51
|
Xie SX, Boone K, VanOosten SK, Yuca E, Song L, Ge X, Ye Q, Spencer P, Tamerler C. Peptide Mediated Antimicrobial Dental Adhesive System. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:557. [PMID: 33542835 PMCID: PMC7857482 DOI: 10.3390/app9030557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The most common cause for dental composite failures is secondary caries due to invasive bacterial colonization of the adhesive/dentin (a/d) interface. Innate material weakness often lead to an insufficient seal between the adhesive and dentin. Consequently, bacterial by-products invade the porous a/d interface leading to material degradation and dental caries. Current approaches to achieve antibacterial properties in these materials continue to raise concerns regarding hypersensitivity and antibiotic resistance. Herein, we have developed a multi-faceted, bio-functionalized approach to overcome the vulnerability of such interfaces. An antimicrobial adhesive formulation was designed using a combination of antimicrobial peptide and a ε-polylysine resin system. Effector molecules boasting innate immunity are brought together with a biopolymer offering a two-fold biomimetic design approach. The selection of ε-polylysine was inspired due to its non-toxic nature and common use as food preservative. Biomolecular characterization and functional activity of our engineered dental adhesive formulation were assessed and the combinatorial formulation demonstrated significant antimicrobial activity against Streptococcus mutans. Our antimicrobial peptide-hydrophilic adhesive hybrid system design offers advanced, biofunctional properties at the critical a/d interface.
Collapse
Affiliation(s)
- Sheng-Xue Xie
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Kay VanOosten
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Department of Molecular Biology and Genetics, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Linyong Song
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Xueping Ge
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 1530 W. 15th St., Lawrence, KS 66045, USA
- Bioengineering Program, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, 1530 W. 15th St., University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
52
|
Lapinska B, Konieczka M, Zarzycka B, Sokolowski K, Grzegorczyk J, Lukomska-Szymanska M. Flow Cytometry Analysis of Antibacterial Effects of Universal Dentin Bonding Agents on Streptococcus mutans. Molecules 2019; 24:E532. [PMID: 30717140 PMCID: PMC6384823 DOI: 10.3390/molecules24030532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
There is no consensus on the antibacterial activity of dentin bonding systems (DBS). Many study models have been used to evaluate the antimicrobial activity of dental materials. In this study, a novel detection method, flow cytometry, was introduced. It allows for evaluation of the antibacterial activity of DBS, based on assessment of the disruption of the bacterial physical membrane induced by DBS. The aim of the study was to evaluate the antibacterial properties of selected dentin bonding systems against Streptococcus mutans. The highest antibacterial activity against S. mutans was observed for Adhese Universal (99.68% dead cells) and was comparable to that of Prime&Bond Universal, OptiBond Universal, or Clearfil Universal Bond Quick (p > 0.05). The lowest activity of all tested systems was displayed by the multi-mode adhesive, Universal Bond (12.68% dead bacteria cells), followed by the self-etch adhesive, OptiBond FL (15.58% dead bacteria cells). The present study showed that in the case of two-component DBS, the primer exhibited higher antimicrobial activity than the adhesive (or bond) itself.
Collapse
Affiliation(s)
- Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Magdalena Konieczka
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Beata Zarzycka
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Krzysztof Sokolowski
- Department of Conservative Dentistry, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Janina Grzegorczyk
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland.
| | | |
Collapse
|
53
|
Wang Y, Hua H, Li W, Wang R, Jiang X, Zhu M. Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids. J Dent 2019; 80:23-29. [DOI: 10.1016/j.jdent.2018.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022] Open
|
54
|
de Sousa-Lima RX, de Lima JFM, Silva de Azevedo LJ, de Freitas Chaves LV, Alonso RCB, Borges BCD. Surface morphological and physical characterizations of glass ionomer cements after sterilization processes. Microsc Res Tech 2018; 81:1208-1213. [PMID: 30238559 DOI: 10.1002/jemt.23119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Accepted: 07/30/2018] [Indexed: 11/11/2022]
Abstract
The aim of this study was to investigate if sterilization methods would promote changes in the selected adhesion-related surface properties of glass ionomer cements (GICs). Riva self-cure (RSC) and Riva light-cure (RLC) GICs were tested. Thirty samples were prepared according to the type of material (RSC and RLC) and sterilization method: hydrogen peroxide gas plasma (HPGP), steam sterilization (SS), and no sterilization (n = 5 per group). A Teflon matrix (5 × 2 mm) was filled with one of the GICs to produce the samples. For the groups with the RLC material, the samples were light cured using a light curing unit for 20 s. After 24 hr, finishing and polishing were performed in all samples and then they were sterilized. Surface roughness, wettability, and micromorphology were accessed using a profilometer, a goniometer, and a scanning electron microscopy, respectively. Data were statistically analyzed through a two-way ANOVA and Tukey post-hoc test (p < .05). Both sterilization methods promoted similar roughness values to the nonsterilized samples (p > .05). HPGP decreased contact angle for RSC (p < .01), and SS increased contact angle for RLC (p < .01). Samples subjected to HPGP presented similar surface micromorphology to nonsterilized ones, regardless of the material. SS promoted exposition of smaller filler particles in both materials. Although sterilization methods did not alter surface roughness and wettability, the sterilization methods selectively altered the micromorphology of the materials tested. RESEARCH HIGHLIGHTS: This study's main finding suggests that each sterilization method altered the surface of glass ionomers in different ways. Thus, the choice of sterilization methods prior to bacterial adhesion can lead to a bias in antimicrobial studies.
Collapse
Affiliation(s)
| | - Joyce F M de Lima
- Department of Dentistry, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | | - Roberta C B Alonso
- Department of biomaterials, Universidade Anhanguera (UNIAN), São Paulo, Brazil
| | - Boniek C D Borges
- Department of Dentistry, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| |
Collapse
|
55
|
Zhang K, Baras B, Lynch CD, Weir MD, Melo MAS, Li Y, Reynolds MA, Bai Y, Wang L, Wang S, Xu HHK. Developing a New Generation of Therapeutic Dental Polymers to Inhibit Oral Biofilms and Protect Teeth. MATERIALS 2018; 11:ma11091747. [PMID: 30227632 PMCID: PMC6165509 DOI: 10.3390/ma11091747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Polymeric tooth-colored restorations are increasingly popular in dentistry. However, restoration failures remain a major challenge, and more than 50% of all operative work was devoted to removing and replacing the failed restorations. This is a heavy burden, with the expense for restoring dental cavities in the U.S. exceeding $46 billion annually. In addition, the need is increasing dramatically as the population ages with increasing tooth retention in seniors. Traditional materials for cavity restorations are usually bioinert and replace the decayed tooth volumes. This article reviews cutting-edge research on the synthesis and evaluation of a new generation of bioactive dental polymers that not only restore the decayed tooth structures, but also have therapeutic functions. These materials include polymeric composites and bonding agents for tooth cavity restorations that inhibit saliva-based microcosm biofilms, bioactive resins for tooth root caries treatments, polymers that can suppress periodontal pathogens, and root canal sealers that can kill endodontic biofilms. These novel compositions substantially inhibit biofilm growth, greatly reduce acid production and polysaccharide synthesis of biofilms, and reduce biofilm colony-forming units by three to four orders of magnitude. This new class of bioactive and therapeutic polymeric materials is promising to inhibit tooth decay, suppress recurrent caries, control oral biofilms and acid production, protect the periodontium, and heal endodontic infections.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China.
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Bashayer Baras
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Christopher D Lynch
- Restorative Dentistry, University Dental School and Hospital, Wilton T12 E8YV, Ireland.
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Mary Anne S Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Yuncong Li
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Mark A Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China.
| | - Lin Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun 130012, China.
| | - Suping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
- Department of Operative Dentistry and Endodontics & Stomatology Center, The First Affiliated Medical School of Zhengzhou University, Zhengzhou 450052, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
56
|
Pagano S, Chieruzzi M, Balloni S, Lombardo G, Torre L, Bodo M, Cianetti S, Marinucci L. Biological, thermal and mechanical characterization of modified glass ionomer cements: The role of nanohydroxyapatite, ciprofloxacin and zinc l-carnosine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:76-85. [PMID: 30423762 DOI: 10.1016/j.msec.2018.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/01/2018] [Accepted: 09/06/2018] [Indexed: 11/19/2022]
Abstract
The study evaluated the effects of 4 wt% nanohydroxyapatite (HA), 6 wt% zinc l-carnosine (MDA) and 1.5 wt% Ciprofloxacin (AB) on the mechanical, thermal and biological properties of glass ionomer cements (GIC). Filler and additive concentrations were selected after a previous study had tested single components and different percentages. Specimens included five silicon molds of each GIC cement for all tests. They were stored at room temperature for 24 h from specimen collection to analysis. Mechanical tests, calorimetric analysis, morphological investigation, antibacterial and cell viability assays were conducted. One-way analysis of variance (ANOVA) was used for data analysis with significance set at p < 0.05. Adding HA, MDA and AB to GICs modified their thermal, mechanical and microbiological properties. Polymerization increased. A slight decrease in the compressive strength of modified GICs was observed in dry condition (p < 0.05). Cement extracts affected cell viability in relation to extract dilution. Mechanical behavior improved in modified glass ionomer cements, especially with the powder formulated antibiotic. Overall cytotoxicity was reduced. Therefore adding nanohydroxyapatite, antibiotic and a mucosal defensive agent to conventional glass ionomer cement in special need patients could improve the clinical, preventive and therapeutic performance of the cements, without altering their mechanical properties.
Collapse
Affiliation(s)
- Stefano Pagano
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Manila Chieruzzi
- University of Perugia, Civil and Environmental Engineering Department, UdR INSTM, Strada di Pentima, 4, 05100 Terni, Italy.
| | - Stefania Balloni
- University of Perugia, Department of Experimental Medicine Section of Biosciences and Medical Embriology, S. Andrea delle Fratte, 06156 Perugia, Italy
| | - Guido Lombardo
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Luigi Torre
- University of Perugia, Civil and Environmental Engineering Department, UdR INSTM, Strada di Pentima, 4, 05100 Terni, Italy.
| | - Maria Bodo
- University of Perugia, Department of Experimental Medicine Section of Biosciences and Medical Embriology, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Stefano Cianetti
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Lorella Marinucci
- University of Perugia, Department of Experimental Medicine Section of Biosciences and Medical Embriology, S. Andrea delle Fratte, 06156 Perugia, Italy.
| |
Collapse
|
57
|
Dahl JE, Stenhagen IS. Optimizing quality and safety of dental materials. Eur J Oral Sci 2018; 126 Suppl 1:102-105. [DOI: 10.1111/eos.12422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Jon E. Dahl
- Nordic Institute of Dental Materials (NIOM) Oslo Norway
| | | |
Collapse
|
58
|
Jafari K, Hekmatfar S, Fereydunzadeh M. In vitro Comparison of Antimicrobial Activity of Conventional Fluoride Varnishes Containing Xylitol and Casein Phosphopeptide-Amorphous Calcium Phosphate. J Int Soc Prev Community Dent 2018; 8:309-313. [PMID: 30123762 PMCID: PMC6071361 DOI: 10.4103/jispcd.jispcd_67_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/23/2018] [Indexed: 11/04/2022] Open
Abstract
Objective Different fluoride varnishes are used for the prevention of dental caries. The aim of this study was to compare the antimicrobial effect of different fluoride varnishes, containing xylitol and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), on Streptococcus mutans. Materials and Methods In this in vitro study, the antibacterial effects of four varnishes, namely Polimo and V-varnish (containing xylitol), MI varnish (containing CPP-ACP), and Preventa, were evaluated against S. mutans. The disc diffusion method was used for testing the bacterial sensitivity. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U-tests. Results According to the results, Polimo showed the highest antibacterial effects, compared to the other three varnishes (P ≤ 0.05). Growth inhibition zones were not observed in V-varnish and Preventa. The mean diameter of inhibition zone around the MI varnish was significantly higher, compared to those of the V varnish and Preventa (P ≤ 0.05). Conclusion As the findings indicated, the fluoride varnish containing xylitol and CPP-ACP could be more effective iAQ1n the prevention of dental caries.
Collapse
Affiliation(s)
- Karim Jafari
- Department of Prosthodontics, Dental Faculty, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Somayeh Hekmatfar
- Department of Pedodontics, Dental Faculty, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Fereydunzadeh
- Dental Research Committee, Dental Faculty, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
59
|
Tuzuner T. In-vitro evaluation of the microhardness and fluoride releasing properties of chlorhexidine+benzalkonium chloride mixtures incorporated into conventional glass ionomer cement. CUMHURIYET DENTAL JOURNAL 2018. [DOI: 10.7126/cumudj.407334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
60
|
de Castro DT, do Nascimento C, Alves OL, de Souza Santos E, Agnelli JAM, Dos Reis AC. Analysis of the oral microbiome on the surface of modified dental polymers. Arch Oral Biol 2018; 93:107-114. [PMID: 29890443 DOI: 10.1016/j.archoralbio.2018.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/23/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study characterized the microbial diversity of formed biofilm on the surface of acrylic resins modified with nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) after incubation in human saliva. DESIGN Resin specimens prepared with AgVO3 at concentrations 0%, 1%, 2.5%, and 5% by either vacuum mixing or polymer solubilization were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). After 24 h and 7 days of saliva incubation, biofilm samples were collected from the surface of the specimens. The 16S rDNA genes were amplified, sequenced with the 454-Roche next-generation sequencing platform and analyzed to identify the Operational Taxonomic Units at the genus or higher level. RESULTS Significant differences in the dispersion pattern of the nanoparticles were observed among the two different methods of AgVO3 incorporation. In the microbiological analysis, a total of 103 genera and 7 more inclusive taxa, representing the phyla Bacteroidetes, Firmicutes and Proteobacteria were identified colonizing resin surfaces. The incorporation method of the AgVO3 had little to no significant effect on the microbiota of samples. Significant time and concentration-dependent responses to AgVO3 caused changes in the taxonomic profile at the phylum and genus level. CONCLUSIONS The results show differences in relation to the microbial diversity of modified resins during the initial phase of biofilm maturation. The incorporation of AgVO3 seems to significantly affect the colonizing microbiota.
Collapse
Affiliation(s)
- Denise Tornavoi de Castro
- School of Dentistry of Uberaba, Department of Biomaterials, University of Uberaba, Av. Nenê Sabino, 1801, Bairro Universitário, Uberaba, Minas Gerais, 38055-500, Brazil
| | - Cássio do Nascimento
- School of Dentistry of Ribeirão Preto, Department of Dental Materials and Prosthodontics, University of São Paulo, Av. Café s/no, Monte Alegre, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Oswaldo Luiz Alves
- State University of Campinas (UNICAMP), Laboratory of Solid State Chemistry, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, 13083-859, Brazil
| | - Emerson de Souza Santos
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Toxicological and Bromatologic Analysis, University of São Paulo, Av. Café s/no, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - José Augusto Marcondes Agnelli
- Federal University of São Carlos (UFSCAR), Department of Materials Engineering, CP 676, São Carlos, São Paulo, 13565-905, Brazil
| | - Andréa Cândido Dos Reis
- School of Dentistry of Ribeirão Preto, Department of Dental Materials and Prosthodontics, University of São Paulo, Av. Café s/no, Monte Alegre, Ribeirão Preto, São Paulo, 14040-904, Brazil.
| |
Collapse
|
61
|
Luo D, Zhang X, Shahid S, Cattell MJ, Gould DJ, Sukhorukov GB. Electrospun poly(lactic acid) fibers containing novel chlorhexidine particles with sustained antibacterial activity. Biomater Sci 2018; 5:111-119. [PMID: 27885369 DOI: 10.1039/c6bm00646a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of persistent infections often requires a high local drug concentration and sustained release of antimicrobial agents. This paper proposes the use of novel electrospinning of poly(lactic acid) (PLA) fibers containing uncoated and encapsulated chlorhexidine particles. Chlorhexidine particles with a mean (SD) diameter of 17.15 ± 1.99 μm were fabricated by the precipitation of chlorhexidine diacetate with calcium chloride. Layer-by-layer (LbL) encapsulation of the chlorhexidine particles was carried out to produce encapsulated particles. The chlorhexidine particles had a high chlorhexidine content (90%), and when they were electrospun into PLA fibers a bead-in-string structure was obtained. The chlorhexidine content in the fibers could be tuned and a sustained release over 650 h was produced, via chlorhexidine particle encapsulation. Chlorhexidine release was governed by the polyelectrolyte multilayer encapsulation as demonstrated by SEM and confocal imaging. The incorporation of uncoated and encapsulated chlorhexidine particles (0.5% and 1% wt/wt chlorhexidine) into the fibers did not cause toxicity to healthy fibroblasts or affect cell adhesion to the fibers over a period of 5 days. The chlorhexidine-containing fibers also demonstrated sustained antibacterial activity against E. coli via an agar diffusion assay and broth transfer assay. Therefore, the chlorhexidine-containing PLA fibers may be useful in the treatment of persistent infections in medicine and dentistry.
Collapse
Affiliation(s)
- Dong Luo
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, UK.
| | - Xi Zhang
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, UK.
| | - Saroash Shahid
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AD, UK
| | - Michael J Cattell
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AD, UK
| | - David J Gould
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, UK.
| |
Collapse
|
62
|
Wang S, Wang H, Ren B, Li X, Wang L, Zhou H, Weir MD, Zhou X, Masri RM, Oates TW, Cheng L, Xu HHK. Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Sci Rep 2018; 8:5509. [PMID: 29615732 PMCID: PMC5882658 DOI: 10.1038/s41598-018-23831-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/21/2018] [Indexed: 02/05/2023] Open
Abstract
Only two reports exist on drug-resistance of quaternary ammonium monomers against oral bacteria; both studies tested planktonic bacteria for 10 passages, and neither study tested biofilms or resins. The objectives of this study were to investigate the drug-resistance of Streptococcus mutans, Streptococcus sanguinis and Streptococcus gordonii against dimethylaminohexadecyl methacrylate (DMAHDM), and to evaluate biofilms on resins with repeated exposures for 20 passages for the first time. DMAHDM, dimethylaminododecyl methacrylate (DMADDM) and chlorhexidine (CHX) were tested with planktonic bacteria. Biofilms were grown on a resin containing 3% DMAHDM. Minimum-inhibitory concentrations were measured. To detect drug-resistance, the survived bacteria from the previous passage were used as inoculum for the next passage for repeated exposures. S. gordonii developed drug-resistance against DMADDM and CHX, but not against DMAHDM. Biofilm colony-forming units (CFU) on DMAHDM-resin was reduced by 3–4 log; there was no difference from passages 1 to 20 (p > 0.1). No drug-resistance to DMAHDM was detected for all three bacterial species. In conclusion, this study showed that DMAHDM induced no drug-resistance, and DMAHDM-resin reduced biofilm CFU by 3–4 log, with no significant change from 1 to 20 passages. DMAHDM with potent antibacterial activities and no drug-resistance is promising for dental applications.
Collapse
Affiliation(s)
- Suping Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Haohao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Li
- Department of Oral Medicine, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Wang
- VIP Integrated Department, Stomatological Hospital of Jilin University, Changchun, China
| | - Han Zhou
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Radi M Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA. .,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD, 21250, USA. .,Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
63
|
Zhou X, Wang S, Peng X, Hu Y, Ren B, Li M, Hao L, Feng M, Cheng L, Zhou X. Effects of water and microbial-based aging on the performance of three dental restorative materials. J Mech Behav Biomed Mater 2018; 80:42-50. [DOI: 10.1016/j.jmbbm.2018.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
64
|
Song L, Ye Q, Ge X, Misra A, Tamerler C, Spencer P. Fabrication of hybrid crosslinked network with buffering capabilities and autonomous strengthening characteristics for dental adhesives. Acta Biomater 2018; 67:111-121. [PMID: 29229545 PMCID: PMC5963517 DOI: 10.1016/j.actbio.2017.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/27/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Ingress of bacteria and fluids at the interfacial gaps between the restorative composite biomaterial and the tooth structure contribute to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of bacteria. Neutralizing the microenvironment at the tooth/composite interface offers promise for reducing the damage provoked by cariogenic and aciduric bacteria. We address this problem by designing a dental adhesive composed of hybrid network to provide buffering and autonomous strengthening simultaneously. Two amino functional silanes, 2-hydroxy-3-morpholinopropyl (3-(triethoxysilyl)propyl) carbamate and 2-hydroxy-3-morpholinopropyl (3-(trimethoxysilyl)propyl) carbamate were synthesized and used as co-monomers. Combining free radical initiated polymerization (polymethacrylate-based network) and photoacid-induced sol-gel reaction (polysiloxane) results in the hybrid network formation. Resulting formulations were characterized with regard to real-time photo-polymerization, water sorption, leached species, neutralization, and mechanical properties. Results from real-time FTIR spectroscopic studies indicated that ethoxy was less reactive than methoxy substituent. The neutralization results demonstrated that the methoxy-containing adhesives have acute and delayed buffering capabilities. The mechanical properties of synthetic copolymers tested in dry conditions were improved via condensation reaction of the hydrolyzed organosilanes. The leaching from methoxy containing copolymers was significantly reduced. The sol-gel reaction provided a chronic and persistent reaction in wet condition-performance that offers potential for reducing secondary decay and increasing the functional lifetime of dental adhesives. STATEMENT OF SIGNIFICANCE The interfacial gaps between the restorative composite biomaterial and the tooth structure contributes to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of more cariogenic and aciduric bacteria. This paper reports a novel, synthetic resin that provides buffering capability and autonomous strengthening characteristics. In this work, two amino functional silanes were synthesized and the effect of alkoxy substitutions on the photoacid-induced sol-gel reaction was investigated. We evaluated the neutralization capability (monitoring the pH of lactic acid solution) and the autonomous strengthening property (monitoring the mechanical properties of the hybrid copolymers under wet conditions and quantitatively analyzing the leachable species by HPLC). The novel resin investigated in this study offers the potential benefits of reducing the risk of recurrent decay and prolonging the functional lifetime of dental adhesives.
Collapse
Affiliation(s)
- Linyong Song
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Qiang Ye
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA.
| | - Xueping Ge
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Anil Misra
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; University of Kansas, Department of Civil Engineering, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Candan Tamerler
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; University of Kansas, Department of Mechanical Engineering, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Paulette Spencer
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; University of Kansas, Department of Mechanical Engineering, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA.
| |
Collapse
|
65
|
Liang J, Li M, Ren B, Wu T, Xu HHK, Liu Y, Peng X, Yang G, Weir MD, Zhang S, Cheng L, Zhou X. The anti-caries effects of dental adhesive resin influenced by the position of functional groups in quaternary ammonium monomers. Dent Mater 2017; 34:400-411. [PMID: 29269159 DOI: 10.1016/j.dental.2017.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 11/20/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES A new quaternary ammonium monomer (QAM), triethylaminododecyl acrylate (TEADDA) was synthesized, in which the position of the functional groups was different from that of dimethylaminododecyl methacrylate (DMADDM). The objectives were to: (1) investigate the effect of the changed position of the functional groups on the mechanical properties, anti-biofilm activity and biocompatibility of adhesive resin, and (2) study the anti-bacterial mechanism of QAM to improve the performance of the adhesive system modified by QAM. METHODS TEADDA and DMADDM were added into adhesives. Microtensile bond strength and surface charge density were measured. Multi-species biofilms were incubated on specimens for 16h, 48h and 72h and analyzed via MTT assay, lactic acid measurement and confocal laser scanning microscopy. The ratio of different species of bacteria was measured by real-time polymerase chain reaction. Cytotoxicity and biocompatibility were analyzed by eluents cytotoxicity test and histological images of H&E staining via an animal study in rats. RESULTS The mass fraction of TEDDA allowed to be added into adhesive was higher than that of DMADDM. However, even 10% TEADDA did not yield a strong anti-biofilm effect on biofilm growth, lactic acid production and bacteria compositions. TEADDA added into adhesives showed better mechanical properties but weaker anti-bacterial effect. There was no significant difference on cytotoxicity and biocompatibility between DMADDM and TEADDA. SIGNIFICANCE The study could be helpful for the investigation of the anti-caries mechanism of QAMs, the design of new QAMs and the improvement of the anti-caries activity of the modified dental materials.
Collapse
Affiliation(s)
- Jingou Liang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Tianmu Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yong Liu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Ge Yang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Shiyong Zhang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
66
|
Bregnocchi A, Zanni E, Uccelletti D, Marra F, Cavallini D, De Angelis F, De Bellis G, Bossù M, Ierardo G, Polimeni A, Sarto MS. Graphene-based dental adhesive with anti-biofilm activity. J Nanobiotechnology 2017; 15:89. [PMID: 29233187 PMCID: PMC5728064 DOI: 10.1186/s12951-017-0322-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Background Secondary caries are considered the main cause of dental restoration failure. In this context, anti-biofilm and bactericidal properties are desired in dental materials against pathogens such as Streptococcus mutans. To this purpose, graphene based materials can be used as fillers of polymer dental adhesives. In this work, we investigated the possibility to use as filler of dental adhesives, graphene nanoplatelets (GNP), a non toxic hydrophobic nanomaterial with antimicrobial and anti-biofilm properties. Results Graphene nanoplatelets have been produced starting from graphite intercalated compounds through a process consisting of thermal expansion and liquid exfoliation. Then, a dental adhesive filled with GNPs at different volume fractions has been produced through a solvent evaporation method. The rheological properties of the new experimental adhesives have been assessed experimentally. The adhesive properties have been tested using microtensile bond strength measurements (µ-TBS). Biocidal activity has been studied using the colony forming units count (CFU) method. The anti-biofilm properties have been demonstrated through FE-SEM imaging of the biofilm development after 3 and 24 h of growth. Conclusions A significantly lower vitality of S. mutans cells has been demonstrated when in contact with the GNP filled dental adhesives. Biofilm growth on adhesive-covered dentine tissues demonstrated anti-adhesion properties of the produced materials. µ-TBS results demonstrated no significant difference in µ-TBS between the experimental and the control adhesive. The rheology tests highlighted the necessity to avoid low shear rate regimes during adhesive processing and application in clinical protocol, and confirmed that the adhesive containing the 0.2%wt of GNPs possess mechanical properties comparable with the ones of the control adhesive.
Collapse
Affiliation(s)
- Agnese Bregnocchi
- Research Center for Nanotechnology Applied to Engineering of Sapienza University (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy. .,Sapienza Nanotechnology & Nano-science Laboratory (SNN Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy. .,Department of Aerospace, Electrical and Energy Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy.
| | - Elena Zanni
- Research Center for Nanotechnology Applied to Engineering of Sapienza University (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Sapienza Nanotechnology & Nano-science Laboratory (SNN Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.,Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Daniela Uccelletti
- Research Center for Nanotechnology Applied to Engineering of Sapienza University (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Sapienza Nanotechnology & Nano-science Laboratory (SNN Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.,Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Fabrizio Marra
- Research Center for Nanotechnology Applied to Engineering of Sapienza University (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Sapienza Nanotechnology & Nano-science Laboratory (SNN Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.,Department of Aerospace, Electrical and Energy Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - Domenico Cavallini
- Research Center for Nanotechnology Applied to Engineering of Sapienza University (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Sapienza Nanotechnology & Nano-science Laboratory (SNN Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.,Department of Aerospace, Electrical and Energy Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - Francesca De Angelis
- Department of Dentistry and Maxillo-Facial Sciences, Unit of Pediatric Dentistry Sapienza University of Rome, Viale regina Elena 287a, Rome, 00161, Italy
| | - Giovanni De Bellis
- Research Center for Nanotechnology Applied to Engineering of Sapienza University (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Sapienza Nanotechnology & Nano-science Laboratory (SNN Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.,Department of Aerospace, Electrical and Energy Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - Maurizio Bossù
- Department of Dentistry and Maxillo-Facial Sciences, Unit of Pediatric Dentistry Sapienza University of Rome, Viale regina Elena 287a, Rome, 00161, Italy
| | - Gaetano Ierardo
- Department of Dentistry and Maxillo-Facial Sciences, Unit of Pediatric Dentistry Sapienza University of Rome, Viale regina Elena 287a, Rome, 00161, Italy
| | - Antonella Polimeni
- Department of Dentistry and Maxillo-Facial Sciences, Unit of Pediatric Dentistry Sapienza University of Rome, Viale regina Elena 287a, Rome, 00161, Italy
| | - Maria Sabrina Sarto
- Research Center for Nanotechnology Applied to Engineering of Sapienza University (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Sapienza Nanotechnology & Nano-science Laboratory (SNN Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.,Department of Aerospace, Electrical and Energy Engineering, Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| |
Collapse
|
67
|
Kangwankai K, Sani S, Panpisut P, Xia W, Ashley P, Petridis H, Young AM. Monomer conversion, dimensional stability, strength, modulus, surface apatite precipitation and wear of novel, reactive calcium phosphate and polylysine-containing dental composites. PLoS One 2017; 12:e0187757. [PMID: 29136013 PMCID: PMC5685583 DOI: 10.1371/journal.pone.0187757] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
Purpose The aim was to assess monomer conversion, dimensional stability, flexural strength / modulus, surface apatite precipitation and wear of mono / tri calcium phosphate (CaP) and polylysine (PLS)—containing dental composites. These were formulated using a new, high molecular weight, fluid monomer phase that requires no polymerisation activator. Materials and methods Urethane and Polypropylene Glycol Dimethacrylates were combined with low levels of an adhesion promoting monomer and a light activated initiator. This liquid was mixed with a hybrid glass containing either 10 wt% CaP and 1 wt% PLS (F1) or 20 wt% CaP and 2 wt% PLS (F2). Powder to liquid mass ratio was 5:1. Commercial controls included Gradia Direct Posterior (GD) and Filtek Z250 (FZ). Monomer conversion and polymerisation shrinkage were calculated using Fourier Transform Infrared (FTIR). Subsequent volume increases in water over 7 weeks were determined using gravimetric studies. Biaxial flexural strength (BFS) / modulus (BFM) reduction and surface apatite precipitation upon 1 and 4 weeks immersion in water versus simulated body fluid (SBF) were assessed using a mechanical testing frame and scanning electron microscope (SEM). Mass / volume loss and surface roughness (Ra) following 7 weeks water immersion and subsequent accelerated tooth-brush abrasion were examined using gravimetric studies and profilometer. Results F1 and F2 exhibited much higher monomer conversion (72%) than FZ (54%) and low calculated polymerization shrinkage (2.2 vol%). Final hygroscopic expansions decreased in the order; F2 (3.5 vol%) > F1 (1.8 vol%) ~ Z250 (1.6 vol%) > Gradia (1.0 vol%). BFS and BFM were unaffected by storage medium type. Average BFS / BFM upon 4 weeks immersion reduced from 144 MPa / 8 GPa to 107 MPa / 5 GPa for F1 and 105 MPa / 6 GPa to 82 MPa / 4 GPa for F2. Much of this change was observed in the first week of immersion when water sorption rate was high. Surface apatite layers were incomplete at 1 week, but around 2 and 15 micron thick for F1 and F2 respectively following 4 weeks in SBF. Mass and volume loss following wear were equal. Average results for F1 (0.5%), F2 (0.7%), and FZ (0.5%) were comparable but lower than that of GD (1%). Ra, however, decreased in the order; F1 (15 μm) > F2 (11 μm) > GD (9 μm) > FZ (5 μm). Conclusions High monomer conversion in combination with large monomer size and lack of amine activator should improve cytocompatibility of the new composites. High monomer molecular weight and powder content enables low polymerisation shrinkage despite high conversion. Increasing active filler provides enhanced swelling to balance shrinkage, which, in combination with greater surface apatite precipitation, may help seal gaps and reduce bacterial microleakage. High monomer conversion also ensures competitive mechanical / wear characteristics despite enhanced water sorption. Furthermore, increased active filler could help reduce surface roughness upon wear.
Collapse
Affiliation(s)
- Kanokrat Kangwankai
- Department of Restorative Dentistry, Unit of Prosthodontics, UCL Eastman Dental Institute, London, United Kingdom
- Unit of Orthodontics, UCL Eastman Dental Institute, London, United Kingdom
| | - Sarah Sani
- Department of Restorative Dentistry, Unit of Prosthodontics, UCL Eastman Dental Institute, London, United Kingdom
| | - Piyaphong Panpisut
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
- Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| | - Wendy Xia
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
| | - Paul Ashley
- Unit of Paediatric Dentistry, UCL Eastman Dental Institute, London, United Kingdom
| | - Haralampos Petridis
- Department of Restorative Dentistry, Unit of Prosthodontics, UCL Eastman Dental Institute, London, United Kingdom
| | - Anne Margaret Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
68
|
André CB, Rosalen PL, Galvão LCDC, Fronza BM, Ambrosano GMB, Ferracane JL, Giannini M. Modulation of Streptococcus mutans virulence by dental adhesives containing anti-caries agents. Dent Mater 2017; 33:1084-1092. [DOI: 10.1016/j.dental.2017.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/12/2017] [Accepted: 07/08/2017] [Indexed: 01/13/2023]
|
69
|
Cherchali FZ, Mouzali M, Tommasino JB, Decoret D, Attik N, Aboulleil H, Seux D, Grosgogeat B. Effectiveness of the DHMAI monomer in the development of an antibacterial dental composite. Dent Mater 2017; 33:1381-1391. [PMID: 28964542 DOI: 10.1016/j.dental.2017.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Development of antibacterial dental composites is the ultimate goal to decrease carious disease occurrence and increase the restoration longevity. For this purpose, the quaternary ammonium dimethyl-hexadecyl-methacryloxyethyl-ammonium iodide (DHMAI) and the methacryloyloxyethylphosphorylcholine (MPC) have been incorporated in experimental methacrylate-based composite resins. This aims to first investigate the effect of each alone and then their combined effect. METHODS Synthesized DHMAI and commercial MPC were added either alone or combined at different concentrations to experimental dental composite. Flexural strength (FS) and modulus (FM) were tested to select the optimal concentrations. Only selected composites were evaluated for Vickers hardness (HV) and the degree of conversion (DC) using fourier transform infrared spectroscopy analysis (FTIR-ATR). Antibacterial activity was assessed using tests on colony-forming unit (CFU), scanning electron microscopy (SEM) and Alamarblue assay to measure the metabolic activity. Streptococcus mutans biofilm was chosen to be grown on the composite surfaces during 96h at 37°C. RESULTS Incorporation of 7.5% DHMAI in composite improved the degree of conversion and gave a strong antibacterial effect with a reduction of (∼98%) in CFU and (∼50%) of metabolic activity with acceptable mechanical properties. Addition of MPC to DHMAI affects mechanical properties of composites without providing a better antibacterial activity. SIGNIFICANCE Composites with DHMAI greatly reduced S. mutans biofilm and improved the degree of conversion without scarifying the composites' mechanical properties. DHMAI may have wide applicability to other dental materials in order to inhibit caries and improve the longevity of restorations.
Collapse
Affiliation(s)
- Fatima Zohra Cherchali
- Laboratoire d'Etudes Physico-Chimiques des Matériaux, Application à l'Environnement (LEPCMAE), USTHB, Faculté de Chimie, Bab Ezzouar, Algérie; Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon, Université Lyon1, Villeurbanne, France.
| | - Mohamed Mouzali
- Laboratoire d'Etudes Physico-Chimiques des Matériaux, Application à l'Environnement (LEPCMAE), USTHB, Faculté de Chimie, Bab Ezzouar, Algérie
| | - Jean Bernard Tommasino
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon, Université Lyon1, Villeurbanne, France
| | | | - Nina Attik
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon, Université Lyon1, Villeurbanne, France; UFR Odontologie, Université Lyon, Université Lyon1, Lyon, France
| | - Hazem Aboulleil
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon, Université Lyon1, Villeurbanne, France; UFR Odontologie, Université Lyon, Université Lyon1, Lyon, France
| | - Dominique Seux
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon, Université Lyon1, Villeurbanne, France; UFR Odontologie, Université Lyon, Université Lyon1, Lyon, France; Service de Consultations et de Traitements Dentaires, Hospices Civils de Lyon, Lyon, France
| | - Brigitte Grosgogeat
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon, Université Lyon1, Villeurbanne, France; UFR Odontologie, Université Lyon, Université Lyon1, Lyon, France; Service de Consultations et de Traitements Dentaires, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
70
|
Antibacterial glass-ionomer cement restorative materials: A critical review on the current status of extended release formulations. J Control Release 2017; 262:317-328. [DOI: 10.1016/j.jconrel.2017.07.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 02/02/2023]
|
71
|
Luo D, Hasan MS, Shahid S, Khlebtsov BN, Cattell MJ, Sukhorukov GB. Gold Nanorod Mediated Chlorhexidine Microparticle Formation and Near-Infrared Light Induced Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7982-7993. [PMID: 28707889 DOI: 10.1021/acs.langmuir.7b01656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gold nanorods (GNR) are good light harvesting species for elaboration of near-infrared (NIR) responsive drug delivery systems. Herein, chlorhexidine microparticles are grown directly on the surface of gold nanorods and then stabilized with polyelectrolyte multilayer encapsulation, producing novel composite drug-GNR particles with high drug loading and NIR light sensitivity. Crystallization of chlorhexidine is caused by the ionic strength of the chloride solution that has been demonstrated via formation of a homogeneous porous spherical structure at 0.33 M CaCl2. By introducing GNRs into the CaCl2 solution, the nucleation of chlorhexidine molecules and size of produced spheres are affected, since GNRs act as sites for chlorhexidine nucleation. Similarly, when GNRs are replaced by chlorhexidine seeds (5.2 ± 1.7 μm), a core-shell crystal structure is observed. The encapsulated GNR/chlorhexidine composites are responsive to NIR light (840 nm) that increases the temperature at the chlorhexidine crystals, followed by microparticle dissolution and rupture of capsules which is illustrated with confocal microscopy and SEM. Furthermore, a stepwise burst release of chlorhexidine can be induced by multiple cycles of NIR light exposure. The GNR/chlorhexidine composites show good biocompatibility and antimicrobial activity. The proposed method of antibacterial drug release may therefore indicate that this NIR responsive chlorhexidine composite may be useful for future clinical applications.
Collapse
Affiliation(s)
- Dong Luo
- School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| | - Md Samiul Hasan
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London E1 2AD, United Kingdom
| | - Saroash Shahid
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London E1 2AD, United Kingdom
| | - Boris N Khlebtsov
- Saratov State University, Astrakhanskaya Street 83, Saratov 410012, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences , 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Michael J Cattell
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London E1 2AD, United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| |
Collapse
|
72
|
Yoshihara K, Nagaoka N, Maruo Y, Sano H, Yoshida Y, Van Meerbeek B. Bacterial adhesion not inhibited by ion-releasing bioactive glass filler. Dent Mater 2017; 33:723-734. [DOI: 10.1016/j.dental.2017.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 12/29/2022]
|
73
|
Lukomska-Szymanska M, Konieczka M, Zarzycka B, Lapinska B, Grzegorczyk J, Sokolowski J. Antibacterial Activity of Commercial Dentine Bonding Systems against E. faecalis-Flow Cytometry Study. MATERIALS 2017; 10:ma10050481. [PMID: 28772841 PMCID: PMC5458997 DOI: 10.3390/ma10050481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Literature presents inconsistent results on the antibacterial activity of dentine bonding systems (DBS). Antibacterial activity of adhesive systems depends on several factors, including composition and acidity. Flow cytometry is a novel detection method to measure multiple characteristics of a single cell: total cell number, structural (size, shape), and functional parameters (viability, cell cycle). The LIVE/DEAD® BacLight™ bacterial viability assay was used to evaluate an antibacterial activity of DBS by assessing physical membrane disruption of bacteria mediated by DBS. Ten commercial DBSs: four total-etching (TE), four self-etching (SE) and two selective enamel etching (SEE) were tested. Both total-etching DBS ExciTE F and OptiBond Solo Plus showed comparatively low antibacterial activity against E. faecalis. The lowest activity of all tested TE systems showed Te-Econom Bond. Among SE DBS, G-ænial Bond (92.24% dead cells) followed by Clearfil S3 Bond Plus (88.02%) and Panavia F 2.0 ED Primer II (86.67%) showed the highest antibacterial activity against E. faecalis, which was comparable to isopropranol (positive control). In the present study, self-etching DBS exhibited higher antimicrobial activity than tested total-etching adhesives against E. faecalis.
Collapse
Affiliation(s)
| | - Magdalena Konieczka
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz 92-213, Poland.
| | - Beata Zarzycka
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz 92-213, Poland.
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, Lodz 92-213, Poland.
| | - Janina Grzegorczyk
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz 92-213, Poland.
| | - Jerzy Sokolowski
- Department of General Dentistry, Medical University of Lodz, Lodz 92-213, Poland.
| |
Collapse
|
74
|
Clinical relevance of antimicrobial testing results for dental restorative materials. J Appl Biomater Funct Mater 2017; 15:e153-e161. [PMID: 28256700 DOI: 10.5301/jabfm.5000337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The antimicrobial activity of restorative materials is clinically relevant because all dental materials are subject to an environment containing bacteria. This study aimed to investigate the use of 2 methodologies referred to in the literature to assess antimicrobial properties of restorative materials and investigate whether material properties alter results of these traditional methodologies. METHODS A number of dental restorative materials - namely, Chemfil Superior®, Spectrum®, Heliobond®, Ionoseal®, Dyract Extra®, Smart Dentin Replacement (SDR®) and Biodentine® - were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy and pH analysis. Antimicrobial activity was assessed using agar diffusion and biofilm accumulation tests. Key factors affecting results were assessed using analysis of covariance. RESULTS Biodentine after immediate mixing and Ionoseal aged for 6 weeks resulted in an inhibition zone, while significantly higher McFarland readings were observed in the presence of barium when using materials Ionoseal, Dyract and SDR at 24-hour aging. Through analysis of covariance it was shown that material properties affected methodology results. CONCLUSIONS Properties of materials affect results of antimicrobial testing, but this may not directly reflect the antimicrobial potential of the material in question. Careful choice of methodology and interpretation of results is important.
Collapse
|
75
|
Antimicrobial activity of ProRoot MTA in contact with blood. Sci Rep 2017; 7:41359. [PMID: 28128328 PMCID: PMC5269669 DOI: 10.1038/srep41359] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
Dental materials based on Portland cement, which is used in the construction industry have gained popularity for clinical use due to their hydraulic properties, the interaction with tooth tissue and their antimicrobial properties. The antimicrobial properties are optimal in vitro. However in clinical use contact with blood may affect the antimicrobial properties. This study aims to assess whether antimicrobial properties of the Portland cement-based dental cements such as mineral trioxide aggregate (MTA) are also affected by contact with blood present in clinical situations. ProRoot MTA, a Portland cement-based dental cement was characterized following contact with water, or heparinized blood after 1 day and 7 days aging. The antimicrobial activity under the mentioned conditions was assessed using 3 antimicrobial tests: agar diffusion test, direct contact test and intratubular infection test. MTA in contact with blood was severely discoloured, exhibited an additional phosphorus peak in elemental analysis, no calcium hydroxide peaks and no areas of bacterial inhibition growth in the agar diffusion test were demonstrated. ProRoot MTA showed limited antimicrobial activity, in both the direct contact test and intratubular infection test. When aged in water ProRoot MTA showed higher antimicrobial activity than when aged in blood. Antimicrobial activity reduced significantly after 7 days. Further assessment is required to investigate behaviour in clinical situations.
Collapse
|
76
|
Garcia PPNS, Cardia MFB, Francisconi RS, Dovigo LN, Spolidório DMP, de Souza Rastelli AN, Botta AC. Antibacterial activity of glass ionomer cement modified by zinc oxide nanoparticles. Microsc Res Tech 2016; 80:456-461. [DOI: 10.1002/jemt.22814] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/10/2016] [Accepted: 11/20/2016] [Indexed: 11/05/2022]
Affiliation(s)
| | - Mariana Florian Bell Cardia
- Department of Social Dentistry; Araraquara School of Dentistry, University of São Paulo State; São Paulo Brazil
| | - Renata Serignoli Francisconi
- Department of Physiology and Pathology; Araraquara School of Dentistry, University of São Paulo State; São Paulo Brazil
| | - Lívia Nordi Dovigo
- Department of Social Dentistry; Araraquara School of Dentistry, University of São Paulo State; São Paulo Brazil
| | | | | | - Ana Carolina Botta
- Department of General Dentistry; Stony Brook School of Dental Medicine; Stony Brook New York
| |
Collapse
|
77
|
Antibacterial Properties of Calcium Fluoride-Based Composite Materials: In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1048320. [PMID: 28053976 PMCID: PMC5178852 DOI: 10.1155/2016/1048320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/03/2016] [Accepted: 11/10/2016] [Indexed: 11/20/2022]
Abstract
The aim of the study was to evaluate antibacterial activity of composite materials modified with calcium fluoride against cariogenic bacteria S. mutans and L. acidophilus. One commercially available conventional light-curing composite material containing fluoride ions (F2) and two commercially available flowable light-curing composite materials (Flow Art and X-Flow) modified with 1.5, 2.5, and 5.0 wt% anhydrous calcium fluoride addition were used in the study. Composite material samples were incubated in 0.95% NaCl at 35°C for 3 days; then dilution series of S. mutans and L. acidophilus strains were made from the eluates. Bacteria dilutions were cultivated on media afterwards. Colony-forming unit per 1 mL of solution (CFU/mL) was calculated. Composite materials modified with calcium fluoride highly reduced (p < 0.001) bacteria growth compared to commercially available composite materials containing fluoride compounds. The greatest reduction in bacteria growth was observed for composite materials modified with 1.5% wt. CaF2. All three tested composite materials showed statistically greater antibacterial activity against L. acidophilus than against S. mutans.
Collapse
|
78
|
Al-Rabab'ah MA, Bustani MA, Khraisat AS, Sawair FA. Phase down of amalgam. Awareness of Minamata convention among Jordanian dentists. Saudi Med J 2016; 37:1381-1386. [PMID: 27874155 PMCID: PMC5303778 DOI: 10.15537/smj.2016.12.16163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To assess the knowledge of Jordanian dentists toward phase down of dental amalgam as recommended by the Minamata Convention, and their training and competency in placing posterior composites. Methods: This study was conducted through structured questionnaire interviews with randomly selected cohort of dentists in Jordan between March 2015 and June 2015. Out of 230 dentists who were invited, 196 (85.2%) agreed to participate. Dentists were asked if they know about the Minamata Convention. They were also asked about their training in placement of posterior composite. Results: Out of the 196 interviewed, only 13.8% know about Minamata Convention and 17% had an undergraduate training in favor of placing composites in posterior teeth. Approximately 50% of those dentists were not trained in using rubber dam when placing posterior composites, while only 38.3% had training in sectional matrix placement. Undergraduate training did not influence (p=0.00) the dentists' decision to remove old amalgam based on patient's demands. Only 28.1% were of the opinion of discontinuing the use of amalgam due to its alleged health and environmental hazards. There was no general agreement on the type of composite, liner, and bonding strategy when placing posterior composites. Conclusion: Dentists are not well informed on the Minamata Convention and the phase down of amalgam. Training in posterior composite placement should be given more room in undergraduate curriculum and continuous dental education.
Collapse
Affiliation(s)
- Mohammad A Al-Rabab'ah
- Conservative Dentistry Department, School of Dentistry, The University of Jordan, Amman, Jordan. E-mail.
| | | | | | | |
Collapse
|
79
|
Donovan TE, Marzola R, Murphy KR, Cagna DR, Eichmiller F, McKee JR, Metz JE, Albouy JP. Annual review of selected scientific literature: Report of the committee on scientific investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2016; 116:663-740. [PMID: 28236412 DOI: 10.1016/j.prosdent.2016.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
STATEMENT OF PROBLEM It is clear the contemporary dentist is confronted with a blizzard of information regarding materials and techniques from journal articles, advertisements, newsletters, the internet, and continuing education events. While some of that information is sound and helpful, much of it is misleading at best. PURPOSE This review identifies and discusses the most important scientific findings regarding outcomes of dental treatment to assist the practitioner in making evidence-based choices. This review was conducted to assist the busy dentist in keeping abreast of the latest scientific information regarding the clinical practice of dentistry. MATERIAL AND METHODS Each of the authors, who are considered experts in their disciplines, was asked to peruse the scientific literature published in 2015 in their discipline and review the articles for important information that may have an impact on treatment decisions. Comments on experimental methodology, statistical evaluation, and overall validity of the conclusions are included in many of the reviews. RESULTS The reviews are not meant to stand alone but are intended to inform the interested reader about what has been discovered in the past year. The readers are then invited to go to the source if they wish more detail. CONCLUSIONS Analysis of the scientific literature published in 2015 is divided into 7 sections, dental materials, periodontics, prosthodontics, occlusion and temporomandibular disorders, sleep-disordered breathing, cariology, and implant dentistry.
Collapse
Affiliation(s)
- Terence E Donovan
- Professor, Biomaterials, University of North Carolina School of Dentistry, Chapel Hill, N.C.
| | | | | | - David R Cagna
- Professor, Advanced Prosthodontics University of Tennessee Health Sciences Center, Memphis, Tenn
| | | | | | | | | |
Collapse
|
80
|
Panpisut P, Liaqat S, Zacharaki E, Xia W, Petridis H, Young AM. Dental Composites with Calcium / Strontium Phosphates and Polylysine. PLoS One 2016; 11:e0164653. [PMID: 27727330 PMCID: PMC5058497 DOI: 10.1371/journal.pone.0164653] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022] Open
Abstract
Purpose This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM), tristrontium phosphate (TSrP) and antimicrobial polylysine (PLS). The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine. Materials and Methods Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt%) and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM). The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF) were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained. Results Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64%) but was always higher than that of Z250 (54%). Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7%) followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa. Conclusion The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and help remineralize demineralized dentin. Polylysine can be released from the composites at early time. This may kill residual bacteria.
Collapse
Affiliation(s)
- Piyaphong Panpisut
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
| | - Saad Liaqat
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS, Lahore, Pakistan
| | - Eleni Zacharaki
- Department of Restorative Dentistry, Unit of Prosthodontics, UCL Eastman Dental Institute, London, United Kingdom
| | - Wendy Xia
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
| | - Haralampos Petridis
- Department of Restorative Dentistry, Unit of Prosthodontics, UCL Eastman Dental Institute, London, United Kingdom
| | - Anne Margaret Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
81
|
Influence of a polymerizable eugenol derivative on the antibacterial activity and wettability of a resin composite for intracanal post cementation and core build-up restoration. Dent Mater 2016; 32:929-39. [DOI: 10.1016/j.dental.2016.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/03/2016] [Accepted: 04/01/2016] [Indexed: 01/12/2023]
|
82
|
Luo D, Shahid S, Wilson RM, Cattell MJ, Sukhorukov GB. Novel Formulation of Chlorhexidine Spheres and Sustained Release with Multilayered Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12652-12660. [PMID: 27176115 DOI: 10.1021/acsami.6b02997] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work demonstrates the synthesis of new chlorhexidine polymorphs with controlled morphology and symmetry, which were used as a template for layer-by-layer (LbL) encapsulation. LbL self-assembly of oppositely charged polyelectrolytes onto the drug surface was used in the current work, as an efficient method to produce a carrier with high drug content, improved drug solubility and sustained release. Coprecipitation of the chlorhexidine polymorphs was performed using chlorhexidine diacetate and calcium chloride solutions. Porous interconnected chlorhexidine spheres were produced by tuning the concentration of calcium chloride. The size of these drug colloids could be further controlled from 5.6 μm to over 20 μm (diameter) by adjusting the coprecipitation temperature. The chlorhexidine content in the spheres was determined to be as high as 90%. These particles were further stabilized by depositing 3.5 bilayers of poly(allylamine hydrochloride) (PAH) and polystyrenesulfonate (PSS) on the surface. In vitro release kinetics of chlorhexidine capsules showed that the multilayer shells could prolong the release, which was further demonstrated by characterizing the remaining chlorhexidine capsules with SEM and confocal microscopy. The new chlorhexidine polymorph and LbL coating has created novel chlorhexidine formulations. Further modification to the chlorhexidine polymorph structure is possible to achieve both sustained and stimuli responsive release, which will enhance its clinical performance in medicine and dentistry.
Collapse
Affiliation(s)
- Dong Luo
- School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| | - Saroash Shahid
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London E1 2AD, United Kingdom
| | - Rory M Wilson
- School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| | - Michael J Cattell
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London E1 2AD, United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London , London E1 4NS, United Kingdom
| |
Collapse
|
83
|
do Amaral GS, Negrini T, Maltz M, Arthur RA. Restorative materials containing antimicrobial agents: is there evidence for their antimicrobial and anticaries effects? A systematic review. Aust Dent J 2016; 61:6-15. [PMID: 26018839 DOI: 10.1111/adj.12338] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 01/28/2023]
Abstract
The aim of this systematic literature review was to investigate whether the incorporation of antimicrobial agents into dental restorative materials truly exerts an antimicrobial effect against common cariogenic bacteria (primary outcome), and whether the inclusion of antimicrobial agents is able to prevent caries around restorations (secondary outcome). MEDLINE, via PubMed, was searched for papers published between 1980 and 30 November 2014. A total of 1126 articles were retrieved. After inclusion/exclusion assessment, 147 full text articles were read and included in the review, comprising 130 in vitro, 1 in situ, and 4 in vivo studies, as well as 12 literature reviews. In about 78% of in vitro studies, and in all identified in situ and in vivo studies, a positive antimicrobial effect had been found. However, the anticaries effect had not been tested in any of the selected studies. It was concluded that there is indeed evidence that restorative dental materials containing antimicrobial agents exert an antimicrobial effect, both in laboratory and in clinical studies. However, no evidence has been found regarding the role of these agents in preventing or controlling dental caries, or in preventing caries around restorations.
Collapse
Affiliation(s)
- G S do Amaral
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Federal University of Rio Grande do Sul, Brazil
| | - T Negrini
- Department of Conservative Dentistry, Faculty of Dentistry, Federal University of Rio Grande do Sul, Brazil
| | - M Maltz
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Federal University of Rio Grande do Sul, Brazil
| | - R A Arthur
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Federal University of Rio Grande do Sul, Brazil
| |
Collapse
|
84
|
Frenzel N, Maenz S, Sanz Beltrán V, Völpel A, Heyder M, Sigusch BW, Lüdecke C, Jandt KD. Template assisted surface microstructuring of flowable dental composites and its effect on microbial adhesion properties. Dent Mater 2016; 32:476-87. [PMID: 26775012 DOI: 10.1016/j.dental.2015.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Despite their various advantages, such as good esthetic properties, absence of mercury and adhesive bonding to teeth, modern dental composites still have some drawbacks, e.g., a relatively high rate of secondary caries on teeth filled with composite materials. Recent research suggests that microstructured biomaterials surfaces may reduce microbial adhesion to materials due to unfavorable physical material-microbe interactions. The objectives of this study were, therefore, to test the hypotheses that (i) different surface microstructures can be created on composites by a novel straightforward approach potentially suitable for clinical application and (ii) that these surface structures have a statistically significant effect on microbial adhesion properties. METHODS Six different dental composites were initially tested for their suitability for microstructuring by polydimethylsiloxane (PDMS) templates. Each composite was light-cured between a glass slide and a microstructured PDMS template. The nano-hybrid composite Grandio Flow was the only tested composite with satisfying structurability, and was therefore used for the bacterial adhesion tests. Composites samples were structured with four different microstructures (flat, cubes, linear trapezoid structures, flat pyramids) and incubated for 4h in centrifuged saliva. The bacterial adherence was then characterized by colony forming units (CFUs) and scanning electron microscopy (SEM). RESULTS All four microstructures were successfully transferred from the PDMS templates to the composite Grandio Flow. The CFU-test as well as the quantitative analysis of the SEM images showed the lowest bacterial adhesion on the flat composite samples. The highest bacterial adhesion was observed on the composite samples with linear trapezoid structures, followed by flat pyramids and cubes. The microstructure of dental composite surfaces statistically significantly influenced the adhesion of oral bacteria. SIGNIFICANCE Modifying the composite surface structure may be a clinically suitable approach to control the microbial adhesion and thus, to reduce the risk of secondary caries at dental composite restorations. Smaller composite surface structures may be useful for accomplishing this.
Collapse
Affiliation(s)
- Nadja Frenzel
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Stefan Maenz
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany
| | - Vanesa Sanz Beltrán
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany
| | - Andrea Völpel
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Markus Heyder
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Bernd W Sigusch
- Department of Conservative Dentistry, University Hospital Jena, Friedrich Schiller University, An der alten Post 4, D-07743 Jena, Germany
| | - Claudia Lüdecke
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Friedrich Schiller University, Jenergasse 8, D-07743 Jena, Germany
| | - Klaus D Jandt
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University, Löbdergraben 32, D-07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Friedrich Schiller University, Jenergasse 8, D-07743 Jena, Germany.
| |
Collapse
|
85
|
Hurt A, Coleman NJ, Tüzüner T, Bagis B, Korkmaz FM, Nicholson JW. Release of cetyl pyridinium chloride from fatty acid chelate temporary dental cement. ACTA BIOMATERIALIA ODONTOLOGICA SCANDINAVICA 2016; 2:1-6. [PMID: 27335898 PMCID: PMC4894088 DOI: 10.3109/23337931.2015.1125296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 11/13/2022]
Abstract
Objective To determine whether the antimicrobial nature of a fatty acid chelate temporary dental cement can be enhanced by the addition of 5% cetyl pyridinium chloride (CPC). Materials and methods The temporary cement, Cavex Temporary was employed, and additions of CPC were made to either the base or the catalyst paste prior to mixing the cement. Release of CPC from set cement specimens was followed using reverse-phase HPLC for a period of up to 2 weeks following specimen preparation. Potential interactions between Cavex and CPC were examined by Fourier transform infrared spectroscopy (FTIR) and antimicrobial effects were determined using zone of inhibition measurements after 24 h with disc-shaped specimens in cultured Streptococcus mutans. Results FTIR showed no interaction between CPC and the components of the cement. CPC release was found to follow a diffusion mechanism for the first 6 h or so, and to equilibrate after approximately 2 weeks, with no significant differences between release profiles when the additive was incorporated into the base or the catalyst paste. Diffusion was rapid, and had a diffusion coefficient of approximately 1 × 10−9 m2 s−1 in both cases. Total release was in the range 10–12% of the CPC loading. Zones of inhibition around discs containing CPC were significantly larger than those around the control discs of CPC-free cement. Conclusions The antimicrobial character of this temporary cement can be enhanced by the addition of CPC. Such enhancement is of potential clinical value, though further in vivo work is needed to confirm this.
Collapse
Affiliation(s)
- Andrew Hurt
- Department of Pharmaceutical, Chemical & Environmental Sciences, University of Greenwich , Medway Campus, Chatham, Kent , UK
| | - Nichola J Coleman
- Department of Pharmaceutical, Chemical & Environmental Sciences, University of Greenwich , Medway Campus, Chatham, Kent , UK
| | - Tamer Tüzüner
- Department of Paediatric Dentistry, Faculty of Dentistry, Karadiniez Technical University , Trabzon , Turkey
| | - Bora Bagis
- Department of Prosthodontics, İzmir Katip Çelebi University, Faculty of Dentistry , Izmir , Turkey
| | - Fatih Mehmet Korkmaz
- Department of Prosthodontics, Faculty of Dentistry, Karadiniez Technical University , Trabzon , Turkey
| | | |
Collapse
|
86
|
Abstract
OBJECTIVES The objective of this article is to discuss the evidence for polymerization shrinkage and shrinkage stress of dental composite restoratives in terms of its potential relevance to the clinical situation METHODS Articles relating to the issue of polymerization contraction stress generation in dental composite materials, and the factors that influence it, were reviewed and included. Particular attention was paid to evidence derived from clinical studies. Articles were identified through PubMed and through the bibliographies of other articles. RESULTS There is extensive evidence for the presence of polymerization contraction stress in dental composites, as well as evidence for its deleterious effects, which include marginal leakage, gap formation, cuspal deflection, tooth cracking, reduced bond strength and lowered mechanical properties of the restorative. There is little, if any, direct evidence for the clinical effect of these contraction stresses. No study has directly established a link between these stresses and enhanced postoperative sensitivity or recurrent caries, for example. However, the concern over these stresses and the manner in which they influence the placement of current composite materials demonstrates that they are considered to be very important. CONCLUSION Though no direct evidence exists to prove that the generation of contraction stress in dental composite restorations causes reduced clinical longevity, the indirect evidence from numerous in vitro studies and the concern over controlling their effects proves that they are clinically relevant.
Collapse
Affiliation(s)
- Jack L Ferracane
- Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR 97201, USA.
| | - Thomas J Hilton
- Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
87
|
Effect of sterilization techniques prior to antimicrobial testing on physical properties of dental restorative materials. J Dent 2015; 43:703-14. [DOI: 10.1016/j.jdent.2015.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 11/19/2022] Open
|