51
|
Černý J, Božíková P, Balík A, Marques SM, Vyklický L. NMDA Receptor Opening and Closing-Transitions of a Molecular Machine Revealed by Molecular Dynamics. Biomolecules 2019; 9:biom9100546. [PMID: 31569344 PMCID: PMC6843686 DOI: 10.3390/biom9100546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Abstract
We report the first complete description of the molecular mechanisms behind the transition of the N-methyl-d-aspartate (NMDA) receptor from the state where the transmembrane domain (TMD) and the ion channel are in the open configuration to the relaxed unliganded state where the channel is closed. Using an aggregate of nearly 1 µs of unbiased all-atom implicit membrane and solvent molecular dynamics (MD) simulations we identified distinct structural states of the NMDA receptor and revealed functionally important residues (GluN1/Glu522, GluN1/Arg695, and GluN2B/Asp786). The role of the "clamshell" motion of the ligand binding domain (LBD) lobes in the structural transition is supplemented by the observed structural similarity at the level of protein domains during the structural transition, combined with the overall large rearrangement necessary for the opening and closing of the receptor. The activated and open states of the receptor are structurally similar to the liganded crystal structure, while in the unliganded receptor the extracellular domains perform rearrangements leading to a clockwise rotation of up to 45 degrees around the longitudinal axis of the receptor, which closes the ion channel. The ligand-induced rotation of extracellular domains transferred by LBD-TMD linkers to the membrane-anchored ion channel is responsible for the opening and closing of the transmembrane ion channel, revealing the properties of NMDA receptor as a finely tuned molecular machine.
Collapse
Affiliation(s)
- Jiří Černý
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Paulína Božíková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Aleš Balík
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.
| | - Ladislav Vyklický
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
52
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
53
|
Brzosko Z, Mierau SB, Paulsen O. Neuromodulation of Spike-Timing-Dependent Plasticity: Past, Present, and Future. Neuron 2019; 103:563-581. [DOI: 10.1016/j.neuron.2019.05.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
|
54
|
Circuit-specific control of the medial entorhinal inputs to the dentate gyrus by atypical presynaptic NMDARs activated by astrocytes. Proc Natl Acad Sci U S A 2019; 116:13602-13610. [PMID: 31152131 PMCID: PMC6612919 DOI: 10.1073/pnas.1816013116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we investigated the properties of presynaptic N-methyl-d-aspartate receptors (pre-NMDARs) at corticohippocampal excitatory connections between perforant path (PP) afferents and dentate granule cells (GCs), a circuit involved in memory encoding and centrally affected in Alzheimer's disease and temporal lobe epilepsy. These receptors were previously reported to increase PP release probability in response to gliotransmitters released from astrocytes. Their activation occurred even under conditions of elevated Mg2+ and lack of action potential firing in the axons, although how this could be accomplished was unclear. We now report that these pre-NMDARs contain the GluN3a subunit conferring them low Mg2+ sensitivity. GluN3a-containing NMDARs at PP-GC synapses are preponderantly presynaptic vs. postsynaptic and persist beyond the developmental period. Moreover, they are expressed selectively at medial-not lateral-PP axons and act to functionally enhance release probability specifically of the medial perforant path (MPP) input to GC dendrites. By controlling release probability, GluN3a-containing pre-NMDARs also control the dynamic range for long-term potentiation (LTP) at MPP-GC synapses, an effect requiring Ca2+ signaling in astrocytes. Consistent with the functional observations, GluN3a subunits in MPP terminals are localized at sites away from the presynaptic release sites, often facing astrocytes, in line with a primary role for astrocytic inputs in their activation. Overall, GluN3A-containing pre-NMDARs emerge as atypical modulators of dendritic computations in the MPP-GC memory circuit.
Collapse
|
55
|
Lenoir S, Varangot A, Lebouvier L, Galli T, Hommet Y, Vivien D. Post-synaptic Release of the Neuronal Tissue-Type Plasminogen Activator (tPA). Front Cell Neurosci 2019; 13:164. [PMID: 31105531 PMCID: PMC6491899 DOI: 10.3389/fncel.2019.00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
The neuronal serine protease tissue-type Plasminogen Activator (tPA) is an important player of the neuronal survival and of the synaptic plasticity. Thus, a better understanding the mechanisms regulating the neuronal trafficking of tPA is required to further understand how tPA can influence brain functions. Using confocal imaging including living cells and high-resolution cell imaging combined with an innovating labeling of tPA, we demonstrate that the neuronal tPA is contained in endosomal vesicles positives for Rabs and in exosomal vesicles positives for synaptobrevin-2 (VAMP2) in dendrites and axons. tPA-containing vesicles differ in their dynamics with the dendritic tPA containing-vesicles less mobile than the axonal tPA-containing vesicles, these laters displaying mainly a retrograde trafficking. Interestingly spontaneous exocytosis of tPA containing-vesicles occurs largely in dendrites.
Collapse
Affiliation(s)
- Sophie Lenoir
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Alexandre Varangot
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Laurent Lebouvier
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Thierry Galli
- Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris, France
| | - Yannick Hommet
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France.,Department of Clinical Research, Caen University Hospital, CHU Caen, Caen, France
| |
Collapse
|
56
|
Padamsey Z, Tong R, Emptage N. Optical Quantal Analysis Using Ca 2+ Indicators: A Robust Method for Assessing Transmitter Release Probability at Excitatory Synapses by Imaging Single Glutamate Release Events. Front Synaptic Neurosci 2019; 11:5. [PMID: 30886576 PMCID: PMC6409341 DOI: 10.3389/fnsyn.2019.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Despite evidence that presynaptic efficacy and plasticity influence circuit function and behavior in vivo, studies of presynaptic function remain challenging owing to the difficulty of assessing transmitter release in intact tissue. Electrophysiological analyses of transmitter release are indirect and cannot readily resolve basic presynaptic parameters, most notably transmitter release probability (p r), at single synapses. These issues can be circumvented by optical quantal analysis, which uses the all-or-none optical detection of transmitter release in order to calculate p r. Over the past two decades, we and others have successfully demonstrated that Ca2+ indicators can be strategically implemented to perform optical quantal analysis at single glutamatergic synapses in ex vivo and in vitro preparations. We have found that high affinity Ca2+ indicators can reliably detect spine Ca2+ influx generated by single quanta of glutamate, thereby enabling precise calculation of pr at single synapses. Importantly, we have shown this method to be robust to changes in postsynaptic efficacy, and to be sensitive to activity-dependent presynaptic changes at central synapses following the induction of long-term potentiation (LTP) and long-term depression (LTD). In this report, we describe how to use Ca2+-sensitive dyes to perform optical quantal analysis at single synapses in hippocampal slice preparations. The general technique we describe here can be applied to other glutamatergic synapses and can be used with other reporters of glutamate release, including recently improved genetically encoded Ca2+ and glutamate sensors. With ongoing developments in imaging techniques and genetically encoded probes, optical quantal analysis is a promising strategy for assessing presynaptic function and plasticity in vivo.
Collapse
Affiliation(s)
- Zahid Padamsey
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rudi Tong
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Nigel Emptage
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
57
|
Mateos-Aparicio P, Rodríguez-Moreno A. The Impact of Studying Brain Plasticity. Front Cell Neurosci 2019; 13:66. [PMID: 30873009 PMCID: PMC6400842 DOI: 10.3389/fncel.2019.00066] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pedro Mateos-Aparicio
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | | |
Collapse
|
58
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
59
|
Olivero G, Vergassola M, Cisani F, Usai C, Pittaluga A. Immuno-Pharmacological Characterization of Presynaptic GluN3A-Containing NMDA Autoreceptors: Relevance to Anti-NMDA Receptor Autoimmune Diseases. Mol Neurobiol 2019; 56:6142-6155. [PMID: 30734226 DOI: 10.1007/s12035-019-1511-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/24/2019] [Indexed: 01/22/2023]
Abstract
Mouse hippocampal glutamatergic nerve endings express presynaptic release-regulating NMDA autoreceptors (NMDARs). The presence of GluN1, GluN2A, GluN2B, and GluN3A subunits in hippocampal vesicular glutamate transporter type 1-positive synaptosomes was confirmed with confocal microscopy. GluN2C, GluN2D, and GluN3B immunopositivity was scarcely present. Incubation of synaptosomes with the anti-GluN1, the anti-GluN2A, the anti-GluN2B, or the anti-GluN3A antibody prevented the 30 μM NMDA/1 μM glycine-evoked [3H]D-aspartate ([3H]D-ASP) release. The NMDA/glycine-evoked [3H]D-ASP release was reduced by increasing the external protons, consistent with the participation of GluN1 subunits lacking the N1 cassette to the receptor assembly. The result also excludes the involvement of GluN1/GluN3A dimers into the NMDA-evoked overflow. Complement (1:300) released [3H]D-ASP in a dizocilpine-sensitive manner, suggesting the participation of a NMDAR-mediated component in the releasing activity. Accordingly, the complement-evoked glutamate overflow was reduced in anti-GluN-treated synaptosomes when compared to the control. We speculated that incubation with antibodies had favored the internalization of NMDA receptors. Indeed, a significant reduction of the GluN1 and GluN2B proteins in the plasma membranes of anti-GluN1 or anti-GluN2B antibody-treated synaptosomes emerged in biotinylation studies. Altogether, our findings confirm the existence of presynaptic GluN3A-containing release-regulating NMDARs in mouse hippocampal glutamatergic nerve endings. Furthermore, they unveil presynaptic alteration of the GluN subunit insertion in synaptosomal plasma membranes elicited by anti-GluN antibodies that might be relevant to the central alterations occurring in patients suffering from autoimmune anti-NMDA diseases.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Matteo Vergassola
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Francesca Cisani
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, via De Marini 6, 16149, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy. .,IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
60
|
Tendilla-Beltrán H, Antonio Vázquez-Roque R, Judith Vázquez-Hernández A, Garcés-Ramírez L, Flores G. Exploring the Dendritic Spine Pathology in a Schizophrenia-related Neurodevelopmental Animal Model. Neuroscience 2019; 396:36-45. [DOI: 10.1016/j.neuroscience.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/17/2018] [Accepted: 11/08/2018] [Indexed: 01/17/2023]
|
61
|
Falcón-Moya R, Sihra TS, Rodríguez-Moreno A. Kainate Receptors: Role in Epilepsy. Front Mol Neurosci 2018; 11:217. [PMID: 29988380 PMCID: PMC6023982 DOI: 10.3389/fnmol.2018.00217] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023] Open
Abstract
Kainate (KA) is a potent neurotoxin that has been widely used experimentally to induce acute brain seizures and, after repetitive treatments, as a chronic model of temporal lobe epilepsy (TLE), with similar features to those observed in human patients with TLE. However, whether KA activates KA receptors (KARs) as an agonist to mediate the induction of acute seizures and/or the chronic phase of epilepsy, or whether epileptogenic effects of the neurotoxin are indirect and/or mediated by other types of receptors, has yet to be satisfactorily elucidated. Positing a direct involvement of KARs in acute seizures induction, as well as a direct pathophysiological role of KARs in the chronic phase of TLE, recent studies have examined the specific subunit compositions of KARs that might underly epileptogenesis. In the present mini-review, we discuss the use of KA as a convulsant in the experimental models of acute seizures of TLE, and consider the involvement of KARs, their subunit composition and the mode of action in KAR-mediated epilepsy. In acute models, evidence points to epileptogenesis being precipitated by an overall depression of interneuron GABAergic transmission mediated by GluK1 containing KARs. On glutamatergic principal cell in the hippocampus, GluK2-containing KARs regulate post-synaptic excitability and susceptibility to KA-mediated epileptogenesis. In chronic models, a role GluK2-containing KARs in the hippocampal CA3 region provokes limbic seizures. Also observed in the hippocampus, is a ‘reactive plasticity’, where MF sprouting is seen with target granule cells at aberrant synapses recruiting de novo GluR2/GluR5 heteromeric KARs. Finally, in human epilepsy and animal models, astrocytic expression of GluK1, 2, 4, and 5 is reported.
Collapse
Affiliation(s)
- Rafael Falcón-Moya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Sevilla, Spain
| | - Talvinder S Sihra
- Department of Physiology, Pharmacology and Neuroscience, University College London, London, United Kingdom
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
62
|
NMDA Receptors Containing GluN2B/2C/2D Subunits Mediate an Increase in Glutamate Release at Hippocampal CA3–CA1 Synapses. Mol Neurobiol 2018; 56:1694-1706. [DOI: 10.1007/s12035-018-1187-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
|
63
|
Negrete-Díaz JV, Sihra TS, Flores G, Rodríguez-Moreno A. Non-canonical Mechanisms of Presynaptic Kainate Receptors Controlling Glutamate Release. Front Mol Neurosci 2018; 11:128. [PMID: 29731708 PMCID: PMC5920280 DOI: 10.3389/fnmol.2018.00128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023] Open
Abstract
A metabotropic modus operandi for kainate receptors (KARs) was first discovered in 1998 modulating GABA release. These receptors have been also found to modulate glutamate release at different synapses in several brain regions. Mechanistically, a general biphasic mechanism for modulating glutamate release by presynaptic KARs with metabotropic actions has emerged, with low KA concentrations invoking an increase in glutamate release, whereas higher concentrations of KA mediate a decrease in the release of this neurotransmitter. The molecular mechanisms underpinning the opposite modulation of glutamate release are distinct, with a G-protein-independent, adenylate cyclase (AC)- and protein kinase A (PKA)-dependent mechanism mediating the facilitation of glutamate release, while a G-protein dependent mechanism (with or without protein kinase recruitment) is involved in the decrease of neurotransmitter release. In the present review, we revisit the mechanisms underlying the non-canonical modus operandi of KARs effecting the bimodal control of glutamatergic transmission in different brain regions, and address the possible functions that this modulation may support.
Collapse
Affiliation(s)
- José V Negrete-Díaz
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.,División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Guanajuato, Mexico
| | - Talvinder S Sihra
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| |
Collapse
|
64
|
Ladislav M, Cerny J, Krusek J, Horak M, Balik A, Vyklicky L. The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate. Front Mol Neurosci 2018; 11:113. [PMID: 29681798 PMCID: PMC5897735 DOI: 10.3389/fnmol.2018.00113] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the central nervous system, underlie the induction of synaptic plasticity, and their malfunction is associated with human diseases. Native NMDARs are tetramers composed of two obligatory GluN1 subunits and various combinations of GluN2A-D or, more rarely, GluN3A-B subunits. Each subunit consists of an amino-terminal, ligand-binding, transmembrane and carboxyl-terminal domain. The ligand-binding and transmembrane domains are interconnected via polypeptide chains (linkers). Upon glutamate and glycine binding, these receptors undergo a series of conformational changes leading to the opening of the Ca2+-permeable ion channel. Here we report that different deletions and mutations of amino acids in the M3-S2 linkers of the GluN1 and GluN2B subunits lead to constitutively open channels. Irrespective of whether alterations were introduced in the GluN1 or the GluN2B subunit, application of glutamate or glycine promoted receptor channel activity; however, responses induced by the GluN1 agonist glycine were larger, on average, than those induced by glutamate. We observed the most prominent effect when residues GluN1(L657) and GluN2B(I655) were deleted or altered to glycine. In parallel, molecular modeling revealed that two interacting pairs of residues, the LILI motif (GluN1(L657) and GluN2B(I655)), form a functional unit with the TTTT ring (GluN1(T648) and GluN2B(T647)), described earlier to control NMDAR channel gating. These results provide new insight into the structural organization and functional interplay of the LILI and the TTTT ring during the course of NMDAR channel opening and closing.
Collapse
Affiliation(s)
- Marek Ladislav
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University in Prague, Albertov, Czechia
| | - Jiri Cerny
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Krusek
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Horak
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ales Balik
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ladislav Vyklicky
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|