51
|
Abstract
Most living beings, including humans, must adapt to rhythmically occurring daily changes in their environment that are generated by the Earth's rotation. In the course of evolution, these organisms have acquired an internal circadian timing system that can anticipate environmental oscillations and thereby govern their rhythmic physiology in a proactive manner. In mammals, the circadian timing system coordinates virtually all physiological processes encompassing vigilance states, metabolism, endocrine functions and cardiovascular activity. Research performed during the past two decades has established that almost every cell in the body possesses its own circadian timekeeper. The resulting clock network is organized in a hierarchical manner. A master pacemaker, located in the suprachiasmatic nucleus (SCN) of the hypothalamus, is synchronized every day to the photoperiod. In turn, the SCN determines the phase of the cellular clocks in peripheral organs through a wide variety of signalling pathways dependent on feeding cycles, body temperature rhythms, oscillating bloodborne signals and, in some organs, inputs of the peripheral nervous system. A major purpose of circadian clocks in peripheral tissues is the temporal orchestration of key metabolic processes, including food processing (metabolism and xenobiotic detoxification). Here, we review some recent findings regarding the molecular and cellular composition of the circadian timing system and discuss its implications for the temporal coordination of metabolism in health and disease. We focus primarily on metabolic disorders such as obesity and type 2 diabetes, although circadian misalignments (shiftwork or 'social jet lag') have also been associated with the aetiology of human malignancies.
Collapse
Affiliation(s)
- C Dibner
- Department of Endocrinology, Diabetes, Nutrition and Hypertension, University Hospital of Geneva, Geneva, Switzerland
| | | |
Collapse
|
52
|
Lin LL, Huang HC, Juan HF. Circadian systems biology in Metazoa. Brief Bioinform 2015; 16:1008-24. [PMID: 25758249 DOI: 10.1093/bib/bbv006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Indexed: 12/30/2022] Open
Abstract
Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals.
Collapse
|
53
|
Meijer JH, Michel S. Neurophysiological Analysis of the Suprachiasmatic Nucleus. Methods Enzymol 2015; 552:75-102. [DOI: 10.1016/bs.mie.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
54
|
Krahmer J, Hindle MM, Martin SF, Le Bihan T, Millar AJ. Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana. Methods Enzymol 2014; 551:405-31. [PMID: 25662467 PMCID: PMC4427183 DOI: 10.1016/bs.mie.2014.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systems biological approaches to study the Arabidopsis thaliana circadian clock have mainly focused on transcriptomics while little is known about the proteome, and even less about posttranslational modifications. Evidence has emerged that posttranslational protein modifications, in particular phosphorylation, play an important role for the clock and its output. Phosphoproteomics is the method of choice for a large-scale approach to gain more knowledge about rhythmic protein phosphorylation. Recent plant phosphoproteomics publications have identified several thousand phosphopeptides. However, the methods used in these studies are very labor-intensive and therefore not suitable to apply to a well-replicated circadian time series. To address this issue, we present and compare different strategies for sample preparation for phosphoproteomics that are compatible with large numbers of samples. Methods are compared regarding number of identifications, variability of quantitation, and functional categorization. We focus on the type of detergent used for protein extraction as well as methods for its removal. We also test a simple two-fraction separation of the protein extract.
Collapse
Affiliation(s)
- Johanna Krahmer
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew M Hindle
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah F Martin
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
55
|
Podobed P, Pyle WG, Ackloo S, Alibhai FJ, Tsimakouridze EV, Ratcliffe WF, Mackay A, Simpson J, Wright DC, Kirby GM, Young ME, Martino TA. The day/night proteome in the murine heart. Am J Physiol Regul Integr Comp Physiol 2014; 307:R121-37. [PMID: 24789993 DOI: 10.1152/ajpregu.00011.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as ∼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function.
Collapse
|
56
|
The proteomic landscape of the suprachiasmatic nucleus clock reveals large-scale coordination of key biological processes. PLoS Genet 2014; 10:e1004695. [PMID: 25330117 PMCID: PMC4199512 DOI: 10.1371/journal.pgen.1004695] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) acts as the central clock to coordinate circadian oscillations in mammalian behavior, physiology and gene expression. Despite our knowledge of the circadian transcriptome of the SCN, how it impacts genome-wide protein expression is not well understood. Here, we interrogated the murine SCN proteome across the circadian cycle using SILAC-based quantitative mass spectrometry. Of the 2112 proteins that were accurately quantified, 20% (421 proteins) displayed a time-of-day-dependent expression profile. Within this time-of-day proteome, 11% (48 proteins) were further defined as circadian based on a sinusoidal expression pattern with a ∼24 h period. Nine circadianly expressed proteins exhibited 24 h rhythms at the transcript level, with an average time lag that exceeded 8 h. A substantial proportion of the time-of-day proteome exhibited abrupt fluctuations at the anticipated light-to-dark and dark-to-light transitions, and was enriched for proteins involved in several key biological pathways, most notably, mitochondrial oxidative phosphorylation. Additionally, predicted targets of miR-133ab were enriched in specific hierarchical clusters and were inversely correlated with miR133ab expression in the SCN. These insights into the proteomic landscape of the SCN will facilitate a more integrative understanding of cellular control within the SCN clock. The suprachiasmatic nucleus (SCN) serves as the master circadian pacemaker in mammals, coordinating the physiological responses of a myriad of peripheral clocks throughout the body and linking their rhythms to the environmental light-dark cycle. In this study, we interrogated the murine SCN proteome across the circadian cycle using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry. Among 3275 identified proteins in the SCN, 421 displayed a time-of-day-dependent expression profile, 48 fit a circadian expression profile with a ∼24 h period, and a surprising number of proteins were ultradianly expressed. Nine circadianly expressed proteins were accompanied by transcripts that were also 24 h rhythmic, but with a significant time lag (>8 h) between the phases of peak mRNA vs. protein expression. A substantial proportion of the time-of-day proteome exhibited abrupt fluctuations at the anticipated dawn and dusk, and was involved in mitochondrial oxidative phosphorylation. Additionally, predicted targets of miR-133ab were enriched in specific hierarchical clusters and were inversely correlated with miR133ab expression in the SCN. Our study underscores the significance of post-transcriptional regulation, the surprising prevalence of ultradian protein expression, and the functional implications on mitochondrial energy metabolism.
Collapse
|
57
|
Mauvoisin D, Dayon L, Gachon F, Kussmann M. Proteomics and circadian rhythms: it's all about signaling! Proteomics 2014; 15:310-7. [PMID: 25103677 DOI: 10.1002/pmic.201400187] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/02/2014] [Accepted: 08/04/2014] [Indexed: 01/11/2023]
Abstract
Proteomic technologies using MS offer new perspectives in circadian biology, in particular the possibility to study PTMs. To date, only very few studies have been carried out to decipher the rhythmicity of protein expression in mammals with large-scale proteomics. Although signaling has been shown to be of high relevance, comprehensive characterization studies of PTMs are even more rare. This review aims at describing the actual landscape of circadian proteomics and the opportunities and challenges appearing on the horizon. Emphasis was given to signaling processes for their role in metabolic health as regulated by circadian clocks and environmental factors. Those signaling processes are expected to be better and more deeply characterized in the coming years with proteomics.
Collapse
Affiliation(s)
- Daniel Mauvoisin
- Circadian Rhythm Group, Nestlé Institute of Health Sciences (NIHS), Lausanne, Switzerland
| | | | | | | |
Collapse
|
58
|
Kim JH, Kim JH, Cho YE, Baek MC, Jung JY, Lee MG, Jang IS, Lee HW, Suk K. Chronic Sleep Deprivation-Induced Proteome Changes in Astrocytes of the Rat Hypothalamus. J Proteome Res 2014; 13:4047-61. [DOI: 10.1021/pr500431j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | | | | | | | - Il-Sung Jang
- Department
of Pharmacology, Brain Science and Engineering Institute, Kyungpook National University School of Dentistry, Daegu 700-422, Republic of Korea
| | | | | |
Collapse
|
59
|
O'Neill JS, Feeney KA. Circadian redox and metabolic oscillations in mammalian systems. Antioxid Redox Signal 2014; 20:2966-81. [PMID: 24063592 PMCID: PMC4038991 DOI: 10.1089/ars.2013.5582] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE A substantial proportion of mammalian physiology is organized around the day/night cycle, being regulated by the co-ordinated action of numerous cell-autonomous circadian oscillators throughout the body. Disruption of internal timekeeping, by genetic or environmental perturbation, leads to metabolic dysregulation, whereas changes in metabolism affect timekeeping. RECENT ADVANCES While gene expression cycles are essential for the temporal coordination of normal physiology, it has become clear that rhythms in metabolism and redox balance are cell-intrinsic phenomena, which may regulate gene expression cycles reciprocally, but persist in their absence. For example, a circadian rhythm in peroxiredoxin oxidation was recently observed in isolated human erythrocytes, fibroblast cell lines in vitro, and mouse liver in vivo. CRITICAL ISSUES Mammalian timekeeping is a cellular phenomenon. While we understand many of the cellular systems that contribute to this biological oscillation's fidelity and robustness, a comprehensive mechanistic understanding remains elusive. Moreover, the formerly clear distinction between "core clock components" and rhythmic cellular outputs is blurred since several outputs, for example, redox balance, can feed back to regulate timekeeping. As with any cyclical system, establishing causality becomes problematic. FUTURE DIRECTIONS A detailed molecular understanding of the temporal crosstalk between cellular systems, and the coincidence detection mechanisms that allow a cell to discriminate clock-relevant from irrelevant stimuli, will be essential as we move toward an integrated model of how this daily biological oscillation works. Such knowledge will highlight new avenues by which the functional consequences of circadian timekeeping can be explored in the context of human health and disease.
Collapse
Affiliation(s)
- John S O'Neill
- MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | | |
Collapse
|
60
|
Feret R, Lilley KS. Protein profiling using two-dimensional difference gel electrophoresis (2-D DIGE). ACTA ACUST UNITED AC 2014; 75:22.2.1-22.2.17. [PMID: 24510675 DOI: 10.1002/0471140864.ps2202s75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
2-D DIGE relies on pre-electrophoretic labeling of samples with one of three spectrally distinct fluorescent dyes, followed by electrophoresis of all samples in one 2-D gel. The dye-labeled samples are then viewed individually by scanning the gel at different wavelengths, which circumvents problems with gel-to-gel variation and spot matching between gels. Image analysis programs are used to generate volume ratios for each spot, which essentially describe the intensity of a particular spot in each test sample, and thus enable protein abundance level changes to be identified and quantified. This unit describes the 2-D DIGE procedure including sample preparation from various cell types, labeling of proteins, and points to consider in the downstream processing of fluorescently labeled samples.
Collapse
Affiliation(s)
- Renata Feret
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
61
|
Lee KH, Kim SH, Kim HJ, Kim W, Lee HR, Jung Y, Choi JH, Hong KY, Jang SK, Kim KT. AUF1 contributes to Cryptochrome1 mRNA degradation and rhythmic translation. Nucleic Acids Res 2014; 42:3590-606. [PMID: 24423872 PMCID: PMC3973335 DOI: 10.1093/nar/gkt1379] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the present study, we investigated the 3' untranslated region (UTR) of the mouse core clock gene cryptochrome 1 (Cry1) at the post-transcriptional level, particularly its translational regulation. Interestingly, the 3'UTR of Cry1 mRNA decreased its mRNA levels but increased protein amounts. The 3'UTR is widely known to function as a cis-acting element of mRNA degradation. The 3'UTR also provides a binding site for microRNA and mainly suppresses translation of target mRNAs. We found that AU-rich element RNA binding protein 1 (AUF1) directly binds to the Cry1 3'UTR and regulates translation of Cry1 mRNA. AUF1 interacted with eukaryotic translation initiation factor 3 subunit B and also directly associated with ribosomal protein S3 or ribosomal protein S14, resulting in translation of Cry1 mRNA in a 3'UTR-dependent manner. Expression of cytoplasmic AUF1 and binding of AUF1 to the Cry1 3'UTR were parallel to the circadian CRY1 protein profile. Our results suggest that the 3'UTR of Cry1 is important for its rhythmic translation, and AUF1 bound to the 3'UTR facilitates interaction with the 5' end of mRNA by interacting with translation initiation factors and recruiting the 40S ribosomal subunit to initiate translation of Cry1 mRNA.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Department of Life Sciences, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, Gyeongbuk 790-784, Republic of Korea, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, Gyeongbuk 790-784, Republic of Korea and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, Gyeongbuk 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Hastings MH, Brancaccio M, Maywood ES. Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus. J Neuroendocrinol 2014; 26:2-10. [PMID: 24329967 PMCID: PMC4065364 DOI: 10.1111/jne.12125] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/06/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal circadian pacemaker of the brain. It co-ordinates the daily rhythms of sleep and wakefulness, as well as physiology and behaviour, that set the tempo to our lives. Disturbance of this daily pattern, most acutely with jet-lag but more insidiously with rotational shift-work, can have severely deleterious effects for mental function and long-term health. The present review considers recent developments in our understanding of the properties of the SCN that make it a robust circadian time-keeper. It first focuses on the intracellular transcriptional/ translational feedback loops (TTFL) that constitute the cellular clockwork of the SCN neurone. Daily timing by these loops pivots around the negative regulation of the Period (Per) and Cryptochrome (Cry) genes by their protein products. The period of the circadian cycle is set by the relative stability of Per and Cry proteins, and this can be controlled by both genetic and pharmacological interventions. It then considers the function of these feedback loops in the context of cytosolic signalling by cAMP and intracellular calcium ([Ca(2+) ]i ), which are both outputs from, and inputs to, the TTFL, as well as the critical role of vasoactive intestinal peptide (VIP) signalling in synchronising cellular clocks across the SCN. Synchronisation by VIP in the SCN is paracrine, operating over an unconventionally long time frame (i.e. 24 h) and wide spatial domain, mediated via the cytosolic pathways upstream of the TTFL. Finally, we show how intersectional pharmacogenetics can be used to control G-protein-coupled signalling in individual SCN neurones, and how manipulation of Gq/[Ca(2+) ]i -signalling in VIP neurones can re-programme the circuit-level encoding of circadian time. Circadian pacemaking in the SCN therefore provides an unrivalled context in which to understand how a complex, adaptive behaviour can be organised by the dynamic activity of a relatively few gene products, operating in a clearly defined neuronal circuit, with both cell-autonomous and emergent, circuit-level properties.
Collapse
Affiliation(s)
- M H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
63
|
Abstract
Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism's clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, mounting evidence is questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism.
Collapse
Affiliation(s)
- Akhilesh B. Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Center, and Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Guillaume Rey
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Center, and Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
64
|
Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 2013; 111:167-72. [PMID: 24344304 DOI: 10.1073/pnas.1314066111] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.
Collapse
|
65
|
Huang Y, Ainsley JA, Reijmers LG, Jackson FR. Translational profiling of clock cells reveals circadianly synchronized protein synthesis. PLoS Biol 2013; 11:e1001703. [PMID: 24348200 PMCID: PMC3864454 DOI: 10.1371/journal.pbio.1001703] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/24/2013] [Indexed: 12/03/2022] Open
Abstract
This study describes, for the first time, the rhythmic translational program within circadian
clock cells. The results indicate that most clock cell mRNAs are translated at low-energy times of
either mid-day or mid-night, and also that related cellular functions are coordinately regulated by
the synchronized translation of relevant mRNAs at the same time of day. Genome-wide studies of circadian transcription or mRNA translation have been hindered by the
presence of heterogeneous cell populations in complex tissues such as the nervous system. We
describe here the use of a Drosophila cell-specific translational profiling
approach to document the rhythmic “translatome” of neural clock cells for the first time
in any organism. Unexpectedly, translation of most clock-regulated transcripts—as assayed by
mRNA ribosome association—occurs at one of two predominant circadian phases, midday or
mid-night, times of behavioral quiescence; mRNAs encoding similar cellular functions are translated
at the same time of day. Our analysis also indicates that fundamental cellular
processes—metabolism, energy production, redox state (e.g., the thioredoxin system), cell
growth, signaling and others—are rhythmically modulated within clock cells via synchronized
protein synthesis. Our approach is validated by the identification of mRNAs known to exhibit
circadian changes in abundance and the discovery of hundreds of novel mRNAs that show translational
rhythms. This includes Tdc2, encoding a neurotransmitter synthetic enzyme, which we
demonstrate is required within clock neurons for normal circadian locomotor activity. The circadian clock controls daily rhythms in physiology and behavior via mechanisms that
regulate gene expression. While numerous studies have examined the clock regulation of gene
transcription and documented rhythms in mRNA abundance, less is known about how circadian changes in
protein synthesis contribute to the orchestration of physiological and behavioral programs. Here we
have monitored mRNA ribosomal association (as a proxy for translation) to globally examine the
circadian timing of protein synthesis specifically within clock cells of
Drosophila. The results reveal, for the first time in any organism, the complete
circadian program of protein synthesis (the “circadian translatome”) within these cells.
A novel finding is that most mRNAs within clock cells are translated at one of two predominant
circadian phases—midday or mid-night—times of low energy expenditure. Our work also
finds that many clock cell processes, including metabolism, redox state, signaling,
neurotransmission, and even protein synthesis itself, are coordinately regulated such that mRNAs
required for similar cellular functions are translated in synchrony at the same time of day.
Collapse
Affiliation(s)
- Yanmei Huang
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts
University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (Y.H.);
(F.R.J.)
| | - Joshua A. Ainsley
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts
University School of Medicine, Boston, Massachusetts, United States of America
| | - Leon G. Reijmers
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts
University School of Medicine, Boston, Massachusetts, United States of America
| | - F. Rob Jackson
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts
University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (Y.H.);
(F.R.J.)
| |
Collapse
|
66
|
Zhang L, Hastings M, Green E, Tauber E, Sladek M, Webster S, Kyriacou C, Wilcockson D. Dissociation of circadian and circatidal timekeeping in the marine crustacean Eurydice pulchra. Curr Biol 2013; 23:1863-73. [PMID: 24076244 PMCID: PMC3793863 DOI: 10.1016/j.cub.2013.08.038] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/17/2013] [Accepted: 08/19/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Tidal (12.4 hr) cycles of behavior and physiology adapt intertidal organisms to temporally complex coastal environments, yet their underlying mechanism is unknown. However, the very existence of an independent "circatidal" clock has been disputed, and it has been argued that tidal rhythms arise as a submultiple of a circadian clock, operating in dual oscillators whose outputs are held in antiphase i.e., ~12.4 hr apart. RESULTS We demonstrate that the intertidal crustacean Eurydice pulchra (Leach) exhibits robust tidal cycles of swimming in parallel to circadian (24 hr) rhythms in behavioral, physiological and molecular phenotypes. Importantly, ~12.4 hr cycles of swimming are sustained in constant conditions, they can be entrained by suitable stimuli, and they are temperature compensated, thereby meeting the three criteria that define a biological clock. Unexpectedly, tidal rhythms (like circadian rhythms) are sensitive to pharmacological inhibition of Casein kinase 1, suggesting the possibility of shared clock substrates. However, cloning the canonical circadian genes of E. pulchra to provide molecular markers of circadian timing and also reagents to disrupt it by RNAi revealed that environmental and molecular manipulations that confound circadian timing do not affect tidal timing. Thus, competent circadian timing is neither an inevitable nor necessary element of tidal timekeeping. CONCLUSIONS We demonstrate that tidal rhythms are driven by a dedicated circatidal pacemaker that is distinct from the circadian system of E. pulchra, thereby resolving a long-standing debate regarding the nature of the circatidal mechanism.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | | - Edward W. Green
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Eran Tauber
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Martin Sladek
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Simon G. Webster
- School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK
| | | | - David C. Wilcockson
- School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| |
Collapse
|
67
|
Aramendy M, Seibert S, Treppmann P, Richter K, Ahnert-Hilger G, Albrecht U. Synaptophysin is involved in resetting of the mammalian circadian clock. J Circadian Rhythms 2013; 11:11. [PMID: 24083423 PMCID: PMC3851196 DOI: 10.1186/1740-3391-11-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammals can adapt to changing light/dark conditions by advancing or delaying their circadian clock phase. Light pulses evoke changes in gene expression and neuronal activity in the suprachiasmatic nuclei (SCN), the central pacemaker of the circadian system. Alterations in neuronal activity are partially mediated by changes in synaptic vesicle (SV) fusion at the presynaptic membrane, which modulates release of neurotransmitters. METHODS Male synaptophysin (Syp) knock-out and littermate control wild type mice were tested in an Aschoff type I resetting paradigm. Additionally, gene expression of cFos, Per1 and Per2 was assessed in the SCN. Finally, complexes between the synaptic vesicle proteins Syp and synaptobrevin (Syb) were studied in order to correlate behavior with protein complexes at synaptic vesicles. RESULTS Here we show that mice lacking Syp, a modulator of neurotransmitter release, are defective in delaying clock phase. In contrast, clock phase advances as well as clock period are normal in Syp-/- knock-out mice. This correlates with the formation of Syp/Syb complexes. CONCLUSIONS Our findings suggest that Syp is involved specifically in the response to a nocturnal light pulse occurring in the early night. It appears that the SV component Syp is critically involved in the delay portion of the resetting mechanism of the circadian clock.
Collapse
Affiliation(s)
- Marie Aramendy
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland.
| | | | | | | | | | | |
Collapse
|
68
|
Hastings MH, Goedert M. Circadian clocks and neurodegenerative diseases: time to aggregate? Curr Opin Neurobiol 2013; 23:880-7. [PMID: 23797088 PMCID: PMC3782660 DOI: 10.1016/j.conb.2013.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 12/15/2022]
Abstract
The major neurodegenerative diseases are characterised by a disabling loss of the daily pattern of sleep and wakefulness, which may be reflective of a compromise to the underlying circadian clock that times the sleep cycle. At a molecular level, the canonical property of neurodegenerative diseases is aberrant aggregation of otherwise soluble neuronal proteins. They can thus be viewed as disturbances of proteostasis, raising the question whether the two features - altered daily rhythms and molecular aggregation - are related. Recent discoveries have highlighted the fundamental contribution of circadian clocks to the correct ordering of daily cellular metabolic cycles, imposing on peripheral organs such as the liver a strict programme that alternates between anabolic and catabolic states. The discovery that circadian mechanisms are active in local brain regions suggests that they may impinge upon physiological and pathological elements that influence pro-neurodegenerative aggregation. This review explores how introducing the dimension of circadian time and the circadian clock might refine the analysis of aberrant aggregation, thus expanding our perspective on the cell biology common to neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael H Hastings
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | | |
Collapse
|
69
|
Duhart JM, Leone MJ, Paladino N, Evans JA, Castanon-Cervantes O, Davidson AJ, Golombek DA. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α. THE JOURNAL OF IMMUNOLOGY 2013; 191:4656-64. [PMID: 24062487 DOI: 10.4049/jimmunol.1300450] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the CNS, and there is growing evidence that points toward a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2(luc) knockin mice altered both the phase and amplitude of PER2 expression rhythms, in a phase-dependent manner. Furthermore, conditioned media from SCN astrocyte cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, which was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNFR-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro, and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation.
Collapse
Affiliation(s)
- José M Duhart
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1876 Bernal, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
70
|
Bloch G, Herzog ED, Levine JD, Schwartz WJ. Socially synchronized circadian oscillators. Proc Biol Sci 2013; 280:20130035. [PMID: 23825203 PMCID: PMC3712435 DOI: 10.1098/rspb.2013.0035] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 06/03/2013] [Indexed: 12/26/2022] Open
Abstract
Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian 'clock'). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day-night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the 'group' level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature.
Collapse
Affiliation(s)
- Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Erik D. Herzog
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | - Joel D. Levine
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada, L5L 136
| | - William J. Schwartz
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
71
|
Monti JM, BaHammam AS, Pandi-Perumal SR, Bromundt V, Spence DW, Cardinali DP, Brown GM. Sleep and circadian rhythm dysregulation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:209-16. [PMID: 23318689 DOI: 10.1016/j.pnpbp.2012.12.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/04/2012] [Accepted: 12/27/2012] [Indexed: 12/18/2022]
Abstract
Sleep-onset and maintenance insomnia is a common symptom in schizophrenic patients regardless of either their medication status (drug-naive or previously treated) or the phase of the clinical course (acute or chronic). Regarding sleep architecture, the majority of studies indicate that non-rapid eye movement (NREM), N3 sleep and REM sleep onset latency are reduced in schizophrenia, whereas REM sleep duration tends to remain unchanged. Many of these sleep disturbances in schizophrenia appear to be caused by abnormalities of the circadian system as indicated by misalignments of the endogenous circadian cycle and the sleep-wake cycle. Circadian disruption, sleep onset insomnia and difficulties in maintaining sleep in schizophrenic patients could be partly related to a presumed hyperactivity of the dopaminergic system and dysfunction of the GABAergic system, both associated with core features of schizophrenia and with signaling in sleep and wake promoting brain regions. Since multiple neurotransmitter systems within the CNS can be implicated in sleep disturbances in schizophrenia, the characterization of the neurotransmitter systems involved remains a challenging dilemma.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, Clinics Hospital, Montevideo, 11600, Uruguay
| | | | | | | | | | | | | |
Collapse
|
72
|
Evans JA, Pan H, Liu AC, Welsh DK. Cry1-/- circadian rhythmicity depends on SCN intercellular coupling. J Biol Rhythms 2013; 27:443-52. [PMID: 23223370 DOI: 10.1177/0748730412461246] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) is the central pacemaker organizing circadian rhythms of behavior and physiology. At the cellular level, the mammalian clock consists of autoregulatory feedback loops involving a set of "clock genes," including the Cryptochrome (Cry) genes, Cry1 and Cry2. Experimental evidence suggests that Cry1 and Cry2 play distinct roles in circadian clock function. In mice, Cry1 is required for sustained circadian rhythms in dissociated SCN neurons or fibroblasts but not in organotypic SCN slices or at the behavioral level, whereas Cry2 is not required at any of these levels. It has been argued that coupling among SCN cellular oscillators compensates for clock gene defects to preserve oscillatory function. Here we test this hypothesis in Cry1(-/-) mice by first disrupting intercellular coupling in vivo using constant light (resulting in behavioral arrhythmicity) and then examining circadian clock gene expression in SCN slices at the single cell level. In this manner, we were able to test the role of intercellular coupling without drugs and while preserving tissue organization, avoiding the confounding influences of more invasive manipulations. Cry1(-/-) mice (as well as control Cry2(-/-) mice) bearing the PER2::LUC knock-in reporter were transferred from a standard light:dark cycle to constant bright light (~650 lux) to induce arrhythmic locomotor patterns. In SCN slices from these animals, we used bioluminescence imaging to monitor PER2::LUC expression in single cells. We show that SCN slices from rhythmic Cry1(-/-) and Cry2(-/-) mice had similarly high percentages of functional single-cell oscillators. In contrast, SCN slices from arrhythmic Cry1(-/-) mice had significantly fewer rhythmic cells than SCN slices from arrhythmic Cry2(-/-) mice. Thus, constant light in vivo disrupted intercellular SCN coupling to reveal a cell-autonomous circadian defect in Cry1(-/-) cells that is normally compensated by intercellular coupling in vivo.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Psychology, University of California, San Diego, La Jolla, CA 92093-0603, USA
| | | | | | | |
Collapse
|
73
|
Chow BY, Kay SA. Global approaches for telling time: omics and the Arabidopsis circadian clock. Semin Cell Dev Biol 2013; 24:383-92. [PMID: 23435351 DOI: 10.1016/j.semcdb.2013.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 12/31/2022]
Abstract
The circadian clock is an endogenous timer that anticipates and synchronizes biological processes to the environment. Traditional genetic approaches identified the underlying principles and genetic components, but new discoveries have been greatly impeded by the embedded redundancies that confer necessary robustness to the clock architecture. To overcome this, global (omic) techniques have provided a new depth of information about the Arabidopsis clock. Our understanding of the factors, regulation, and mechanistic connectivity between clock genes and with output processes has substantially broadened through genomic (cDNA libraries, yeast one-hybrid, protein binding microarrays, and ChIP-seq), transcriptomic (microarrays, RNA-seq), proteomic (mass spectrometry and chemical libraries), and metabolomic (mass spectrometry) approaches. This evolution in research will undoubtedly enhance our understanding of how the circadian clock optimizes growth and fitness.
Collapse
Affiliation(s)
- Brenda Y Chow
- Section of Cell and Developmental Biology and Center for Chronobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| | | |
Collapse
|
74
|
Abstract
Circadian clocks are endogenous oscillators that drive the rhythmic expression of a broad array of genes that orchestrate metabolism and physiology. Recent evidence indicates that posttranscriptional and posttranslational mechanisms play essential roles in modulating circadian gene expression, particularly for the molecular mechanism of the clock. In contrast to genetic technologies that have long been used to study circadian biology, proteomic approaches have so far been limited and, if applied at all, have used two-dimensional gel electrophoresis (2-DE). Here, we review the proteomics approaches applied to date in the circadian field, and we also discuss the exciting potential of using cutting-edge proteomics technology in circadian biology. Large-scale, quantitative protein abundance measurements will help to understand to what extent the circadian clock drives system wide rhythms of protein abundance downstream of transcription regulation.
Collapse
Affiliation(s)
- Maria S Robles
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | | |
Collapse
|
75
|
O'Neill JS, Maywood ES, Hastings MH. Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol 2013:67-103. [PMID: 23604476 DOI: 10.1007/978-3-642-25950-0_4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Circadian clocks drive the daily rhythms in our physiology and behaviour that adapt us to the 24-h solar and social worlds. Because they impinge upon every facet of metabolism, their acute or chronic disruption compromises performance (both physical and mental) and systemic health, respectively. Equally, the presence of such rhythms has significant implications for pharmacological dynamics and efficacy, because the fate of a drug and the state of its therapeutic target will vary as a function of time of day. Improved understanding of the cellular and molecular biology of circadian clocks therefore offers novel approaches for therapeutic development, for both clock-related and other conditions. At the cellular level, circadian clocks are pivoted around a transcriptional/post-translational delayed feedback loop (TTFL) in which the activation of Period and Cryptochrome genes is negatively regulated by their cognate protein products. Synchrony between these, literally countless, cellular clocks across the organism is maintained by the principal circadian pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. Notwithstanding the success of the TTFL model, a diverse range of experimental studies has shown that it is insufficient to account for all properties of cellular pacemaking. Most strikingly, circadian cycles of metabolic status can continue in human red blood cells, devoid of nuclei and thus incompetent to sustain a TTFL. Recent interest has therefore focused on the role of oscillatory cytosolic mechanisms as partners to the TTFL. In particular, cAMP- and Ca²⁺-dependent signalling are important components of the clock, whilst timekeeping activity is also sensitive to a series of highly conserved kinases and phosphatases. This has led to the view that the 'proto-clock' may have been a cytosolic, metabolic oscillation onto which evolution has bolted TTFLs to provide robustness and amplify circadian outputs in the form of rhythmic gene expression. This evolutionary ascent of the clock has culminated in the SCN, a true pacemaker to the innumerable clock cells distributed across the body. On the basis of findings from our own and other laboratories, we propose a model of the SCN pacemaker that synthesises the themes of TTFLs, intracellular signalling, metabolic flux and interneuronal coupling that can account for its unique circadian properties and pre-eminence.
Collapse
Affiliation(s)
- John S O'Neill
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, UK.
| | | | | |
Collapse
|
76
|
Mehta N, Cheng HYM. Micro-managing the circadian clock: The role of microRNAs in biological timekeeping. J Mol Biol 2012; 425:3609-24. [PMID: 23142644 DOI: 10.1016/j.jmb.2012.10.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/16/2012] [Accepted: 10/31/2012] [Indexed: 12/11/2022]
Abstract
Evolved under the selective pressures of a 24-h world, circadian timekeeping mechanisms are present in virtually all living organisms to coordinate daily rhythms in physiology and behavior. Until recently, the circadian clock was modeled as simple, interlocked transcription-translation feedback loops driving rhythms in gene expression of a handful of core clock genes. However, it has become evident that circadian clock regulation is immensely more complex than once thought and involves posttranscriptional, translational and posttranslational mechanisms. In particular, there has been a growing awareness of the vital role played by microRNAs (miRNAs) in regulating various aspects of circadian clock function. In this review, we will summarize our current knowledge of miRNA-dependent regulation of the circadian timing system in multiple organisms, including flies, mammals and higher plants. We will also discuss future perspectives for research on the role of miRNAs and noncoding RNAs in circadian regulation of health and disease.
Collapse
Affiliation(s)
- Neel Mehta
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
77
|
Punia S, Rumery KK, Yu EA, Lambert CM, Notkins AL, Weaver DR. Disruption of gene expression rhythms in mice lacking secretory vesicle proteins IA-2 and IA-2β. Am J Physiol Endocrinol Metab 2012; 303:E762-76. [PMID: 22785238 PMCID: PMC3468428 DOI: 10.1152/ajpendo.00513.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulinoma-associated protein (IA)-2 and IA-2β are transmembrane proteins involved in neurotransmitter secretion. Mice with targeted disruption of both IA-2 and IA-2β (double-knockout, or DKO mice) have numerous endocrine and physiological disruptions, including disruption of circadian and diurnal rhythms. In the present study, we have assessed the impact of disruption of IA-2 and IA-2β on molecular rhythms in the brain and peripheral oscillators. We used in situ hybridization to assess molecular rhythms in the hypothalamic suprachiasmatic nuclei (SCN) of wild-type (WT) and DKO mice. The results indicate significant disruption of molecular rhythmicity in the SCN, which serves as the central pacemaker regulating circadian behavior. We also used quantitative PCR to assess gene expression rhythms in peripheral tissues of DKO, single-knockout, and WT mice. The results indicate significant attenuation of gene expression rhythms in several peripheral tissues of DKO mice but not in either single knockout. To distinguish whether this reduction in rhythmicity reflects defective oscillatory function in peripheral tissues or lack of entrainment of peripheral tissues, animals were injected with dexamethasone daily for 15 days, and then molecular rhythms were assessed throughout the day after discontinuation of injections. Dexamethasone injections improved gene expression rhythms in liver and heart of DKO mice. These results are consistent with the hypothesis that peripheral tissues of DKO mice have a functioning circadian clockwork, but rhythmicity is greatly reduced in the absence of robust, rhythmic physiological signals originating from the SCN. Thus, IA-2 and IA-2β play an important role in the regulation of circadian rhythms, likely through their participation in neurochemical communication among SCN neurons.
Collapse
Affiliation(s)
- Sohan Punia
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
78
|
McGlincy NJ, Valomon A, Chesham JE, Maywood ES, Hastings MH, Ule J. Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol 2012; 13:R54. [PMID: 22721557 PMCID: PMC3446320 DOI: 10.1186/gb-2012-13-6-r54] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/30/2012] [Accepted: 06/21/2012] [Indexed: 12/20/2022] Open
Abstract
Background The circadian clock orchestrates daily rhythms in metabolism, physiology and behaviour that allow organisms to anticipate regular changes in their environment, increasing their adaptation. Such circadian phenotypes are underpinned by daily rhythms in gene expression. Little is known, however, about the contribution of post-transcriptional processes, particularly alternative splicing. Results Using Affymetrix mouse exon-arrays, we identified exons with circadian alternative splicing in the liver. Validated circadian exons were regulated in a tissue-dependent manner and were present in genes with circadian transcript abundance. Furthermore, an analysis of circadian mutant Vipr2-/- mice revealed the existence of distinct physiological pathways controlling circadian alternative splicing and RNA binding protein expression, with contrasting dependence on Vipr2-mediated physiological signals. This view was corroborated by the analysis of the effect of fasting on circadian alternative splicing. Feeding is an important circadian stimulus, and we found that fasting both modulates hepatic circadian alternative splicing in an exon-dependent manner and changes the temporal relationship with transcript-level expression. Conclusions The circadian clock regulates alternative splicing in a manner that is both tissue-dependent and concurrent with circadian transcript abundance. This adds a novel temporal dimension to the regulation of mammalian alternative splicing. Moreover, our results demonstrate that circadian alternative splicing is regulated by the interaction between distinct physiological cues, and illustrates the capability of single genes to integrate circadian signals at different levels of regulation.
Collapse
|
79
|
Oliver P, Sobczyk M, Maywood E, Edwards B, Lee S, Livieratos A, Oster H, Butler R, Godinho S, Wulff K, Peirson S, Fisher S, Chesham J, Smith J, Hastings M, Davies K, Foster R. Disrupted circadian rhythms in a mouse model of schizophrenia. Curr Biol 2012; 22:314-9. [PMID: 22264613 PMCID: PMC3356578 DOI: 10.1016/j.cub.2011.12.051] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/27/2011] [Accepted: 12/22/2011] [Indexed: 01/28/2023]
Abstract
Sleep and circadian rhythm disruption has been widely observed in neuropsychiatric disorders including schizophrenia [1] and often precedes related symptoms [2]. However, mechanistic basis for this association remains unknown. Therefore, we investigated the circadian phenotype of blind-drunk (Bdr), a mouse model of synaptosomal-associated protein (Snap)-25 exocytotic disruption that displays schizophrenic endophenotypes modulated by prenatal factors and reversible by antipsychotic treatment [3, 4]. Notably, SNAP-25 has been implicated in schizophrenia from genetic [5-8], pathological [9-13], and functional studies [14-16]. We show here that the rest and activity rhythms of Bdr mice are phase advanced and fragmented under a light/dark cycle, reminiscent of the disturbed sleep patterns observed in schizophrenia. Retinal inputs appear normal in mutants, and clock gene rhythms within the suprachiasmatic nucleus (SCN) are normally phased both in vitro and in vivo. However, the 24 hr rhythms of arginine vasopressin within the SCN and plasma corticosterone are both markedly phase advanced in Bdr mice. We suggest that the Bdr circadian phenotype arises from a disruption of synaptic connectivity within the SCN that alters critical output signals. Collectively, our data provide a link between disruption of circadian activity cycles and synaptic dysfunction in a model of neuropsychiatric disease.
Collapse
Affiliation(s)
- Peter L. Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Melanie V. Sobczyk
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Elizabeth S. Maywood
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Benjamin Edwards
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Sheena Lee
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Achilleas Livieratos
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Henrik Oster
- Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| | - Rachel Butler
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Sofia I.H. Godinho
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Katharina Wulff
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Stuart N. Peirson
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Simon P. Fisher
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Johanna E. Chesham
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Janice W. Smith
- Lilly, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey GU20 6PH, UK
| | - Michael H. Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Kay E. Davies
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Russell G. Foster
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
80
|
O'Neill JS, Reddy AB. The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping. Biochem Soc Trans 2012; 40:44-50. [PMID: 22260664 PMCID: PMC3399769 DOI: 10.1042/bst20110691] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Approximately daily, or circadian, rhythms are ubiquitous across eukaryotes. They are manifest in the temporal co-ordination of metabolism, physiology and behaviour, thereby allowing organisms to anticipate and synchronize with daily environmental cycles. Although cellular rhythms are self-sustained and cell-intrinsic, in mammals, the master regulator of timekeeping is localized within the hypothalamic SCN (suprachiasmatic nucleus). Molecular models for mammalian circadian rhythms have focused largely on transcriptional-translational feedback loops, but recent data have revealed essential contributions by intracellular signalling mechanisms. cAMP and Ca2+ signalling are not only regulated by the cellular clock, but also contribute directly to the timekeeping mechanism, in that appropriate manipulations determine the canonical pacemaker properties of amplitude, phase and period. It is proposed that daily auto-amplification of second messenger activity, through paracrine neuropeptidergic coupling, is necessary and sufficient to account for the increased amplitude, accuracy and robustness of SCN timekeeping.
Collapse
Affiliation(s)
- John S O'Neill
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
81
|
Meijer JH, Colwell CS, Rohling JHT, Houben T, Michel S. Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. PROGRESS IN BRAIN RESEARCH 2012; 199:143-162. [PMID: 22877664 DOI: 10.1016/b978-0-444-59427-3.00009-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, the suprachiasmatic nuclei (SCNs) function as a circadian pacemaker that drives 24-h rhythms in physiology and behavior. The SCN is a multicellular clock in which the constituent oscillators show dynamics in their functional organization and phase coherence. Evidence has emerged that plasticity in phase synchrony among SCN neurons determines (i) the amplitude of the rhythm, (ii) the response to continuous light, (iii) the capacity to respond to seasonal changes, and (iv) the phase-resetting capacity. A decrease in circadian amplitude and phase-resetting capacity is characteristic during aging and can be a result of disease processes. Whether the decrease in amplitude is caused by a loss of synchronization or by a loss of single-cell rhythmicity remains to be determined and is important for the development of strategies to ameliorate circadian disorders.
Collapse
Affiliation(s)
- Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Christopher S Colwell
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands; Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jos H T Rohling
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thijs Houben
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Michel
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
82
|
Racagni G, Riva MA, Molteni R, Musazzi L, Calabrese F, Popoli M, Tardito D. Mode of action of agomelatine: synergy between melatonergic and 5-HT2C receptors. World J Biol Psychiatry 2011; 12:574-87. [PMID: 21999473 DOI: 10.3109/15622975.2011.595823] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The association between depression and circadian rhythm disturbances is well established and successful treatment of depressed patients is accompanied by restoration of circadian rhythms. The new antidepressant agomelatine is an agonist of melatonergic MT₁/MT₂ receptors as well as an antagonist of serotonergic 5-HT2C receptors. Animal studies showed that agomelatine resynchronizes disturbed circadian rhythms and reduces depression-like behaviour. METHODS This review analyzes results from different experimental studies. RESULTS Recent data on the effects of agomelatine on cellular processes involved in antidepressant mechanisms have shown that the drug is able to increase the expression of brain-derived neurotrophic factor in prefrontal cortex and hippocampus, as well as the expression of activity-regulated cytoskeleton associated protein (Arc) in the prefrontal cortex. In line with this, prolonged treatment with agomelatine increases neurogenesis within the hippocampus, particularly via enhancement of neuronal cell survival. Agomelatine attenuates stress-induced glutamate release in the prefrontal/frontal cortex. Treatment with 5-HT2C antagonists or melatonin alone failed to reproduce these effects. CONCLUSIONS The unique mode of action of agomelatine may improve the management of major depression by counteracting the pathogenesis of depression at cellular level, thereby relieving the symptoms of depression. These effects are suggested to be due to a synergistic action on MT₁/MT₂ and 5-HT2C receptors.
Collapse
Affiliation(s)
- Giorgio Racagni
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
83
|
Thimiri Govinda Raj DB, Ghesquière B, Tharkeshwar AK, Coen K, Derua R, Vanderschaeghe D, Rysman E, Bagadi M, Baatsen P, De Strooper B, Waelkens E, Borghs G, Callewaert N, Swinnen J, Gevaert K, Annaert W. A novel strategy for the comprehensive analysis of the biomolecular composition of isolated plasma membranes. Mol Syst Biol 2011; 7:541. [PMID: 22027552 PMCID: PMC3261717 DOI: 10.1038/msb.2011.74] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023] Open
Abstract
We manufactured a novel type of lipid-coated superparamagnetic nanoparticles that allow for a rapid isolation of plasma membranes (PMs), enabling high-resolution proteomic, glycomic and lipidomic analyses of the cell surface. We used this technology to characterize the effects of presenilin knockout on the PM composition of mouse embryonic fibroblasts. We found that many proteins are selectively downregulated at the cell surface of presenilin knockout cells concomitant with lowered surface levels of cholesterol and certain sphingomyelin species, indicating defects in specific endosomal transport routes to and/or from the cell surface. Snapshots of N-glycoproteomics and cell surface glycan profiling further underscored the power and versatility of this novel methodology. Since PM proteins provide many pathologically relevant biomarkers representing two-thirds of the currently used drug targets, this novel technology has great potential for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Deepak B Thimiri Govinda Raj
- Department of Molecular and Developmental Genetics (VIB11), Laboratory for Membrane Trafficking and Center for Human Genetics (KULeuven), Gasthuisberg O&N4, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Terilli RR, Moura H, Woolfitt AR, Rees J, Schieltz DM, Barr JR. A historical and proteomic analysis of botulinum neurotoxin type/G. BMC Microbiol 2011; 11:232. [PMID: 22008244 PMCID: PMC3215672 DOI: 10.1186/1471-2180-11-232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 10/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clostridium botulinum is the taxonomic designation for at least six diverse species that produce botulinum neurotoxins (BoNTs). There are seven known serotypes of BoNTs (/A through/G), all of which are potent toxins classified as category A bioterrorism agents. BoNT/G is the least studied of the seven serotypes. In an effort to further characterize the holotoxin and neurotoxin-associated proteins (NAPs), we conducted an in silico and proteomic analysis of commercial BoNT/G complex. We describe the relative quantification of the proteins present in the/G complex and confirm our ability to detect the toxin activity in vitro. In addition, we review previous literature to provide a complete description of the BoNT/G complex. RESULTS An in-depth comparison of protein sequences indicated that BoNT/G shares the most sequence similarity with the/B serotype. A temperature-modified Endopep-MS activity assay was successful in the detection of BoNT/G activity. Gel electrophoresis and in gel digestions, followed by MS/MS analysis of/G complex, revealed the presence of four proteins in the complexes: neurotoxin (BoNT) and three NAPs--nontoxic-nonhemagglutinin (NTNH) and two hemagglutinins (HA70 and HA17). Rapid high-temperature in-solution tryptic digestions, coupled with MS/MS analysis, generated higher than previously reported sequence coverages for all proteins associated with the complex: BoNT 66%, NTNH 57%, HA70 91%, and HA17 99%. Label-free relative quantification determined that the complex contains 30% BoNT, 38% NTNH, 28% HA70, and 4% HA17 by weight comparison and 17% BoNT, 23% NTNH, 42% HA70, and 17% HA17 by molecular comparison. CONCLUSIONS The in silico protein sequence comparisons established that the/G complex is phenetically related to the other six serotypes of C. botulinum. Proteomic analyses and Endopep-MS confirmed the presence of BoNT and NAPs, along with the activity of the commercial/G complex. The use of data-independent MS(E) data analysis, coupled to label-free quantification software, suggested that the weight ratio BoNT:NAPs is 1:3, whereas the molar ratio of BoNT:NTNH:HA70:HA17 is 1:1:2:1, within the BoNT/G progenitor toxin.
Collapse
Affiliation(s)
- Rebecca R Terilli
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA 30341, USA
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na(+) currents, L-type Ca(2+) currents, hyperpolarization-activated currents (I(H)), large-conductance Ca(2+) activated K(+) (BK) currents and fast delayed rectifier (FDR) K(+) currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN.
Collapse
Affiliation(s)
- Christopher S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, California 90024, USA.
| |
Collapse
|
86
|
Tian R, Alvarez-Saavedra M, Cheng HYM, Figeys D. Uncovering the proteome response of the master circadian clock to light using an AutoProteome system. Mol Cell Proteomics 2011; 10:M110.007252. [PMID: 21859948 DOI: 10.1074/mcp.m110.007252] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) is the central circadian pacemaker that governs rhythmic fluctuations in behavior and physiology in a 24-hr cycle and synchronizes them to the external environment by daily resetting in response to light. The bilateral SCN is comprised of a mere ~20,000 neurons serving as cellular oscillators, a fact that has, until now, hindered the systematic study of the SCN on a global proteome level. Here we developed a fully automated and integrated proteomics platform, termed AutoProteome system, for an in-depth analysis of the light-responsive proteome of the murine SCN. All requisite steps for a large-scale proteomic study, including preconcentration, buffer exchanging, reduction, alkylation, digestion and online two-dimensional liquid chromatography-tandem MS analysis, are performed automatically on a standard liquid chromatography-MS system. As low as 2 ng of model protein bovine serum albumin and up to 20 μg and 200 μg of SCN proteins can be readily processed and analyzed by this system. From the SCN tissue of a single mouse, we were able to confidently identify 2131 proteins, of which 387 were light-regulated based on a spectral counts quantification approach. Bioinformatics analysis of the light-inducible proteins reveals their diverse distribution in different canonical pathways and their heavy connection in 19 protein interaction networks. The AutoProteome system identified vasopressin-neurophysin 2-copeptin and casein kinase 1 delta, both of which had been previously implicated in clock timing processes, as light-inducible proteins in the SCN. Ras-specific guanine nucleotide-releasing factor 1, ubiquitin protein ligase E3A, and X-linked ubiquitin specific protease 9, none of which had previously been implicated in SCN clock timing processes, were also identified in this study as light-inducible proteins. The AutoProteome system opens a new avenue to systematically explore the proteome-wide events that occur in the SCN, either in response to light or other stimuli, or as a consequence of its intrinsic pacemaker capacity.
Collapse
Affiliation(s)
- Ruijun Tian
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
87
|
Ferrari E, Maywood ES, Restani L, Caleo M, Pirazzini M, Rossetto O, Hastings MH, Niranjan D, Schiavo G, Davletov B. Re-assembled botulinum neurotoxin inhibits CNS functions without systemic toxicity. Toxins (Basel) 2011; 3:345-55. [PMID: 22069712 PMCID: PMC3202830 DOI: 10.3390/toxins3040345] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 11/23/2022] Open
Abstract
The therapeutic potential of botulinum neurotoxin type A (BoNT/A) has recently been widely recognized. BoNT/A acts to silence synaptic transmission via specific proteolytic cleavage of an essential neuronal protein, SNAP25. The advantages of BoNT/A-mediated synaptic silencing include very long duration, high potency and localized action. However, there is a fear of possible side-effects of BoNT/A due to its diffusible nature which may lead to neuromuscular blockade away from the injection site. We recently developed a “protein-stapling” technology which allows re-assembly of BoNT/A from two separate fragments. This technology allowed, for the first time, safe production of this popular neuronal silencing agent. Here we evaluated the re-assembled toxin in several CNS assays and assessed its systemic effects in an animal model. Our results show that the re-assembled toxin is potent in inhibiting CNS function at 1 nM concentration but surprisingly does not exhibit systemic toxicity after intraperitoneal injection even at 200 ng/kg dose. This shows that the re-assembled toxin represents a uniquely safe tool for neuroscience research and future medical applications.
Collapse
Affiliation(s)
- Enrico Ferrari
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Elizabeth S. Maywood
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Laura Restani
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy; (L.R.); (M.C.)
| | - Matteo Caleo
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy; (L.R.); (M.C.)
| | - Marco Pirazzini
- Dipartimento di Scienze Biomediche, Università di Padova, 35121 Padova, Italy; (M.P.); (O.R.)
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche, Università di Padova, 35121 Padova, Italy; (M.P.); (O.R.)
| | - Michael H. Hastings
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Dhevahi Niranjan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Giampietro Schiavo
- Molecular NeuroPathoBiology Laboratory, Cancer Research UK London Research Institute, London WC2A 3LY, UK;
| | - Bazbek Davletov
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
- Author to whom correspondence should be addressed; ; Tel.: +44-1-223-402-009; Fax: +44-1-223-402-310
| |
Collapse
|
88
|
Cao R, Anderson FE, Jung YJ, Dziema H, Obrietan K. Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus. Neuroscience 2011; 181:79-88. [PMID: 21382453 DOI: 10.1016/j.neuroscience.2011.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 02/27/2011] [Accepted: 03/01/2011] [Indexed: 12/19/2022]
Abstract
Circadian (24-h) rhythms influence virtually every aspect of mammalian physiology. The main rhythm generation center is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, and work over the past several years has revealed that rhythmic gene transcription and post-translational processes are central to clock timing. In addition, rhythmic translation control has also been implicated in clock timing; however the precise cell signaling pathways that drive this process are not well known. Here we report that a key translation activation cascade, the mammalian target of rapamycin (mTOR) pathway, is under control of the circadian clock in the SCN. Using phosphorylated S6 ribosomal protein (pS6) as a marker of mTOR activity, we show that the mTOR cascade exhibits maximal activity during the subjective day, and minimal activity during the late subjective night. Importantly, expression of S6 was not altered as a function of circadian time. Rhythmic S6 phosphorylation was detected throughout the dorsoventral axis of the SCN, thus suggesting that rhythmic mTOR activity was not restricted to a subset of SCN neurons. Rather, rhythmic pS6 expression appeared to parallel the expression pattern of the clock gene period1 (per1). Using a transgenic per1 reporter gene mouse strain, we found a statistically significant cellular level correlation between pS6 and per1 gene expression over the circadian cycle. Further, photic stimulation triggered a coordinate upregulation of per1 and mTOR activation in a subset of SCN cells. Interestingly, this cellular level correlation between mTOR activity and per1 expression appears to be specific, since a similar expression profile for pS6 and per2 or c-FOS was not detected. Finally, we show that mTOR activity is downstream of the ERK/MAPK signal transduction pathway. Together these data reveal that mTOR pathway activity is under the control of the SCN clock, and suggests that mTOR signaling may contribute to distinct aspects of the molecular clock timing process.
Collapse
Affiliation(s)
- R Cao
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
89
|
The daily rhythm of mice. FEBS Lett 2011; 585:1384-92. [PMID: 21354419 DOI: 10.1016/j.febslet.2011.02.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/28/2011] [Accepted: 02/21/2011] [Indexed: 12/29/2022]
Abstract
The house mouse Mus musculus represents a valuable tool for the analysis and the understanding of the mammalian circadian oscillator. Forward and reverse genetics allowed the identification of clock components and the verification of their function within the circadian clockwork. In many cases unforeseen links were discovered between a particular circadian regulatory protein and various diseases or syndromes. Thus, this model system is not only perfectly suited to pinpoint the components of the mammalian circadian clock, but also to unravel metabolic, physiological, and pathological processes linked to the circadian timing system.
Collapse
|
90
|
Baggs JE, Hogenesch JB. Genomics and systems approaches in the mammalian circadian clock. Curr Opin Genet Dev 2011; 20:581-7. [PMID: 20926286 DOI: 10.1016/j.gde.2010.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/11/2010] [Accepted: 08/31/2010] [Indexed: 11/26/2022]
Abstract
The circadian clock is an endogenous oscillator that regulates daily rhythms in behavior and physiology. In recent years, systems biology and genomics approaches re-shaped our view of the clock. Our understanding of outputs that regulate behavior and physiology has been enhanced through gene expression profiling and proteomic analyses. Systems approaches uncovered underlying principles of transcriptional regulation and robustness of the oscillator through perturbation analysis and synthetic methods. Finally, new clock components and modifiers were identified through cell-based screening efforts and proteomics.
Collapse
Affiliation(s)
- Julie E Baggs
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | | |
Collapse
|
91
|
Nováková M, Sládek M, Sumová A. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. J Biol Rhythms 2011; 25:350-60. [PMID: 20876815 DOI: 10.1177/0748730410377967] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The circadian clock in the suprachiasmatic nucleus (SCN) develops gradually during the prenatal and early postnatal period. In the rat, this period lasts from around the 15th day of gestation until the 10th day of postnatal development. The circadian system of fetuses and newborn pups is entrained mostly by nonphotic maternal cues during prenatal and early postnatal development. The aim of the present study was to ascertain whether exposure of pregnant rats to a restricted feeding (RF) regime was able to entrain the circadian clock in the SCN of their fetuses during the prenatal period. The potency of RF as an entraining cue was tested under conditions when pregnant rats were entrained to an external light/dark (LD) cycle as well as under conditions when the external timing signal was lacking, i.e., under constant light (LL). The control groups were fed ad libitum and the experimental groups had restricted access to food for 6 h during their resting time throughout pregnancy. Daily profiles of Avp and c-fos gene expression were examined by in situ hybridization in the SCN of 1-day-old pups. The data demonstrated that RF in pregnant rats kept under LD cycle did not notably affect the daily rhythms of c-fos and Avp expression in the SCN of pups. The SCN profiles of Avp and c-fos gene expression did not exhibit circadian rhythms in pups born to mothers maintained in LL and fed ad libitum, likely due to desynchrony among the pups within a litter. However, RF in the pregnant rats kept under LL restored the circadian rhythmicity of c-fos and Avp expression in the SCN of their newborn pups. The results suggest that the fetal SCN clock is dominantly entrained by rhythmic signals from the maternal SCN. However, under conditions when the rhythmic signaling might be lacking, such as LL, regular food intake of the mothers may also play an important role in synchronization of the fetal SCN clock during prenatal ontogenesis.
Collapse
Affiliation(s)
- Marta Nováková
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
92
|
Abstract
The mammalian circadian system is a complex hierarchical temporal network which is organized around an ensemble of uniquely coupled cells comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus. This central pacemaker is entrained each day by the environmental light/dark cycle and transmits synchronizing cues to cell-autonomous oscillators in tissues throughout the body. Within cells of the central pacemaker and the peripheral tissues, the underlying molecular mechanism by which oscillations in gene expression occur involves interconnected feedback loops of transcription and translation. Over the past 10 years, we have learned much regarding the genetics of this system, including how it is particularly resilient when challenged by single-gene mutations, how accessory transcriptional loops enhance the robustness of oscillations, how epigenetic mechanisms contribute to the control of circadian gene expression, and how, from coupled neuronal networks, emergent clock properties arise. Here, we will explore the genetics of the mammalian circadian system from cell-autonomous molecular oscillations, to interactions among central and peripheral oscillators and ultimately, to the daily rhythms of behavior observed in the animal.
Collapse
|
93
|
Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pè ME, Benvenuto E, Delledonne M, Pezzotti M. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. PLANT PHYSIOLOGY 2010; 154:1439-59. [PMID: 20826702 PMCID: PMC2971619 DOI: 10.1104/pp.110.160275] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/08/2010] [Indexed: 05/19/2023]
Abstract
The analysis of grapevine (Vitis vinifera) berries at the transcriptomic, proteomic, and metabolomic levels can provide great insight into the molecular events underlying berry development and postharvest drying (withering). However, the large and very different data sets produced by such investigations are difficult to integrate. Here, we report the identification of putative stage-specific biomarkers for berry development and withering and, to our knowledge, the first integrated systems-level study of these processes. Transcriptomic, proteomic, and metabolomic data were integrated using two different strategies, one hypothesis free and the other hypothesis driven. A multistep hypothesis-free approach was applied to data from four developmental stages and three withering intervals, with integration achieved using a hierarchical clustering strategy based on the multivariate bidirectional orthogonal projections to latent structures technique. This identified stage-specific functional networks of linked transcripts, proteins, and metabolites, providing important insights into the key molecular processes that determine the quality characteristics of wine. The hypothesis-driven approach was used to integrate data from three withering intervals, starting with subdata sets of transcripts, proteins, and metabolites. We identified transcripts and proteins that were modulated during withering as well as specific classes of metabolites that accumulated at the same time and used these to select subdata sets of variables. The multivariate bidirectional orthogonal projections to latent structures technique was then used to integrate the subdata sets, identifying variables representing selected molecular processes that take place specifically during berry withering. The impact of this holistic approach on our knowledge of grapevine berry development and withering is discussed.
Collapse
|
94
|
SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proc Natl Acad Sci U S A 2010; 107:18197-201. [PMID: 20921391 DOI: 10.1073/pnas.1007125107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Generation of supramolecular architectures through controlled linking of suitable building blocks can offer new perspectives to medicine and applied technologies. Current linking strategies often rely on chemical methods that have limitations and cannot take full advantage of the recombinant technologies. Here we used SNARE proteins, namely, syntaxin, SNAP25, and synaptobrevin, which form stable tetrahelical complexes that drive fusion of intracellular membranes, as versatile tags for irreversible linking of recombinant and synthetic functional units. We show that SNARE tagging allows stepwise production of a functional modular medicinal toxin, namely, botulinum neurotoxin type A, commonly known as BOTOX. This toxin consists of three structurally independent units: Receptor-binding domain (Rbd), Translocation domain (Td), and the Light chain (Lc), the last being a proteolytic enzyme. Fusing the receptor-binding domain with synaptobrevin SNARE motif allowed delivery of the active part of botulinum neurotoxin (Lc-Td), tagged with SNAP25, into neurons. Our data show that SNARE-tagged toxin was able to cleave its intraneuronal molecular target and to inhibit release of neurotransmitters. The reassembled toxin provides a safer alternative to existing botulinum neurotoxin and may offer wider use of this popular research and medical tool. Finally, SNARE tagging allowed the Rbd portion of the toxin to be used to deliver quantum dots and other fluorescent markers into neurons, showing versatility of this unique tagging and self-assembly technique. Together, these results demonstrate that the SNARE tetrahelical coiled-coil allows controlled linking of various building blocks into multifunctional assemblies.
Collapse
|
95
|
Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 2010; 11:589-99. [DOI: 10.1038/nrn2868] [Citation(s) in RCA: 682] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
96
|
Abstract
The circadian clock organizes biochemical and physiological processes of an organism in a temporal fashion. This temporal organization is crucial to avoid interference of processes that have adverse effects on each other. Thus, disruption of temporal organization can lead to health problems and behavioral disorders related to mood alterations. To alleviate the consequences of a disrupted temporal organization in the body, it is of importance to understand the processes involved in the synchronization of all body clocks and their phase relationship to the environmental day/night cycle at the mechanistic level. This review will focus on internal and external factors affecting synchronization and function of the circadian system and highlight connections to mood-related behavior.
Collapse
Affiliation(s)
- Urs Albrecht
- Department of Medicine, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
97
|
Kyriacou CP, Hastings MH. Circadian clocks: genes, sleep, and cognition. Trends Cogn Sci 2010; 14:259-67. [PMID: 20418150 DOI: 10.1016/j.tics.2010.03.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/05/2010] [Accepted: 03/20/2010] [Indexed: 12/20/2022]
Abstract
The endogenous circadian clock modulates cognitive performance over the daily 24-h cycle. Environmental disturbance of the clock, such as shift work or jet lag schedules, compromises sleep, alertness and problem solving. What is not generally appreciated, however, is that the circadian clock also modulates cognitive activity independently of time spent awake. The molecular identification of circadian clock genes in higher eukaryotes has revealed a conserved intracellular mechanism that, if disrupted by mutation, can have significant implications for mental and physical health. These molecular clocks tick away in different brain areas, and their circadian phases and anatomical relationships to the central brain pacemakers indicate new ways for understanding the mechanisms of interaction between circadian clocks, sleep and cognition.
Collapse
|
98
|
|