51
|
Sommer F, Kappe CO, Cantillo D. Electrochemically Enabled One-Pot Multistep Synthesis of C19 Androgen Steroids. Chemistry 2021; 27:6044-6049. [PMID: 33556193 DOI: 10.1002/chem.202100446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/31/2023]
Abstract
The synthesis of many valuable C19 androgens can be accomplished by removal of the C17 side chain from more abundant corticosteroids, followed by further derivatization of the resulting 17-keto derivative. Conventional chemical reagents pose significant drawbacks for this synthetic strategy, as large amounts of waste are generated, and quenching of the reaction mixture and purification of the 17-ketosteroid intermediate are typically required. Herein, we present mild, safe, and sustainable electrochemical strategies for the preparation of C19 steroids. A reagent and catalyst free protocol for the removal of the C17 side chain of corticosteroids via anodic oxidation has been developed, enabling several one-pot, multistep procedures for the synthesis of androgen steroids. In addition, simultaneous anodic C17 side chain cleavage and cathodic catalytic hydrogenation of a steroid has been demonstrated, rendering a convenient and highly atom economic procedure for the synthesis of saturated androgens.
Collapse
Affiliation(s)
- Florian Sommer
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - David Cantillo
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.,Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
52
|
Magdesieva TV. Ni(II) Schiff-Base Complexes as Chiral Electroauxiliaries and Methodological Platform for Stereoselective Electrochemical Functionalization of Amino Acids. CHEM REC 2021; 21:2178-2192. [PMID: 33783962 DOI: 10.1002/tcr.202100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/08/2022]
Abstract
The concept of chiral electroauxiliary based on the redox active chiral platform to perform transformations of a redox inactive substrate is suggested and discussed in the context of the targeted stereoselective electrochemical functionalization of amino acids. Tailor-made amino acids are essential structural features of modern medicinal chemistry and drug design; the development of efficient synthetic approaches to these compounds is of topical interest. The modified substrate (an amino acid) is included as a structural motif in the redox active complex (with a possibility to be released after modification) that integrates "a bifunctional linker" (the structural motif capable to "catch" a substrate) and a chiral moiety responsible for asymmetry induction. The amino acid, being included as a part of such ensemble, becomes stable towards redox destruction and its targeted electrochemical modification saving the amino acid skeleton is possible, thus developing new modes of reactivity for well-known compounds.
Collapse
Affiliation(s)
- T V Magdesieva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| |
Collapse
|
53
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
54
|
Jud W, Kappe CO, Cantillo D. One‐pot multistep electrochemical strategy for the modular synthesis of epoxides, glycols, and aldehydes from alkenes. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry University of Graz NAWI Graz Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz NAWI Graz Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Graz Austria
| | - David Cantillo
- Institute of Chemistry University of Graz NAWI Graz Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Graz Austria
| |
Collapse
|
55
|
Vetica F, Bortolami M, Petrucci R, Rocco D, Feroci M. Electrogenerated NHCs in Organic Synthesis: Ionic Liquids vs Organic Solvents Effects. CHEM REC 2021; 21:2130-2147. [PMID: 33507627 DOI: 10.1002/tcr.202000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Indexed: 12/14/2022]
Abstract
In the last twenty years, N-heterocyclic carbenes (NHCs) have been extensively studied for their application as organocatalysts in stereoselective synthesis as well as ligands for transition metals-promoted synthetic methodologies. Derived mainly from azolium salts, NHCs have demonstrated exceptional versatility in their generation usually performed by deprotonation or reduction (chemical or electrochemical). In particular, the generation of NHC under electrochemical conditions, starting from azolium-based ionic liquids, has proven to be a successful green approach and demonstrated wide applicability in organic synthesis. In this Personal Account, the application of electrogenerated NHCs in organic synthesis will be discussed, with a particular attention to the different reactivity in ionic liquids compared to classical organic solvents.
Collapse
Affiliation(s)
- Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Daniele Rocco
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Castro Laurenziano 7, 00161, Rome, Italy
| |
Collapse
|
56
|
Jamshidi M, Amani A, Khazalpour S, Torabi S, Nematollahi D. Progress and perspectives of electrochemical insights for C–H and N–H sulfonylation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03574f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A comprehensive electrosulfonylation study has been carried out via cathodic and anodic approaches for the production of organosulfone and sulfonamide derivatives.
Collapse
Affiliation(s)
- Mahdi Jamshidi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174, Iran
| | - Ameneh Amani
- Nahavand Higher Education Complex, Bu-Ali Sina University, Hamedan, Iran
| | | | - Sara Torabi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174, Iran
| | | |
Collapse
|
57
|
Wesenberg LJ, Diehl E, Zähringer TJB, Dörr C, Schollmeyer D, Shimizu A, Yoshida J, Hellmich UA, Waldvogel SR. Metal-Free Twofold Electrochemical C-H Amination of Activated Arenes: Application to Medicinally Relevant Precursor Synthesis. Chemistry 2020; 26:17574-17580. [PMID: 32866328 PMCID: PMC7839481 DOI: 10.1002/chem.202003852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/28/2020] [Indexed: 01/13/2023]
Abstract
The efficient production of many medicinally or synthetically important starting materials suffers from wasteful or toxic precursors for the synthesis. In particular, the aromatic non-protected primary amine function represents a versatile synthetic precursor, but its synthesis typically requires toxic oxidizing agents and transition metal catalysts. The twofold electrochemical amination of activated benzene derivatives via Zincke intermediates provides an alternative sustainable strategy for the formation of new C-N bonds of high synthetic value. As a proof of concept, we use our approach to generate a benzoxazinone scaffold that gained attention as a starting structure against castrate-resistant prostate cancer. Further improvement of the structure led to significantly increased cancer cell line toxicity. Thus, exploiting environmentally benign electrooxidation, we present a new versatile and powerful method based on direct C-H activation that is applicable for example the production of medicinally relevant compounds.
Collapse
Affiliation(s)
- Lars J. Wesenberg
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Erika Diehl
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Till J. B. Zähringer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Carolin Dörr
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akihiro Shimizu
- Department Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka 560–8531Japan
| | - Jun‐ichi Yoshida
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Ute A. Hellmich
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
58
|
Erchinger JE, Gemmeren M. Electrochemical Methods for Pd‐catalyzed C−H Functionalization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Johannes E. Erchinger
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
59
|
Kehl A, Schupp N, Breising VM, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of Carbazoles by Dehydrogenative Coupling Reaction. Chemistry 2020; 26:15847-15851. [PMID: 32737905 PMCID: PMC7756279 DOI: 10.1002/chem.202003430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/14/2022]
Abstract
A constant current protocol, employing undivided cells, a remarkably low supporting electrolyte concentration, inexpensive electrode materials, and a straightforward precursor synthesis enabling a novel access to N‐protected carbazoles by anodic N,C bond formation using directly generated amidyl radicals is reported. Scalability of the reaction is demonstrated and an easy deblocking of the benzoyl protecting group is presented.
Collapse
Affiliation(s)
- Anton Kehl
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Niclas Schupp
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Valentina M Breising
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
60
|
Abstract
Abstract3,3′,5,5’-Tetramethyl-2,2′-biphenol is well known as an outstanding building block for ligands in transition-metal catalysis and is therefore of particular industrial interest. The electro-organic method is a powerful, sustainable, and efficient alternative to conventional synthetic approaches to obtain symmetric and non-symmetric biphenols. Here, we report the successive scale-up of the dehydrogenative anodic homocoupling of 2,4-dimethylphenol (4) from laboratory scale to the technically relevant scale in highly modular narrow gap flow electrolysis cells. The electrosynthesis was optimized in a manner that allows it to be easily adopted to different scales such as laboratory, semitechnical and technical scale. This includes not only the synthesis itself and its optimization but also a work-up strategy of the desired biphenols for larger scale. Furthermore, the challenges such as side reactions, heat development and gas evolution that arose during optimization are also discussed in detail. We have succeeded in obtaining yields of up to 62% of the desired biphenol.
Collapse
|
61
|
Medeiros MC, dos Santos EV, Martínez-Huitle CA, Fajardo AS, Castro SS. Obtaining high-added value products from the technical cashew-nut shell liquid using electrochemical oxidation with BDD anodes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
62
|
Heard DM, Lennox AJJ. Electrode Materials in Modern Organic Electrochemistry. Angew Chem Int Ed Engl 2020; 59:18866-18884. [PMID: 32633073 PMCID: PMC7589451 DOI: 10.1002/anie.202005745] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The choice of electrode material is critical for achieving optimal yields and selectivity in synthetic organic electrochemistry. The material imparts significant influence on the kinetics and thermodynamics of electron transfer, and frequently defines the success or failure of a transformation. Electrode processes are complex and so the choice of a material is often empirical and the underlying mechanisms and rationale for success are unknown. In this review, we aim to highlight recent instances of electrode choice where rationale is offered, which should aid future reaction development.
Collapse
Affiliation(s)
- David M. Heard
- University of BristolSchool of ChemistryCantocks CloseBristol, AvonBS8 1TSUK
| | | |
Collapse
|
63
|
Jud W, Kappe CO, Cantillo D. Development and Assembly of a Flow Cell for Single‐Pass Continuous Electroorganic Synthesis Using Laser‐Cut Components. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/cmtd.202000042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - C. Oliver Kappe
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - David Cantillo
- Institute of Chemistry University of Graz NAWI Graz Heinrichstrasse 28 8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
| |
Collapse
|
64
|
Glotz G, Kappe CO, Cantillo D. Electrochemical N-Demethylation of 14-Hydroxy Morphinans: Sustainable Access to Opioid Antagonists. Org Lett 2020; 22:6891-6896. [PMID: 32790319 PMCID: PMC7498191 DOI: 10.1021/acs.orglett.0c02424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 11/28/2022]
Abstract
The most challenging step in the preparation of many opioid antagonists is the selective N-demethylation of a 14-hydroxymorphinan precursor. This process is carried out on a large scale using stoichiometric amounts of hazardous chemicals like cyanogen bromide or chloroformates. We have developed a mild reagent- and catalyst-free procedure for the N-demethylation step based on the anodic oxidation of the tertiary amine. The ensuing intermediates can be readily hydrolyzed to the target nor-opioids in very good yields.
Collapse
Affiliation(s)
- Gabriel Glotz
- Institute
of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - C. Oliver Kappe
- Institute
of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - David Cantillo
- Institute
of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
65
|
Tabandeh M, Cheng CK, Centi G, Show PL, Chen WH, Ling TC, Ong HC, Ng EP, Juan JC, Lam SS. Recent advancement in deoxygenation of fatty acids via homogeneous catalysis for biofuel production. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
66
|
Abstract
The renewed interest in electrosynthesis demonstrated by organic chemists in the last years has allowed for rapid development of new methodologies. In this review, advances in enantioselective electrosynthesis that rely on catalytic amounts of organic or metal-based chiral mediators are highlighted with focus on the most recent developments up to July 2020. Examples of C-H functionalization, alkene functionalization, carboxylation and cross-electrophile couplings are discussed, along with their related mechanistic aspects.
Collapse
|
67
|
Romero-Ibañez J, Cruz-Gregorio E, Cruz-Gregorio S, Quintero L, Bernès S, González-Perea M, Sartillo-Piscil F. Electrochemical deamination of alkoxyamine lactams. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
68
|
Affiliation(s)
- David M. Heard
- University of Bristol School of Chemistry Cantocks Close Bristol, Avon BS8 1TS UK
| | | |
Collapse
|
69
|
Wang F, Stahl SS. Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electron-Proton Transfer Mediators. Acc Chem Res 2020; 53:561-574. [PMID: 32049487 DOI: 10.1021/acs.accounts.9b00544] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electrochemical organic oxidation reactions are highly appealing because protons are often effective terminal electron acceptors, thereby avoiding undesirable stoichiometric oxidants. These reactions are often plagued by high overpotentials, however, that greatly limit their utility. Single-electron transfer (SET) from organic molecules generates high-energy radical-cations. Formation of such intermediates often requires electrode potentials far above the thermodynamic potentials of the reaction and frequently causes decomposition and/or side reactions of ancillary functional groups. In this Account, we show how electrocatalytic electron-proton transfer mediators (EPTMs) address this challenge. EPTMs bypass the formation of radical-cation intermediates by supporting mechanisms that operate at electrode potentials much lower (≥1 V) than those of analogous direct electrolysis reactions.The stable aminoxyl radical TEMPO (2,2,6,6-tetramethylpiperidine N-oxyl) is an effective mediator for electrochemical alcohol oxidation, and we have employed such processes for applications ranging from pharmaceutical synthesis to biomass conversion. A complementary electrochemical alcohol oxidation method employs a cooperative Cu/TEMPO mediator system that operates at 0.5 V lower electrode potential than the TEMPO-only mediated process. This difference, which arises from a different catalytic mechanism, rationalizes the broad functional group tolerance of Cu/TEMPO-based aerobic alcohol oxidation catalysts.Aminoxyl mediators address long-standing challenges in the "Shono oxidation," an important method for α-C-H oxidation of tertiary amides and carbamates. Shono oxidations are initiated by a high-potential SET step that limits their utility. Aminoxyl-mediated Shono-type oxidations have been developed that operate at much lower potentials and tolerate diverse functional groups. Analogous reactivity underlies α-C-H cyanation of secondary cyclic amines, a new method that enables efficient diversification of piperidine-based pharmaceutical building blocks and preparation of non-natural amino acids.Electrochemical oxidations of benzylic C-H bonds are commonly initiated by SET to generate arene radical cations, but such methods are again plagued by large overpotentials. Mediated electrolysis methods that promote hydrogen-atom-transfer (HAT) from benzylic C-H bonds to Fe-oxo species and phthalimide N-oxyl (PINO) support C-H oxygenation, iodination, and oxidative-coupling reactions. A complementary method merges photochemistry with electrochemistry to achieve amidation of C(sp3)-H bonds. This unique process operates at much lower overpotentials compatible with diverse functional groups.These results have broad implications for organic electrochemistry, highlighting the importance of "overpotential" considerations and the prospects for expanding synthetic utility by using mediators to bypass high-energy outer-sphere electron-transfer mechanisms. Principles demonstrated here for oxidation are equally relevant to electrochemical reductions.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
70
|
Schulz L, Husmann JÅ, Waldvogel SR. Outstandingly robust anodic dehydrogenative aniline coupling reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
71
|
Translating batch electrochemistry to single-pass continuous flow conditions: an organic chemist’s guide. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00050-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractThe recent renaissance of electrochemical methods for organic synthesis has also attracted increased interest towards flow electrochemistry as the most suitable scale-up strategy. Many electrochemical methods using flow cells are based on recirculation of the electrolyte solution. However, single-pass processing is very attractive as it permits integration of the electrochemical reaction with other synthetic or purification steps in a continuous stream. Translation of batch electrochemical procedures to single-pass continuous flow cells can be challenging to beginners in the field. Using the electrochemical methoxylation of 4-methylanisole as model, this paper provides newcomers to the field with an overview of the factors that need to be considered to develop a flow electrochemical process, including advantages and disadvantages of operating in galvanostatic and potentiostatic mode in small scale reactions, and the effect of the interelectrode gap, supporting electrolyte concentration and pressure on the reaction performance. A comparison of the reaction efficiency in batch and flow is also presented.
Collapse
|
72
|
Fransen S, Ballet S, Fransaer J, Kuhn S. Overcoming diffusion limitations in electrochemical microreactors using acoustic streaming. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
73
|
Breising VM, Kayser JM, Kehl A, Schollmeyer D, Liermann JC, Waldvogel SR. Electrochemical formation of N,N′-diarylhydrazines by dehydrogenative N–N homocoupling reaction. Chem Commun (Camb) 2020; 56:4348-4351. [DOI: 10.1039/d0cc01052a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel electrochemical access to N,N′-diarylhydrazines is developed using commercial anilines, a simple setup, and an ecologically efficient electrolyte system.
Collapse
Affiliation(s)
| | - Jacob M. Kayser
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Anton Kehl
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Dieter Schollmeyer
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | | | | |
Collapse
|
74
|
Leech MC, Garcia AD, Petti A, Dobbs AP, Lam K. Organic electrosynthesis: from academia to industry. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00064g] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The growing impetus to develop greener and more cost-efficient synthetic methods has prompted chemists to look for new ways to activate small organic molecules. In this review, we cover the most recent industrial developments in electrosynthesis.
Collapse
Affiliation(s)
| | | | | | | | - Kevin Lam
- School of Science
- University of Greenwich
- Kent
- UK
| |
Collapse
|
75
|
Gleede B, Selt M, Gütz C, Stenglein A, Waldvogel SR. Large, Highly Modular Narrow-Gap Electrolytic Flow Cell and Application in Dehydrogenative Cross-Coupling of Phenols. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00451] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barbara Gleede
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maximilian Selt
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Gütz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
76
|
Ghosh M, Shinde VS, Rueping M. A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions. Beilstein J Org Chem 2019; 15:2710-2746. [PMID: 31807206 PMCID: PMC6880813 DOI: 10.3762/bjoc.15.264] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/17/2019] [Indexed: 01/07/2023] Open
Abstract
The direct exploitation of ‘electrons’ as reagents in synthetic organic transformations is on the verge of a renaissance by virtue of its greenness, sustainability, atom economy, step economy and inherent safety. Achieving stereocontrol in such organic electrochemical reactions remains a major synthetic challenge and hence demands great expertise. This review provides a comprehensive discussion of the details of stereoselective organic electrochemical reactions along with the synthetic accomplishments achieved with these methods.
Collapse
Affiliation(s)
- Munmun Ghosh
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Valmik S Shinde
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
77
|
Shida N, Zhou Y, Inagi S. Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis. Acc Chem Res 2019; 52:2598-2608. [PMID: 31436076 DOI: 10.1021/acs.accounts.9b00337] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electrosynthesis is a powerful method for the synthesis of organic, inorganic, and polymeric materials based on electron-transfer-driven reactions at the substrate/electrode interface. The use of electricity for synthetic reactions without the need for hazardous chemical oxidants and reductants is recognized as a green and sustainable method. Other advantages include control of the reaction selectivity by tuning the electrode potentials. A different mode for driving electrochemical reactions has recently been proposed, in which bipolar electrodes (BPEs) are available as wireless electrodes that undergo anodic and cathodic reactions simultaneously. Bipolar electrochemistry is an old technology that has recently garnered renewed attention because of the interesting features of BPEs: (i) the wireless nature of a BPE is useful for sensors and material synthesis; (ii) the gradient potential distribution on BPEs is a powerful tool for the preparation of gradient surfaces and materials; and (iii) electrophoresis is available for effective electrolysis. In addition to these unique features, a BPE system only requires a small amount of supporting electrolyte in principle, whereas a large amount of electrolyte is necessary in conventional electrochemistry. Hence, bipolar electrochemistry is an inherently green and sustainable chemical process for the synthesis of materials. In this Account, recent progress in bipolar electrochemistry for the electrosynthesis of functional materials is summarized. The wireless nature of BPEs was utilized for symmetry breaking to produce anisotropic materials based on the site-selective modification of conductive objects by electrodeposition and electropolymerization. Potential gradients on a BPE interface have been successfully used as controllable templates to form molecular or polymeric gradient materials, which are potentially applicable for high throughput analytical equipment or as biomimetic materials. The electric field necessary to drive BPEs is also potentially useful to induce the directed migration of charged species. The synergetic effects of electrophoresis and electrolysis were also successfully demonstrated to obtain various functional materials. These features of bipolar electrochemistry and the various combinations of techniques have the potential to change the methodologies of material synthesis. Furthermore, the fundamental principle of bipolar electrochemistry infers that very small amounts of supporting electrolyte are necessary for an electrode system, which is expected to lead new methods of sustainable organic electrosynthesis.
Collapse
Affiliation(s)
- Naoki Shida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yaqian Zhou
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
- PRESTO, Japan Science and Technology Agency (JST) 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
78
|
Jud W, Maljuric S, Kappe CO, Cantillo D. Cathodic C–H Trifluoromethylation of Arenes and Heteroarenes Enabled by an in Situ-Generated Triflyltriethylammonium Complex. Org Lett 2019; 21:7970-7975. [DOI: 10.1021/acs.orglett.9b02948] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wolfgang Jud
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Snjezana Maljuric
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - C. Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - David Cantillo
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
79
|
Nikl J, Ravelli D, Schollmeyer D, Waldvogel SR. Straightforward Electrochemical Sulfonylation of Arenes and Aniline Derivatives using Sodium Sulfinates. ChemElectroChem 2019. [DOI: 10.1002/celc.201901212] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joachim Nikl
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Davide Ravelli
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
- PhotoGreen Lab Department of Chemistry Viale Taramelli 12 27100 Pavia Italy
| | - Dieter Schollmeyer
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
80
|
Bisselink RJM, Crockatt M, Zijlstra M, Bakker IJ, Goetheer E, Slaghek TM, van Es DS. Identification of More Benign Cathode Materials for the Electrochemical Reduction of Levulinic Acid to Valeric Acid. ChemElectroChem 2019. [DOI: 10.1002/celc.201900734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Roel J. M. Bisselink
- Food & Biobased ResearchWageningen University and Research Bornse weilanden 9 6708 WG Wageningen, The Netherlands
| | - Marc Crockatt
- Sustainable Process and Energy SystemsTNO Leeghwaterstraat 44 2628 CA Delft, The Netherlands
| | - Martin Zijlstra
- Food & Biobased ResearchWageningen University and Research Bornse weilanden 9 6708 WG Wageningen, The Netherlands
| | - Ivan J. Bakker
- Sustainable Process and Energy SystemsTNO Leeghwaterstraat 44 2628 CA Delft, The Netherlands
| | - Earl Goetheer
- Sustainable Process and Energy SystemsTNO Leeghwaterstraat 44 2628 CA Delft, The Netherlands
- Process and EnergyDelft University of Technology Leeghwaterstraat 39 2628 CB Delft, The Netherlands
| | - Ted M. Slaghek
- Food & Biobased ResearchWageningen University and Research Bornse weilanden 9 6708 WG Wageningen, The Netherlands
| | - Daan S. van Es
- Food & Biobased ResearchWageningen University and Research Bornse weilanden 9 6708 WG Wageningen, The Netherlands
| |
Collapse
|
81
|
Shatskiy A, Lundberg H, Kärkäs MD. Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem 2019. [DOI: 10.1002/celc.201900435] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrey Shatskiy
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Helena Lundberg
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Markus D. Kärkäs
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| |
Collapse
|
82
|
Teng Q, Sun Y, Yao Y, Tang H, Li J, Pan Y. Metal‐ and Catalyst‐Free Electrochemical Synthesis of Quinazolinones from Alkenes and 2‐Aminobenzamides. ChemElectroChem 2019. [DOI: 10.1002/celc.201900682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qing‐Hu Teng
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 People's Republic of China
| | - Yu Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 People's Republic of China
| | - Yan Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 People's Republic of China
| | - Jia‐Rong Li
- School of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical SciencesGuangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
83
|
Chong KW, Thomas NF, Low YY, Kam TS. Reactions of Anodically Generated Methoxystilbene Cation Radicals: The Influence of Ortho-Substituted Vinyl and Formyl Groups. J Org Chem 2019; 84:7279-7290. [DOI: 10.1021/acs.joc.9b00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kam-Weng Chong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noel F. Thomas
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun-Yee Low
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Toh-Seok Kam
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
84
|
Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Recent Advances in Oxidative R 1-H/R 2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chem Rev 2019; 119:6769-6787. [PMID: 31074264 DOI: 10.1021/acs.chemrev.9b00045] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photo-/electrochemical catalyzed oxidative R1-H/R2-H cross-coupling with hydrogen evolution has become an increasingly important issue for molecular synthesis. The dream of construction of C-C/C-X bonds from readily available C-H/X-H with release of H2 can be facilely achieved without external chemical oxidants, providing a greener model for chemical bond formation. Given the great influence of these reactions in organic chemistry, we give a summary of the state of the art in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo/electrochemistry, and we hope this review will stimulate the development of a greener synthetic strategy in the near future.
Collapse
Affiliation(s)
- Huamin Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xinlong Gao
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zongchao Lv
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Takfaoui Abdelilah
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
85
|
van der Vlugt JI. Radical-Type Reactivity and Catalysis by Single-Electron Transfer to or from Redox-Active Ligands. Chemistry 2019; 25:2651-2662. [PMID: 30084211 PMCID: PMC6471147 DOI: 10.1002/chem.201802606] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Controlled ligand-based redox-activity and chemical non-innocence are rapidly gaining importance for selective (catalytic) processes. This Concept aims to provide an overview of the progress regarding ligand-to-substrate single-electron transfer as a relatively new mode of operation to exploit ligand-centered reactivity and catalysis based thereon.
Collapse
Affiliation(s)
- Jarl Ivar van der Vlugt
- Bio-Inspired Homogeneous and Supramolecular Catalysis Groupvan ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamNetherlands
| |
Collapse
|
86
|
Kathiravan S, Suriyanarayanan S, Nicholls IA. Electrooxidative Amination of sp 2 C-H Bonds: Coupling of Amines with Aryl Amides via Copper Catalysis. Org Lett 2019; 21:1968-1972. [PMID: 30785289 DOI: 10.1021/acs.orglett.9b00003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metal-catalyzed cross-coupling reactions are among the most important transformations in organic synthesis. However, the use of C-H activation for sp2 C-N bond formation remains one of the major challenges in the field of cross-coupling chemistry. Described herein is the first example of the synergistic combination of copper catalysis and electrocatalysis for aryl C-H amination under mild reaction conditions in an atom-and step-economical manner with the liberation of H2 as the sole and benign byproduct.
Collapse
Affiliation(s)
- Subban Kathiravan
- Bioorganic & Biophysical Chemistry Laboratory, Department of Chemistry & Biomedical Sciences and Linnaeus University Centre for Biomaterials Chemistry , Linnaeus University , SE-391 82 Kalmar , Sweden
| | - Subramanian Suriyanarayanan
- Bioorganic & Biophysical Chemistry Laboratory, Department of Chemistry & Biomedical Sciences and Linnaeus University Centre for Biomaterials Chemistry , Linnaeus University , SE-391 82 Kalmar , Sweden
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Department of Chemistry & Biomedical Sciences and Linnaeus University Centre for Biomaterials Chemistry , Linnaeus University , SE-391 82 Kalmar , Sweden
| |
Collapse
|
87
|
Masoudi Khoram M, Nematollahi D, Jamshidi M, Goljani H. Electrochemical study of fast blue BB. A green strategy for sulfination of fast blue BB. NEW J CHEM 2019. [DOI: 10.1039/c9nj00815b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This research has led to the development of an environmentally friendly method for the synthesis of some new sulfone derivatives with high yields and without using any toxic reagents and solvents.
Collapse
Affiliation(s)
| | | | - Mahdi Jamshidi
- Faculty of Chemistry
- Bu-Ali-Sina University
- Hamedan 65174
- Iran
| | - Hamed Goljani
- Faculty of Chemistry
- Bu-Ali-Sina University
- Hamedan 65174
- Iran
| |
Collapse
|
88
|
Chang X, Zhang Q, Guo C. Electrochemical Reductive Smiles Rearrangement for C–N Bond Formation. Org Lett 2018; 21:10-13. [DOI: 10.1021/acs.orglett.8b03178] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xihao Chang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qinglin Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
89
|
Kehl A, Breising VM, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of 5-Aryl-phenanthridin-6-one by Dehydrogenative N,C Bond Formation. Chemistry 2018; 24:17230-17233. [DOI: 10.1002/chem.201804638] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Anton Kehl
- Johannes Gutenberg-Universität Mainz; Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
| | - Valentina M. Breising
- Johannes Gutenberg-Universität Mainz; Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
| | - Dieter Schollmeyer
- Johannes Gutenberg-Universität Mainz; Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Johannes Gutenberg-Universität Mainz; Institut für Organische Chemie; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
90
|
Breising VM, Gieshoff T, Kehl A, Kilian V, Schollmeyer D, Waldvogel SR. Electrochemical Formation of 3,5-Diimido-1,2-dithiolanes by Dehydrogenative Coupling. Org Lett 2018; 20:6785-6788. [DOI: 10.1021/acs.orglett.8b02904] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valentina M. Breising
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Tile Gieshoff
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, 55128 Mainz, Germany
| | - Anton Kehl
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Vincent Kilian
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Dieter Schollmeyer
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, 55128 Mainz, Germany
| |
Collapse
|
91
|
Wilken M, Ortgies S, Breder A, Siewert I. Mechanistic Studies on the Anodic Functionalization of Alkenes Catalyzed by Diselenides. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01236] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mona Wilken
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Stefan Ortgies
- Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Alexander Breder
- Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
92
|
Vanrenterghem B, Jovanovič P, Šala M, Bele M, Šelih VS, Hodnik N, Breugelmans T. Stability study of silver nanoparticles towards the halide electroreduction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
93
|
Chen CH, Brennan C, Lai SCS, Fermin DJ, Unwin PR, Rodriguez P. Adsorption and Electrochemical Oxidation of Small Sulfur−Containing Anions on Pt Electrodes in Organic Media. ChemElectroChem 2018. [DOI: 10.1002/celc.201800478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chang-Hui Chen
- Department of Chemistry; University of Warwick; Gibbet Hill Rd Coventry CV4 7AL UK
| | - Colin Brennan
- Syngenta, Jealott's Hill International Research Centre; Bracknell, Berkshire RG42 6EY UK
| | - Stanley C. S. Lai
- Syngenta, Jealott's Hill International Research Centre; Bracknell, Berkshire RG42 6EY UK
| | - David J. Fermin
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Patrick R. Unwin
- Department of Chemistry; University of Warwick; Gibbet Hill Rd Coventry CV4 7AL UK
| | - Paramaconi Rodriguez
- School of Chemistry; University of Birmingham; Edgbaston, Birmingham B15 2TT UK
- Birmingham Centre for Strategic Elements & Critical Materials; University of Birmingham; B15 2TT UK
| |
Collapse
|
94
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 605] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
95
|
Sauermann N, Meyer TH, Ackermann L. Electrochemical Cobalt-Catalyzed C−H Activation. Chemistry 2018; 24:16209-16217. [DOI: 10.1002/chem.201802706] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Nicolas Sauermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Tjark H. Meyer
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
- Department of Chemistry; University of Pavia; Viale Tamarelli, 10 27100 Pavia Italy
| |
Collapse
|
96
|
Mei R, Sauermann N, Oliveira JCA, Ackermann L. Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C–H/N–H Activation with Internal Alkynes. J Am Chem Soc 2018; 140:7913-7921. [DOI: 10.1021/jacs.8b03521] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ruhuai Mei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Nicolas Sauermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100 Pavia, Italy
- International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-Universität Göttingen, Tammannstraße 6, 37077, Göttingen, Germany
| |
Collapse
|
97
|
Möhle S, Herold S, Hillerson ND, Waldvogel SR. Anodic Formation of Aryl Mesylates through Dehydrogenative Coupling Reaction. ChemElectroChem 2018. [DOI: 10.1002/celc.201800498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sabine Möhle
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Sebastian Herold
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Material Science in Mainz; Johannes Gutenberg-Universität Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Natalie D. Hillerson
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Material Science in Mainz; Johannes Gutenberg-Universität Mainz; Staudingerweg 9 55128 Mainz Germany
| |
Collapse
|
98
|
Schulz L, Franke R, Waldvogel SR. Direct Anodic Dehydrogenative Cross- and Homo-Coupling of Formanilides. ChemElectroChem 2018. [DOI: 10.1002/celc.201800422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lara Schulz
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Robert Franke
- Evonik Performance Materials GmbH; Paul-Baumann-Straße 1 45772 Marl Germany
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
99
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Modern Electrochemical Aspects for the Synthesis of Value-Added Organic Products. Angew Chem Int Ed Engl 2018; 57:6018-6041. [PMID: 29359378 PMCID: PMC6001547 DOI: 10.1002/anie.201712732] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 11/11/2022]
Abstract
The use of electricity instead of stoichiometric amounts of oxidizers or reducing agents in synthesis is very appealing for economic and ecological reasons, and represents a major driving force for research efforts in this area. To use electron transfer at the electrode for a successful transformation in organic synthesis, the intermediate radical (cation/anion) has to be stabilized. Its combination with other approaches in organic chemistry or concepts of contemporary synthesis allows the establishment of powerful synthetic methods. The aim in the 21st Century will be to use as little fossil carbon as possible and, for this reason, the use of renewable sources is becoming increasingly important. The direct conversion of renewables, which have previously mainly been incinerated, is of increasing interest. This Review surveys many of the recent seminal important developments which will determine the future of this dynamic emerging field.
Collapse
Affiliation(s)
- Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Anton Wiebe
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| |
Collapse
|
100
|
Pandolfi F, Chiarotto I, Feroci M. Electrochemically modified Corey-Fuchs reaction for the synthesis of arylalkynes. The case of 2-(2,2-dibromovinyl)naphthalene. Beilstein J Org Chem 2018; 14:891-899. [PMID: 29765470 PMCID: PMC5942384 DOI: 10.3762/bjoc.14.76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/12/2018] [Indexed: 12/05/2022] Open
Abstract
The electrochemical reduction of 2-(2,2-dibromovinyl)naphthalene in a DMF solution (Pt cathode) yields selectively 2-ethynylnaphthalene or 2-(bromoethynyl)naphthalene in high yields, depending on the electrolysis conditions. In particular, by simply changing the working potential and the supporting electrolyte, the reaction can be directed towards the synthesis of the terminal alkyne (Et4NBF4) or the bromoalkyne (NaClO4). This study allowed to establish that 2-(bromoethynyl)naphthalene can be converted into 2-ethynylnaphthalene by cathodic reduction.
Collapse
Affiliation(s)
- Fabiana Pandolfi
- Deptartment of Fundamental and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161, Rome, Italy
| | - Isabella Chiarotto
- Deptartment of Fundamental and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161, Rome, Italy
| | - Marta Feroci
- Deptartment of Fundamental and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161, Rome, Italy
| |
Collapse
|