51
|
Dos Santos Silva PM, Albuquerque PBS, de Oliveira WF, Coelho LCBB, Dos Santos Correia MT. Glycosylation products in prostate diseases. Clin Chim Acta 2019; 498:52-61. [PMID: 31400314 DOI: 10.1016/j.cca.2019.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Although prostate cancer is notable for its high incidence and mortality in men worldwide, its identification remains a challenge. Biomarkers have been useful tools for the specific detection of prostate cancer. Unfortunately, benign prostate diseases cause similar alterations in screening assays thus reducing the potential for early and specific diagnosis. Changes in glycan and glycoprotein expression have often been associated with the onset and progression of cancer. Abnormal glycans and glycoproteins have been reported as new biomarkers of prostate metabolism that can distinguish benign prostate disease and cancer in non-aggressive and aggressive stages. Carbohydrate-binding proteins known as lectins have been valuable tools to detect these changes, investigate potential biomarkers and improve our understanding aberrant glycosylation in cancer. Here we review progress in elucidating prostate disease and discuss the roles of glycans in the differential detection of benign and cancerous prostate disease. We also summarize the lectin-based tools for detecting glycosylation changes.
Collapse
Affiliation(s)
- Priscila Marcelino Dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | | | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50.670-901 Recife, PE, Brazil.
| |
Collapse
|
52
|
Brinc M, Belič A. Optimization of process conditions for mammalian fed-batch cell culture in automated micro-bioreactor system using genetic algorithm. J Biotechnol 2019; 300:40-47. [PMID: 31071344 DOI: 10.1016/j.jbiotec.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Recombinant proteins produced by mammalian cell culture technology represent an important segment of therapeutic molecules. Development of their manufacturing processes is a time- and resource-consuming task. A wide array of process conditions, e.g. physico-chemical parameters, medium composition, feeding strategy, needs to be optimized to design a commercially feasible process with the desired productivity and product characteristics. Traditionally, statistical experimental designs, i.e. design-of-experiments methodology, have been used for such optimizations. However, statistical design approach has several limitations related to high dimensionality of the explored parameter space originating from the complexity of the mammalian cell culture processes. An alternative is therefore desired to overcome these limitations. In this study, we have successfully used a simple genetic algorithm as a method of experimental design for optimization of mammalian cell culture processes for two recombinant cell lines, one expressing a monoclonal antibody and one an Fc-fusion protein. Harnessing the automation capability of a robotically driven micro-bioreactor system to execute the genetic algorithm-derived experiments, a set of 14 process parameters was optimized within 132 experiments per cell line (six generations of 22 experiments), showing the feasibility of this approach as an alternative to classical statistical experimental designs.
Collapse
Affiliation(s)
- Matjaž Brinc
- Bioprocess development, Technical Development Biologics, Novartis Technical Research & Development, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia.
| | - Aleš Belič
- Predictive analytics and modelling, Technical Development Biologics, Novartis Technical Research & Development, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia
| |
Collapse
|
53
|
Relating glycoprotein structural heterogeneity to function - insights from native mass spectrometry. Curr Opin Struct Biol 2019; 58:241-248. [PMID: 31326232 PMCID: PMC7104348 DOI: 10.1016/j.sbi.2019.05.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
Abstract
Glycosylation is the most complex and prevalent protein modification that influences attributes ranging from cellular localization and signaling to half-life and proteolysis. Glycoconjugates are fundamental for cellular function and alterations in their structure are often observed in pathological states. Most biotherapeutic proteins are glycosylated, which influences drug safety and efficacy. Therefore, the ability to characterize glycoproteins is important in all areas of biomolecular and medicinal research. Here we discuss recent advances in native mass spectrometry that have significantly improved our ability to characterize heterogeneous glycoproteins and to relate glycan structure to protein function.
Collapse
|
54
|
Shurer CR, Wang Y, Feeney E, Head SE, Zhang VX, Su J, Cheng Z, Stark MA, Bonassar LJ, Reesink HL, Paszek MJ. Stable recombinant production of codon-scrambled lubricin and mucin in human cells. Biotechnol Bioeng 2019; 116:1292-1303. [PMID: 30684357 PMCID: PMC6764099 DOI: 10.1002/bit.26940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/03/2019] [Accepted: 01/24/2019] [Indexed: 12/23/2022]
Abstract
Widespread therapeutic and commercial interest in recombinant mucin technology has emerged due to the unique ability of mucin glycoproteins to hydrate, protect, and lubricate biological surfaces. However, recombinant production of the large, highly repetitive domains that are characteristic of mucins remains a challenge in biomanufacturing likely due, at least in part, to the inherent instability of DNA repeats in the cellular genome. To overcome this challenge, we exploit codon redundancy to encode desired mucin polypeptides with minimal nucleotide repetition. The codon-scrambling strategy was applied to generate synonymous genes, or "synDNAs," for two mucins of commercial interest: lubricin and mucin 1. Stable, long-term recombinant production in suspension-adapted human 293-F cells was demonstrated for the synonymous lubricin complementary DNA (cDNA), which we refer to as SynLubricin. Under optimal conditions, a 293-F subpopulation produced recombinant SynLubricin at more than 200 mg/L of media and was stable throughout 2 months of continuous culture. Functionality tests confirmed that the recombinant lubricin could effectively inhibit cell adhesion and lubricate cartilage explants. Together, our work provides a viable workflow for cDNA design and stable mucin production in mammalian host production systems.
Collapse
Affiliation(s)
- Carolyn R. Shurer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Yuyan Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Elizabeth Feeney
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Shelby E. Head
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Victoria X. Zhang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Zhu Cheng
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Morgan A. Stark
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Matthew J. Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
55
|
Mohammadian O, Rajabibazl M, Pourmaleki E, Bayat H, Ahani R, Rahimpour A. Development of an improved lentiviral based vector system for the stable expression of monoclonal antibody in CHO cells. Prep Biochem Biotechnol 2019; 49:822-829. [PMID: 31156045 DOI: 10.1080/10826068.2019.1621893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) have become the dominant products in biopharmaceutical industry. Mammalian cell expression systems including Chinese hamster ovary (CHO) cells are the most commonly used hosts for the production of complex recombinant proteins. However, development of stable, high producing CHO cell lines suffers from the low expression level and instability of the transgene. The increasing efforts in the development of novel therapeutic antibodies and the advent of biosimilars have revealed the necessity for the development of improved platforms for rapid production of products for initial characterization and testing. In line with this premise, vector design and engineering has been applied to improve the expression level and stability of the transgene. This study reports the application of an improved lentiviral vector system containing the human interferon-β scaffold attachment region (IFN-SAR) for the development of antibody producing stable CHO cells. mAb expressing clones producing 1100 µg/L of IgG1 monoclonal antibody were isolated without extensive screening of a large number of clones. Our results here indicate the positive effects of IFN-SAR on stable mAb expression using lentiviral based expression vectors. We also observed that although IFN-SAR can improve light chain (LC) and heavy chain (HC) gene copy numbers in stable cell pools, mAb expression in single cell clones was not affected by the transgene copy number.
Collapse
Affiliation(s)
- Omid Mohammadian
- a Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Masoumeh Rajabibazl
- a Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Es'hagh Pourmaleki
- b Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,c Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Hadi Bayat
- b Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,d Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University , Tehran , Iran
| | - Roshanak Ahani
- b Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Azam Rahimpour
- b Nano-Technology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,c Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
56
|
Lakshmanan M, Kok YJ, Lee AP, Kyriakopoulos S, Lim HL, Teo G, Poh SL, Tang WQ, Hong J, Tan AH, Bi X, Ho YS, Zhang P, Ng SK, Lee D. Multi‐omics profiling of CHO parental hosts reveals cell line‐specific variations in bioprocessing traits. Biotechnol Bioeng 2019; 116:2117-2129. [DOI: 10.1002/bit.27014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/03/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Meiyappan Lakshmanan
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Alison P. Lee
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Sarantos Kyriakopoulos
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Hsueh Lee Lim
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Gavin Teo
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Swan Li Poh
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Wen Qin Tang
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Jongkwang Hong
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Andy Hee‐Meng Tan
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Xuezhi Bi
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Ying Swan Ho
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Peiqing Zhang
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Say Kong Ng
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
| | - Dong‐Yup Lee
- Bioprocessing Technology InstituteAgency for Science, Technology and Research (A*STAR) Singapore
- School of Chemical EngineeringSungkyunkwan UniversitySuwon Republic of Korea
| |
Collapse
|
57
|
Zhu J, Hatton D. New Mammalian Expression Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:9-50. [PMID: 28585079 DOI: 10.1007/10_2016_55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are an increasing number of recombinant antibodies and proteins in preclinical and clinical development for therapeutic applications. Mammalian expression systems are key to enabling the production of these molecules, and Chinese hamster ovary (CHO) cell platforms continue to be central to delivery of the stable cell lines required for large-scale production. Increasing pressure on timelines and efficiency, further innovation of molecular formats and the shift to new production systems are driving developments of these CHO cell line platforms. The availability of genome and transcriptome data coupled with advancing gene editing tools are increasing the ability to design and engineer CHO cell lines to meet these challenges. This chapter aims to give an overview of the developments in CHO expression systems and some of the associated technologies over the past few years.
Collapse
Affiliation(s)
- Jie Zhu
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Diane Hatton
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK.
| |
Collapse
|
58
|
Gao JH, Wang TY, Zhang MY, Shi F, Gu SZ. Identification of consensus sequence from matrix attachment regions and functional analysis of its activity in stably transfected Chinese hamster ovary cells. J Cell Biochem 2019; 120:13985-13993. [PMID: 30957285 DOI: 10.1002/jcb.28673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/30/2018] [Accepted: 01/09/2019] [Indexed: 01/01/2023]
Abstract
Matrix attachment regions (MARs) can enhance transgene expression levels and maintain stability. However, the consensus sequence from MARs and its functional analysis remains to be examined. Here, we assessed a possible consensus sequence from MARs and assessed its activity in stably transfected Chinese hamster ovary (CHO) cells. First, we analyzed the effects of 10 MARs on transfected CHO cells and then analyzed the consensus motifs from these MARs using a bioinformatics method. The consensus sequence was synthesized and cloned upstream or downstream of the eukaryotic vector. The constructs were transfected into CHO cells and the expression levels and stability of enhanced green fluorescent protein were detected by flow cytometry. The results indicated that eight of the ten MARs increased transgene expression in transfected CHO cells. Three consensus motifs were found after bioinformatics analyses. The consensus sequence tandemly enhanced transgene expression when it was inserted into the eukaryotic expression vector; the effect of the addition upstream was stronger than that downstream. Thus, we found a MAR consensus sequence that may regulate the MAR-mediated increase in transgene expression.
Collapse
Affiliation(s)
- Jian-Hui Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mao-Ying Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Fang Shi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shan-Zhi Gu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
59
|
Poulain A, Mullick A, Massie B, Durocher Y. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. J Biotechnol 2019; 296:32-41. [DOI: 10.1016/j.jbiotec.2019.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022]
|
60
|
Wasiluk T, Roueinfar M, Hiryak K, Torsiello M, Miner A, Lee J, Venditto M, Terzaghi W, Lucent D, VanWert AL. Simultaneous expression of ClopHensor and SLC26A3 reveals the nature of endogenous oxalate transport in CHO cells. Biol Open 2019; 8:bio.041665. [PMID: 30837228 PMCID: PMC6504001 DOI: 10.1242/bio.041665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ClopHensor, a fluorescent fusion protein, is a dual function biosensor that has been utilized as a tool for the simultaneous measurement of intracellular chloride and pH in cells. ClopHensor has traditionally been used in conjunction with fluorescence microscopy for single cell measurements. Here, we present a promising multi-well format advancement for the use of ClopHensor as a potential high-throughput method capable of measuring fluorescence signal intensity across a well of confluent cells with highly reproducible results. Using this system, we gained mechanistic insight into an endogenous oxalate transporter in Chinese hamster ovary (CHO) cells expressing ClopHensor and the human chloride transporter, SLC26A3. SLC26A3, a known anion exchanger, has been proposed to play a role in colonic oxalate absorption in humans. Our attempt to study the role of SLC26A3 in oxalate transport revealed the presence of an endogenous oxalate transporter in CHO cells. This transporter was strongly inhibited by niflumate, and exhibited clear saturability. Use of ClopHensor in a multi-well cell assay allowed us to quickly demonstrate that the endogenous oxalate transporter was unable to exchange chloride for bicarbonate, unlike SLC26A3.
Collapse
Affiliation(s)
- Teresa Wasiluk
- Department of Biology, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Mina Roueinfar
- Department of Electrical Engineering and Physics, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Kayla Hiryak
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Maria Torsiello
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Alexander Miner
- Department of Biology, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Jennifer Lee
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Michael Venditto
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - William Terzaghi
- Department of Biology, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Del Lucent
- Department of Electrical Engineering and Physics, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Adam L VanWert
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, USA
| |
Collapse
|
61
|
Minbu H, Mizuno H, Shibuya Y, Ochiai A, Taniguchi M, Tanaka T. Poly(L-lactic acid) Depth Filter Membrane Prepared by Nonsolvent-Induced Phase Separation with the Aid of a Nonionic Surfactant. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2019. [DOI: 10.1252/jcej.18we084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiromi Minbu
- Department of Materials Science and Technology, Niigata University
| | - Haruki Mizuno
- Department of Materials Science and Technology, Niigata University
| | - Yuki Shibuya
- Department of Materials Science and Technology, Niigata University
| | - Akihito Ochiai
- Department of Materials Science and Technology, Niigata University
| | | | - Takaaki Tanaka
- Department of Materials Science and Technology, Niigata University
| |
Collapse
|
62
|
Tanhaeian A, Damavandi MS, Mansury D, Ghaznini K. Expression in eukaryotic cells and purification of synthetic gene encoding enterocin P: a bacteriocin with broad antimicrobial spectrum. AMB Express 2019; 9:6. [PMID: 30617751 PMCID: PMC6323060 DOI: 10.1186/s13568-018-0729-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/31/2018] [Indexed: 01/13/2023] Open
Abstract
Due to the emergence of multidrug-resistant bacteria, treatment options for infectious diseases are decreasing. Bacteriocins are small antimicrobial peptides produced by numerous bacteria that offer alternative therapeutic strategies to combat multidrug-resistant bacterial infections. We evaluated the cloning, functional expression, and antimicrobial activities of enterocin P (EntP), a class II bacteriocin member, in Chinese hamster ovary (CHO) cells. A synthetic gene matching CHO cell codon usage was designed from the known mature amino acid sequence of EntP and cloned into the protein expression vector pcDNA™3.1(+). CHO cells were transformed with the recombinant plasmid and cultured, and the recombinant protein was purified by affinity chromatography. Antimicrobial activities of the recombinant EntP were evaluated on Gram-positive, Gram-negative, and multidrug-resistant pathogens. Recombinant EntP inhibited growth of a variety of bacteria, including pathogenic species known to cause nosocomial infections, often with multidrug-resistant strains. In addition, recombinant EntP demonstrated broad antimicrobial activities in both high salt medium and human plasma and was stable at high temperatures. The broad antimicrobial activity and stability of EntP make it an attractive therapeutic candidate, particularly for treatment of multidrug-resistant bacterial infections.
Collapse
|
63
|
Rodríguez MC, Ceaglio N, Antuña S, Tardivo MB, Etcheverrigaray M, Prieto C. Production of Therapeutic Enzymes by Lentivirus Transgenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:25-54. [PMID: 31482493 DOI: 10.1007/978-981-13-7709-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since ERT for several LSDs treatment has emerged at the beginning of the 1980s with Orphan Drug approval, patients' expectancy and life quality have been improved. Most LSDs treatment are based on the replaced of mutated or deficient protein with the natural or recombinant protein.One of the main ERT drawback is the high drug prices. Therefore, different strategies trying to optimize the global ERT biotherapeutic production have been proposed. LVs, a gene delivery tool, can be proposed as an alternative method to generate stable cell lines in manufacturing of recombinant proteins. Since LVs have been used in human gene therapy, clinical trials, safety testing assays and procedures have been developed. Moreover, one of the main advantages of LVs strategy to obtain manufacturing cell line is the short period required as well as the high protein levels achieved.In this chapter, we will focus on LVs as a recombinant protein production platform and we will present a case study that employs LVs to express in a manufacturing cell line, alpha-Galactosidase A (rhαGAL), which is used as ERT for Fabry disease treatment.
Collapse
Affiliation(s)
| | - Natalia Ceaglio
- Cell Culture Laboratory, UNL, CONICET, FBCB, Santa Fe, Argentina
| | | | | | | | - Claudio Prieto
- Cell Culture Laboratory, UNL, FBCB, Santa Fe, Argentina.
| |
Collapse
|
64
|
Kronimus Y, Dodel R, Galuska SP, Neumann S. IgG Fc N-glycosylation: Alterations in neurologic diseases and potential therapeutic target? J Autoimmun 2019; 96:14-23. [DOI: 10.1016/j.jaut.2018.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022]
|
65
|
Zhou Q, Qiu H. The Mechanistic Impact of N-Glycosylation on Stability, Pharmacokinetics, and Immunogenicity of Therapeutic Proteins. J Pharm Sci 2018; 108:1366-1377. [PMID: 30471292 DOI: 10.1016/j.xphs.2018.11.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/03/2023]
Abstract
N-glycosylation is one of major post-translational modifications in nature, and it is essential for protein structure and function. As hydrophilic moieties of glycoproteins, N-glycans play important roles in protein stability. They protect the proteins against proteolytic degradation, aggregation, and thermal denaturation through maintaining optimal conformations. There are extensive evidences showing the involvement of N-glycans in the pharmacodynamics and pharmacokinetics of recombinant therapeutic proteins and antibodies. Highly sialylated complex-type glycans enable the longer serum half-lives of proteins against uptake through hepatic asialoglycoprotein receptor and mannose receptor for degradation in lysosomes. Moreover, the presence of nonhuman glycans results in clearance through pre-existing antibodies from serum and induces IgE-mediated anaphylaxis. N-glycans also facilitate or reduce the adverse immune responses of the proteins through interacting with multiple glycan-binding proteins, including those specific for mannose or mannose 6-phosphate. Due to the glycan impacts, a few therapeutic proteins were glycoengineered to improve the pharmacokinetics and stability. Thus, N-glycosylation should be extensively investigated and optimized for each individual protein for better efficacy and safety.
Collapse
Affiliation(s)
- Qun Zhou
- Biologics Research, Sanofi, 49 New York Avenue, Framingham, Massachusetts 01701.
| | - Huawei Qiu
- Biologics Research, Sanofi, 49 New York Avenue, Framingham, Massachusetts 01701
| |
Collapse
|
66
|
Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ. Improving Immunotherapy Through Glycodesign. Front Immunol 2018; 9:2485. [PMID: 30450094 PMCID: PMC6224361 DOI: 10.3389/fimmu.2018.02485] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is revolutionizing health care, with the majority of high impact "drugs" approved in the past decade falling into this category of therapy. Despite considerable success, glycosylation-a key design parameter that ensures safety, optimizes biological response, and influences the pharmacokinetic properties of an immunotherapeutic-has slowed the development of this class of drugs in the past and remains challenging at present. This article describes how optimizing glycosylation through a variety of glycoengineering strategies provides enticing opportunities to not only avoid past pitfalls, but also to substantially improve immunotherapies including antibodies and recombinant proteins, and cell-based therapies. We cover design principles important for early stage pre-clinical development and also discuss how various glycoengineering strategies can augment the biomanufacturing process to ensure the overall effectiveness of immunotherapeutics.
Collapse
Affiliation(s)
- Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Pharmacology/Toxicology Branch I, Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
67
|
Tossolini I, López-Díaz FJ, Kratje R, Prieto CC. Characterization of cellular states of CHO-K1 suspension cell culture through cell cycle and RNA-sequencing profiling. J Biotechnol 2018; 286:56-67. [DOI: 10.1016/j.jbiotec.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023]
|
68
|
Hunter M, Yuan P, Vavilala D, Fox M. Optimization of Protein Expression in Mammalian Cells. ACTA ACUST UNITED AC 2018; 95:e77. [DOI: 10.1002/cpps.77] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
69
|
Canis K, Anzengruber J, Garenaux E, Feichtinger M, Benamara K, Scheiflinger F, Savoy LA, Reipert BM, Malisauskas M. In-depth comparison of N-glycosylation of human plasma-derived factor VIII and different recombinant products: from structure to clinical implications. J Thromb Haemost 2018; 16:S1538-7836(22)02223-1. [PMID: 29888865 DOI: 10.1111/jth.14204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 12/21/2022]
Abstract
Essentials Glycosylation heterogeneity of recombinant proteins affects pharmacokinetics and immunogenicity. N-glycomics/glycoproteomics of plasma-derived Factor VIII and 6 recombinant FVIIIs were compared. Depending on cell line, significant differences to plasma-derived FVIII were observed. Recombinant FVIIIs expressed distinct and immunologically relevant epitopes. SUMMARY Background/Objective Human factor VIII (FVIII) is a plasma glycoprotein, defects of which result in hemophilia A. Current substitution therapy uses FVIII products purified from human plasma or from various cell lines (recombinant FVIII) with different levels of B-domain deletion. Glycosylation is a post-translational protein modification in FVIII that has a substantial influence on its physical, functional and antigenic properties. Variation in glycosylation is likely to be the reason that FVIII products differ in their pharmacokinetics, pharmacodynamics and immunogenicity. However, the literature on FVIII glycosylation is inconsistent, preventing assembly into a coherent model. Seeking to better understand the glycosylation mechanisms underlying FVIII biology, we studied the N-glycosylation of human plasma-derived (pd)FVIII and six rFVIII products expressed in CHO, BHK or HEK cell lines. Methods FVIII samples were subjected to head-to-head detailed glycomic and glycoproteomic characterization using a combination of MALDI-MS and MS/MS, GC-MS and UPLC-UV-MSE technologies. Results/Conclusion The results of our study detail the N-glycan repertoire of pdFVIII to an unprecedented level, and for the first time, provide evidence of N-glycolylneuraminic acid (NeuGc) found on pdFVIII. Although site-specific glycosylation of rFVIII proved consistent with pdFVIII regardless of the expression system, the entire N-glycan content of each sample appeared significantly different. Although the proportion of biologically important epitopes common to all samples (i.e. sialylation and high-mannose) varied between samples, some recombinant products expressed distinct and immunologically relevant epitopes, such as LacdiNAc (LDN), fucosylated LacdiNAc (FucLDN), NeuGc, LewisX/Y and Galα1,3 Gal epitopes. rFVIII expressed in HEK cells showed the greatest glycomic differences to human pdFVIII.
Collapse
Affiliation(s)
- K Canis
- SGS M-Scan SA, Plan-le-Ouates, Switzerland
| | | | - E Garenaux
- SGS M-Scan SA, Plan-le-Ouates, Switzerland
| | | | - K Benamara
- Research & Development, Shire, Vienna, Austria
| | | | - L-A Savoy
- SGS M-Scan SA, Plan-le-Ouates, Switzerland
| | - B M Reipert
- Research & Development, Shire, Vienna, Austria
| | | |
Collapse
|
70
|
Abaandou L, Shiloach J. Knocking out Ornithine Decarboxylase Antizyme 1 ( OAZ1) Improves Recombinant Protein Expression in the HEK293 Cell Line. Med Sci (Basel) 2018; 6:medsci6020048. [PMID: 29890687 PMCID: PMC6024716 DOI: 10.3390/medsci6020048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Creating efficient cell lines is a priority for the biopharmaceutical industry, which produces biologicals for various uses. A recent approach to achieving this goal is the use of non-coding RNAs, microRNA (miRNA) and small interfering RNA (siRNA), to identify key genes that can potentially improve production or growth. The ornithine decarboxylase antizyme 1 (OAZ1) gene, a negative regulator of polyamine biosynthesis, was identified in a genome-wide siRNA screen as a potential engineering target, because its knock down by siRNA increased recombinant protein expression from human embryonic kidney 293 (HEK293) cells by two-fold. To investigate this further, the OAZ1 gene in HEK293 cells was knocked out using CRISPR genome editing. The OAZ1 knockout cell lines displayed up to four-fold higher expression of both stably and transiently expressed proteins, with comparable growth and metabolic activity to the parental cell line; and an approximately three-fold increase in intracellular polyamine content. The results indicate that genetic inactivation of OAZ1 in HEK293 cells is an effective strategy to improve recombinant protein expression in HEK293 cells.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, USA.
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
71
|
Qian Y, Chen Z, Huang X, Wang X, Xu X, Kirov S, Ludwig R, Qian NX, Ravi K, Tao L, Borys MC, Li ZJ. Early identification of unusually clustered mutations and root causes in therapeutic antibody development. Biotechnol Bioeng 2018; 115:2377-2382. [PMID: 29777592 DOI: 10.1002/bit.26728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/29/2018] [Accepted: 05/17/2018] [Indexed: 11/08/2022]
Abstract
This study reports findings of an unusual cluster of mutations spanning 22 bp (base pairs) in a monoclonal antibody expression vector. It was identified by two orthogonal methods: mass spectrometry on expressed protein and next-generation sequencing (NGS) on the plasmid DNA. While the initial NGS analysis confirmed the designed sequence modification, intact mass analysis detected an additional mass of the antibody molecule expressed in CHO cells. The extra mass was eventually found to be associated with unmatched nucleotides in a distal region by checking full-length sequence alignment plots. Interestingly, the complementary sequence of the mutated sequence was a reverse sequence of the original sequence and flanked by two 10-bp reverse-complementary sequences, leading to an undesirable DNA recombination. The finding highlights the necessity of rigorous examination of expression vector design and early monitoring of molecule integrity at both DNA and protein levels to prevent clones from having sequence variants during cell line development.
Collapse
Affiliation(s)
- Yueming Qian
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| | - Zhiqiang Chen
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| | - Xin Huang
- Research and Development, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Xuning Wang
- Research and Development, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Xuankuo Xu
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| | - Stefan Kirov
- Research and Development, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Richard Ludwig
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Nan-Xin Qian
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| | - Kandasamy Ravi
- Research and Development, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Li Tao
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Pennington, New Jersey
| | - Michael C Borys
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| | - Zheng Jian Li
- Product Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, Massachusetts
| |
Collapse
|
72
|
Weis BL, Guth N, Fischer S, Wissing S, Fradin S, Holzmann KH, Handrick R, Otte K. Stable miRNA overexpression in human CAP cells: Engineering alternative production systems for advanced manufacturing of biologics using miR-136 and miR-3074. Biotechnol Bioeng 2018; 115:2027-2038. [PMID: 29665036 DOI: 10.1002/bit.26715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 01/06/2023]
Abstract
Chinese hamster ovary (CHO) cells still represent the major production host for therapeutic proteins. However, multiple limitations have been acknowledged leading to the search for alternative expression systems. CEVEC's amniocyte production (CAP) cells are human production cells demonstrated to enable efficient overexpression of recombinant proteins with human glycosylation pattern. However, CAP cells have not yet undergone any engineering approaches to optimize process parameters for a cheaper and more sustainable production of biopharmaceuticals. Thus, we assessed the possibility to enhance CAP cell production capacity via cell engineering using miRNA technology. Based on a previous high-content miRNA screen in CHO-SEAP cells, selected pro-productive miRNAs including, miR-99b-3p, 30a-5p, 329-3p, 483-3p, 370-3p, 219-1-3p, 3074-5p, 136-3p, 30e-5p, 1a-3p, and 484-5p, were shown to act pro-productive and product independent upon transient transfection in CAP and CHO antibody expressing cell lines. Stable expression of miRNAs established seven CAP cell pools with an overexpression of the pro-productive miRNA strand. Subsequent small-scale screening as well as upscaling batch experiments identified miR-136 and miR-3074 to significantly increase final mAb concentration in CAP-mAb cells. Transcriptomic changes analyzed by microarrays identified several lncRNAs as well as growth and apoptosis-related miRNAs to be differentially regulated in CAP-mAb-miR-136 and -miR-3074. This study presents the first engineering approach to optimize the alternative human expression system of CAP-cells.
Collapse
Affiliation(s)
- Benjamin L Weis
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Nadine Guth
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Simon Fischer
- Boehringer Ingelheim Pharma GmbH & Co KG, Cell Culture Development CMB, Biberach, Germany
| | | | | | | | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| |
Collapse
|
73
|
Simard M, Underhill C, Hammond GL. Functional implications of corticosteroid-binding globulin N-glycosylation. J Mol Endocrinol 2018; 60:71-84. [PMID: 29273683 PMCID: PMC5793714 DOI: 10.1530/jme-17-0234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Corticosteroid-binding globulin (CBG) is a plasma carrier of glucocorticoids. Human and rat CBGs have six N-glycosylation sites. Glycosylation of human CBG influences its steroid-binding activity, and there are N-glycosylation sites in the reactive center loops (RCLs) of human and rat CBGs. Proteolysis of the RCL of human CBG causes a structural change that disrupts steroid binding. We now show that mutations of conserved N-glycosylation sites at N238 in human CBG and N230 in rat CBG disrupt steroid binding. Inhibiting glycosylation by tunicamycin also markedly reduced human and rat CBG steroid-binding activities. Deglycosylation of fully glycosylated human CBG or human CBG with only one N-glycan at N238 with Endo H-reduced steroid-binding affinity, while PNGase F-mediated deglycosylation does not, indicating that steroid binding is preserved by deamidation of N238 when its N-glycan is removed. When expressed in N-acetylglucosaminyltransferase-I-deficient Lec1 cells, human and rat CBGs, and a human CBG mutant with only one glycosylation site at N238, have higher (2-4 fold) steroid-binding affinities than when produced by sialylation-deficient Lec2 cells or glycosylation-competent CHO-S cells. Thus, the presence and composition of an N-glycan in this conserved position both appear to influence the steroid binding of CBG. We also demonstrate that neutrophil elastase cleaves the RCL of human CBG and reduces its steroid-binding capacity more efficiently than does chymotrypsin or the Pseudomonas aeruginosa protease LasB. Moreover, while glycosylation of N347 in the RCL limits these activities, N-glycans at other sites also appear to protect CBG from neutrophil elastase or chymotrypsin.
Collapse
Affiliation(s)
- Marc Simard
- Department of Cellular and Physiological SciencesThe University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Underhill
- Department of Cellular and Physiological SciencesThe University of British Columbia, Vancouver, British Columbia, Canada
| | - Geoffrey L Hammond
- Department of Cellular and Physiological SciencesThe University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
74
|
Bennett LD, Yang Q, Berquist BR, Giddens JP, Ren Z, Kommineni V, Murray RP, White EL, Holtz BR, Wang LX, Marcel S. Implementation of Glycan Remodeling to Plant-Made Therapeutic Antibodies. Int J Mol Sci 2018; 19:E421. [PMID: 29385073 PMCID: PMC5855643 DOI: 10.3390/ijms19020421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/09/2018] [Accepted: 01/27/2018] [Indexed: 11/16/2022] Open
Abstract
N-glycosylation profoundly affects the biological stability and function of therapeutic proteins, which explains the recent interest in glycoengineering technologies as methods to develop biobetter therapeutics. In current manufacturing processes, N-glycosylation is host-specific and remains difficult to control in a production environment that changes with scale and production batches leading to glycosylation heterogeneity and inconsistency. On the other hand, in vitro chemoenzymatic glycan remodeling has been successful in producing homogeneous pre-defined protein glycoforms, but needs to be combined with a cost-effective and scalable production method. An efficient chemoenzymatic glycan remodeling technology using a plant expression system that combines in vivo deglycosylation with an in vitro chemoenzymatic glycosylation is described. Using the monoclonal antibody rituximab as a model therapeutic protein, a uniform Gal2GlcNAc2Man3GlcNAc2 (A2G2) glycoform without α-1,6-fucose, plant-specific α-1,3-fucose or β-1,2-xylose residues was produced. When compared with the innovator product Rituxan®, the plant-made remodeled afucosylated antibody showed similar binding affinity to the CD20 antigen but significantly enhanced cell cytotoxicity in vitro. Using a scalable plant expression system and reducing the in vitro deglycosylation burden creates the potential to eliminate glycan heterogeneity and provide affordable customization of therapeutics' glycosylation for maximal and targeted biological activity. This feature can reduce cost and provide an affordable platform to manufacture biobetter antibodies.
Collapse
Affiliation(s)
- Lindsay D Bennett
- Metropolitan Nashville Police Department Crime Lab, 400 Myatt Drive, Madison, TN 37115, USA.
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Brian R Berquist
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - John P Giddens
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Zhongjie Ren
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Vally Kommineni
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Ryan P Murray
- Lonza Houston, Inc., 8066 El Rio St., Houston, TX 77054, USA.
| | - Earl L White
- MDx BioAnalytical Laboratory, Inc., 5890 Imperial loop, Suite 12, College Station, TX 77845, USA.
| | - Barry R Holtz
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Sylvain Marcel
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| |
Collapse
|
75
|
Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells. Genes (Basel) 2018; 9:genes9010025. [PMID: 29315258 PMCID: PMC5793178 DOI: 10.3390/genes9010025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022] Open
Abstract
The ability to produce recombinant proteins by utilizing different “cell factories” revolutionized the biotherapeutic and pharmaceutical industry. Chinese hamster ovary (CHO) cells are the dominant industrial producer, especially for antibodies. Human embryonic kidney cells (HEK), while not being as widely used as CHO cells, are used where CHO cells are unable to meet the needs for expression, such as growth factors. Therefore, improving recombinant protein expression from mammalian cells is a priority, and continuing effort is being devoted to this topic. Non-coding RNAs are RNA segments that are not translated into a protein and often have a regulatory role. Since their discovery, major progress has been made towards understanding their functions. Non-coding RNA has been investigated extensively in relation to disease, especially cancer, and recently they have also been used as a method for engineering cells to improve their protein expression capability. In this review, we provide information about methods used to identify non-coding RNAs with the potential of improving recombinant protein expression in mammalian cell lines.
Collapse
|
76
|
Mizukami A, Caron AL, Picanço-Castro V, Swiech K. Platforms for Recombinant Therapeutic Glycoprotein Production. Methods Mol Biol 2018; 1674:1-14. [PMID: 28921424 DOI: 10.1007/978-1-4939-7312-5_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The majority of FDA-approved biology-derived products are recombinant glycoproteins. These proteins have been used for the treatment of several diseases, with numerous products currently approved for clinical use. The choice of the expression system is a key step toward a successful functional protein production, since glycosylation influences yield, pharmacokinetics, biological activity, and immunogenicity. This chapter covers the general aspects of therapeutic recombinant glycoproteins and the platforms that are being employed for their production.
Collapse
Affiliation(s)
- Amanda Mizukami
- Center for Cell-based Therapy CTC, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Angelo Luis Caron
- Center for Cell-based Therapy CTC, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Virgínia Picanço-Castro
- Center for Cell-based Therapy CTC, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy CTC, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
77
|
Tayi VS, Butler M. Solid-Phase Enzymatic Remodeling Produces High Yields of Single Glycoform Antibodies. Biotechnol J 2017; 13:e1700381. [PMID: 29247593 DOI: 10.1002/biot.201700381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/08/2017] [Indexed: 01/08/2023]
Abstract
Antibodies are synthesized in mammalian cell culture as heterogeneous mixtures of glycoforms. Production of single glycoforms remains a challenge despite their value as therapeutics. The authors report a method of sequential enzymatic-based changes to antibodies while immobilized on an affinity column. Various antibodies (monoclonal and polyclonal) are isolated on Protein A or G columns and their glycans modified by sequential addition of enzymes for a desired transformation. Galactosylated antibodies (>90% yield) are produced by a one stage reaction process with sialidase to remove any sialic acid residues and addition of galactose with galactosyltransferase and UDP-Gal. Sialylated antibodies (>90%) are produced by a 2 stage conversion involving α(2,3) sialidase and galactosyltransferase followed by treatment with α(2,6) sialyltransferase in the presence of CMP-NANA. By this method, >90% of a disialylated human-llama antibody (EG2-hFc) and equimolar quantities of monosialylated and disialylated forms of human antibodies (αIL8-hFc and human polyclonal) are produced. Such high levels of sialylation are very difficult to obtain by typical cell culture methods. This method of transformation while the antibody is held on a solid-phase column is superior to previous methods because it allows a series of enzymatic steps without the need for intermediate purification. This is an efficient and rapid method to generate therapeutic antibodies with predefined glycosylation profiles. This should also assist in investigating the structure-function relationship of antibody glycans to find the desired glycosylation profile for high functional activity. With further optimization the method can be used to modify antibodies in large-scale manufacturing.
Collapse
Affiliation(s)
- Venkata S Tayi
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Michael Butler
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.,National Institute for Bioprocessing Research & Training (NIBRT), Fosters Avenue, Blackrock, A94 X099, Co. Dublin, Ireland
| |
Collapse
|
78
|
Abstract
Protein glycosylation is post-translational modification (PTM) which is important for pharmacokinetics and immunogenicity of recombinant glycoprotein therapeutics. As a result of variations in monosaccharide composition, glycosidic linkages and glycan branching, glycosylation introduces considerable complexity and heterogeneity to therapeutics. The host cell line used to produce the glycoprotein has a strong influence on the glycosylation because different host systems may express varying repertoire of glycosylation enzymes and transporters that contributes to specificity and heterogeneity in glycosylation profiles. In this review, we discuss the types of host cell lines currently used for recombinant therapeutic production, their glycosylation potential and the resultant impact on glycoprotein properties. In addition, we compare the reported glycosylation profiles of four recombinant glycoproteins: immunoglobulin G (IgG), coagulation factor VII (FVII), erythropoietin (EPO) and alpha-1 antitrypsin (A1AT) produced in different mammalian cells to establish the influence of mammalian host cell lines on glycosylation.
Collapse
Affiliation(s)
- Justin Bryan Goh
- a Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| | - Say Kong Ng
- a Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| |
Collapse
|
79
|
Sant'Ana PM, Oliveira JE, Lima ER, Soares CRJ, Peroni CN, Bartolini P, Ribela MTCP. Human thyroid-stimulating hormone synthesis in human embryonic kidney cells and related N-glycoprofiling analysis for carbohydrate composition determination. Appl Microbiol Biotechnol 2017; 102:1215-1228. [PMID: 29247366 DOI: 10.1007/s00253-017-8684-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/01/2022]
Abstract
A strain of embryonic human kidney cells (HEK293) was transiently co-transfected with the expression vectors coding for the α- and β-subunits of human thyroid-stimulating hormone (hTSH), and, for the first time, a human cell-derived recombinant hTSH was synthesized and extensively characterized. The purification strategy involving two steps provided an overall yield of 55% and a purity level > 90%. The purified material (hTSH-HEK) was analyzed and compared to a CHO-derived recombinant preparation (hTSH-CHO) and to a pituitary-derived (hTSH-Pit) preparation. The three preparations showed an equivalent purity (> 95%) with a hTSH-HEK molecular mass 2.1% lower than that of hTSH-CHO and 2.7% higher than that of hTSH-Pit. Remarkable differences were found in the carbohydrate moiety, the lowest sialic acid content and highest fucose content being observed in hTSH-HEK. In vivo biological activity was confirmed for the three preparations, the hTSH-HEK bioactivity being 39 and 16% lower than those of hTSH-CHO and hTSH-Pit, respectively. The hTSH-HEK circulatory half-life (t 1/2) was also shorter than those of hTSH-CHO (1.5-fold) and hTSH-Pit (1.2-fold). According to these findings, HEK-293-derived hTSH can be considered to be useful for clinical applications, in view as well of its human origin and particular carbohydrate composition.
Collapse
Affiliation(s)
- P M Sant'Ana
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - J E Oliveira
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - E R Lima
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - C R J Soares
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - C N Peroni
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - P Bartolini
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil
| | - Maria Teresa C P Ribela
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
80
|
Cruz E, Cain J, Crossett B, Kayser V. Site-specific glycosylation profile of influenza A (H1N1) hemagglutinin through tandem mass spectrometry. Hum Vaccin Immunother 2017; 14:508-517. [PMID: 29048990 DOI: 10.1080/21645515.2017.1377871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The study of influenza virus evolution in humans has revealed a significant role of glycosylation profile alterations in the viral glycoproteins - hemagglutinin (HA) and neuraminidase (NA), in the emergence of both seasonal and pandemic strains. Viral antigenic drift can modify the number and location of glycosylation sites, altering a wide range of biological activities and the antigenic properties of the strain. In view of the key role of glycans in determining antigenicity, elucidating the glycosylation profiles of influenza strains is a requirement towards the development of improved vaccines. Sequence-based analysis of viral RNA has provided great insight into the role of glycosite modifications in altering virulence and pathogenicity. Nonetheless, this sequence-based approach can only predict potential glycosylation sites. Due to experimental challenges, experimental confirmation of the occupation of predicted glycosylation sites has only been carried out for a few strains. Herein, we utilized HCD/CID-MS/MS tandem mass spectrometry to characterize the site-specific profile of HA of an egg-grown H1N1 reference strain (A/New Caledonia/20/1999). We confirmed experimentally the occupancy of glycosylation sites identified by primary sequence analysis and determined the heterogeneity of glycan structures. Four glycosylation sequons on the stalk region (N28, N40, N304 and N498) and four on the globular head (N71, N104, N142 and N177) of the protein are occupied. Our results revealed a broad glycan microheterogeneity, i.e., a great diversity of glycan compositions present on each glycosite. The present methodology can be applied to characterize other viruses, particularly different influenza strains, to better understand the impact of glycosylation on biological activities and aid the improvement of influenza vaccines.
Collapse
Affiliation(s)
- Esteban Cruz
- a Faculty of Pharmacy, The University of Sydney , Sydney NSW , Australia
| | - Joel Cain
- b School of Life and Environmental Sciences, The University of Sydney , Sydney NSW , Australia
| | - Ben Crossett
- c Mass Spectrometry Core Facility, The University of Sydney , Sydney NSW , Australia
| | - Veysel Kayser
- a Faculty of Pharmacy, The University of Sydney , Sydney NSW , Australia
| |
Collapse
|
81
|
Inwood S, Buehler E, Betenbaugh M, Lal M, Shiloach J. Identifying HIPK1 as Target of miR-22-3p Enhancing Recombinant Protein Production From HEK 293 Cell by Using Microarray and HTP siRNA Screen. Biotechnol J 2017; 13. [PMID: 28987030 DOI: 10.1002/biot.201700342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/11/2017] [Indexed: 01/20/2023]
Abstract
Protein expression from human embryonic kidney cells (HEK 293) is an important tool for structural and clinical studies. It is previously shown that microRNAs (small, noncoding RNAs) are effective means for improved protein expression from these cells, and by conducting a high-throughput screening of the human microRNA library, several microRNAs are identified as potential candidates for improving expression. From these, miR-22-3p is chosen for further study since it increased the expression of luciferase, two membrane proteins and a secreted fusion protein with minimal effect on the cells' growth and viability. Since each microRNA can interact with several gene targets, it is of interest to identify the repressed genes for understanding and exploring the improved expression mechanism for further implementation. Here, the authors describe a novel approach for identification of the target genes by integrating the differential gene expression analysis with information obtained from our previously conducted high-throughput siRNA screening. The identified genes were validated as being involved in improving luciferase expression by using siRNA and qRT-PCR. Repressing the target gene, HIPK1, is found to increase luciferase and GPC3 expression 3.3- and 2.2-fold, respectively.
Collapse
Affiliation(s)
- Sarah Inwood
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland 20892, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Eugen Buehler
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Madhu Lal
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850
| | - Joseph Shiloach
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
82
|
Tian ZW, Xu DH, Wang TY, Wang XY, Xu HY, Zhao CP, Xu GH. Identification of a potent MAR element from the human genome and assessment of its activity in stably transfected CHO cells. J Cell Mol Med 2017; 22:1095-1102. [PMID: 29077269 PMCID: PMC5783848 DOI: 10.1111/jcmm.13361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 01/23/2023] Open
Abstract
Low-level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR-6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR-6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP-B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP-B, DHFR intron MAR element and MAR-6. Additionally, as expected, the three MAR-containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non-MAR-containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP-B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.
Collapse
Affiliation(s)
- Zheng-Wei Tian
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hong-Yan Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Guang-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
83
|
Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins. Biotechnol Adv 2017; 36:168-181. [PMID: 29107148 DOI: 10.1016/j.biotechadv.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.
Collapse
Affiliation(s)
- H Edward Wong
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
84
|
In silico methods for design of biological therapeutics. Methods 2017; 131:33-65. [PMID: 28958951 DOI: 10.1016/j.ymeth.2017.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 12/18/2022] Open
Abstract
It has been twenty years since the first rationally designed small molecule drug was introduced into the market. Since then, we have progressed from designing small molecules to designing biotherapeutics. This class of therapeutics includes designed proteins, peptides and nucleic acids that could more effectively combat drug resistance and even act in cases where the disease is caused because of a molecular deficiency. Computational methods are crucial in this design exercise and this review discusses the various elements of designing biotherapeutic proteins and peptides. Many of the techniques discussed here, such as the deterministic and stochastic design methods, are generally used in protein design. We have devoted special attention to the design of antibodies and vaccines. In addition to the methods for designing these molecules, we have included a comprehensive list of all biotherapeutics approved for clinical use. Also included is an overview of methods that predict the binding affinity, cell penetration ability, half-life, solubility, immunogenicity and toxicity of the designed therapeutics. Biotherapeutics are only going to grow in clinical importance and are set to herald a new generation of disease management and cure.
Collapse
|
85
|
Huang Z, Lee DY, Yoon S. Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures. Biotechnol Bioeng 2017; 114:2717-2728. [DOI: 10.1002/bit.26384] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 06/07/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Zhuangrong Huang
- Department of Chemical Engineering, University of Massachusetts Lowell; One University Avenue; Lowell Massachusetts
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore Singapore
- Bioprocessing Technology Institute; Agency for Science, Technology and Research (A*STAR); Singapore Singapore
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell; One University Avenue; Lowell Massachusetts
| |
Collapse
|
86
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
87
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|
88
|
Losfeld ME, Scibona E, Lin CW, Villiger TK, Gauss R, Morbidelli M, Aebi M. Influence of protein/glycan interaction on site-specific glycan heterogeneity. FASEB J 2017; 31:4623-4635. [PMID: 28679530 DOI: 10.1096/fj.201700403r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 01/23/2023]
Abstract
To study how the interaction between N-linked glycans and the surrounding amino acids influences oligosaccharide processing, we used protein disulfide isomerase (PDI), a glycoprotein bearing 5 N-glycosylation sites, as a model system and expressed it transiently in a Chinese hamster ovary (CHO)-S cell line. PDI was produced as both secreted Sec-PDI and endoplasmic reticulum-retained glycoprotein (ER)-PDI, to study glycan processing by ER and Golgi resident enzymes. Quantitative site-specific glycosylation profiles were obtained, and flux analysis enabled modeling site-specific glycan processing. By altering the primary sequence of PDI, we changed the glycan/protein interaction and thus the site-specific glycoprofile because of the improved enzymatic fluxes at enzymatic bottlenecks. Our results highlight the importance of direct interactions between N-glycans and surface-exposed amino acids of glycoproteins on processing in the ER and the Golgi and the possibility of changing a site-specific N-glycan profile by modulating such interactions and thus the associated enzymatic fluxes. Altering the primary protein sequence can therefore be used to glycoengineer recombinant proteins.-Losfeld, M.-E., Scibona, E., Lin, C.-W., Villiger, T. K., Gauss, R., Morbidelli, M., Aebi, M. Influence of protein/glycan interaction on site-specific glycan heterogeneity.
Collapse
Affiliation(s)
- Marie-Estelle Losfeld
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Ernesto Scibona
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Chia-Wei Lin
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Thomas K Villiger
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Robert Gauss
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Markus Aebi
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland;
| |
Collapse
|
89
|
Termini JM, Silver ZA, Connor B, Antonopoulos A, Haslam SM, Dell A, Desrosiers RC. HEK293T cell lines defective for O-linked glycosylation. PLoS One 2017; 12:e0179949. [PMID: 28654657 PMCID: PMC5487050 DOI: 10.1371/journal.pone.0179949] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/07/2017] [Indexed: 11/18/2022] Open
Abstract
Here we describe derivatives of the HEK293T cell line that are defective in their ability to generate mucin-type O-linked glycosylation. Using CRISPR/Cas9 and a single-cell GFP-sorting procedure, the UDP-galactose-4-epimerase (GALE), galactokinase 1 (GALK1), and galactokinase 2 (GALK2) genes were knocked out individually and in combinations with greater than 90% of recovered clones having the desired mutations. Although HEK293T cells are tetraploid, we found this approach to be an efficient method to target and disrupt all 4 copies of the target gene. Deficient glycosylation in the GALE knockout cell line could be rescued by the addition of galactose and N-acetylgalactosamine (GalNAc) to the cell culture media. However, when key enzymes of the galactose/GalNAc salvage pathways were disrupted in tandem (GALE+GALK1 or GALE+GALK2), O-glycosylation was eliminated and could not be rescued by the addition of either galactose plus GalNAc or UDP-galactose plus UDP-GalNAc. GALK1 and GALK2 are key enzymes of the galactose/GalNAc salvage pathways. Mass spectrometry was performed on whole cell lysate of the knockout cell lines to verify the glycosylation phenotype. As expected, the GALE knockout was almost completely devoid of all O-glycosylation, with minimal glycosylation as a result of functional salvage pathways. However, the GALE+GALK1 and GALE+GALK2 knockout lines were devoid of all O-glycans. Mass spectrometry analysis revealed that the disruption of GALE, GALK1, and GALE+GALK2 had little effect on the N-glycome. But when GALE was knocked out in tandem with GALK1, N-glycans were exclusively of the high mannose type. Due to the well-characterized nature of these five knockout cell lines, they will likely prove useful for a wide variety of applications.
Collapse
Affiliation(s)
- James M. Termini
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Zachary A. Silver
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Bryony Connor
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
90
|
Lee C, Jeong M, Lee JJ, Seo S, Cho SC, Zhang W, Jaquez O. Glycosylation profile and biological activity of Remicade® compared with Flixabi® and Remsima®. MAbs 2017. [PMID: 28640663 PMCID: PMC5540080 DOI: 10.1080/19420862.2017.1337620] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As biosimilars enter the market, comparisons of product quality are needed. Manufacturing differences may lead to differences in critical quality attributes, which affect efficacy. Therefore, critical quality attributes (structure and biological activity) of Remicade® and of 2 biosimilar products (Flixabi®/Renflexis® and Remsima®/Inflectra®) were determined. We assessed binding to tumor necrosis factor in a fluorescence competitive binding assay; potency in a luciferase reporter gene assay; percentages of galactosylated glycan, afucose plus high mannosylated glycans, and charged glycan; FcγRIIIa (CD16) binding (assessed by 3 methods); and antibody-dependent cell-mediated cytotoxicity (ADCC) in the NK92-CD16a cell line and in peripheral blood mononuclear cells (PBMC). The results of Fab-related activity were similar for all products. Compared with Remicade®, Flixabi® had a lower percentage of charged glycan, and Remsima® had a higher percentage of galactosylated glycan and a lower percentage of afucose plus high mannosylated glycans. Whereas Remsima® and Remicade® are expressed in a Sp2/0 cell line, Flixabi® is expressed in a CHO cell line. Despite this difference, galactosylated glycans from the 3 products were not correlated with the expression system. The results of all 3 methods used in this study indicated that FcγRIIIa binding was lower with Remsima® than with Remicade®. The percentage of ADCC in NK92-CD16a cells was lower with Remsima® and higher with Flixabi® compared with Remicade®, but was similar for all 3 products in PBMC. Surface expression of CD16 was 5.7-fold greater on NK92-CD16a cells than on PBMC. Combined percentages of afucosylated and high mannosylated glycans were positively correlated with FcγRIIIa binding and ADCC in NK92-CD16 cells, while no correlation was observed in PBMC.
Collapse
Affiliation(s)
- Changsoo Lee
- a Quality Evaluation Team , Samsung Bioepis Co., Ltd. , Incheon , Republic of Korea
| | - Min Jeong
- a Quality Evaluation Team , Samsung Bioepis Co., Ltd. , Incheon , Republic of Korea
| | - JongAh Joanne Lee
- a Quality Evaluation Team , Samsung Bioepis Co., Ltd. , Incheon , Republic of Korea
| | - Saebom Seo
- a Quality Evaluation Team , Samsung Bioepis Co., Ltd. , Incheon , Republic of Korea
| | - Sung Chun Cho
- a Quality Evaluation Team , Samsung Bioepis Co., Ltd. , Incheon , Republic of Korea
| | - Wei Zhang
- b Department of Analytical Development , Biogen, Inc. , Cambridge , MA , USA
| | - Orlando Jaquez
- c Department of Medical Affairs , Biosimilars , Biogen, Zug , Switzerland
| |
Collapse
|
91
|
Thomson RI, Gardner RA, Strohfeldt K, Fernandes DL, Stafford GP, Spencer DIR, Osborn HMI. Analysis of Three Epoetin Alpha Products by LC and LC-MS Indicates Differences in Glycosylation Critical Quality Attributes, Including Sialic Acid Content. Anal Chem 2017; 89:6455-6462. [PMID: 28509534 DOI: 10.1021/acs.analchem.7b00353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Erythropoietin (EPO) is one of the main therapeutics used to treat anemic patients, greatly improving their quality of life. In this study, biosimilars Binocrit and a development product, called here CIGB-EPO, were compared to the originator product, Eprex. All three are epoetin alpha products, reputed to have similar glycosylation profiles. The quality, safety, and efficacy of this biotherapeutic depend on the following glycosylation critical quality attributes (GCQAs): sialylation, N-glycolyl-neuraminic acid (Neu5Gc) content, branching, N-acetyl-lactosamine (LacNAc) extensions, and O-acetylation pattern. Reverse-phase ultra-high-pressure liquid chromatography (RP-UHPLC) analysis of acid-released, 1,2-diamino-4,5-methylenedioxybenzene (DMB) labeled sialic acid derivatives and hydrophilic interaction liquid chromatography (HILIC) in combination with mass spectrometry (HILIC-UHPLC-MS) of procainamide (PROC) labeled N-glycans were the analytical tools used. An automated method for enzymatic release and PROC labeling was applied for the first time to the erythropoiesis stimulating agent (ESA) products, which facilitated novel, in-depth characterization, and allowed identification of precise structural features including the location of O-acetyl groups on sialic acid (SA) moieties. Samples were digested by a sialate-O-acetylesterase (NanS) to confirm the presence of O-acetyl groups. It was found that Eprex contained the greatest relative abundance of O-acetylated derivatives, Binocrit expressed the least Neu5Gc, and CIGB-EPO showed the greatest variety of high-mannose-phosphate structures. The sialylation and LacNAc extension patterns of the three ESAs were similar, with a maximum of four N-acetyl-neuraminic acid (Neu5Ac) moieties detected per glycan. Such differences in SA derivatization, particularly O-acetylation, could have consequences for the quality and safety of a biotherapeutic, as well as its efficacy.
Collapse
Affiliation(s)
- Rebecca I Thomson
- Reading School of Pharmacy, University of Reading , Reading, Berkshire RG6 6AP, United Kingdom
| | - Richard A Gardner
- Ludger, Ltd. , Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, United Kingdom
| | - Katja Strohfeldt
- Reading School of Pharmacy, University of Reading , Reading, Berkshire RG6 6AP, United Kingdom
| | - Daryl L Fernandes
- Ludger, Ltd. , Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, United Kingdom
| | - Graham P Stafford
- Integrated BioSciences, School of Clinical Dentistry, University of Sheffield , Sheffield, S10 2TA, United Kingdom
| | - Daniel I R Spencer
- Ludger, Ltd. , Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, United Kingdom
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading , Reading, Berkshire RG6 6AP, United Kingdom
| |
Collapse
|
92
|
Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol 2017; 251:128-140. [DOI: 10.1016/j.jbiotec.2017.04.028] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
|
93
|
Karst DJ, Scibona E, Serra E, Bielser JM, Souquet J, Stettler M, Broly H, Soos M, Morbidelli M, Villiger TK. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Biotechnol Bioeng 2017; 114:1978-1990. [DOI: 10.1002/bit.26315] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/24/2017] [Accepted: 04/09/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel J. Karst
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; ETH Zurich; HCI F-129, Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Ernesto Scibona
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; ETH Zurich; HCI F-129, Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Elisa Serra
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; ETH Zurich; HCI F-129, Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Jean-Marc Bielser
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; ETH Zurich; HCI F-129, Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
- Merck Serono SA; Biotech Process Sciences, ZI B 1809; Corsier-sur-Vevey Switzerland
| | - Jonathan Souquet
- Merck Serono SA; Biotech Process Sciences, ZI B 1809; Corsier-sur-Vevey Switzerland
| | - Matthieu Stettler
- Merck Serono SA; Biotech Process Sciences, ZI B 1809; Corsier-sur-Vevey Switzerland
| | - Hervé Broly
- Merck Serono SA; Biotech Process Sciences, ZI B 1809; Corsier-sur-Vevey Switzerland
| | - Miroslav Soos
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; ETH Zurich; HCI F-129, Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
- Department of Chemical Engineering; University of Chemistry and Technology; Technicka 3, 166 28 Prague Czech Republic
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; ETH Zurich; HCI F-129, Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Thomas K. Villiger
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering; ETH Zurich; HCI F-129, Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
94
|
Swiech K, Picanço-Castro V, Covas DT. Production of recombinant coagulation factors: Are humans the best host cells? Bioengineered 2017; 8:462-470. [PMID: 28277160 DOI: 10.1080/21655979.2017.1279767] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The main treatment option for Hemophilia A/B patients involves the administration of recombinant coagulation factors on-demand or in a prophylactic approach. Despite the safety and efficacy of this replacement therapy, the development of antibodies against the coagulation factor infused, which neutralize the procoagulant activity, is a severe complication. The production of recombinant coagulation factors in human cell lines is an efficient approach to avoid such complication. Human cell lines can produce recombinant proteins with post translation modifications more similar to their natural counterpart, reducing potential immunogenic reactions. This review provides a brief overview of the most important characteristics of recombinant FVIII and FIX products available on the market and the improvements that have recently been achieved by the production using human cell lines.
Collapse
Affiliation(s)
- Kamilla Swiech
- a Department of Pharmaceutical Sciences , School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , São Paulo , Brazil.,b Center for Cell-based Therapy , Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP , Brazil
| | - Virgínia Picanço-Castro
- b Center for Cell-based Therapy , Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP , Brazil
| | - Dimas Tadeu Covas
- b Center for Cell-based Therapy , Regional Blood Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP , Brazil.,c Department of Internal Medicine , Ribeirão Preto Medical School, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
95
|
Application of 13C flux analysis to identify high-productivity CHO metabolic phenotypes. Metab Eng 2017; 43:218-225. [PMID: 28122259 DOI: 10.1016/j.ymben.2017.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/09/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023]
Abstract
Industrial bioprocesses place high demands on the energy metabolism of host cells to meet biosynthetic requirements for maximal protein expression. Identifying metabolic phenotypes that promote high expression is therefore a major goal of the biotech industry. We conducted a series of 13C flux analysis studies to examine the metabolic response to IgG expression during early stationary phase of CHO cell cultures grown in 3L fed-batch bioreactors. We examined eight clones expressing four different IgGs and compared with three non-expressing host-cell controls. Some clones were genetically manipulated to be apoptosis-resistant by expressing Bcl-2Δ, which correlated with increased IgG production and elevated glucose metabolism. The metabolic phenotypes of the non-expressing, IgG-expressing, and Bcl-2Δ/IgG-expressing clones were fully segregated by hierarchical clustering analysis. Lactate consumption and citric acid cycle fluxes were most strongly associated with specific IgG productivity. These studies indicate that enhanced oxidative metabolism is a characteristic of high-producing CHO cell lines.
Collapse
|
96
|
Abstract
Chinese hamster ovary (CHO) cells represent the predominant platform in biopharmaceutical industry for the production of recombinant biotherapeutic proteins, especially glycoproteins. These glycoproteins include oligosaccharide or glycan attachments that represent one of the principal components dictating product quality. Especially important are the N-glycan attachments present on many recombinant glycoproteins of commercial interest. Furthermore, altering the glycan composition can be used to modulate the production quality of a recombinant biotherapeutic from CHO and other mammalian hosts. This review first describes the glycosylation network in mammalian cells and compares the glycosylation patterns between CHO and human cells. Next genetic strategies used in CHO cells to modulate the sialylation patterns through overexpression of sialyltransfereases and other glycosyltransferases are summarized. In addition, other approaches to alter sialylation including manipulation of sialic acid biosynthetic pathways and inhibition of sialidases are described. Finally, this review also covers other strategies such as the glycosylation site insertion and manipulation of glycan heterogeneity to produce desired glycoforms for diverse biotechnology applications.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Bojiao Yin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA.
| |
Collapse
|
97
|
Jefferis R. Recombinant Proteins and Monoclonal Antibodies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 175:281-318. [DOI: 10.1007/10_2017_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
98
|
Hansen HG, Pristovšek N, Kildegaard HF, Lee GM. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol Adv 2017; 35:64-76. [DOI: 10.1016/j.biotechadv.2016.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/12/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
|
99
|
Hong J, Lee Y, Lee C, Eo S, Kim S, Lee N, Park J, Park S, Seo D, Jeong M, Lee Y, Yeon S, Bou-Assaf G, Sosic Z, Zhang W, Jaquez O. Physicochemical and biological characterization of SB2, a biosimilar of Remicade® (infliximab). MAbs 2016; 9:364-382. [PMID: 28005456 PMCID: PMC5297515 DOI: 10.1080/19420862.2016.1264550] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A biosimilar is a biological medicinal product that contains a version of the active substance of an already authorized original biological medicinal product. Biosimilarity to the reference product (RP) in terms of quality characteristics, such as physicochemical and biological properties, safety, and efficacy, based on a comprehensive comparability exercise needs to be established. SB2 (Flixabi® and Renflexis®) is a biosimilar to Remicade® (infliximab). The development of SB2 was performed in accordance with relevant guidelines of the International Conference on Harmonisation, the European Medicines Agency, and the United States Food and Drug Administration. To determine whether critical quality attributes meet quality standards, an extensive characterization test was performed with more than 80 lots of EU- and US-sourced RP. The physicochemical characterization study results revealed that SB2 was similar to the RP. Although a few differences in physicochemical attributes were observed, the evidence from the related literature, structure-activity relationship studies, and comparative biological assays showed that these differences were unlikely to be clinically meaningful. The biological characterization results showed that SB2 was similar to the RP in terms of tumor necrosis factor–α (TNF-α) binding and TNF-α neutralization activities as a main mode of action. SB2 was also similar in Fc-related biological activities including antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, neonatal Fc receptor binding, C1q binding, and Fc gamma receptor binding activities. These analytical findings support that SB2 is similar to the RP and also provide confidence of biosimilarity in terms of clinical safety and efficacy.
Collapse
Affiliation(s)
- Juyong Hong
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Yuhwa Lee
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Changsoo Lee
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Suhyeon Eo
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Soyeon Kim
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Nayoung Lee
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Jongmin Park
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Seungkyu Park
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Donghyuck Seo
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Min Jeong
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Youngji Lee
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - Soojeong Yeon
- a Quality Evaluation Team, Samsung Bioepis Co., Ltd , Incheon , South Korea
| | - George Bou-Assaf
- b Department of Analytical Development , Biogen, Inc. , Cambridge , MA , USA
| | - Zoran Sosic
- b Department of Analytical Development , Biogen, Inc. , Cambridge , MA , USA
| | - Wei Zhang
- b Department of Analytical Development , Biogen, Inc. , Cambridge , MA , USA
| | - Orlando Jaquez
- c Department of Medical Affairs , Biosimilars , Biogen , Zug , Switzerland
| |
Collapse
|
100
|
Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 2016; 36:1110-1122. [PMID: 26383226 PMCID: PMC5152558 DOI: 10.3109/07388551.2015.1084266] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/10/2015] [Accepted: 07/26/2015] [Indexed: 01/25/2023]
Abstract
Biotherapeutic proteins represent a mainstay of treatment for a multitude of conditions, for example, autoimmune disorders, hematologic disorders, hormonal dysregulation, cancers, infectious diseases and genetic disorders. The technologies behind their production have changed substantially since biotherapeutic proteins were first approved in the 1980s. Although most biotherapeutic proteins developed to date have been produced using the mammalian Chinese hamster ovary and murine myeloma (NS0, Sp2/0) cell lines, there has been a recent shift toward the use of human cell lines. One of the most important advantages of using human cell lines for protein production is the greater likelihood that the resulting recombinant protein will bear post-translational modifications (PTMs) that are consistent with those seen on endogenous human proteins. Although other mammalian cell lines can produce PTMs similar to human cells, they also produce non-human PTMs, such as galactose-α1,3-galactose and N-glycolylneuraminic acid, which are potentially immunogenic. In addition, human cell lines are grown easily in a serum-free suspension culture, reproduce rapidly and have efficient protein production. A possible disadvantage of using human cell lines is the potential for human-specific viral contamination, although this risk can be mitigated with multiple viral inactivation or clearance steps. In addition, while human cell lines are currently widely used for biopharmaceutical research, vaccine production and production of some licensed protein therapeutics, there is a relative paucity of clinical experience with human cell lines because they have only recently begun to be used for the manufacture of proteins (compared with other types of cell lines). With additional research investment, human cell lines may be further optimized for routine commercial production of a broader range of biotherapeutic proteins.
Collapse
|