51
|
Castex J, Willmann D, Kanouni T, Arrigoni L, Li Y, Friedrich M, Schleicher M, Wöhrle S, Pearson M, Kraut N, Méret M, Manke T, Metzger E, Schüle R, Günther T. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis 2017; 8:e2631. [PMID: 28230862 PMCID: PMC5386490 DOI: 10.1038/cddis.2017.48] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 11/24/2022]
Abstract
Coordination of energy metabolism is essential for homeostasis of stem cells, whereas an imbalance in energy homeostasis causes disease and accelerated aging. Here we show that deletion or enzymatic inactivation of lysine-specific demethylase 1 (Lsd1) triggers senescence in trophoblast stem cells (TSCs). Genome-wide transcriptional profiling of TSCs following Lsd1 inhibition shows gene set enrichment of aging and metabolic pathways. Consistently, global metabolomic and phenotypic analyses disclose an unbalanced redox status, decreased glutamine anaplerosis and mitochondrial function. Loss of homeostasis is caused by increased expression of sirtuin 4 (Sirt4), a Lsd1-repressed direct target gene. Accordingly, Sirt4 overexpression in wild-type TSCs recapitulates the senescence phenotype initiated by Lsd1 deletion or inhibition. Inversely, absence of Lsd1 enzymatic activity concomitant with knockdown of Sirt4 reestablishes normal glutamine anaplerosis, redox balance and mitochondrial function. In conclusion, by repression of Sirt4, Lsd1 directs the epigenetic control of TSC immortality via maintenance of metabolic flexibility.
Collapse
Affiliation(s)
- Josefina Castex
- Urologische Klinik und Zentrale Klinische Forschung, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dominica Willmann
- Urologische Klinik und Zentrale Klinische Forschung, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Laura Arrigoni
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Yan Li
- metaSysX GmbH, Potsdam-Golm, Germany
| | - Marcel Friedrich
- Urologische Klinik und Zentrale Klinische Forschung, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eric Metzger
- Urologische Klinik und Zentrale Klinische Forschung, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Thomas Günther
- Urologische Klinik und Zentrale Klinische Forschung, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
52
|
Lang A, Grether-Beck S, Singh M, Kuck F, Jakob S, Kefalas A, Altinoluk-Hambüchen S, Graffmann N, Schneider M, Lindecke A, Brenden H, Felsner I, Ezzahoini H, Marini A, Weinhold S, Vierkötter A, Tigges J, Schmidt S, Stühler K, Köhrer K, Uhrberg M, Haendeler J, Krutmann J, Piekorz RP. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY) 2017; 8:484-505. [PMID: 26959556 PMCID: PMC4833141 DOI: 10.18632/aging.100905] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian sirtuins are involved in the control of metabolism and life-span regulation. Here, we link the mitochondrial sirtuin SIRT4 with cellular senescence, skin aging, and mitochondrial dysfunction. SIRT4 expression significantly increased in human dermal fibroblasts undergoing replicative or stress-induced senescence triggered by UVB or gamma-irradiation. In-vivo, SIRT4 mRNA levels were upregulated in photoaged vs. non-photoaged human skin. Interestingly, in all models of cellular senescence and in photoaged skin, upregulation of SIRT4 expression was associated with decreased levels of miR-15b. The latter was causally linked to increased SIRT4 expression because miR-15b targets a functional binding site in the SIRT4 gene and transfection of oligonucleotides mimicking miR-15b function prevented SIRT4 upregulation in senescent cells. Importantly, increased SIRT4 negatively impacted on mitochondrial functions and contributed to the development of a senescent phenotype. Accordingly, we observed that inhibition of miR-15b, in a SIRT4-dependent manner, increased generation of mitochondrial reactive oxygen species, decreased mitochondrial membrane potential, and modulated mRNA levels of nuclear encoded mitochondrial genes and components of the senescence-associated secretory phenotype (SASP). Thus, miR-15b is a negative regulator of stress-induced SIRT4 expression thereby counteracting senescence associated mitochondrial dysfunction and regulating the SASP and possibly organ aging, such as photoaging of human skin.
Collapse
Affiliation(s)
- Alexander Lang
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany.,Molecular Proteomics Laboratory, BMFZ, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Susanne Grether-Beck
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Madhurendra Singh
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Fabian Kuck
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Sascha Jakob
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andreas Kefalas
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Simone Altinoluk-Hambüchen
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Nina Graffmann
- Institut für Transplantationsdiagnostik und Zelltherapeutika (ITZ), Düsseldorf, Germany
| | - Maren Schneider
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Antje Lindecke
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Düsseldorf, Germany
| | - Heidi Brenden
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ingo Felsner
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Hakima Ezzahoini
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Alessandra Marini
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Sandra Weinhold
- Institut für Transplantationsdiagnostik und Zelltherapeutika (ITZ), Düsseldorf, Germany
| | - Andrea Vierkötter
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Stephan Schmidt
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Karl Köhrer
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Düsseldorf, Germany
| | - Markus Uhrberg
- Institut für Transplantationsdiagnostik und Zelltherapeutika (ITZ), Düsseldorf, Germany
| | - Judith Haendeler
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Roland P Piekorz
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
53
|
Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell 2016; 166:555-566. [PMID: 27471965 DOI: 10.1016/j.cell.2016.07.002] [Citation(s) in RCA: 1132] [Impact Index Per Article: 141.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 01/17/2023]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles that are integral in stress sensing to allow for cellular adaptation to the environment. Therefore, it is not surprising that mitochondria are important mediators of tumorigenesis, as this process requires flexibility to adapt to cellular and environmental alterations in addition to cancer treatments. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation, including mitochondrial biogenesis and turnover, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. Thus, understanding mechanisms of mitochondrial function during tumorigenesis will be critical for the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Sejal Vyas
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Elma Zaganjor
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
54
|
Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization. Cell 2016; 167:985-1000.e21. [PMID: 27881304 DOI: 10.1016/j.cell.2016.10.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 11/21/2022]
Abstract
Mitochondrial sirtuins, SIRT3-5, are NAD+-dependent deacylases and ADP-ribosyltransferases that are critical for stress responses. However, a comprehensive understanding of sirtuin targets, regulation of sirtuin activity, and the relationships between sirtuins remains a key challenge in mitochondrial physiology. Here, we employ systematic interaction proteomics to elucidate the mitochondrial sirtuin protein interaction landscape. This work reveals sirtuin interactions with numerous functional modules within mitochondria, identifies candidate sirtuin substrates, and uncovers a fundamental role for sequestration of SIRT3 by ATP synthase in mitochondrial homeostasis. In healthy mitochondria, a pool of SIRT3 binds ATP synthase, but upon matrix pH reduction with concomitant loss of mitochondrial membrane potential, SIRT3 dissociates. This release correlates with rapid deacetylation of matrix proteins, and SIRT3 is required for recovery of membrane potential. In vitro reconstitution experiments, as well as analysis of CRISPR/Cas9-engineered cells, indicate that pH-dependent SIRT3 release requires H135 in the ATP5O subunit of ATP synthase. Our SIRT3-5 interaction network provides a framework for discovering novel biological functions regulated by mitochondrial sirtuins.
Collapse
|
55
|
Ron-Harel N, Santos D, Ghergurovich JM, Sage PT, Reddy A, Lovitch SB, Dephoure N, Satterstrom FK, Sheffer M, Spinelli JB, Gygi S, Rabinowitz JD, Sharpe AH, Haigis MC. Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation. Cell Metab 2016; 24:104-17. [PMID: 27411012 PMCID: PMC5330619 DOI: 10.1016/j.cmet.2016.06.007] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/12/2016] [Accepted: 06/10/2016] [Indexed: 01/06/2023]
Abstract
Naive T cell stimulation activates anabolic metabolism to fuel the transition from quiescence to growth and proliferation. Here we show that naive CD4(+) T cell activation induces a unique program of mitochondrial biogenesis and remodeling. Using mass spectrometry, we quantified protein dynamics during T cell activation. We identified substantial remodeling of the mitochondrial proteome over the first 24 hr of T cell activation to generate mitochondria with a distinct metabolic signature, with one-carbon metabolism as the most induced pathway. Salvage pathways and mitochondrial one-carbon metabolism, fed by serine, contribute to purine and thymidine synthesis to enable T cell proliferation and survival. Genetic inhibition of the mitochondrial serine catabolic enzyme SHMT2 impaired T cell survival in culture and antigen-specific T cell abundance in vivo. Thus, during T cell activation, mitochondrial proteome remodeling generates specialized mitochondria with enhanced one-carbon metabolism that is critical for T cell activation and survival.
Collapse
Affiliation(s)
- Noga Ron-Harel
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Santos
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Jonathan M Ghergurovich
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Peter T Sage
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anita Reddy
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Scott B Lovitch
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - F Kyle Satterstrom
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica B Spinelli
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua D Rabinowitz
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
56
|
Harjes U, Kalucka J, Carmeliet P. Targeting fatty acid metabolism in cancer and endothelial cells. Crit Rev Oncol Hematol 2016; 97:15-21. [DOI: 10.1016/j.critrevonc.2015.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022] Open
|
57
|
Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 2016; 73:377-92. [PMID: 26499846 PMCID: PMC11108301 DOI: 10.1007/s00018-015-2070-4] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 02/08/2023]
Abstract
Metabolic reprogramming is widely observed during cancer development to confer cancer cells the ability to survive and proliferate, even under the stressed, such as nutrient-limiting, conditions. It is famously known that cancer cells favor the "Warburg effect", i.e., the enhanced glycolysis or aerobic glycolysis, even when the ambient oxygen supply is sufficient. In addition, deregulated anabolism/catabolism of fatty acids and amino acids, especially glutamine, serine and glycine, have been identified to function as metabolic regulators in supporting cancer cell growth. Furthermore, extensive crosstalks are being revealed between the deregulated metabolic network and cancer cell signaling. These exciting advancements have inspired new strategies for treating various malignancies by targeting cancer metabolism. Here we review recent findings related to the regulation of glucose, fatty acid and amino acid metabolism, their crosstalk, and relevant cancer therapy strategy.
Collapse
Affiliation(s)
- Zhaoyong Li
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|