicol Appl Pharmacol 2020; 394:114954. [PMID: 32171570 DOI: 10.1016/j.taap.2020.114954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
Learning and memory deficits are obvious symptoms that develop over time in patients with poorly controlled diabetes. Hyperactivity of the renin-angiotensin system (RAS) is directly associated with β-cell dysfunction and diabetic complications, including cognitive impairment. Here, we investigated the protective and molecular effects of two RAS modifiers, aliskiren; renin inhibitor and captopril; angiotensin converting enzyme inhibitor, on cognitive deficits in the rat hippocampus. Injection of low dose streptozotocin for 4 days resulted in type 1 diabetes. Then, poorly controlled diabetes was mimicked with ineffective daily doses of insulin for 4 weeks. The hyperglycaemia and pancreatic atrophy caused memory disturbance that were identifiable in behavioural tests, hippocampal neurodegeneration, and the following significant changes in the hippocampus, increases in the inflammatory marker interleukin 1β, cholinesterase, the oxidative stress marker malondialdehyde and protein expression of phosphorylated extracellular-signal-regulated kinase and glycogen synthase kinase-3 beta versus decrease in the antioxidant reduced glutathione and protein expression of phosphorylated glycogen synthase kinase-3 beta. Blocking RAS with either drugs along with insulin amended all previously mentioned parameters. Aliskiren stabilized the blood glucose level and restored normal pancreatic integrity and hippocampal malondialdehyde level. Aliskiren showed superior protection against the hippocampal degeneration displayed in the earlier behavioural modification in the passive avoidance test, and the aliskiren group outperformed the control group in the novel object recognition test. We therefore conclude that aliskiren and captopril reversed the diabetic state and cognitive deficits in rats with poorly controlled STZ-induced diabetes through reducing oxidative stress and inflammation and modulating protein expression.
Collapse
Affiliation(s)
- Madonna M Youssef
- Department of Pharmacology, National organization for drug control and research (NODCAR), Giza, Egypt.
| | - H A Abd El-Latif
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - M F El-Yamany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - Gehan S Georgy
- Department of Pharmacology, National organization for drug control and research (NODCAR), Giza, Egypt
| |
Collapse
|
87
|
Alexandrescu A, Carew TJ. Postsynaptic effects of Aplysia cysteine-rich neurotrophic factor in the induction of activity-dependent long-term facilitation in Aplysia californica. ACTA ACUST UNITED AC 2020; 27:124-129. [PMID: 32179654 PMCID: PMC7079570 DOI: 10.1101/lm.051011.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
Abstract
The spatial and temporal coordination of growth factor signaling is critical for both presynaptic and postsynaptic plasticity underlying long-term memory formation. We investigated the spatiotemporal dynamics of Aplysia cysteine-rich neurotrophic factor (ApCRNF) signaling during the induction of activity-dependent long-term facilitation (AD-LTF) at sensory-to-motor neuron synapses that mediate defensive reflexes in Aplysia We found that ApCRNF signaling is required for the induction of AD-LTF, and for training-induced early protein kinase activation and late forms of gene expression, exclusively in postsynaptic neurons. These results support the view that ApCRNF is critically involved in AD-LTF at least in part through postsynaptic mechanisms.
Collapse
Affiliation(s)
- Anamaria Alexandrescu
- Neuroscience Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Thomas J Carew
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
88
|
Kang T, Qu Q, Xie Z, Cao B. NDRG4 Alleviates Aβ1–40 Induction of SH-SY5Y Cell Injury via Activation of BDNF-Inducing Signalling Pathways. Neurochem Res 2020; 45:1492-1499. [DOI: 10.1007/s11064-020-03011-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
|
89
|
Hou Y, Qi F, Bai X, Ren T, Shen X, Chu Q, Zhang X, Lu X. Genome-wide analysis reveals molecular convergence underlying domestication in 7 bird and mammals. BMC Genomics 2020; 21:204. [PMID: 32131728 PMCID: PMC7057487 DOI: 10.1186/s12864-020-6613-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background In response to ecological niche of domestication, domesticated mammals and birds developed adaptively phenotypic homoplasy in behavior modifications like fearlessness, altered sociability, exploration and cognition, which partly or indirectly result in consequences for economic productivity. Such independent adaptations provide an excellent model to investigate molecular mechanisms and patterns of evolutionary convergence driven by artificial selection. Results First performing population genomic and brain transcriptional comparisons in 68 wild and domesticated chickens, we revealed evolutionary trajectories, genetic architectures and physiologic bases of adaptively behavioral alterations. To extensively decipher molecular convergence on behavioral changes thanks to domestication, we investigated selection signatures in hundreds of genomes and brain transcriptomes across chicken and 6 other domesticated mammals. Although no shared substitution was detected, a common enrichment of the adaptive mutations in regulatory sequences was observed, presenting significance to drive adaptations. Strong convergent pattern emerged at levels of gene, gene family, pathway and network. Genes implicated in neurotransmission, semaphorin, tectonic protein and modules regulating neuroplasticity were central focus of selection, supporting molecular repeatability of homoplastic behavior reshapes. Genes at nodal positions in trans-regulatory networks were preferably targeted. Consistent down-regulation of majority brain genes may be correlated with reduced brain size during domestication. Up-regulation of splicesome genes in chicken rather mammals highlights splicing as an efficient way to evolve since avian-specific genomic contraction of introns and intergenics. Genetic burden of domestication elicits a general hallmark. The commonly selected genes were relatively evolutionary conserved and associated with analogous neuropsychiatric disorders in human, revealing trade-off between adaption to life with human at the cost of neural changes affecting fitness in wild. Conclusions After a comprehensive investigation on genomic diversity and evolutionary trajectories in chickens, we revealed basis, pattern and evolutionary significance of molecular convergence in domesticated bird and mammals, highlighted the genetic basis of a compromise on utmost adaptation to the lives with human at the cost of high risk of neurophysiological changes affecting animals’ fitness in wild.
Collapse
Affiliation(s)
- Yali Hou
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,China National Center for Bioinformation, Beijing, People's Republic of China.
| | - Furong Qi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xue Bai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Tong Ren
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xu Shen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Xuemei Lu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, People's Republic of China.
| |
Collapse
|
90
|
The Relationship Between Glutamate Dynamics and Activity-Dependent Synaptic Plasticity. J Neurosci 2020; 40:2793-2807. [PMID: 32102922 DOI: 10.1523/jneurosci.1655-19.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The spatiotemporal dynamics of excitatory neurotransmission must be tightly regulated to achieve efficient synaptic communication. By limiting spillover, glutamate transporters are believed to prevent excessive activation of extrasynaptically located receptors that can impair synaptic plasticity. While glutamate transporter expression is reduced in numerous neurodegenerative diseases, the contributions of transporter dysfunction to disease pathophysiology remain ambiguous as the fundamental relationship between glutamate dynamics and plasticity, and the mechanisms linking these two phenomena, remain poorly understood. Here, we combined electrophysiology and real-time high-speed imaging of extracellular glutamate transients during LTP induction and characterized the sensitivity of the relationship between glutamate dynamics during theta burst stimulation (TBS) and the resulting magnitude of LTP consolidation, both in control conditions and following selective and nonselective glutamate transporter blockade. Glutamate clearance times were negatively correlated with LTP magnitude following nonselective glutamate transporter inhibition but not following selective blockade of a majority of GLT-1, the brain's most abundant glutamate transporter. Although glutamate transporter inhibition reduced the postsynaptic population response to TBS, calcium responses to TBS were greatly exaggerated. The source of excess calcium was dependent on NMDARs, L-type VGCCs, GluA2-lacking AMPARs, and internal calcium stores. Surprisingly, inhibition of L-type VGCCs, but not GluA2-lacking AMPARs or ryanodine receptors, was required to restore robust LTP. In all, these data provide a detailed understanding of the relationship between glutamate dynamics and plasticity and uncover important mechanisms by which poor glutamate uptake can negatively impact LTP consolidation.SIGNIFICANCE STATEMENT Specific patterns of neural activity can promote long-term changes in the strength of synaptic connections through a phenomenon known as synaptic plasticity. Synaptic plasticity is well accepted to represent the cellular mechanisms underlying learning and memory, and many forms of plasticity are initiated by the excitatory neurotransmitter glutamate. While essential for rapid cellular communication in the brain, excessive levels of extracellular glutamate can negatively impact brain function. In this study, we demonstrate that pharmacological manipulations that increase the availability of extracellular glutamate during neural activity can have profoundly negative consequences on synaptic plasticity. We identify mechanisms through which excess glutamate can negatively influence synaptic plasticity, and we discuss the relevance of these findings to neurodegenerative diseases and in the aging brain.
Collapse
|
91
|
Antidepressant-Like Effects and Cognitive Enhancement of Coadministration of Chaihu Shugan San and Fluoxetine: Dependent on the BDNF-ERK-CREB Signaling Pathway in the Hippocampus and Frontal Cortex. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2794263. [PMID: 32185198 PMCID: PMC7060874 DOI: 10.1155/2020/2794263] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/08/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Background Fluoxetine (FLU) is the first-line and widely used medication for depression; however, FLU treatment is almost ineffective in 30%-40% of patients with depression. In addition, there are some problems in FLU treatment, such as delayed efficacy, large side effects, and poor tolerance. Chaihu Shugan San (CSS) is a classic and effective antidepressant Chinese herbal medicine that has been used in China for thousands of years. CSS or coadministration of CSS and FLU has become one of the most recommended methods in the treatment of depression in China. However, the specific pathways of CSS and coadministration of CSS and FLU for antidepressant are still unclear. Objective This study was designed to evaluate the antidepressant effects of CSS and coadministration of CSS and FLU. Methods The chronic unpredictable mild stress (CUMS) rat model was used to simulate depression. 120 healthy adult male Sprague-Dawley (SD) rats were randomly divided into seven groups: the control group, CUMS group, low-dose CSS group, high-dose CSS group, FLU group, coadministration of low-dose CSS and FLU group, and coadministration of high-dose CSS and FLU group. The rats in different groups were given different interventions. Then, the depression-like behavior and cognitive function were evaluated by the sucrose preference test (SPT), forced swimming test (FST), open field test (OFT), and Y-maze test. What is more, the antidepressant mechanism of CSS and coadministration of CSS and FLU were studied through BDNF mRNA, ERK mRNA, CREB mRNA, BDNF, p-ERK/ERK, and p-CREB/CREB levels in the hippocampus and frontal cortex by Western blot and RT-PCR. Results Compared with the CUMS group, CSS and coadministration of CSS and FLU could alleviate the depressive symptoms and improve cognitive function in CUMS rats (p < 0.05); CSS and coadministration of CSS and FLU could increase the expression of BDNF, p-CREB/CREB, p-ERK/ERK, and BDNF mRNA, CREB mRNA, and ERK mRNA in the hippocampus and frontal cortex (p < 0.05); CSS and coadministration of CSS and FLU could increase the expression of BDNF, p-CREB/CREB, p-ERK/ERK, and BDNF mRNA, CREB mRNA, and ERK mRNA in the hippocampus and frontal cortex (p < 0.05); CSS and coadministration of CSS and FLU could increase the expression of BDNF, p-CREB/CREB, p-ERK/ERK, and BDNF mRNA, CREB mRNA, and ERK mRNA in the hippocampus and frontal cortex (Discussion and Conclusion. Finally, we found that both CSS and coadministration of CSS and FLU play an antidepressant role, which may be due to the regulation of the BDNF/ERK/CREB signaling pathway in the hippocampus and frontal cortex. Among them, the coadministration of CSS and FLU can enhance the antidepressant effect of CSS or FLU alone, and the underlying mechanism needs further investigation.
Collapse
|
92
|
Yan T, Nian T, Wu B, Xiao F, He B, Bi K, Jia Y. Okra polysaccharides can reverse the metabolic disorder induced by high-fat diet and cognitive function injury in Aβ 1-42 mice. Exp Gerontol 2019; 130:110802. [PMID: 31794852 DOI: 10.1016/j.exger.2019.110802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/28/2019] [Indexed: 01/04/2023]
Abstract
Epidemiological studies showed that a high-fat diet threatened human health seriously. It can induce various diseases, such as obesity, metabolic disturbance and cognitive dysfunction which also related to insulin signaling. In the present study, Aβ1-42 induced AD model mice and normal mice were given a standard diet and high-fat diet, respectively. Meanwhile, Okra polysaccharides were used to treat AD mice to explore the possible mechanism between Alzheimer's disease and insulin signals. Weight and blood glucose of mice were measured weekly. Through the Morris water maze and the novel object recognition test, the Okra polysaccharides could improve the cognitive impairment of the AD mice. In addition, we also performed the serum chemistry analysis of mice, studied the histopathological changes in the hippocampal CA1 region by HE staining and detected the expressions of AKT, PI3K, ERK1/2, and GSK3β in the hippocampus by western blot. These results suggested that a high-fat diet can aggravate the metabolic disorder in AD mice and Okra polysaccharides can significantly reverse the metabolic disorder induced by high-fat diet and cognitive function injury in AD mice.
Collapse
Affiliation(s)
- Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingting Nian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Feng Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
93
|
Li ML, Wu SH, Zhang JJ, Tian HY, Shao Y, Wang ZB, Irwin DM, Li JL, Hu XT, Wu DD. 547 transcriptomes from 44 brain areas reveal features of the aging brain in non-human primates. Genome Biol 2019; 20:258. [PMID: 31779658 PMCID: PMC6883628 DOI: 10.1186/s13059-019-1866-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Brain aging is a complex process that depends on the precise regulation of multiple brain regions; however, the underlying molecular mechanisms behind this process remain to be clarified in non-human primates. RESULTS Here, we explore non-human primate brain aging using 547 transcriptomes originating from 44 brain areas in rhesus macaques (Macaca mulatta). We show that expression connectivity between pairs of cerebral cortex areas as well as expression symmetry between the left and right hemispheres both decrease after aging. Although the aging mechanisms across different brain areas are largely convergent, changes in gene expression and alternative splicing vary at diverse genes, reinforcing the complex multifactorial basis of aging. Through gene co-expression network analysis, we identify nine modules that exhibit gain of connectivity in the aged brain and uncovered a hub gene, PGLS, underlying brain aging. We further confirm the functional significance of PGLS in mice at the gene transcription, molecular, and behavioral levels. CONCLUSIONS Taken together, our study provides comprehensive transcriptomes on multiple brain regions in non-human primates and provides novel insights into the molecular mechanism of healthy brain aging.
Collapse
Affiliation(s)
- Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Shi-Hao Wu
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Hang-Yu Tian
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zheng-Bo Wang
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jia-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- National Research Facility for Phenotypic and Genetic Analysis of Model Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- National Research Facility for Phenotypic and Genetic Analysis of Model Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
94
|
Intergenerational effect of parental spatial training on offspring learning: Evidence for sex differences in memory function. Brain Res Bull 2019; 153:314-323. [DOI: 10.1016/j.brainresbull.2019.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
|
95
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
96
|
Bessières B, Jia M, Travaglia A, Alberini CM. Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat basolateral amygdala. ACTA ACUST UNITED AC 2019; 26:436-448. [PMID: 31615855 PMCID: PMC6796789 DOI: 10.1101/lm.049866.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023]
Abstract
The basolateral complex of amygdala (BLA) processes emotionally arousing aversive and rewarding experiences. The BLA is critical for acquisition and storage of threat-based memories and the modulation of the consolidation of arousing explicit memories, that is, the memories that are encoded and stored by the medial temporal lobe. In addition, in conjunction with the medial prefrontal cortex (mPFC), the BLA plays an important role in fear memory extinction. The BLA develops relatively early in life, but little is known about the molecular changes that accompany its development. Here, we quantified relative basal expression levels of sets of plasticity, synaptic, glia, and connectivity proteins in the rat BLA at various developmental ages: postnatal day 17 (PN17, infants), PN24 (juveniles), and PN80 (young adults). We found that the levels of activation markers of brain plasticity, including phosphorylation of CREB at Ser133, CamKIIα at Thr286, pERK1/pERK2 at Thr202/Tyr204, and GluA1 at Ser831 and Ser845, were significantly higher in infant and juvenile compared with adult brain. In contrast, age increase was accompanied by a significant augmentation in the levels of proteins that mark synaptogenesis and synapse maturation, such as synaptophysin, PSD95, SynCAM, GAD65, GAD67, and GluN2A/GluN2B ratio. Finally, we observed significant age-associated changes in structural markers, including MAP2, MBP, and MAG, suggesting that the structural connectivity of the BLA increases over time. The biological differences in the BLA between developmental ages compared with adulthood suggest the need for caution in extrapolating conclusions based on BLA-related brain plasticity and behavioral studies conducted at different developmental stages.
Collapse
Affiliation(s)
- Benjamin Bessières
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Margaret Jia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
97
|
Bae-Gartz I, Janoschek R, Breuer S, Schmitz L, Hoffmann T, Ferrari N, Branik L, Oberthuer A, Kloppe CS, Appel S, Vohlen C, Dötsch J, Hucklenbruch-Rother E. Maternal Obesity Alters Neurotrophin-Associated MAPK Signaling in the Hypothalamus of Male Mouse Offspring. Front Neurosci 2019; 13:962. [PMID: 31572115 PMCID: PMC6753176 DOI: 10.3389/fnins.2019.00962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose Maternal obesity has emerged as an important risk factor for the development of metabolic disorders in the offspring. The hypothalamus as the center of energy homeostasis regulation is known to function based on complex neuronal networks that evolve during fetal and early postnatal development and maintain their plasticity into adulthood. Development of hypothalamic feeding networks and their functional plasticity can be modulated by various metabolic cues, especially in early stages of development. Here, we aimed at determining the underlying molecular mechanisms that contribute to disturbed hypothalamic network formation in offspring of obese mouse dams. Methods Female mice were fed either a control diet (CO) or a high-fat diet (HFD) after weaning until mating and during pregnancy and gestation. Male offspring was sacrificed at postnatal day (P) 21. The hypothalamus was subjected to gene array analysis, quantitative PCR and western blot analysis. Results P21 HFD offspring displayed increased body weight, circulating insulin levels, and strongly increased activation of the hypothalamic insulin signaling cascade with a concomitant increase in ionized calcium binding adapter molecule 1 (IBA1) expression. At the same time, the global gene expression profile in CO and HFD offspring differed significantly. More specifically, manifest influences on several key pathways of hypothalamic neurogenesis, axogenesis, and regulation of synaptic transmission and plasticity were detectable. Target gene expression analysis revealed significantly decreased mRNA expression of several neurotrophic factors and co-factors and their receptors, accompanied by decreased activation of their respective intracellular signal transduction. Conclusion Taken together, these results suggest a potential role for disturbed neurotrophin signaling and thus impaired neurogenesis, axogenesis, and synaptic plasticity in the pathogenesis of the offspring’s hypothalamic feeding network dysfunction due to maternal obesity.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Thorben Hoffmann
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Nina Ferrari
- Heart Center, Cologne Center for Prevention in Childhood and Youth, University Hospital of Cologne, Cologne, Germany
| | - Lena Branik
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Andre Oberthuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Cora-Sophia Kloppe
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
98
|
Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim YK. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109668. [PMID: 31207274 DOI: 10.1016/j.pnpbp.2019.109668] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence demonstrating that dysfunction of glutamatergic neurotransmission, particularly via N-methyl-d-aspartate (NMDA) receptors, is involved in the pathophysiology of major depressive disorder (MDD). Several studies have revealed an altered expression of NMDA receptor subtypes and impaired NMDA receptor-mediated intracellular signaling pathways in brain circuits of patients with MDD. Clinical studies have demonstrated that NMDA receptor antagonists, particularly ketamine, have rapid antidepressant effects in treatment-resistant depression, however, neurobiological mechanisms are not completely understood. Growing body of evidence suggest that signal transduction pathways involved in synaptic plasticity play critical role in molecular mechanisms underlying rapidly acting antidepressant properties of ketamine and other NMDAR antagonists in MDD. Discovering the molecular mechanisms underlying the unique antidepressant actions of ketamine will facilitate the development of novel fast acting antidepressants which lack undesirable effects of ketamine. This review provides a critical examination of the NMDA receptor involvement in the neurobiology of MDD including analyses of alterations in NMDA receptor subtypes and their interactive signaling cascades revealed by postmortem studies. Furthermore, to elucidate mechanisms underlying rapid-acting antidepressant properties of NMDA receptor antagonists we discussed their effects on the neuroplasticity, mostly based on signaling systems involved in synaptic plasticity of mood-related neurocircuitries.
Collapse
Affiliation(s)
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; New Jersey Institute of Technology, Newark, NJ, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; Department of Psychiatry, University Tuebingen, Germany
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
99
|
Potential Benefits of Nobiletin, A Citrus Flavonoid, against Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20143380. [PMID: 31295812 PMCID: PMC6678479 DOI: 10.3390/ijms20143380] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD), which is characterized by the presence of amyloid-β (Aβ) plaques and neurofibrillary tangles, accompanied by neurodegeneration, is the most common form of age-related neurodegenerative disease. Parkinson’s disease (PD) is the second most common neurodegenerative disease after AD, and is characterized by early prominent loss of dopaminergic neurons in the substantia nigra pars compacta. As currently available treatments are not able to significantly alter the progression of these diseases, successful therapeutic and preventive interventions are strongly needed. In the course of our survey of substances from natural resources having anti-dementia and neuroprotective activity, we found nobiletin, a polymethoxylated flavone from the peel of Citrus depressa. Nobiletin improved cognitive deficits and the pathological features of AD, such as Aβ pathology, hyperphosphorylation of tau, and oxidative stress, in animal models of AD. In addition, nobiletin improved motor and cognitive deficits in PD animal models. These observations suggest that nobiletin has the potential to become a novel drug for the treatment and prevention of neurodegenerative diseases such as AD and PD.
Collapse
|
100
|
Fahim A, Rehman Z, Bhatti MF, Virk N, Ali A, Rashid A, Paracha RZ. The Route to 'Chemobrain' - Computational probing of neuronal LTP pathway. Sci Rep 2019; 9:9630. [PMID: 31270411 PMCID: PMC6610097 DOI: 10.1038/s41598-019-45883-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy causes deleterious side effects during the course of cancer management. The toxic effects may be extended to CNS chronically resulting in altered cognitive function like learning and memory. The present study follows a computational assessment of 64 chemotherapeutic drugs for their off-target interactions against the major proteins involved in neuronal long term potentiation pathway. The cancer chemo-drugs were subjected to induced fit docking followed by scoring alignment and drug-targets interaction analysis. The results were further probed by electrostatic potential computation and ligand binding affinity prediction of the top complexes. The study identified novel off-target interactions by Dactinomycin, Temsirolimus, and Everolimus against NMDA, AMPA, PKA and ERK2, while Irinotecan, Bromocriptine and Dasatinib were top interacting drugs for CaMKII. This study presents with basic foundational knowledge regarding potential chemotherapeutic interference in LTP pathway which may modulate neurotransmission and synaptic plasticity in patient receiving these chemotherapies.
Collapse
Affiliation(s)
- Ammad Fahim
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Zaira Rehman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Nasar Virk
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
- EBS Universität für Wirtschaft und Recht, EBS Business School, Rheingaustrasse 1, Oestrich-Winkel, 65375, Germany
| | - Amjad Ali
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amir Rashid
- Department of Biochemistry, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modeling and Simulation, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|