51
|
Abstract
Live imaging studies in mice show that adult-born oligodendrocytes and myelin are remarkably stable. Neural activity enhances oligodendrocyte integration, arguing that internode addition rather than alteration represents the mechanism for any experience-dependent cortical myelination changes that might underpin learning.
Collapse
Affiliation(s)
- Matthew Swire
- MRC Centre for Regenerative Medicine, University of Edinburgh, Little France Drive, Edinburgh EH16 4UU, UK.
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine, University of Edinburgh, Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
52
|
Label-free neuroimaging in vivo using synchronous angular scanning microscopy with single-scattering accumulation algorithm. Nat Commun 2019; 10:3152. [PMID: 31316065 PMCID: PMC6637127 DOI: 10.1038/s41467-019-11040-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
Label-free in vivo imaging is crucial for elucidating the underlying mechanisms of many important biological systems in their most native states. However, the applicability of existing modalities has been limited to either superficial layers or early developmental stages due to tissue turbidity. Here, we report a synchronous angular scanning microscope for the rapid interferometric recording of the time-gated reflection matrix, which is a unique matrix characterizing full light-specimen interaction. By applying single scattering accumulation algorithm to the recorded matrix, we removed both high-order sample-induced aberrations and multiple scattering noise with the effective aberration correction speed of 10,000 modes/s. We demonstrated in vivo imaging of whole neural network throughout the hindbrain of the larval zebrafish at a matured stage where physical dissection used to be required for conventional imaging. Our method will expand the scope of applications for optical imaging, where fully non-invasive interrogation of living specimens is critical. A major challenge of in vivo imaging is imaging deeper, including in turbid tissue. The authors report an adaptive optics based microscope that uses coherent single scattering signal to reduce sample-induced aberrations and enable fast deep-tissue imaging of in vivo larval zebrafish brain.
Collapse
|
53
|
Tissue Transparency In Vivo. Molecules 2019; 24:molecules24132388. [PMID: 31261621 PMCID: PMC6651221 DOI: 10.3390/molecules24132388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
In vivo tissue transparency in the visible light spectrum is beneficial for many research applications that use optical methods, whether it involves in vivo optical imaging of cells or their activity, or optical intervention to affect cells or their activity deep inside tissues, such as brain tissue. The classical view is that a tissue is transparent if it neither absorbs nor scatters light, and thus absorption and scattering are the key elements to be controlled to reach the necessary transparency. This review focuses on the latest genetic and chemical approaches for the decoloration of tissue pigments to reduce visible light absorption and the methods to reduce scattering in live tissues. We also discuss the possible molecules involved in transparency.
Collapse
|
54
|
Marin MA, Carmichael ST. Mechanisms of demyelination and remyelination in the young and aged brain following white matter stroke. Neurobiol Dis 2019; 126:5-12. [DOI: 10.1016/j.nbd.2018.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/03/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023] Open
|
55
|
Hill RA, Grutzendler J. Uncovering the biology of myelin with optical imaging of the live brain. Glia 2019; 67:2008-2019. [PMID: 31033062 DOI: 10.1002/glia.23635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Myelin has traditionally been considered a static structure that is produced and assembled during early developmental stages. While this characterization is accurate in some contexts, recent studies have revealed that oligodendrocyte generation and patterns of myelination are dynamic and potentially modifiable throughout life. Unique structural and biochemical properties of the myelin sheath provide opportunities for the development and implementation of multimodal label-free and fluorescence optical imaging approaches. When combined with genetically encoded fluorescent tags targeted to distinct cells and subcellular structures, these techniques offer a powerful methodological toolbox for uncovering mechanisms of myelin generation and plasticity in the live brain. Here, we discuss recent advances in these approaches that have allowed the discovery of several forms of myelin plasticity in developing and adult nervous systems. Using these techniques, long-standing questions related to myelin generation, remodeling, and degeneration can now be addressed.
Collapse
Affiliation(s)
- Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Jaime Grutzendler
- Departments of Neurology and Neuroscience, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
56
|
Timmler S, Simons M. Grey matter myelination. Glia 2019; 67:2063-2070. [PMID: 30860619 DOI: 10.1002/glia.23614] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 11/11/2022]
Abstract
There is now increasing evidence that myelin is not only generated early in development, but also during adulthood possibly contributing to lifelong plasticity of the brain. In particular, human cortical areas responsible for the highest cognitive functions seem to require decades until they have reached their maximal amount of myelination. Currently, we know very little about the mechanisms and the functions of grey matter myelination. In this emerging field key questions await to be addressed: How long does myelination last in humans? How is grey matter myelination regulated? What is the function of myelin in the grey matter? Does grey matter myelination limit and/or promote neuronal plasticity? Finding answers to these questions will be important for our understanding of normal, but also abnormal cortex function in a number of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Sebastian Timmler
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,Institute of Neuronal Cell Biology, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,Institute of Neuronal Cell Biology, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
57
|
Lüders KA, Nessler S, Kusch K, Patzig J, Jung RB, Möbius W, Nave KA, Werner HB. Maintenance of high proteolipid protein level in adult central nervous system myelin is required to preserve the integrity of myelin and axons. Glia 2019; 67:634-649. [PMID: 30637801 DOI: 10.1002/glia.23549] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Proteolipid protein (PLP) is the most abundant integral membrane protein in central nervous system (CNS) myelin. Expression of the Plp-gene in oligodendrocytes is not essential for the biosynthesis of myelin membranes but required to prevent axonal pathology. This raises the question whether the exceptionally high level of PLP in myelin is required later in life, or whether high-level PLP expression becomes dispensable once myelin has been assembled. Both models require a better understanding of the turnover of PLP in myelin in vivo. Thus, we generated and characterized a novel line of tamoxifen-inducible Plp-mutant mice that allowed us to determine the rate of PLP turnover after developmental myelination has been completed, and to assess the possible impact of gradually decreasing amounts of PLP for myelin and axonal integrity. We found that 6 months after targeting the Plp-gene the abundance of PLP in CNS myelin was about halved, probably reflecting that myelin is slowly turned over in the adult brain. Importantly, this reduction by 50% was sufficient to cause the entire spectrum of neuropathological changes previously associated with the developmental lack of PLP, including myelin outfoldings, lamellae splittings, and axonal spheroids. In comparison to axonopathy and gliosis, the infiltration of cytotoxic T-cells was temporally delayed, suggesting a corresponding chronology also in the genetic disorders of PLP-deficiency. High-level abundance of PLP in myelin throughout adult life emerges as a requirement for the preservation of white matter integrity.
Collapse
Affiliation(s)
- Katja A Lüders
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
58
|
Sun LO, Mulinyawe SB, Collins HY, Ibrahim A, Li Q, Simon DJ, Tessier-Lavigne M, Barres BA. Spatiotemporal Control of CNS Myelination by Oligodendrocyte Programmed Cell Death through the TFEB-PUMA Axis. Cell 2018; 175:1811-1826.e21. [PMID: 30503207 PMCID: PMC6295215 DOI: 10.1016/j.cell.2018.10.044] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/01/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Nervous system function depends on proper myelination for insulation and critical trophic support for axons. Myelination is tightly regulated spatially and temporally, but how it is controlled molecularly remains largely unknown. Here, we identified key molecular mechanisms governing the regional and temporal specificity of CNS myelination. We show that transcription factor EB (TFEB) is highly expressed by differentiating oligodendrocytes and that its loss causes precocious and ectopic myelination in many parts of the murine brain. TFEB functions cell-autonomously through PUMA induction and Bax-Bak activation to promote programmed cell death of a subset of premyelinating oligodendrocytes, allowing selective elimination of oligodendrocytes in normally unmyelinated brain regions. This pathway is conserved across diverse brain areas and is critical for myelination timing. Our findings define an oligodendrocyte-intrinsic mechanism underlying the spatiotemporal specificity of CNS myelination, shedding light on how myelinating glia sculpt the nervous system during development.
Collapse
Affiliation(s)
- Lu O Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Sara B Mulinyawe
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannah Y Collins
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adiljan Ibrahim
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingyun Li
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David J Simon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
59
|
Del Giovane A, Ragnini-Wilson A. Targeting Smoothened as a New Frontier in the Functional Recovery of Central Nervous System Demyelinating Pathologies. Int J Mol Sci 2018; 19:E3677. [PMID: 30463396 PMCID: PMC6274747 DOI: 10.3390/ijms19113677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
Myelin sheaths on vertebrate axons provide protection, vital support and increase the speed of neuronal signals. Myelin degeneration can be caused by viral, autoimmune or genetic diseases. Remyelination is a natural process that restores the myelin sheath and, consequently, neuronal function after a demyelination event, preventing neurodegeneration and thereby neuron functional loss. Pharmacological approaches to remyelination represent a promising new frontier in the therapy of human demyelination pathologies and might provide novel tools to improve adaptive myelination in aged individuals. Recent phenotypical screens have identified agonists of the atypical G protein-coupled receptor Smoothened and inhibitors of the glioma-associated oncogene 1 as being amongst the most potent stimulators of oligodendrocyte precursor cell (OPC) differentiation in vitro and remyelination in the central nervous system (CNS) of mice. Here, we discuss the current state-of-the-art of studies on the role of Sonic Hedgehog reactivation during remyelination, referring readers to other reviews for the role of Hedgehog signaling in cancer and stem cell maintenance.
Collapse
Affiliation(s)
- Alice Del Giovane
- Department of Biology University of Rome Tor Vergata, Viale Della Ricerca Scientifica, 00133 Rome, Italy.
| | - Antonella Ragnini-Wilson
- Department of Biology University of Rome Tor Vergata, Viale Della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
60
|
Williamson JM, Lyons DA. Myelin Dynamics Throughout Life: An Ever-Changing Landscape? Front Cell Neurosci 2018; 12:424. [PMID: 30510502 PMCID: PMC6252314 DOI: 10.3389/fncel.2018.00424] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023] Open
Abstract
Myelin sheaths speed up impulse propagation along the axons of neurons without the need for increasing axon diameter. Subsequently, myelin (which is made by oligodendrocytes in the central nervous system) allows for highly complex yet compact circuitry. Cognitive processes such as learning require central nervous system plasticity throughout life, and much research has focused on the role of neuronal, in particular synaptic, plasticity as a means of altering circuit function. An increasing body of evidence suggests that myelin may also play a role in circuit plasticity and that myelin may be an adaptable structure which could be altered to regulate experience and learning. However, the precise dynamics of myelination throughout life remain unclear – does the production of new myelin require the differentiation of new oligodendrocytes, and/or can existing myelin be remodelled dynamically over time? Here we review recent evidence for both de novo myelination and myelin remodelling from pioneering longitudinal studies of myelin dynamics in vivo, and discuss what remains to be done in order to fully understand how dynamic regulation of myelin affects lifelong circuit function.
Collapse
Affiliation(s)
- Jill M Williamson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - David A Lyons
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
61
|
Almeida RG. The Rules of Attraction in Central Nervous System Myelination. Front Cell Neurosci 2018; 12:367. [PMID: 30374292 PMCID: PMC6196289 DOI: 10.3389/fncel.2018.00367] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
The wrapping of myelin around axons is crucial for the development and function of the central nervous system (CNS) of vertebrates, greatly regulating the conduction of action potentials. Oligodendrocytes, the myelinating glia of the CNS, have an intrinsic tendency to wrap myelin around any permissive structure in vitro, but in vivo, myelin is targeted with remarkable specificity only to certain axons. Despite the importance of myelination, the mechanisms by which oligodendrocytes navigate a complex milieu that includes many types of cells and their cellular projections and select only certain axons for myelination remains incompletely understood. In this Mini-review, I highlight recent studies that shed light on the molecular and cellular rules governing CNS myelin targeting.
Collapse
Affiliation(s)
- Rafael Góis Almeida
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
62
|
Fontenas L, Kucenas S. Motor Exit Point (MEP) Glia: Novel Myelinating Glia That Bridge CNS and PNS Myelin. Front Cell Neurosci 2018; 12:333. [PMID: 30356886 PMCID: PMC6190867 DOI: 10.3389/fncel.2018.00333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocytes (OLs) and Schwann cells (SCs) have traditionally been thought of as the exclusive myelinating glial cells of the central and peripheral nervous systems (CNS and PNS), respectively, for a little over a century. However, recent studies demonstrate the existence of a novel, centrally-derived peripheral glial population called motor exit point (MEP) glia, which myelinate spinal motor root axons in the periphery. Until recently, the boundaries that exist between the CNS and PNS, and the cells permitted to cross them, were mostly described based on fixed histological collections and static lineage tracing. Recent work in zebrafish using in vivo, time-lapse imaging has shed light on glial cell interactions at the MEP transition zone and reveals a more complex picture of myelination both centrally and peripherally.
Collapse
Affiliation(s)
- Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
63
|
Early JJ, Cole KL, Williamson JM, Swire M, Kamadurai H, Muskavitch M, Lyons DA. An automated high-resolution in vivo screen in zebrafish to identify chemical regulators of myelination. eLife 2018; 7:35136. [PMID: 29979149 PMCID: PMC6056238 DOI: 10.7554/elife.35136] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022] Open
Abstract
Myelinating oligodendrocytes are essential for central nervous system (CNS) formation and function. Their disruption is implicated in numerous neurodevelopmental, neuropsychiatric and neurodegenerative disorders. However, recent studies have indicated that oligodendrocytes may be tractable for treatment of disease. In recent years, zebrafish have become well established for the study of myelinating oligodendrocyte biology and drug discovery in vivo. Here, by automating the delivery of zebrafish larvae to a spinning disk confocal microscope, we were able to automate high-resolution imaging of myelinating oligodendrocytes in vivo. From there, we developed an image analysis pipeline that facilitated a screen of compounds with epigenetic and post-translational targets for their effects on regulating myelinating oligodendrocyte number. This screen identified novel compounds that strongly promote myelinating oligodendrocyte formation in vivo. Our imaging platform and analysis pipeline is flexible and can be employed for high-resolution imaging-based screens of broad interest using zebrafish.
Collapse
Affiliation(s)
- Jason J Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Zebrafish screening facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Katy Lh Cole
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jill M Williamson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew Swire
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | | | | | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Zebrafish screening facility, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
64
|
Kristensen TD, Mandl RC, Jepsen JR, Rostrup E, Glenthøj LB, Nordentoft M, Glenthøj BY, Ebdrup BH. Non-pharmacological modulation of cerebral white matter organization: A systematic review of non-psychiatric and psychiatric studies. Neurosci Biobehav Rev 2018; 88:84-97. [DOI: 10.1016/j.neubiorev.2018.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|