51
|
Qu KS, Ru Y, Yang D, Kuai L, Luo Y, Zhang PA, Xing M, Que HF. Fu-Huang ointment ameliorates impaired wound healing associated with diabetes through PI3K-AKT signalling pathway activation. Comput Biol Med 2023; 155:106660. [PMID: 36809697 DOI: 10.1016/j.compbiomed.2023.106660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
A diabetic ulcer (DU) is a dreaded and resistant complication of diabetes mellitus with high morbidity. Fu-Huang ointment (FH ointment) is a proven recipe for treating chronic refractory wounds; however, its molecular mechanisms of action are unclear. In this study, we identified 154 bioactive ingredients and their 1127 target genes in FH ointment through the public database. The intersection of these target genes with 151 disease-related targets in DUs resulted in 64 overlapping genes. Overlapping genes were identified in the PPI network and enrichment analyses. The PPI network identified 12 core target genes, whereas Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that upregulation of the PI3K/Akt signalling pathway was involved in the role of FH ointment in treating diabetic wounds. Molecular docking showed that 22 active compounds in FH ointment could enter the active pocket of PIK3CA. Molecular dynamics was used to prove the binding stability of the active ingredients and protein targets. We found that PIK3CA/Isobutyryl shikonin and PIK3CA/Isovaleryl shikonin combinations had strong binding energies. An in vivo experiment was conducted on PIK3CA, which was the most significant gene.This study comprehensively elucidated the active compounds, potential targets, and molecular mechanism of FH ointment application in treating DUs, and believed that PIK3CA is a promising target for accelerated healing.
Collapse
Affiliation(s)
- Ke-Shen Qu
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Department of Dermatology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712099, China.
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Dan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Ping-An Zhang
- Department of Dermatology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712099, China.
| | - Meng Xing
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, 710003, China.
| | - Hua-Fa Que
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
52
|
Zhao Y, Song P, Yin S, Fan T, Li F, Ge X, Liu T, Xu W, Xu S, Chen L. Onchidium struma polysaccharides exhibit hypoglycemic activity and modulate the gut microbiota in mice with type 2 diabetes mellitus. Food Funct 2023; 14:1937-1951. [PMID: 36691957 DOI: 10.1039/d2fo02450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Onchidium struma polysaccharides (OsPs) are natural biologically active compounds, and our previous work showed that they can inhibit the activity of α-glucosidase in vitro, showing potential hypoglycemic activity. However, the effects of OsPs on type 2 diabetes mellitus (T2DM) in vivo remain unknown. Thus, the anti-diabetic activity of OsPs was evaluated in the present study in diabetic mice. The results showed that OsPs can significantly ameliorate the features of T2DM in mice by improving the levels of fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and pro-inflammatory factors, and ameliorating insulin resistance. Furthermore, OsPs can significantly improve biochemical indicators, decrease the contents of total cholesterol (TC) and triglyceride (TG), and reduce lipid accumulation in the liver. The possible mechanism of the prevention and treatment of T2DM by OsPs may involve the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT-1) signaling pathway. OsPs can regulate the dysbiosis of gut microbiota and reverse the abundance of Lactobacillus in mice with T2DM. Moreover, OsPs significantly increased the concentration of short-chain fatty acids (SCFAs) in mice with T2DM. Our results indicate that OsPs can be used as a novel food supplement for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Yunfeng Zhao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Peilin Song
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Public Analysis Department, Pharmaceutical Research Institute of Jumpcan Pharmaceutical Group Co., Ltd, Taizhou, Jiangsu 225300, China
| | - Shuai Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Tianyong Fan
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng 224051, China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng 224051, China
| | - Su Xu
- Department of Anorectal Surgery, Yancheng Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224001, China.
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
53
|
Zuo R, Shi J, Jiang S, Chu M, Wang Q, Kong L, Kang Q, Guo Y, Guan J. Promotion of the genipin crosslinked chitosan-fiber hydrogel loaded with sustained release of clemastine fumarate in diabetic wound repair. Int J Biol Macromol 2023; 226:900-914. [PMID: 36502950 DOI: 10.1016/j.ijbiomac.2022.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Diabetic skin disorders are lingering and refractory clinical diseases. In this study, a genipin-crosslinked porous chitosan fiber (CSF) hydrogel was fabricated to achieve rapid wound healing. By embedding clemastine fumarate (CF) in the CSF hydrogel pores, we synthesised a CSF/CF hydrogel for the treatment of diabetic wounds. The microstructure, chemical elements, spectral variation, mechanical properties, swelling ratios, degradability, and toxicity of the CSF/CF hydrogels were studied. Compared with the typical CS power hydrogel, the porous CSF hydrogel crosslinked with genipin possesses a stable structure and improved physicochemical properties. Moreover, CF was slowly released from the CSF hydrogel. Molecular simulation also showed that CF was evenly embedded inside the cavity formed by the novel CSF hydrogel. The results suggested that CF can resist damage from high glucose levels and promote proliferation, tube formation, and migration of endothelial cells (ECs) and fibroblasts. The CSF/CF hydrogel promoted wound healing in a rat model. Mechanistically, the beneficial effect of CF on wound healing may be related to activation of the MEK/ERK and PI3K/Akt signalling pathways. In conclusion, genipin-crosslinked CSF/CF hydrogel can accelerate wound healing and may be an effective therapeutic method for treating diabetic skin lesions.
Collapse
Affiliation(s)
- Rongtai Zuo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Susu Jiang
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Chu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Qiyang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Dept Orthoped Surg, Key Lab Digital Orthopedic Yunnan Prov, Affiliated H, Kunming 650032, China
| | - Lingchi Kong
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YaPing Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | - Junjie Guan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
54
|
Korada HY, Arora E, Maiya GA, Rao S, Hande M, Shetty S, Gundmi S, Anche P, Amravadi S. Effectiveness of Photobiomodulation Therapy on Neuropathic Pain, Nerve Conduction and Plantar Pressure Distribution in Diabetic Peripheral Neuropathy - A Systematic Review. Curr Diabetes Rev 2023; 19:e290422204244. [PMID: 37622461 DOI: 10.2174/1573399818666220429085256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic peripheral neuropathy is a severe complication of type 2 diabetes mellitus. The most common symptoms are neuropathic pain and altered sensorium due to damage to small nerve fibers. Altered plantar pressure distribution is also a major risk factor in diabetic peripheral neuropathy, leading to diabetic foot ulcers. OBJECTIVE The objective of this systematic review was to analyze the various studies involving photobiomodulation therapy on neuropathic pain and plantar pressure distribution in diabetic peripheral neuropathy. METHODS We conducted a systematic review (PubMed, Web of Science, CINAHL, and Cochrane) to summarise the evidence on photobiomodulation therapy for Diabetic Peripheral Neuropathy with type 2 diabetes mellitus. Randomized and non-randomized studies were included in the review. RESULTS This systematic review included eight studies in which photobiomodulation therapy showed improvement in neuropathic pain and nerve conduction velocity. It also reduces plantar pressure distribution, which is a high risk for developing foot ulcers. CONCLUSION We conclude that photobiomodulation therapy is an effective, non-invasive, and costefficient means to improve neuropathic pain and altered plantar pressure distribution in diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Hrishikesh Yadav Korada
- Centre for Diabetic Foot Care and Research, Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Esha Arora
- Centre for Diabetic Foot Care and Research, Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
- Faculty of Allied Health Professions, AIMST University, Bedong, 08100, Malaysia
| | - Gundmi Arun Maiya
- Centre for Diabetic Foot Care and Research, Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Sharath Rao
- Department of Orthopedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Manjunath Hande
- Comprehensive Geriatric Clinic, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Shubha Gundmi
- Centre for Diabetic Foot Care and Research, Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Parameshwar Anche
- Centre for Diabetic Foot Care and Research, Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Sampath Amravadi
- Department of Physiotherapy, College of Health Sciences, Gulf Medical University, Ajman, UAE
| |
Collapse
|
55
|
Wu X, He W, Mu X, Liu Y, Deng J, Liu Y, Nie X. Macrophage polarization in diabetic wound healing. BURNS & TRAUMA 2022; 10:tkac051. [PMID: 36601058 PMCID: PMC9797953 DOI: 10.1093/burnst/tkac051] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Indexed: 12/31/2022]
Abstract
Impaired wound healing is one of the severe complications of diabetes. Macrophages have been shown to play a vital role in wound healing. In different wound environments, macrophages are classified into two phenotypes: classically activated macrophages and alternatively activated macrophages. Dysregulation of macrophage phenotypes leads to severely impaired wound healing in diabetes. Particularly, uncontrolled inflammation and abnormal macrophage phenotype are important reasons hindering the closure of diabetic wounds. This article reviews the functions of macrophages at various stages of wound healing, the relationship between macrophage phenotypic dysregulation and diabetic wound healing and the mechanism of macrophage polarization in diabetic wound healing. New therapeutic drugs targeting phagocyte polarization to promote the healing of diabetic wounds might provide a new strategy for treating chronic diabetic wound healing.
Collapse
Affiliation(s)
- Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Cancer and Ageing Research Program, School of Biomedical Sciences, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane 4102, Australia
| |
Collapse
|
56
|
Jere SW, Houreld NN, Abrahamse H. Photobiomodulation activates the PI3K/AKT pathway in diabetic fibroblast cells in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 237:112590. [DOI: 10.1016/j.jphotobiol.2022.112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
57
|
The Interaction of Food Allergy and Diabetes: Food Allergy Effects on Diabetic Mice by Intestinal Barrier Destruction and Glucagon-like Peptide 1 Reduction in Jejunum. Foods 2022; 11:foods11233758. [PMID: 36496564 PMCID: PMC9741085 DOI: 10.3390/foods11233758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in food allergies and diabetes leads to the assumption that they are related. This study aimed to (1) verify the interaction between food allergy and diabetes and (2) explore the potential mechanisms by which food allergy promotes diabetes. Female BALB/c mice were grouped into a control group (CK), an ovalbumin-sensitized group (OVA), a diabetes group (STZ), and a diabetic allergic group (STZ + OVA) (Mice were modeled diabetes with STZ first, then were given OVA to model food allergies), and an allergic diabetic group (OVA + STZ) (Mice were modeled food allergies with OVA first, then were given STZ to model diabetes). The results showed that OVA + STZ mice exhibited a more serious Th2 humoral response, and they were more susceptible to diabetes. Furthermore, when the OVA + STZ mice were in the sensitized state, the intestinal barrier function was severely impaired, and mast cell activation was promoted. Moreover, we found that the effect of food allergy on diabetes is related to the inhibition of GLP-1 secretion and the up-regulation of the PI3K/Akt/mTOR/NF-κB P65 signaling pathway in the jejunum. Overall, our results suggest that food allergies have interactions with diabetes, which sheds new light on the importance of food allergies in diabetes.
Collapse
|
58
|
Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, Panayi AC, Yu T, Chen L, Liu ZP, Patel A, Feng Q, Zhou SH, Liu GH. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res 2022; 9:65. [PMID: 36401295 PMCID: PMC9675067 DOI: 10.1186/s40779-022-00426-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Bone, cartilage, and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types, whose activity and interplay must be precisely mediated for effective healing post-injury. Although extensive strides have been made in the understanding of the immune microenvironment processes governing bone, cartilage, and soft tissue regeneration, effective clinical translation of these mechanisms remains a challenge. Regulation of the immune microenvironment is increasingly becoming a favorable target for bone, cartilage, and soft tissue regeneration; therefore, an in-depth understanding of the communication between immune cells and functional tissue cells would be valuable. Herein, we review the regulatory role of the immune microenvironment in the promotion and maintenance of stem cell states in the context of bone, cartilage, and soft tissue repair and regeneration. We discuss the roles of various immune cell subsets in bone, cartilage, and soft tissue repair and regeneration processes and introduce novel strategies, for example, biomaterial-targeting of immune cell activity, aimed at regulating healing. Understanding the mechanisms of the crosstalk between the immune microenvironment and regeneration pathways may shed light on new therapeutic opportunities for enhancing bone, cartilage, and soft tissue regeneration through regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yi-Qiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Kang-Kang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany
| | - Zhen-Ping Liu
- Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany.,Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Anish Patel
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China.
| | - Shuan-Hu Zhou
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
59
|
Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 2022; 478:1307-1324. [PMID: 36308670 DOI: 10.1007/s11010-022-04587-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022]
Abstract
Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products (AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays a huge role in various neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
60
|
Wang Y, Zhu J, Chen J, Xu R, Groth T, Wan H, Zhou G. The Signaling Pathways Induced by Exosomes in Promoting Diabetic Wound Healing: A Mini-Review. Curr Issues Mol Biol 2022; 44:4960-4976. [PMID: 36286052 PMCID: PMC9600352 DOI: 10.3390/cimb44100337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired healing of diabetic wounds harms patients' quality of life and even leads to disability and death, which is an urgent issue to be solved clinically. Despite the great progress that has been achieved, it remains a worldwide challenge to develop effective therapeutic treatments for diabetic wounds. Recently, exosomes have attracted special attention because they can be involved in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and other processes. Meanwhile, exosomes have been proven to hold great potential in the treatment of diabetic wounds. Mechanistic studies of exosomes based on signaling pathways could not only help to uncover the mechanisms by which exosomes promote diabetic wound healing but could also provide a theoretical basis for the clinical application of exosomes. Herein, our mini-review aims to summarize the progress of research on the use of various exosomes derived from different cell types to promote diabetic wound healing, with a focus on the classical signaling pathways, including PI3K/Akt, Wnt, NF-κB, MAPK, Notch, Nrf2, HIF-1α/VEGF and TGF-β/Smad. The results show that exosomes could regulate these signaling pathways to down-regulate inflammation, reduce oxidative stress, increase angiogenesis, promote fibroblast proliferation, induce re-epithelization and inhibit scar formation, making exosomes attractive candidates for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Jiayan Zhu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Jing Chen
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
- Correspondence: (H.W.); (G.Z.)
| | - Guoying Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
- Correspondence: (H.W.); (G.Z.)
| |
Collapse
|
61
|
Alsakhawy MA, Abdelmonsif DA, Haroun M, Sabra SA. Naringin-loaded Arabic gum/pectin hydrogel as a potential wound healing material. Int J Biol Macromol 2022; 222:701-714. [PMID: 36170930 DOI: 10.1016/j.ijbiomac.2022.09.200] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Wound healing is a complicated cellular process with overlapping phases. Naringin (NAR); a flavanone glycoside, possesses numerous pharmacological effects such as anti-inflammatory, antioxidant and anti-apoptotic effects. In the current study, Arabic gum (AG)/pectin hydrogel was utilized to encapsulate NAR. Drug-loaded AG/pectin hydrogel exhibited excellent EE% of about 99.88 ± 0.096 and high DL% of about 16.64 ± 0.013. The formulated drug-loaded hydrogel was characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Zetasizer analyzer, besides determination of equilibrium degree of swelling (EDS%). Afterwards, wound healing potential of NAR-loaded AG/pectin hydrogel was evaluated in an in vivo animal model. Results manifested that NAR-loaded AG/pectin hydrogel was able to accelerate wound healing in terms of enhanced angiogenesis, re-epithelialization and collagen deposition. Furthermore, it significantly (P < 0.001) down-regulated the mRNA expression of inflammatory mediators (TNF-α) and apoptosis (BAX). In addition, NAR-loaded AG/pectin hydrogel was found to possess potent antioxidant activity as it enhanced the levels of SOD and GSH, besides decreasing the levels of MPO, MDA and nitrite. These data suggest that NAR-loaded AG/pectin hydrogel could be utilized in wound healing applications.
Collapse
Affiliation(s)
- Marwa A Alsakhawy
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.
| |
Collapse
|
62
|
Sun JH, Song S, Yang JF. Oral administration of sea cucumber ( Stichopus japonicus) protein exerts wound healing effects via the PI3K/AKT/mTOR signaling pathway. Food Funct 2022; 13:9796-9809. [PMID: 36128874 DOI: 10.1039/d2fo01372j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the effect of the oral administration of sea cucumber protein (SCP) on wound healing. SCP was isolated and purified from the body wall of Stichopus japonicus. A mouse skin incision model was operated on to evaluate the wound repair effect of SCP. The histological changes in the skin at the wound sites of BALB/c mice were observed by staining with haematoxylin and eosin (H&E) and Masson's trichrome. The enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression of inflammatory cytokines in BALB/c mice. The boost cell migration ability was detected by a scratch assay after HaCaT cells were cultured with digested SCP (dSCP). Western blotting and RT-PCR assays were performed to determine the mechanism of SCP promoting wound healing. As a result, the wound healing rate in the SCP high dose group was 1.3-fold, compared to that in the blank group on day 14. Also, increased epidermal thickness and 1.79-fold collagen deposition contrasted with the blank group. Additionally, SCP could up-regulate the levels of pro-inflammatory factors (IL-1β, IL-6, TNF-α) from day 3 to 7 firstly and decreased from day 7 to 14. IL-8 expression continuously decreased while the level of anti-inflammatory factor (IL-10) increased during the healing stage. Furthermore, the cell closure area reached 67% after being treated with 50 μg mL-1 of dSCP for 48 h. Cell proliferation was associated with the dSCP-activated PI3K/AKT/mTOR pathway. Taken together, SCP can be orally used as an effective agent for wound repair.
Collapse
Affiliation(s)
- Jing-He Sun
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| | - Shuang Song
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| | - Jing-Feng Yang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, P. R. China.
| |
Collapse
|
63
|
Hagde P, Pingle P, Mourya A, Katta CB, Srivastava S, Sharma R, Singh KK, Sodhi RK, Madan J. Therapeutic potential of quercetin in diabetic foot ulcer: Mechanistic insight, challenges, nanotechnology driven strategies and future prospects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
64
|
Wang J, Cui B, Chen Z, Ding X. The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Front Cell Dev Biol 2022; 10:950973. [PMID: 35938153 PMCID: PMC9355246 DOI: 10.3389/fcell.2022.950973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermis, the outmost layer of the skin, is a stratified squamous epithelium that protects the body from the external world. The epidermis and its appendages need constantly renew themselves and replace the damaged tissues caused by environmental assaults. The mechanistic target of rapamycin (mTOR) signaling is a central controller of cell growth and metabolism that plays a critical role in development, homeostasis and diseases. Recent findings suggest that mTOR signaling is activated in a spatiotemporal and context-dependent manner in the epidermis, coordinating diverse skin homeostatic processes. Dysregulation of mTOR signaling underlies the pathogenesis of skin diseases, including psoriasis and skin cancer. In this review, we discuss the role of epidermal mTOR signaling activity and function in skin, with a focus on skin barrier formation, hair regeneration, wound repair, as well as skin pathological disorders. We propose that fine-tuned control of mTOR signaling is essential for epidermal structural and functional integrity.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Baiping Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai, China
- Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiaolei Ding,
| |
Collapse
|
65
|
Wang Z, Lu H, Tang T, Liu L, Pan B, Chen J, Cheng D, Cai X, Sun Y, Zhu F, Zhu S. Tetrahedral framework nucleic acids promote diabetic wound healing via the Wnt signalling pathway. Cell Prolif 2022; 55:e13316. [PMID: 35869570 PMCID: PMC9628242 DOI: 10.1111/cpr.13316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives To determine the therapeutic effect of tetrahedral framework nucleic acids (tFNAs) on diabetic wound healing and the underlying mechanism. Materials and Methods The tFNAs were characterized by polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential assays. Cell Counting Kit‐8 (CCK‐8) and migration assays were performed to evaluate the effects of tFNAs on cellular proliferation and migration. Quantitative polymerase chain reaction (Q‐PCR) and enzyme‐linked immunosorbent assay (ELISA) were used to detect the effect of tFNAs on growth factors. The function and role of tFNAs in diabetic wound healing were investigated using diabetic wound models, histological analyses and western blotting. Results Cellular proliferation and migration were enhanced after treatment with tFNAs in a high‐glucose environment. The expression of growth factors was also facilitated by tFNAs in vitro. During in vivo experiments, tFNAs accelerated the healing process in diabetic wounds and promoted the regeneration of the epidermis, capillaries and collagen. Moreover, tFNAs increased the secretion of growth factors and activated the Wnt pathway in diabetic wounds. Conclusions This study indicates that tFNAs can accelerate diabetic wound healing and have potential for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Zejing Wang
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Hao Lu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Tao Tang
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Lei Liu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Bohan Pan
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Jiqiu Chen
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Dasheng Cheng
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yu Sun
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Feng Zhu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Shihui Zhu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| |
Collapse
|
66
|
Jiang T, Liu S, Wu Z, Li Q, Ren S, Chen J, Xu X, Wang C, Lu C, Yang X, Chen Z. ADSC-exo@MMP-PEG smart hydrogel promotes diabetic wound healing by optimizing cellular functions and relieving oxidative stress. Mater Today Bio 2022; 16:100365. [PMID: 35967739 PMCID: PMC9364034 DOI: 10.1016/j.mtbio.2022.100365] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
Diabetic wound complications are financially costly and difficult to heal in worldwide. Whereas the therapies of diabetic wound, such as wound dressing, endocrine therapy or flap-transplantations, were not satisfied. Based on our previous study of exosome secreted by adipose-derived stem cell (ADSC-exo), we loaded ADSC-exo into the matrix metalloproteinase degradable polyethylene glycol (MMP-PEG) smart hydrogel. Physical and chemical properties of ADSC-exo@MMP-PEG smart hydrogel were tested by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), weight loss examination, etc. As the hydrogel degraded in response to MMP, ADSC-exo was released and subsequently enhanced cell function via Akt signaling. Moreover, treatment with ADSC-exo@MMP-PEG smart hydrogel significantly relieved the H2O2-induced oxidative stress, which was widely recognized as a major cause of diabetic wound nonhealing. Similar results were achieved in mice diabetic wound models, in which the ADSC-exo@MMP-PEG treatment group displayed a significantly accelerated wound healing. To summarize, the present smart hydrogel with enzyme-response and exosome-release was proved to be benefit for diabetic wounds healing, which provides a reliable theoretical basis for application of ADSC-exo in treatment of diabetic wounds. Loading ADSC-exo into PEG formed a smart hydrogel. The smart hydrogel delivered exosome in response to MMP-2. The smart hydrogel promoted diabetic wound healing by optimizing cellular functions.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Siju Liu
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials and Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Zihan Wu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cuifen Lu
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials and Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
- Corresponding author.
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author. Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author. Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
| |
Collapse
|
67
|
Regulatory Processes of the Canonical Wnt/β-Catenin Pathway and Photobiomodulation in Diabetic Wound Repair. Int J Mol Sci 2022; 23:ijms23084210. [PMID: 35457028 PMCID: PMC9028270 DOI: 10.3390/ijms23084210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Skin is a biological system composed of different types of cells within a firmly structured extracellular matrix and is exposed to various external and internal insults that can break its configuration. The restoration of skin's anatomic continuity and function following injury is a multifaceted, dynamic, well-coordinated process that is highly dependent on signalling pathways, including the canonical Wnt/β catenin pathway, all aimed at restoring the skin's protective barrier. Compromised and inappropriate tissue restoration processes are often the source of wound chronicity. Diabetic patients have a high risk of developing major impediments including wound contamination and limb amputation due to chronic, non-healing wounds. Photobiomodulation (PBM) involves the application of low-powered light at specific wavelengths to influence different biological activities that incite and quicken tissue restoration. PBM has been shown to modulate cellular behaviour through a variety of signal transduction pathways, including the Wnt/β catenin pathway; however, the role of Wnt/β catenin in chronic wound healing in response to PBM has not been fully defined. This review largely focuses on the role of key signalling pathways in human skin wound repair, specifically, the canonical Wnt/β-catenin pathway, and the effects of PBM on chronic wound healing.
Collapse
|
68
|
Molecular mechanisms of skin wound healing in non-diabetic and diabetic mice in excision and pressure experimental wounds. Cell Tissue Res 2022; 388:595-613. [PMID: 35386010 PMCID: PMC9110453 DOI: 10.1007/s00441-022-03624-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Experimental models for chronic skin lesions are excision and pressure ulcer, defined as “open” and “closed” lesions, respectively, only the latter characterized by tissue hypoxia. Moreover, systemic diseases, such as diabetes mellitus, affect wound repair. Thus, models for testing new therapies should be carefully selected according to the expected targets. In this study, we present an extensive and comparative histological, immunohistochemical, and molecular characterization of these two lesions in diabetic (db/db) and non-diabetic (C57BL/6 J) mice. In db/db mice, we found significant reduction in PGP9.5-IR innervation, reduction of capillary network, and reduced expression of NGF receptors. We found an increase in VEGF receptor Kdr expression, and the PI3K-Akt signaling pathway at the core of the altered molecular network. Db/db mice with pressure ulcers showed an impairment in the molecular regulation of hypoxia-related genes (Hif1a, Flt1, and Kdr), while extracellular matrix encoding genes (Itgb3, Timp1, Fn1, Col4a1) were upregulated by hyperglycemia and lesions. Overall, the molecular analysis suggests that db/db mice have a longer inflammatory phase of the wound repair process, delaying the progression toward the proliferation and remodeling phases.
Collapse
|
69
|
Später T, Assunção M, Lit KK, Gong G, Wang X, Chen YY, Rao Y, Li Y, Yiu CHK, Laschke MW, Menger MD, Wang D, Tuan RS, Khoo KH, Raghunath M, Guo J, Blocki A. Engineering microparticles based on solidified stem cell secretome with an augmented pro-angiogenic factor portfolio for therapeutic angiogenesis. Bioact Mater 2022; 17:526-541. [PMID: 35846945 PMCID: PMC9270501 DOI: 10.1016/j.bioactmat.2022.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue (re)vascularization strategies face various challenges, as therapeutic cells do not survive long enough in situ, while the administration of pro-angiogenic factors is hampered by fast clearance and insufficient ability to emulate complex spatiotemporal signaling. Here, we propose to address these limitations by engineering a functional biomaterial capable of capturing and concentrating the pro-angiogenic activities of mesenchymal stem cells (MSCs). In particular, dextran sulfate, a high molecular weight sulfated glucose polymer, supplemented to MSC cultures, interacts with MSC-derived extracellular matrix (ECM) components and facilitates their co-assembly and accumulation in the pericellular space. Upon decellularization, the resulting dextran sulfate-ECM hybrid material can be processed into MIcroparticles of SOlidified Secretome (MIPSOS). The insoluble format of MIPSOS protects protein components from degradation, while facilitating their sustained release. Proteomic analysis demonstrates that MIPSOS are highly enriched in pro-angiogenic factors, resulting in an enhanced pro-angiogenic bioactivity when compared to naïve MSC-derived ECM (cECM). Consequently, intravital microscopy of full-thickness skin wounds treated with MIPSOS demonstrates accelerated revascularization and healing, far superior to the therapeutic potential of cECM. Hence, the microparticle-based solidified stem cell secretome provides a promising platform to address major limitations of current therapeutic angiogenesis approaches. Dextran sulfate assembles with mesenchymal stem cell secretome. As a result, microparticles of solidified stem cell secretome (MIPSOS) are formed. The insoluble MIPSOS format protects proteins from premature degradation. MIPSOS are enriched in pro-angiogenic factors and exhibit gradual release kinetics. MIPSOS demonstrate superior pro-angiogenic properties and thus therapeutic potential.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Marisa Assunção
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kwok Keung Lit
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yi-Yun Chen
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yucong Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shun Hing Institute of Advanced Engineering (SHIAE), Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Him Kendrick Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Dan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kay-Hooi Khoo
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, China
| | - Michael Raghunath
- Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Corresponding author. BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Anna Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China
- Corresponding author. School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
70
|
Ru Y, Zhang Y, Xiang YW, Luo Y, Luo Y, Jiang JS, Song JK, Fei XY, Yang D, Zhang Z, Zhang HP, Liu TY, Yin SY, Li B, Kuai L. Gene set enrichment analysis and ingenuity pathway analysis to identify biomarkers in Sheng-ji Hua-yu formula treated diabetic ulcers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114845. [PMID: 34800645 DOI: 10.1016/j.jep.2021.114845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sheng-ji Hua-yu (SJHY) formula is a Chinese herbal prescription for diabetic ulcers (DUs) treatment, which can accelerate wound reconstruction and shorten the healing time. However, its mechanism role maintains unclear. AIM OF THE STUDY To elucidate the molecular mechanisms of SJHY application on DUs. MATERIALS AND METHODS To begin with, transcriptome sequencing was adopted to identified differentially expression mRNAs among normal ulcers, DUs, and DUs + SJHY treatment in vivo. Liquid chromatography-tandem mass spectrometry was applied for the quality control of SJHY formula. GO and KEGG enrichment analysis were used to identify the mechanisms underlying the therapeutic effect of SJHY formula, and then gene set enrichment analysis and ingenuity pathway analysis were conducted for functional analysis. Further, qPCR detection was performed in vivo for validation. RESULTS SJHY administration could regulate the glucose metabolic process, AMPK and HIF-1 pathway to accelerate healing processes of DUs. Besides, CRHR1, SHH, and GAL were identified as the critical targets, and SLC6A3, GRP, FGF23, and CYP27B1 were considered as the upstream genes of SJHY treatment. Combined with animal experiments, the prediction results were validated in DUs mice model. CONCLUSIONS This study used modular pharmacology analysis to identify the biomarkers of SJHY formula and provide the potential therapeutic targets for DUs treatment as well.
Collapse
Affiliation(s)
- Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yan-Wei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Jing-Si Jiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Dan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hui-Ping Zhang
- Shanghai Applied Protein Technology Co.Ltd., 58 Yuanmei Road, Shanghai, 200233, China.
| | - Tai-Yi Liu
- Shanghai Applied Protein Technology Co.Ltd., 58 Yuanmei Road, Shanghai, 200233, China.
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China.
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
71
|
Accelerated Wound Healing and Keratinocyte Proliferation through PI3K/Akt/pS6 and VEGFR2 Signaling by Topical Use of Pleural Fluid. Cells 2022; 11:cells11050817. [PMID: 35269438 PMCID: PMC8909204 DOI: 10.3390/cells11050817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Impaired wound healing is an ongoing issue that cancer patients undergoing chemotherapy or radiotherapy face. Our previous study regarding lung-cancer-associated pleural fluid (LCPF) demonstrated its propensity to promote endothelial proliferation, migration, and angiogenesis, which are crucial features during cutaneous wound healing. Therefore, the current study aimed to investigate the effect of pleural fluid on cutaneous wound closure in vitro and in vivo using HaCaT keratinocytes and a full-thickness skin wound model, respectively. Both heart-failure-associated pleural fluid (HFPF) and LCPF were sequentially centrifuged and filtered to obtain a cell-free status. Treatment with HFPF and LCPF homogeneously induced HaCaT proliferation with cell cycle progression, migration, and MMP2 upregulation. Western blotting revealed increased PI3K/Akt phosphorylation and VEGFR2/VEGFA expression in HaCaT cells. When treated with the PI3K inhibitor, LCPF-induced keratinocyte proliferation was attenuated with decreased pS6 levels. By applying the VEGFR2 inhibitor, LCPF-induced keratinocyte proliferation was ameliorated by pS6 and MMP2 downregulation. The effect of LCPF-induced cell junction rearrangement was disrupted by co-treatment with a VEGFR2 inhibitor. Compared with a 0.9% saline dressing, LCPF significantly accelerated wound closure and re-epithelization when used as a dressing material in a full-thickness wound model. Histological analysis revealed increased neo-epidermis thickness and dermis collagen synthesis in the LCPF-treated group. Furthermore, LCPF treatment activated basal keratinocytes at the wound edge with the upregulation of Ki-67, VEGFA, and MMP2. Our preliminaries provided the benefit of wet dressing with pleural fluid to improve cutaneous wound closure through enhanced re-epithelization and disclosed future autologous application in cancer wound treatment.
Collapse
|
72
|
Wang P, Theocharidis G, Vlachos IS, Kounas K, Lobao A, Shu B, Wu B, Xie J, Hu Z, Qi S, Tang B, Zhu J, Veves A. Exosomes Derived from Epidermal Stem Cells Improve Diabetic Wound Healing. J Invest Dermatol 2022; 142:2508-2517.e13. [PMID: 35181300 DOI: 10.1016/j.jid.2022.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Diabetic foot ulceration is a major diabetic complication with unmet needs. We investigated the efficacy of epidermal stem cells (ESCs) and ESCs-derived exosomes (ESCs-Exo) in improving impaired diabetic wound healing and their mechanisms of action. In vitro experiments showed that ESCs-Exo enhanced the proliferation and migration of diabetic fibroblasts and macrophages (Mφ), and promoted alternative or M2 Mφ polarization. In wounds of db/db mice, treatment with both ESCs and ESCs-Exo, when compared to fibroblast exosomes (FB-Exo) and PBS control, accelerated wound healing by decreasing inflammation, augmenting wound cell proliferation, stimulating angiogenesis and inducing M2 Mφ polarization. Multiplex protein quantification of wound lysates revealed TGFβ signaling influenced by ESCs-Exo. High-throughput sequencing of small RNAs contained in the ESCs-Exo showed higher proportions of miRNAs when compared to FB-Exo. In silico functional analysis demonstrated that the ESCs-Exo-miRNAs target genes were primarily involved in homeostatic processes and cell differentiation and highlighted regulatory control of PI3K/AKT and TGFβ signaling pathways. This was also validated in vitro. Collectively, our results indicate that ESCs and ESCs-Exo are equally effective in promoting impaired diabetic wound healing and that ESCs-Exo treatment may be a promising and technically advantageous alternative to stem cell therapies.
Collapse
Affiliation(s)
- Peng Wang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics; Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Ioannis S Vlachos
- Cancer Research Institute
- HMS Initiative for RNA Medicine
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konstantinos Kounas
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Antonio Lobao
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Bin Shu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Biaoliang Wu
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhicheng Hu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaohai Qi
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Tang
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiayuan Zhu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics.
| |
Collapse
|
73
|
Raslan MA, Afifi AH. In vitro wound healing properties, antioxidant activities, HPLC-ESI-MS/MS profile and phytoconstituents of the stem aqueous methanolic extract of Dracaena reflexa Lam. Biomed Chromatogr 2022; 36:e5352. [PMID: 35122279 DOI: 10.1002/bmc.5352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/10/2022]
Abstract
Column chromatography of the stem aqueous methanolic extract of Dracaena reflexa Lam. (DRSE) led to the isolation of five flavonoids, one phenolic glycoside, one triterpenoid, and two steroidal saponins. Furthermore, forty-four compounds were tentatively identified in the phytoconstituents profile of DRSE using HPLC-ESI-MS/MS. The antioxidant activity of DRSE was evaluated. In DPPH radical scavenging assay, DRSE exhibited IC50 value 311.6 ± 10.10 μg/mL compared to IC50 value of the standard Trolox (24.42 ± 0.87 μg/mL). The antioxidant activities of DRSE using ABTS assay and FRAP assay were 326.63 μM TE/mg extract and 208.67 μM TE/mg extract, respectively. The wound healing activity of DRSE was studied by the scratch assay using HSF (Human Skin Fibroblast) cells. After 24 hrs. DRSE (at 10 and 20 μg/mL) decreased the wound width to 0.55 ± 0.37 and 0.47 ± 0.55 mm, respectively, compared to the wound width in the control cells (0.77 ± 0.17 mm). This result suggested that DRSE improved the wound healing process by inducing the migration of fibroblasts. Moreover, a docking study was performed to evaluate the binding affinity of the identified phytoconstituents toward GSK-3β relative to the co-crystalized inhibitor and curcumin with the possible involvement of this pathway in the wound healing activity of the extract.
Collapse
Affiliation(s)
- Mona A Raslan
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed H Afifi
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
74
|
Zhang F, Liu Y, Wang S, Yan X, Lin Y, Chen D, Tan Q, Wu Z. Interleukin-25-Mediated-IL-17RB Upregulation Promotes Cutaneous Wound Healing in Diabetic Mice by Improving Endothelial Cell Functions. Front Immunol 2022; 13:809755. [PMID: 35126394 PMCID: PMC8810642 DOI: 10.3389/fimmu.2022.809755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic foot ulcer (DFU) frequently leads to non-traumatic amputation and finally even death. However, the mechanism of DFU is not fully understood. Interleukin 25 (IL-25), an alarmin cytokine that responds to tissue injury, has been reported to participate in tissue regeneration and maintaining glucose homeostasis. However, the role of IL-25 in diabetic wound healing remains unknown. Here, we showed that interleukin 17 receptor B (IL-17RB), the functional receptor of IL-25, was significantly inhibited in the wound skin of both diabetic patients with DFU and streptozotocin (STZ)-induced diabetic mice. Topical administration of recombinant IL-25 protein improved angiogenesis and collagen deposition in the wound bed and thus ameliorated delayed diabetic wound healing. IL-25 increased endothelial-specific CD31 expression in diabetic wounds and exogenous IL-25 protected endothelial cells from high glucose-impaired cell migration and tube formation in vitro. We further revealed that IL-25-mediated-IL-17RB signaling rescued the downregulation of Wnt/β-catenin pathway both in vivo in diabetic mice and in vitro in HUVECs and induced the phosphorylation of AKT and ERK 1/2 in HUVECs under high glucose conditions. This study defines a positive regulatory role of IL-25-mediated-IL-17RB signaling in diabetic wound healing and suggests that induction of IL-25-mediated-IL-17RB signaling may be a novel therapeutic strategy for treating poor healing diabetic wounds.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Ye Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Shiqi Wang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Yan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Qian Tan, ; Deyan Chen,
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Qian Tan, ; Deyan Chen,
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Zhiwei Wu, ; Qian Tan, ; Deyan Chen,
| |
Collapse
|
75
|
Zhou X, Guo Y, Yang K, Liu P, Wang J. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114662. [PMID: 34555452 DOI: 10.1016/j.jep.2021.114662] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The diabetic wound is one of the common chronic complications of diabetes, which seriously affects patients' quality of life and even causes disability and death. Traditional Chinese medicine (TCM) is a unique and precious resource in China, which has a good curative effect and safety. At present, it has been found that Chinese herbal compounds and effective active ingredients can effectively promote diabetic wound healing, and its mechanism needs to be further studied. Signaling pathways are involved in the pathogenesis and progression of diabetic wounds, which is one of the main targets for the pathologic mechanism of diabetic wounds and the pharmacological research of therapeutic drugs. AIM OF THE REVIEW This study has been carried out to reveal the classical signaling pathways and potential targets by the action of TCM on diabetic wound healing and provides evidence for its clinical efficacy. MATERIALS AND METHODS "diabetic wound", "diabetic foot ulcer", "traditional Chinese medicine", "natural plant" and "medicinal plant", were selected as the main keywords, and various online search engines, such as PubMed, Web of Science, CNKI and other publication resources, were used for searching literature. RESULTS The results showed that TCM could regulate the signaling pathways to promote diabetic wound healing, such as Wnt, Nrf2/ARE, MAPK, PI3K/Akt, NF-κB, Notch, TGF-β/Smad, HIF-1α/VEGF, which maintaining inflammatory interaction balance, inhibiting oxidative stress and regulating abnormal glucose metabolism. CONCLUSION The effect of TCM on diabetic wound healing was reflected in multiple levels and multiple pathways. It is envisaged to carry out further research from precision-targeted therapy, provide ideas for screening the core target of TCM in treating diabetic wounds and create modern innovative drugs based on this target.
Collapse
Affiliation(s)
- Xin Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanling Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Kun Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Peng Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jun Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
76
|
Wang J, Zhao X, Tian G, Liu X, Gui C, Xu L. Down-Regulation of miR-138 Alleviates Inflammatory Response and Promotes Wound Healing in Diabetic Foot Ulcer Rats via Activating PI3K/AKT Pathway and hTERT. Diabetes Metab Syndr Obes 2022; 15:1153-1163. [PMID: 35444435 PMCID: PMC9015052 DOI: 10.2147/dmso.s359759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To study the role of miR-138 on the repair of diabetic foot ulcer (DFU) and further to explore its possible mechanism. MATERIALS AND METHODS miR-138 inhibitor, IGF-1, LY294002 were used in DFU rat mode, and the mRNA expression of miR-138 was detected. HE staining was used to observe the histological changes of skin ulcer in rats. The level of inflammation, wound healing, and blood vessel formation-related factors were detected by ELISA and immunohistochemical. The expression of VEGF and PI3K/AKT pathway-related proteins were detected by Western blot. To further determine the underlying mechanism of miR-138 in the repair of DFU, telomerase inhibitor BIBR-1232 was used in HUVECs. Dual-luciferase assay was used to determine the target relationship between miR-138 and hTERT. CCK-8, transwell, and tube formation assays were conducted to observe the biological behavior of HUVECs. Inflammatory cytokines and PI3K/AKT pathway-related proteins were also measured by ELISA and Western blot. RESULTS The mRNA expression of miR-138 in DFU rat was increased and ulcer of diabetic foot rats was improved after silencing miR-138. The results of cellular bioactivity in vitro experiment were consistent with that in vivo. Meanwhile, after silencing miR-138, the level of inflammatory cytokines was decreased, while the level of anti-inflammatory and healing factors was increased in vivo and vitro. Moreover, the ratios of p-PI3K/PI3K and p-AKT/AKT were upregulated after treated with miR-138 inhibitor and miR-138 was negatively regulated the expression of hTERT. However, the inhibitory effect on inflammatory response and the promotion effect on wound healing of miR-138 inhibitor were reversed by LY294002 and BIBR-1232. CONCLUSION Down-regulation of miR-138 could alleviate inflammatory response and promote wound healing in DFU rats by activating PI3K/AKT pathway and hTERT.
Collapse
Affiliation(s)
- Jian Wang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
- Department of Orthopedics, Qufu Hospital of TCM, Qufu, 273100, People’s Republic of China
| | - Xiaodan Zhao
- Image Center, Shandong Provincial Third Hospital, Jinan, 250000, People’s Republic of China
| | - Guichang Tian
- Department of Orthopedics, Qufu Hospital of TCM, Qufu, 273100, People’s Republic of China
| | - Xiaochao Liu
- Department of Orthopedics, Qufu Hospital of TCM, Qufu, 273100, People’s Republic of China
| | - Chengyan Gui
- Department of Orthopedics, Qufu Hospital of TCM, Qufu, 273100, People’s Republic of China
| | - Lin Xu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People’s Republic of China
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People’s Republic of China
- Correspondence: Lin Xu, Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People’s Republic of China, Tel +86-13805350031, Email ;
| |
Collapse
|
77
|
Zhao Q, Xu J, Han X, Zhang Z, Qu J, Cheng Z. Growth differentiation factor 10 induces angiogenesis to promote wound healing in rats with diabetic foot ulcers by activating TGF-β1/Smad3 signaling pathway. Front Endocrinol (Lausanne) 2022; 13:1013018. [PMID: 36714584 PMCID: PMC9880151 DOI: 10.3389/fendo.2022.1013018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/23/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) represents a highly-prevalent complication of diabetes mellitus (DM). Herein, the current study sought to identify the role of growth differentiation factor 10 (GDF-10) in wound healing in DFU via regulation of the transforming growth factor-beta 1 (TGF-β1)/Smad3 pathway. METHODS DM- and DFU-related microarray datasets GSE29221 and GSE134431 were firstly retrieved, and weighted gene co-expression network analysis (WGCNA) was carried out to construct a co-expression network affecting wound healing in DFU, followed by differential analysis. A protein-protein interaction (PPI) network of the DFU-related genes was subsequently constructed, and the core genes and signaling pathways in DFU were screened with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analyses. A DFU rat model was constructed for mechanism verification of the effect of GDF-10 on wound healing in DFU. RESULTS WGCNA screened five co-expression modules, and the brown module was most closely-related to DM. Clustering analysis screened 4417 candidate genes, of which 175 differential genes were associated with wound healing, further involved in TGF-β1/Smad3 signaling pathway regulation of wound healing in DFU. The PPI network analysis predicted that GDF-10 might regulate the TGF-β1/Smad3 signaling pathway to participate in DFU development. Results of animal experimentation showed that the wound healing rates of NFU, DFU, DFU + GDF and GDF + SIS3 groups on the 22nd day were (87.66 ± 6.80)%, (56.31 ± 7.29)%, (71.64 ± 9.43)% and (55.09 ± 7.13)%, respectively. Besides, the expression of TGF-β1 in NFU, DFU, DFU + GDF and GDF + SIS3 groups was 0.988 ± 0.086, 0.297 ± 0.036, 0.447 ± 0.044, and 0.240 ± 0.050, respectively, and that of Smad3 was 1.009 ± 0.137, 0.145 ± 0.017, 0.368 ± 0.048, and 0.200 ± 0.028, respectively. Specifically, GDF-10 exerted a significant diminishing effect on fasting blood glucose level, and promoted wound healing in DFU rats, in addition to up-regulation of VEGF, FGF, Ang-1, TGF-β1, Smad3 and enhancement of IL-1b, IL-6, TNF-a and MMP-9, thereby promoting fibroblast proliferation, collagen deposition and angiogenesis. CONCLUSIONS Our findings highlight that GDF-10 may promote angiogenesis by activating TGF-β1/Smad3 signaling, thereby promoting wound healing in DFU rats.
Collapse
|
78
|
Mostafavinia A, Ahmadi H, Amini A, Roudafshani Z, Hamblin MR, Chien S, Bayat M. The effect of photobiomodulation therapy on antioxidants and oxidative stress profiles of adipose derived mesenchymal stem cells in diabetic rats. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120157. [PMID: 34271236 DOI: 10.1016/j.saa.2021.120157] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
We studied the effects of photobiomodulation therapy (PBMT) on adipose-derived mesenchymal stem cells (ADSCs) which were extracted from streptozotocin (STZ) induced diabetic rats. Adipose tissue was extracted from the hypodermis of diabetic rats, and diabetic ADSCs were extracted, characterized, and cultured. There were two in vitro groups: control-diabetic ADSCs, and PBMT-diabeticADSCs. We used 630 nm and 810 nm laser at 1.2 J/cm2 with 3 applications 48 h apart. We measured cell viability, apoptosis, population doubling time (PDT), and reactive oxygen species (ROS) by flow cytometry. Gene expression of antioxidants, including cytosolic copper-zinc superoxide dismutase (SOD1), catalase (CAT), total antioxidant capacity (TAC), and oxidative stress biomarkers (NADPH oxidase 1 and 4) by quantitative real time (qRT) - PCR. In this study, data were analyzed using t-test. Viability of PBMT-diabetic- ADSC group was higher than control- diabetic-ADSC (p = 0.000). PDT and apoptosis of PBMT- diabetic-ADSC group were lower than control-diabetic -ADSC (p = 0.001, p = 0.02). SOD1 expression and TAC of PBMT- diabetic-ADSC group were higher than control -diabetic -ADSC (p = 0.018, p = 0.005). CAT of PBMT -diabetic-ADSC group was higher than control-diabetic -ADSC. ROS, NOX1, and NOX4 of PBMT- diabetic -ADSC group were lower than control-diabetic-ADSC (p = 0.002, p = 0.021, p = 0.017). PBMT may improve diabetic- ADSC function in vitro by increasing levels of cell viability, and gene expression of antioxidant agents (SOD1, CAT, and TAC), and significantly decreasing of levels of PDT, apoptosis, ROS, and gene expression of oxidative stress biomarkers (NOX1 and NOX4).
Collapse
Affiliation(s)
- Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Roudafshani
- Central Lab, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| |
Collapse
|
79
|
Jiang Z, Wang Y, Li L, Hu H, Wang S, Zou M, Liu W, Han B. Preparation, Characterization, and Biological Evaluation of Transparent Thin Carboxymethyl-Chitosan/Oxidized Carboxymethyl Cellulose Films as New Wound Dressings. Macromol Biosci 2021; 22:e2100308. [PMID: 34752675 DOI: 10.1002/mabi.202100308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Indexed: 01/05/2023]
Abstract
Full thickness burns in which the damage penetrates deep into the skin layers and reaches underneath the muscle, compel the need for more effective cure. Herein, cross-linked carboxymethyl-chitosan (CM-chitosan) films, prepared by Schiff base association with oxidized carboxymethyl cellulose (OCMC), are investigated regarding the wound healing capacity on full thickness burn injuries in vivo. Transparent thin CM-chitosan/OCMC films are obtained with tensile strength reaching 6.11 MPa, elongation at break above 27%, and water absorption more than 800%, which operates in favor of absorbing excess exudate and monitoring the wound status. Furthermore, the nonadherent CM-chitosan/OCMC films, with satisfactory biodegradability, cell, and tissue compatibility, are readily used to the wound sites and easily removed following therapy on scalded tissue so as to alleviate the suffering from burn. The films efficiently promote epithelial and dermal regeneration compared to the control, achieving 75.9% and 94.4% wound closure, respectively, after 14 and 27 days. More importantly, CM-chitosan/OCMC films accelerate wound healing with natural mechanisms which include controlling inflammatory response, reducing apoptosis, promoting fibroblast cell proliferation, and collagen formation. In conclusion, the CM-chitosan/OCMC films elevate the repair ratio of burn injuries and have great potential for facilitating the healing process on full-thickness exuding wounds.
Collapse
Affiliation(s)
- Zhiwen Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yanting Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Lulu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Huiwen Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Mingyu Zou
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| |
Collapse
|
80
|
Mohamed TA, Elshamy AI, Ibrahim MAA, Atia MAM, Ahmed RF, Ali SK, Mahdy KA, Alshammari SO, Al-Abd AM, Moustafa MF, Farrag ARH, Hegazy MEF. Gastroprotection against Rat Ulcers by Nephthea Sterol Derivative. Biomolecules 2021; 11:1247. [PMID: 34439913 PMCID: PMC8393318 DOI: 10.3390/biom11081247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Different species belonging to the genus Nephthea (Acyonaceae) are a rich resource for bioactive secondary metabolites. The literature reveals that the gastroprotective effects of marine secondary metabolites have not been comprehensively studied in vivo. Hence, the present investigation aimed to examine and determine the anti-ulcer activity of 4α,24-dimethyl-5α-cholest-8β,18-dihydroxy,22E-en-3β-ol (ST-1) isolated from samples of a Nephthea species. This in vivo study was supported by in silico molecular docking and protein-protein interaction techniques. Oral administration of ST-1 reduced rat stomach ulcers with a concurrent increase in gastric mucosa. Molecular docking calculations against the H+/K+-ATPase transporter showed a higher binding affinity of ST-1, with a docking score value of -9.9 kcal/mol and a pKi value of 59.7 nM, compared to ranitidine (a commercial proton pump inhibitor, which gave values of -6.2 kcal/mol and 27.9 µM, respectively). The combined PEA-reactome analysis results revealed promising evidence of ST-1 potency as an anti-ulcer compound through significant modulation of the gene set controlling the PI3K signaling pathway, which subsequently plays a crucial role in signaling regarding epithelialization and tissue regeneration, tissue repairing and tissue remodeling. These results indicate a probable protective role for ST-1 against ethanol-induced gastric ulcers.
Collapse
Affiliation(s)
- Tarik A. Mohamed
- National Research Centre, Chemistry of Medicinal Plants Department, 33 El−Bohouth St., Dokki, Giza 12622, Egypt; (T.A.M.); (S.K.A.); (M.-E.F.H.)
| | - Abdelsamed I. Elshamy
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Giza 12622, Egypt; (A.I.E.); (R.F.A.)
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Rania F. Ahmed
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Giza 12622, Egypt; (A.I.E.); (R.F.A.)
| | - Sherin K. Ali
- National Research Centre, Chemistry of Medicinal Plants Department, 33 El−Bohouth St., Dokki, Giza 12622, Egypt; (T.A.M.); (S.K.A.); (M.-E.F.H.)
| | - Karam A. Mahdy
- National Research Centre, Medical Biochemistry Department, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Shifaa O. Alshammari
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia;
| | - Ahmed M. Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy & Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
- Pharmacology Department, Medical Division, National Research Centre, Cairo 12622, Egypt
| | - Mahmoud F. Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia;
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Abdel Razik H. Farrag
- National Research Centre, Pathology Department, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed-Elamir F. Hegazy
- National Research Centre, Chemistry of Medicinal Plants Department, 33 El−Bohouth St., Dokki, Giza 12622, Egypt; (T.A.M.); (S.K.A.); (M.-E.F.H.)
| |
Collapse
|
81
|
Niu B, Xie X, Xiong X, Jiang J. Network pharmacology-based analysis of the anti-hyperglycemic active ingredients of roselle and experimental validation. Comput Biol Med 2021; 141:104636. [PMID: 34809966 DOI: 10.1016/j.compbiomed.2021.104636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus is one of the top four leading causes of death among noncommunicable diseases worldwide, according to the World Hibiscus sabdariffa 2019. Roselle (Hibiscus sabdariffa L.), a traditional herbal medicine, has shown significant clinical anti-hyperglycemic efficacy. However, the mechanism of the treatment is not yet clear. We found that Roselle has a certain protective effect on vascular endothelial cells through this study. This study was based on network pharmacology and experimental validation. The present study made a comprehensive analysis by combining active ingredient screening, target prediction and signaling pathway analysis to elucidate the active ingredients and possible molecular mechanism of roselle for the first time, which provided theoretical and experimental basis for the development and application of roselle as an antidiabetic drug.
Collapse
Affiliation(s)
- Bingxuan Niu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Collage of Pharmacy, Xinxiang Medical University, Xinxiang, Henan Province, 453002, China.
| | - Xu Xie
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Xiaoming Xiong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
82
|
Alastra G, Aloe L, Baldassarro VA, Calzà L, Cescatti M, Duskey JT, Focarete ML, Giacomini D, Giardino L, Giraldi V, Lorenzini L, Moretti M, Parmeggiani I, Sannia M, Tosi G. Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application? Front Neurosci 2021; 15:695592. [PMID: 34335170 PMCID: PMC8319677 DOI: 10.3389/fnins.2021.695592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule.
Collapse
Affiliation(s)
- Giuseppe Alastra
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | - Vito Antonio Baldassarro
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- IRET Foundation, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Jason Thomas Duskey
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Letizia Focarete
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Daria Giacomini
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- IRET Foundation, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Giraldi
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Irene Parmeggiani
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Sannia
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Giovanni Tosi
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
83
|
Wang H, Tan H, Zhan W, Song L, Zhang D, Chen X, Lin Z, Wang W, Yang Y, Wang L, Bei W, Guo J. Molecular mechanism of Fufang Zhenzhu Tiaozhi capsule in the treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease based on network pharmacology and validation in minipigs. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114056. [PMID: 33771638 DOI: 10.1016/j.jep.2021.114056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu Tiaozhi formula (FTZ) of which a patented preparation of Chinese herbal medicine has been well documented with significant clinical curative effect for hyperglycemia and hyperlipidemia. Because of the complexity of the chemical constituents of Chinese herbal formulas, the holistic pharmacological mechanism of FTZ acting on type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) remains unclear. AIM OF THE STUDY To investigate the pharmacological efficacy and mechanism of FTZ in the treatment of T2DM accompanied by NAFLD. MATERIALS AND METHODS Network pharmacology and validation in minipigs were used in this study. First, potential bioactive compounds of FTZ were identified by the traditional Chinese medicine system pharmacology technology platform (TCMSP). Then, targets of compounds were gathered using DrugBank, SwissTargetPrediction and TCMSP, while targets for T2DM and NAFLD were collected from CTD (compounds-targets-diseases network) and GeneCards. Common targets were defined as direct therapeutic targets acting on T2DM with NAFLD. In addition, crucial targets were chosen by the protein-protein interaction (PPI) network and contribution to compound-therapeutic targets in T2DM with the NAFLD network. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the metabolism-related signaling pathways affected by FTZ. Candidate patterns selected by network pharmacology were tested in the minipigs model of T2DM with NAFLD. Measurements of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting insulin (FINS) and fasting blood glucose (FBG) in the blood and the expression levels of proteins, including PI3K-AKT and HIF-1α, in the livers of the minipigs were followed by the administration of FTZ. RESULTS A total of 116 active compounds and 82 potential targets related to T2DM and NAFLD were found. Pathway and functional enrichment analysis showed that FTZ mainly regulates metabolism-related pathways, including PI3K-AKT, HIF-1α, TNFα and MAPK. Animal experiments showed that FTZ treatment significantly reduced the serum levels of TG, TC, LDL-C and FBG, increased serum levels of HDL-C, ameliorated systemic insulin resistance (IR), and attenuated liver damage in minipigs with T2DM and NAFLD. FTZ treatment has an obviously favorable influence on hepatic steatosis and liver lipid accumulation in the histopathologic features of HE, Oil red O staining, and electron microscopy. Mechanistically, FTZ improved liver metabolism by increasing the phosphorylation of PI3K-AKT and decreasing the expression of HIF-1α. CONCLUSION Network pharmacology was supported by experimental studies, which indicated that FTZ has demonstrated therapeutic benefits in T2DM and NAFLD by regulating the PI3K-AKT and HIF-1α signaling pathways.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Capsules
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Hypolipidemic Agents/chemistry
- Hypolipidemic Agents/pharmacology
- Hypolipidemic Agents/therapeutic use
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Insulin/blood
- Lipid Metabolism/drug effects
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Metabolic Networks and Pathways/drug effects
- Non-alcoholic Fatty Liver Disease/drug therapy
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Pharmacology/methods
- Phosphatidylinositol 3-Kinases/metabolism
- Phytochemicals/analysis
- Phytochemicals/pharmacology
- Phytochemicals/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Reproducibility of Results
- Swine
- Swine, Miniature
Collapse
Affiliation(s)
- Hong Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Haibo Tan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Wenjing Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Lixia Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Dongxing Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xu Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Ziyang Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Weixuan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yiqi Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Weijian Bei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
84
|
Yadav E, Yadav P, Verma A. In silico Study of Trianthema portulacastrum Embedded Iron Oxide Nanoparticles on Glycogen Synthase Kinase-3β: A Possible Contributor to its Enhanced in vivo Wound Healing Potential. Front Pharmacol 2021; 12:664075. [PMID: 34079461 PMCID: PMC8165444 DOI: 10.3389/fphar.2021.664075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Rich amount of phenolic compounds are available in Trianthema portulacastrum L. (TP) leaves and are traditionally utilized as a wound dressing material. Oxidative stress and inflammation affect the Wnt/β-catenin pathway by modulating the glycogen synthase kinase-3β (GSK) activity subjected to delay in wound healing. The objective of the current study was to explore the wound healing effect of ferric oxide nanoparticles biosynthesized with fractionated TP extract (FeTP). The ability of TP active components (polyphenols) to inhibit the GSK was explored by using molecular docking studies. FeTP were synthesized, characterized, utilized to prepare an ointment and its efficacy was investigated against full-thickness dermal wounds. Different wound healing parameters, level of enzymatic antioxidants, hydroxyproline content and tissue cytokines level were analyzed. Histopathology was performed to confirm the healing by newly formed tissue architecture. Rats treated with FeTP showed significantly swift healing with faster wound contraction rate, high tensile strength and hydroxyproline content along with the utilization of less time for epithelialization. Histopathological study also validated the potential wound healing effect of FeTP with complete re-epithelialization. The results of the present study cumulatively revealed that the green synthesized FeTP ointment approach may serve as a potential tool for dermal wound healing.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| | - Pankajkumar Yadav
- Pharmaceutics Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| |
Collapse
|
85
|
Li X, Liu C, Zhu Y, Rao H, Liu M, Gui L, Feng W, Tang H, Xu J, Gao WQ, Li L. SETD2 epidermal deficiency promotes cutaneous wound healing via activation of AKT/mTOR Signalling. Cell Prolif 2021; 54:e13045. [PMID: 33949020 PMCID: PMC8168411 DOI: 10.1111/cpr.13045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Cutaneous wound healing is one of the major medical problems worldwide. Epigenetic modifiers have been identified as important players in skin development, homeostasis and wound repair. SET domain–containing 2 (SETD2) is the only known histone H3K36 tri‐methylase; however, its role in skin wound healing remains unclear. Materials and Methods To elucidate the biological role of SETD2 in wound healing, conditional gene targeting was used to generate epidermis‐specific Setd2‐deficient mice. Wound‐healing experiments were performed on the backs of mice, and injured skin tissues were collected and analysed by haematoxylin and eosin (H&E) and immunohistochemical staining. In vitro, CCK8 and scratch wound‐healing assays were performed on Setd2‐knockdown and Setd2‐overexpression human immortalized keratinocyte cell line (HaCaT). In addition, RNA‐seq and H3K36me3 ChIP‐seq analyses were performed to identify the dysregulated genes modulated by SETD2. Finally, the results were validated in functional rescue experiments using AKT and mTOR inhibitors (MK2206 and rapamycin). Results Epidermis‐specific Setd2‐deficient mice were successfully established, and SETD2 deficiency resulted in accelerated re‐epithelialization during cutaneous wound healing by promoting keratinocyte proliferation and migration. Furthermore, the loss of SETD2 enhanced the scratch closure and proliferation of keratinocytes in vitro. Mechanistically, the deletion of Setd2 resulted in the activation of AKT/mTOR signalling pathway, while the pharmacological inhibition of AKT and mTOR with MK2206 and rapamycin, respectively, delayed wound closure. Conclusions Our results showed that SETD2 loss promoted cutaneous wound healing via the activation of AKT/mTOR signalling.
Collapse
Affiliation(s)
- Xiaoxue Li
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanyu Rao
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Gui
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Feng
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Huayuan Tang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine and School of Biomedical Engineering, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
86
|
Shofler D, Rai V, Mansager S, Cramer K, Agrawal DK. Impact of resolvin mediators in the immunopathology of diabetes and wound healing. Expert Rev Clin Immunol 2021; 17:681-690. [PMID: 33793355 DOI: 10.1080/1744666x.2021.1912598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Wound healing in diabetes may be delayed by persistent wound infection due to deficient immune and cellular response to tissue injury. Hyperglycemia due to decreased insulin availability and increased insulin resistance affects the immune response of the body. Accumulation of inflammatory immune cells and pro-inflammatory cytokines results in chronic inflammation and an altered resolution and remodeling phase of wound healing.Areas covered: Pro-resolving mediators called 'resolvins' target the resolution phase of wound healing and are becoming an area of increased interest. Resolvins stimulate self-limited innate immune responses and enhance innate microbial killing and clearance. Resolvins resolve inflammation by decreasing neutrophil infiltration and transmigration, increasing the phagocytic activity of macrophages, decreasing adipose tissue macrophages, downregulating platelet activation, suppressing nuclear factor-kappa beta activation, promoting the apoptosis of polymorphonuclear leukocytes, and improving insulin sensitivity. This review discusses the role of resolvins in diabetic wound healing and potential therapeutic strategies. The review is based on a literature search of PubMed and the Web of Science restricted to publications between January 2001 and October 2020.Expert opinion: There is increasing support for the use of resolvins in clinical applications related to diabetes and wound healing. Further research will help clarify this potential.
Collapse
Affiliation(s)
- David Shofler
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Sarah Mansager
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Kira Cramer
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
87
|
Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound healing: A review of red and near-infrared wavelength applications. Cell Biochem Funct 2021; 39:596-612. [PMID: 33870502 DOI: 10.1002/cbf.3629] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
The development of a painless, non-invasive, and faster way to diabetic wound healing is at the forefront of research. The complexity associated with diabetic wounds makes it a cause for concern amongst diabetic patients and the world at large. Irradiation of cells generates a photobiomodulatory response on cells and tissues, directly causing alteration of cellular processes and inducing diabetic wound repair. Photobiomodulation therapy (PBMT) using red and near-infrared (NIR) wavelengths is being considered as a promising technique for speeding up the rate of diabetic wound healing, eradication of pain and reduction of inflammation through the alteration of diverse cellular and molecular processes. This review presents the extent to which the potential of red and NIR wavelengths have been harnessed in PBMT for diabetic wound healing. Important research challenges and gaps are identified and discussed, and future directions mapped out. This review thus provides useful insights and strategies into improvement of PBMT, including its acceptance within the global medical research community.
Collapse
Affiliation(s)
- Olajumoke Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
88
|
Lovisolo F, Carton F, Gino S, Migliario M, Renò F. Photobiomodulation induces microvesicle release in human keratinocytes: PI3 kinase-dependent pathway role. Lasers Med Sci 2021; 37:479-487. [PMID: 33826015 DOI: 10.1007/s10103-021-03285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
Microvesicles (MVs, 100-1000 nm diameter) are released into the extracellular environment by mammalian cells. MVs interact with near or remote cells through different mechanisms; in particular, MVs from human keratinocytes accelerate wound healing. Photobiomodulation by laser improves wound healing, but no information is available about its effects on MV release from human keratinocyte. Human-immortalized keratinocytes (human adult low-calcium high-temperature, HaCaT) were starved for 24 h and then irradiated using a 980-nm energy density of 0, 16.2, 32.5, and 48.7 J/cm2. After 24 h, MVs released in the conditioned medium were isolated, stained, and quantified using flow cytometry. MVs were distinguished from exosomes on the basis of their volume (forward scatter signals). In some experiments, phosphatidylinositol 3-kinase (PI-3K) activity, involved in MV release and stimulated by laser light, was inhibited by pre-treating cells with Wortmannin (WRT, 10 μg/mL). MVs were observed in HaCaT-conditioned medium both in basal- and laser-stimulated conditions. Photobiomodulation therapy, also known as PBMT, was able to increase MV release from human keratinocytes reaching a maximum effect at 32.5 J/cm2 with a stimulation of (148.6 ±15.1)% of basal (p<0.001). PI-3K activity inhibition strongly reduced both basal- and laser-induced MV release; but PBMT by laser still increased MV release, compared to basal values in the presence of WRT. In vitro near infrared photobiomodulation increased the releasing of MVs from human keratinocytes, while Wortmannin, a PI-3K inhibitor, negatively affects both basal- and laser-induced releasing. Laser-induced MV release could be a new effect of biostimulation on the wound healing process.
Collapse
Affiliation(s)
- Flavia Lovisolo
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Flavia Carton
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Sarah Gino
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Mario Migliario
- Dental Clinic, Health Sciences Department, Università del Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Università del Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
89
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
90
|
Transcriptomic Analysis of a Diabetic Skin-Humanized Mouse Model Dissects Molecular Pathways Underlying the Delayed Wound Healing Response. Genes (Basel) 2020; 12:genes12010047. [PMID: 33396192 PMCID: PMC7824036 DOI: 10.3390/genes12010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Defective healing leading to cutaneous ulcer formation is one of the most feared complications of diabetes due to its consequences on patients' quality of life and on the healthcare system. A more in-depth analysis of the underlying molecular pathophysiology is required to develop effective healing-promoting therapies for those patients. Major architectural and functional differences with human epidermis limit extrapolation of results coming from rodents and other small mammal-healing models. Therefore, the search for reliable humanized models has become mandatory. Previously, we developed a diabetes-induced delayed humanized wound healing model that faithfully recapitulated the major histological features of such skin repair-deficient condition. Herein, we present the results of a transcriptomic and functional enrichment analysis followed by a mechanistic analysis performed in such humanized wound healing model. The deregulation of genes implicated in functions such as angiogenesis, apoptosis, and inflammatory signaling processes were evidenced, confirming published data in diabetic patients that in fact might also underlie some of the histological features previously reported in the delayed skin-humanized healing model. Altogether, these molecular findings support the utility of such preclinical model as a valuable tool to gain insight into the molecular basis of the delayed diabetic healing with potential impact in the translational medicine field.
Collapse
|
91
|
Xu W, Jain MK, Zhang L. Molecular link between circadian clocks and cardiac function: a network of core clock, slave clock, and effectors. Curr Opin Pharmacol 2020; 57:28-40. [PMID: 33189913 DOI: 10.1016/j.coph.2020.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
The circadian rhythm has a strong influence on both cardiac physiology and disease in humans. Preclinical studies primarily using tissue-specific transgenic mouse models have contributed to our understanding of the molecular mechanism of the circadian clock in the cardiovascular system. The core clock driven by CLOCK:BMAL1 complex functions as a universal timing machinery that primarily sets the pace in all mammalian cell types. In one specific cell or tissue type, core clock may control a secondary transcriptional oscillator, conceptualized as slave clock, which confers the oscillatory expression of tissue-specific effectors. Here, we discuss a core clock-slave clock-effectors network, which links the molecular clock to cardiac function.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, USA; School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
92
|
Beneficial effects of Diplectria barbata (Wall. Ex C. B. Clarke) Franken et Roos extract on aging and antioxidants in vitro and in vivo. Toxicol Res 2020; 37:71-83. [PMID: 33489859 DOI: 10.1007/s43188-020-00064-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study is to explore the effects of Diplectria barbata (Wall. Ex C.B. Clarke) Franken & Roons (DFR) on wound healing, antioxidant and aging in Normal Human Dermal Fibroblast cell (NHDF) cells and mouse skin models. We investigated the effects of the aging process in vitro and in vivo. DFRtreated NHDF cells showed a concentration-dependent increase in the expression of extracellular matrix (ECM) proteins (Collagen-2.5-fold increase at 50 μg/ml, Elastin-1.5-fold increase at 1μg/ml) as well as an increase in proteins related to cell survival, differentiation, and development, while expression of aging proteins such as matrix metalloproteinase 3 (MMP-3) was decreased (5-fold decrease at 50 μg/ml). DFR treatment also led to enhanced expression of antioxidant proteins such as nuclear factor erythroid 2-related factor 2 (10-fold increase at 50 μg/ml) and heme oxygenase 1 (1.5-fold increase at 25 μg/ml). To further investigate the antioxidative effects of DFR extracts, the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities were also evaluated. DFR extracts improved wound healing and resulted in increased expression of ECM proteins, while enzymes involved in collagen degradation, including MMP-3, were decreased in NHDF cells as well as in a mouse model. This study demonstrates the anti-aging, antioxidant, and wound healing properties of DFR extracts. Therefore, DFR extracts present may facilitate skin protection and care.
Collapse
|
93
|
Rajendran NK, Houreld NN, Abrahamse H. Photobiomodulation reduces oxidative stress in diabetic wounded fibroblast cells by inhibiting the FOXO1 signaling pathway. J Cell Commun Signal 2020; 15:195-206. [PMID: 33052534 DOI: 10.1007/s12079-020-00588-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to elucidate the underlying molecular mechanism of photobiomodulation (PBM) in attenuating oxidative stress in diabetic wounded fibroblast cells. Cell models were exposed to PBM at a wavelength of 660 nm (fluence of 5 J/cm2, and power density of 11.2 mW/cm2) or 830 nm (fluence of 5 J/cm2, and power density of 10.3 mW/cm2). Non-irradiated cell models were used as controls. Cellular migration was determined at regular time intervals (0, 12, 24 and 48 h) using inverted light microscopy. Cell viability was determined by the Trypan blue exclusion assay. The levels of enzymic antioxidants superoxide dismutase (SOD), catalase (CAT), and heme oxygenase (HMOX1) were determined by the enzyme linked immunosorbent assay (ELISA). The alteration in the levels of AKT and FOXO1 was determined by immunofluorescence and western blotting. Upon PBM treatment, elevated oxidative stress was reversed in diabetic and diabetic wounded fibroblast cells. The reduced oxidative stress was represented by decreased FOXO1 levels and increased levels of SOD, CAT and HMOX1. This might be due to the activation of the AKT signaling pathway. This study concluded that treatment with PBM progressed diabetic wound healing by attenuating oxidative stress through inhibition of the FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
94
|
Giuliani A, Lorenzini L, Baldassarro VA, Pannella M, Cescatti M, Fernandez M, Alastra G, Flagelli A, Villetti G, Imbimbo BP, Giardino L, Calzà L. Effects of Topical Application of CHF6467, a Mutated Form of Human Nerve Growth Factor, on Skin Wound Healing in Diabetic Mice. J Pharmacol Exp Ther 2020; 375:317-331. [PMID: 32948647 DOI: 10.1124/jpet.120.000110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Nerve growth factor (NGF) is the protein responsible for the development and maintenance of sensory skin innervation. Given the role of appropriate innervation in skin healing, NGF has been indicated as a possible prohealing treatment in pathologic conditions characterized by nerve-ending loss, such as chronic ulcers in diabetes; however, its use as a therapeutic agent is limited by its hyperalgesic effect. We tested the effect of topical application of the nonalgogenic NGF derivative hNGFP61S/R100E in two models of skin ulcer induced in dbdb diabetic mice, investigating healing time, skin histology, reinnervation, and angiogenesis using morphologic and molecular approaches. We showed that the topical administration of CHF6467, a recombinant human NGF in which an amino acid substitution (R100E) abolished the hyperalgesic effect usually associated with NGF, accelerated skin repair in experimental wounds (full-excision and pressure-ulcer) induced in diabetic mice (dbdb). CHF6467-induced acceleration of wound healing was accompanied by increased re-epithelization, reinnervation, and revascularization as assessed by histology, immunohistochemistry, and image analysis. Bioinformatic analysis of differentially expressed genes and signaling pathways in the wound tissues showed that protein kinase B-mammalian target of rapamycin was the most regulated pathway. In spite of the transdermal absorption leading to measurable, dose-dependent increases in CHF6467 plasma levels, no systemic thermal or local mechanical hyperalgesia was observed in treated mice. When tested in vitro in human cell lines, CHF6467 stimulated keratinocyte and fibroblast proliferation and tube formation by endothelial cells. Collectively, these results support a possible use of CHF6467 as a prohealing agent in skin lesions in diabetes. SIGNIFICANCE STATEMENT: Topical application of CHF6467 accelerates reinnervation, neoangiogenesis, and wound healing in diabetic mice in both full-thickness skin-excision and pressure-ulcer models through the protein kinase B/mammalian target of rapamycin pathway and does not induce hyperalgesia.
Collapse
Affiliation(s)
- A Giuliani
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - L Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - V A Baldassarro
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - M Pannella
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - M Cescatti
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - M Fernandez
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - G Alastra
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - A Flagelli
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - G Villetti
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - B P Imbimbo
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - L Giardino
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| | - L Calzà
- Department of Veterinary Medical Science, University of Bologna, Italy (A.G., L.L., M.F., L.G.); Interdepartmental Center for Industrial Research in Life Sciences and Technologies University of Bologna, Italy (L.L., V.A.B., G.A., A.F, L.G., L.C.); Department of of Pharmacy and Biotechnology, University of Bologna, Italy (L.C.); Fondazione IRET, Ozzano Emilia, Italy (M.P., M.C.); Chiesi Farmaceutici, Parma, Italy (G.V., B.P.I.)
| |
Collapse
|
95
|
Xiong Y, Lu H, Xu H. Galangin Reverses Hepatic Fibrosis by Inducing HSCs Apoptosis via the PI3K/Akt, Bax/Bcl-2, and Wnt/β-Catenin Pathway in LX-2 Cells. Biol Pharm Bull 2020; 43:1634-1642. [PMID: 32893252 DOI: 10.1248/bpb.b20-00258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic fibrosis (HF) is a common disease, with currently no available treatment. Galangin, a natural flavonoid extracted from Alpinia officinaruim Hance, has multiple effects demonstrated in previous studies. The aim of the present study was to explore the anti-fibrogenic effect of galangin in vitro, and research its potential molecular mechanisms. LX-2 cells were chosen as an in vitro HF model, and were treated with galangin in different concentrations. Cell viability was analyzed using Cell Counting Kit-8 (CCK-8) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell apoptosis was measured using flow cytometry, and the anti-fibrogenic effect of galangin was determined using RT-quantitative (q)PCR, immunofluorescence, and Western blotting. The results show that the proliferation of LX-2 cells was efficiently inhibited by galangin, and apoptosis was induced in a dose-dependent manner. Both the mRNA and protein expression of alpha-smooth muscle actin (α-SMA) and collagen I were markedly downregulated. Galangin also inhibited the phosphatidylinositol 3-kinase (PI3K)/Akt and Wnt/β-catenin signaling pathways and increased the Bax/Bcl-2 ratio. The results of this study suggest that galangin has an anti-fibrogenic effect and may represent a promising agent in the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Yuanguo Xiong
- School of Pharmaceuticals, Hubei University of Chinese Medicine
| | - Hao Lu
- School of Pharmaceuticals, Hubei University of Chinese Medicine
| | - Hanlin Xu
- School of Pharmaceuticals, Hubei University of Chinese Medicine
| |
Collapse
|
96
|
Wei F, Wang A, Wang Q, Han W, Rong R, Wang L, Liu S, Zhang Y, Dong C, Li Y. Plasma endothelial cells-derived extracellular vesicles promote wound healing in diabetes through YAP and the PI3K/Akt/mTOR pathway. Aging (Albany NY) 2020; 12:12002-12018. [PMID: 32570219 PMCID: PMC7343472 DOI: 10.18632/aging.103366] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles are involved in skin wound healing and diabetes. After enrichment and identification, plasma endothelial cells-derived-extracellular vesicles were cocultured with skin fibroblasts or HaCaT. The gain-and loss-of functions were performed to measure fibroblast proliferation, senescence, and reactive oxygen species. Levels of senescence-related proteins, senescence-associated secretory phenotypes, vascular markers, YAP and the PI3K/Akt/mTOR pathway-related proteins were determined. Diabetic mice were induced to establish skin wound model. After endothelial cells-derived-extracellular vesicles were injected into skin wound modeling mice, skin wound healing was evaluated. Endothelial cells-derived-extracellular vesicles treatment enhanced fibroblast proliferation, and decreased senescence through the elevation of YAP nuclear translocation and activation the PI3K/Akt/mTOR pathway. YAP inhibition reversed the effect of plasma endothelial cells-derived-extracellular vesicles on fibroblast proliferation. Endothelial cells-derived-extracellular vesicles also promoted wound healing in diabetic mice, increased microvascular density, collagen deposition, macrophage infiltration and positive rates of vascular markers, and inhibited YAP phosphorylation and senescence. Plasma endothelial cells-derived-extracellular vesicles prevent fibroblast senescence and accelerate skin wound healing in diabetic mice by reducing YAP phosphorylation and activating the PI3K/Akt/mTOR pathway. This study may provide novel insights for skin disorders in diabetic mice.
Collapse
Affiliation(s)
- Feng Wei
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Aixue Wang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Qing Wang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Wenrui Han
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Rong Rong
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Lijuan Wang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Sijia Liu
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Yimeng Zhang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Chao Dong
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| | - Yanling Li
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| |
Collapse
|
97
|
Alda-1, an Aldehyde Dehydrogenase 2 Agonist, Improves Cutaneous Wound Healing by Activating Epidermal Keratinocytes via Akt/GSK-3β/β-Catenin Pathway. Aesthetic Plast Surg 2020; 44:993-1005. [PMID: 31953581 DOI: 10.1007/s00266-020-01614-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The cutaneous wound healing process mainly comprises re-epithelialization, fibrosis, and neovascularization. Impaired wound healing is common but tricky in plastic surgery. Aldehyde dehydrogenase 2 (ALDH2), the most effective subset of the ALDH enzyme family, is known to exert a major role in detoxification of aldehydes. Activation of ALDH2 by Alda-1 (a specific agonist) has been found to protect against cardiovascular diseases. However, no research has paid attention to the potential of ALDH2 activation in regulating wound healing. The previous studies suggested a high expression of ALDH2 in normal skin tissue. The aim of this study was to investigate if Alda-1 may ameliorate wound healing. METHODS A full-thickness excisional wound model was established in vivo. Adult male C57BL/6 mice were randomly divided into DMSO and Alda-1 groups. Mice received an intraperitoneal injection of DMSO or 10 mg/mL Alda-1 (10 mg/kg body weight, dissolved in DMSO) for 7 days. The wound healing rate was measured at 0, 3, 5, and 7 days. Distribution of ALDH2 in wound tissue was showed. ALDH2 enzymatic activity was examined at 3, 5, and 7 days. The elongation of epithelial tongue was detected by hematoxylin-eosin staining, and collagen deposition was analyzed by Masson's trichrome staining at 7 days. Expressions of alpha-smooth muscle actin (alpha-SMA), transforming growth factor beta (TGF-beta), CD31, collagen 1, collagen 3, and elastin were stained by immunohistochemistry at 5 and 7 days. The HaCaT cell line was applied in vitro. Proliferation and migration were tested using CCK8 and wound healing assay separately. The level of TGF-β was examined by ELISA. Protein levels of the Akt/glycogen synthase kinase-3 beta (GSK-3 beta)/beta-catenin pathway were determined by western blotting. RESULTS Alda-1 accelerated wound healing rates. ALDH2 activity in wound sites was restored. Alda-1 promoted the length of the epithelial tongue, collagen deposition, as well as expressions of alpha-SMA, TGF-beta, collagen 1/3, elastin, but did not affect CD31. Proliferation, migration, and TGF-β secretion were promoted by Alda-1 and deregulated by CVT-10216 (an ALDH2 inhibitor). Protein variations of the Akt/GSK-3β/β-catenin pathway were found to accord with ALDH2 changes. CONCLUSIONS Alda-1, an ALDH2 agonist, improves cutaneous wound healing in a full-thickness excisional wound model. Alda-1 activates proliferation, migration, and TGF-β secretion of HaCaT (epidermal keratinocytes) by regulating the Akt/GSK-3β/β-catenin pathway. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
|
98
|
Lodewijckx J, Robijns J, Bensadoun RJ, Mebis J. Photobiomodulation Therapy for the Management of Chemotherapy-Induced Peripheral Neuropathy: An Overview. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:348-354. [PMID: 32460667 DOI: 10.1089/photob.2019.4771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy (CT), affecting 68% of patients. Current treatment strategies are based on pharmacological symptom management, but have limited results. Photobiomodulation therapy (PBMT) is a new and emerging therapeutic tool in the supportive care of cancer patients. In this overview, we explore the usability of PBMT for management of CIPN. Objective: To provide a comprehensive overview of management of CIPN with PBMT. Methods: Specific terms, including "Photobiomodulation Therapy," "Drug Therapy," and "Peripheral Nervous System Diseases," were identified for the literature research in PubMed. Results: Three articles were considered eligible for this review. Primary outcome measures were highly variable across the included studies. Conclusions: PBMT might be an effective treatment strategy to manage CIPN, with very encouraging reports from renowned teams, but evidence is limited. More methodologically uniform research (mainly regarding the parameters of PBMT) is needed to support the use of PBMT for this indication.
Collapse
Affiliation(s)
- Joy Lodewijckx
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Jolien Robijns
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | | | - Jeroen Mebis
- Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Limburg Oncology Center, Hasselt, Belgium.,Department of Medical Oncology, Jessa Hospital, Hasselt, Belgium
| |
Collapse
|
99
|
Cellular mechanisms and molecular signaling pathways in stress-induced anxiety, depression, and blood-brain barrier inflammation and leakage. Inflammopharmacology 2020; 28:643-665. [PMID: 32333258 DOI: 10.1007/s10787-020-00712-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Depression and anxiety are comorbid conditions in many neurological or psychopathological disorders. Stress is an underlying event that triggers development of anxiety and depressive-like behaviors. Recent experimental data indicate that anxiety and depressive-like behaviors occurring as a result of stressful situations can cause blood-brain barrier (BBB) dysfunction, which is characterized by inflammation and leakage. However, the underlying mechanisms are not completely understood. This paper sought to review recent experimental preclinical and clinical data that suggest possible molecular mechanisms involved in development of stress-induced anxiety and depression with associated BBB inflammation and leakage. Critical therapeutic targets and potential pharmacological candidates for treatment of stress-induced anxiety and depression with associated BBB dysfunctions are also discussed.
Collapse
|
100
|
Saghaei Bagheri H, Rasta SH, Mohammadi SM, Rahimi AAR, Movassaghpour A, Nozad Charoudeh H. Low-Level Laser Irradiation Modulated Viability of Normal and Tumor Human Lymphocytes In Vitro. J Lasers Med Sci 2020; 11:174-180. [PMID: 32273959 DOI: 10.34172/jlms.2020.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: Laser radiation is a promising strategy against various malignancies. Recent studies have shown that the application of low-power laser therapy (LPLT) at different doses and exposure times could modulate the growth dynamic of tumor cells. Based on the type of laser, LPLT could potentially trigger cell proliferation, differentiation, and apoptosis in different cell lines. Methods: In this study, MTT assay was used to monitor the effect of low and high laser intensities on the viability of normal and cancer lymphocytes. The protein levels of Ki-67 (a proliferation marker) and Caspase-3 (an apoptosis factor) were measured in human peripheral mononuclear cells (PBMCs) and the B-lymphoblastic cell line (Nalm-6) using flow cytometry after being-exposed to 630-nm LPLT at low (2, 4, 6, and 10 J/cm2 ) and high (15, 30, 60, and 120 J/cm2) energy densities in a continuous mode for 48 and 72 hours. Results: By using higher energy densities, 60 and 120 J/cm2 , a significant decrease was shown in the viability of Nalm-6 cells, which reached 6.6 and 10.1% after 48 hours compared to the control cells (P<0.05). Notably, Cell exposure to doses 30, 60, and 120 J/cm2 yielded 7.5, 12.9, and 21.6 cell viability reduction after 72 hours. The collected data showed that the high-intensity parameters of LPLT (15 to 120 J/cm2) promoted significant apoptotic changes in the exposed cells coincided with the activation of Caspase-3 compared to the none-treated control cells (P<0.05). The data further showed the stimulation of the Ki-67 factor both in primary PBMCs and the lymphoblastic cell line treated with LPLT at energy densities of 4 and 6 J/cm2 (P<0.05), indicating enhanced cell proliferation. Similar to Nalm-6 cells, primary PBMCs showed apoptosis after 48 hours of being exposed to doses 60, and 120 J/cm2 , indicated by increased Caspase-3 levels (P<0.05). As expected, the Nalm-6 cells were resistant to cytotoxic effects of laser irradiation in the first 48 hours (P>0.05) compared to normal PBMCs. The exposure of Nalm-6 cells to low-intensity laser intensities increased a proliferation rate compared to the PBMCs treated with the same doses. Conclusion: We showed the potency of LPLT in the induction of apoptosis and proliferation in human primary PBMCs and Nalm-6 cells in a dose and time-dependent manner after 72 hours.
Collapse
Affiliation(s)
- Hesam Saghaei Bagheri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran 3
| | - Seyed Hossein Rasta
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran 3.,Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Biomedical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Ali Akbar Rahim Rahimi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|