51
|
Keyte AL, Alonzo-Johnsen M, Hutson MR. Evolutionary and developmental origins of the cardiac neural crest: building a divided outflow tract. ACTA ACUST UNITED AC 2014; 102:309-23. [PMID: 25227322 DOI: 10.1002/bdrc.21076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/22/2014] [Indexed: 12/14/2022]
Abstract
The cardiac neural crest cells (CNCCs) have played an important role in the evolution and development of the vertebrate cardiovascular system: from reinforcement of the developing aortic arch arteries early in vertebrate evolution, to later orchestration of aortic arch artery remodeling into the great arteries of the heart, and finally outflow tract septation in amniotes. A critical element necessary for the evolutionary advent of outflow tract septation was the co-evolution of the cardiac neural crest cells with the second heart field. This review highlights the major transitions in vertebrate circulatory evolution, explores the evolutionary developmental origins of the CNCCs from the third stream cranial neural crest, and explores candidate signaling pathways in CNCC and outflow tract evolution drawn from our knowledge of DiGeorge Syndrome.
Collapse
Affiliation(s)
- Anna L Keyte
- Brumley Neonatal Perinatal Research Institute, Department of Pediatrics, Duke University, Durham, North Carolina
| | | | | |
Collapse
|
52
|
Karunamuni GH, Ma P, Gu S, Rollins AM, Jenkins MW, Watanabe M. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:227-50. [PMID: 25220155 PMCID: PMC4238913 DOI: 10.1002/bdrc.21082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.
Collapse
Affiliation(s)
- Ganga H. Karunamuni
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Case Medical Center Division of Pediatric Cardiology, Rainbow Babies and Children’s Hospital, Cleveland OH 44106
| |
Collapse
|
53
|
Rump P, de Leeuw N, van Essen AJ, Verschuuren-Bemelmans CC, Veenstra-Knol HE, Swinkels MEM, Oostdijk W, Ruivenkamp C, Reardon W, de Munnik S, Ruiter M, Frumkin A, Lev D, Evers C, Sikkema-Raddatz B, Dijkhuizen T, van Ravenswaaij-Arts CM. Central 22q11.2 deletions. Am J Med Genet A 2014; 164A:2707-23. [PMID: 25123976 DOI: 10.1002/ajmg.a.36711] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/29/2014] [Indexed: 11/11/2022]
Abstract
22q11.2 deletion syndrome is one of the most common microdeletion syndromes. Most patients have a deletion resulting from a recombination of low copy repeat blocks LCR22-A and LCR22-D. Loss of the TBX1 gene is considered the most important cause of the phenotype. A limited number of patients with smaller, overlapping deletions distal to the TBX1 locus have been described in the literature. In these patients, the CRKL gene is deleted. Haploinsufficiency of this gene has also been implicated in the pathogenesis of 22q11.2 deletion syndrome. To distinguish these deletions (comprising the LCR22-B to LCR22-D region) from the more distal 22q11.2 deletions (located beyond LCR22-D), we propose the term "central 22q11.2 deletions". In the present study we report on 27 new patients with such a deletion. Together with information on previously published cases, we review the clinical findings of 52 patients. The prevalence of congenital heart anomalies and the frequency of de novo deletions in patients with a central deletion are substantially lower than in patients with a common or distal 22q11.2 deletion. Renal and urinary tract malformations, developmental delays, cognitive impairments and behavioral problems seem to be equally frequent as in patients with a common deletion. None of the patients had a cleft palate. Patients with a deletion that also encompassed the MAPK1 gene, located just distal to LCR22-D, have a different and more severe phenotype, characterized by a higher prevalence of congenital heart anomalies, growth restriction and microcephaly. Our results further elucidate genotype-phenotype correlations in 22q11.2 deletion syndrome spectrum.
Collapse
Affiliation(s)
- Patrick Rump
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Prasad R, Chan LF, Hughes CR, Kaski JP, Kowalczyk JC, Savage MO, Peters CJ, Nathwani N, Clark AJL, Storr HL, Metherell LA. Thioredoxin Reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD). J Clin Endocrinol Metab 2014; 99:E1556-63. [PMID: 24601690 PMCID: PMC4207928 DOI: 10.1210/jc.2013-3844] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Classic ACTH resistance, due to disruption of ACTH signaling, accounts for the majority of cases of familial glucocorticoid deficiency (FGD). Recently FGD cases caused by mutations in the mitochondrial antioxidant, nicotinamide nucleotide transhydrogenase, have highlighted the importance of redox regulation in steroidogenesis. OBJECTIVE We hypothesized that other components of mitochondrial antioxidant systems would be good candidates in the etiology of FGD. DESIGN Whole-exome sequencing was performed on three related patients, and segregation of putative causal variants confirmed by Sanger sequencing of all family members. A TXNRD2-knockdown H295R cell line was created to investigate redox homeostasis. SETTING The study was conducted on patients from three pediatric centers in the United Kingdom. PATIENTS Seven individuals from a consanguineous Kashmiri kindred, six of whom presented with FGD between 0.1 and 10.8 years, participated in the study. INTERVENTIONS There were no interventions. MAIN OUTCOME MEASURE Identification and functional interrogation of a novel homozygous mutation segregating with the disease trait were measured. RESULTS A stop gain mutation, p.Y447X in TXNRD2, encoding the mitochondrial selenoprotein thioredoxin reductase 2 (TXNRD2) was identified and segregated with disease in this extended kindred. RT-PCR and Western blotting revealed complete absence of TXNRD2 in patients homozygous for the mutation. TXNRD2 deficiency leads to impaired redox homeostasis in a human adrenocortical cell line. CONCLUSION In contrast to the Txnrd2-knockout mouse model, in which embryonic lethality as a consequence of hematopoietic and cardiac defects is described, absence of TXNRD2 in humans leads to glucocorticoid deficiency. This is the first report of a homozygous mutation in any component of the thioredoxin antioxidant system leading to inherited disease in humans.
Collapse
Affiliation(s)
- Rathi Prasad
- Centre for Endocrinology (R.P., L.F.C., C.R.H., J.C.K., M.O.S., A.J.L.C., H.L.S., L.A.M.), Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, United Kingdom; Inherited Cardiovascular Diseases Unit (J.P.K.), Department of Cardiology, Great Ormond St Hospital for Children, and Department of Paediatric Endocrinology (C.J.P.), Great Ormond St Hospital for Children, London WC1N 3JH, United Kingdom; and Department of Paediatric Endocrinology (N.N.), Luton and Dunstable University Hospital, Luton LU4 0DZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Xu YJ, Chen S, Zhang J, Fang SH, Guo QQ, Wang J, Fu QH, Li F, Xu R, Sun K. Novel TBX1 loss-of-function mutation causes isolated conotruncal heart defects in Chinese patients without 22q11.2 deletion. BMC MEDICAL GENETICS 2014; 15:78. [PMID: 24998776 PMCID: PMC4099205 DOI: 10.1186/1471-2350-15-78] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/24/2014] [Indexed: 12/18/2022]
Abstract
Background TBX1 and CRKL haploinsufficiency is thought to cause the cardiac phenotype of the 22q11.2 deletion syndrome. However, few unequivocal mutations of TBX1 and CRKL have been discovered in isolated conotrucal heart defects (CTDs) patients. The aim of the study was to screen the mutation of TBX1 and CRKL in isolated CTDs Chinese patients without 22q11.2 deletion and identify the pathomechanism of the missense mutations. Methods We enrolled 199 non-22q11.2 deletion patients with CTDs and 139 unrelated healthy controls. Gene sequencing were performed for all of them. The functional data of mutations were obtained by in vitro transfection and luciferase experiments and computer modelling. Results Screening of the TBX1 coding sequence identified a de novo missense mutation (c.385G → A; p.E129K) and a known polymorphism (c.928G → A; p.G310S). In vitro experiments demonstrate that the TBX1E129K variant almost lost transactivation activity. The TBX1G310S variant seems to affect the interaction of TBX1 with other factors. Computer molecular dynamics simulations showed the de novo missense mutation is likely to affect TBX1-DNA interaction. No mutation of CRKL gene was found. Conclusions These observations suggest that the TBX1 loss-of-function mutation may be involved in the pathogenesis of isolated CTDs. This is the first human missense mutation showing that TBX1 is a candidate causing isolated CTDs in Chinese patients without 22q11.2 deletion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rang Xu
- Department of Pediatric Cardiology, Xinhua hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| | | |
Collapse
|
56
|
Dykes IM, van Bueren KL, Ashmore RJ, Floss T, Wurst W, Szumska D, Bhattacharya S, Scambler PJ. HIC2 is a novel dosage-dependent regulator of cardiac development located within the distal 22q11 deletion syndrome region. Circ Res 2014; 115:23-31. [PMID: 24748541 DOI: 10.1161/circresaha.115.303300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE 22q11 deletion syndrome arises from recombination between low-copy repeats on chromosome 22. Typical deletions result in hemizygosity for TBX1 associated with congenital cardiovascular disease. Deletions distal to the typically deleted region result in a similar cardiac phenotype but lack in extracardiac features of the syndrome, suggesting that a second haploinsufficient gene maps to this interval. OBJECTIVE The transcription factor HIC2 is lost in most distal deletions, as well as in a minority of typical deletions. We used mouse models to test the hypothesis that HIC2 hemizygosity causes congenital heart disease. METHODS AND RESULTS We created a genetrap mouse allele of Hic2. The genetrap reporter was expressed in the heart throughout the key stages of cardiac morphogenesis. Homozygosity for the genetrap allele was embryonic lethal before embryonic day E10.5, whereas the heterozygous condition exhibited a partially penetrant late lethality. One third of heterozygous embryos had a cardiac phenotype. MRI demonstrated a ventricular septal defect with over-riding aorta. Conditional targeting indicated a requirement for Hic2 within the Nkx2.5+ and Mesp1+ cardiovascular progenitor lineages. Microarray analysis revealed increased expression of Bmp10. CONCLUSIONS Our results demonstrate a novel role for Hic2 in cardiac development. Hic2 is the first gene within the distal 22q11 interval to have a demonstrated haploinsufficient cardiac phenotype in mice. Together our data suggest that HIC2 haploinsufficiency likely contributes to the cardiac defects seen in distal 22q11 deletion syndrome.
Collapse
Affiliation(s)
- Iain M Dykes
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Kelly Lammerts van Bueren
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Rebekah J Ashmore
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Thomas Floss
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Wolfgang Wurst
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Dorota Szumska
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Peter J Scambler
- From the Molecular Medicine Unit, Institute of Child Health, University College London, London, United Kingdom (I.M.D., K.L.v.B., R.J.A., P.J.S.); Institute of Developmental Genetics (T.F., W.W.) and Technische Universität München-Weihenstephan, Institute of Developmental Genetics (T.F., W.W.), Helmholtz Zentrum München, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany (W.W.); Munich Cluster for Systems Neurology (SyNergy), Adolf Butenandt Institute, Ludwig-Maximilians-Universität München, Munich, Germany (W.W.); and Departments of Cardiovascular Medicine (D.S., S.B.) and Cardiovascular Medicine (I.M.D.), University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom.
| |
Collapse
|
57
|
Understanding the role of Tbx1 as a candidate gene for 22q11.2 deletion syndrome. Curr Allergy Asthma Rep 2014; 13:613-21. [PMID: 23996541 DOI: 10.1007/s11882-013-0384-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
22q11.2 deletion syndrome (22q11.2DS) is caused by a commonly occurring microdeletion on chromosome 22. Clinical findings include cardiac malformations, thymic and parathyroid hypoplasia, craniofacial dysmorphisms, and dental defects. These phenotypes are due mainly to abnormal development of the pharyngeal apparatus. Targeted deletion studies in mice and analysis of naturally occurring mutations in humans have implicated Tbx1 as a candidate gene for 22q11.2DS. Tbx1 belongs to an evolutionarily conserved T-box family of transcription factors, whose expression is precisely regulated during embryogenesis, and it appears to regulate the proliferation and differentiation of various progenitor cells during organogenesis. In this review, we discuss the mechanisms of Tbx1 during development of the heart, thymus and parathyroid glands, as well as during formation of the palate, teeth, and other craniofacial features.
Collapse
|
58
|
Li H, Tao C, Cai Z, Hertzler-Schaefer K, Collins TN, Wang F, Feng GS, Gotoh N, Zhang X. Frs2α and Shp2 signal independently of Gab to mediate FGF signaling in lens development. J Cell Sci 2013; 127:571-82. [PMID: 24284065 DOI: 10.1242/jcs.134478] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling requires a plethora of adaptor proteins to elicit downstream responses, but the functional significances of these docking proteins remain controversial. In this study, we used lens development as a model to investigate Frs2α and its structurally related scaffolding proteins, Gab1 and Gab2, in FGF signaling. We show that genetic ablation of Frs2α alone has a modest effect, but additional deletion of tyrosine phosphatase Shp2 causes a complete arrest of lens vesicle development. Biochemical evidence suggests that this Frs2α-Shp2 synergy reflects their epistatic relationship in the FGF signaling cascade, as opposed to compensatory or parallel functions of these two proteins. Genetic interaction experiments further demonstrate that direct binding of Shp2 to Frs2α is necessary for activation of ERK signaling, whereas constitutive activation of either Shp2 or Kras signaling can compensate for the absence of Frs2α in lens development. By contrast, knockout of Gab1 and Gab2 failed to disrupt FGF signaling in vitro and lens development in vivo. These results establish the Frs2α-Shp2 complex as the key mediator of FGF signaling in lens development.
Collapse
Affiliation(s)
- Hongge Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Pan Y, Carbe C, Kupich S, Pickhinke U, Ohlig S, Frye M, Seelige R, Pallerla SR, Moon AM, Lawrence R, Esko JD, Zhang X, Grobe K. Heparan sulfate expression in the neural crest is essential for mouse cardiogenesis. Matrix Biol 2013; 35:253-65. [PMID: 24200809 DOI: 10.1016/j.matbio.2013.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/26/2013] [Accepted: 10/26/2013] [Indexed: 11/16/2022]
Abstract
Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-deacetylase/GlcN N-sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1(-/-) embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect.
Collapse
Affiliation(s)
- Yi Pan
- Institute of Nutritional Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Christian Carbe
- Department of Medical and Molecular Genetics, Indiana University of Medicine, Indianapolis, IN 46202, USA
| | - Sabine Kupich
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Ute Pickhinke
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Stefanie Ohlig
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Maike Frye
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Ruth Seelige
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Srinivas R Pallerla
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Anne M Moon
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687, USA
| | - Xin Zhang
- Department of Medical and Molecular Genetics, Indiana University of Medicine, Indianapolis, IN 46202, USA
| | - Kay Grobe
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany.
| |
Collapse
|
60
|
The adaptor protein Crk in immune response. Immunol Cell Biol 2013; 92:80-9. [PMID: 24165979 DOI: 10.1038/icb.2013.64] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 09/02/2013] [Accepted: 09/23/2013] [Indexed: 12/17/2022]
Abstract
The adaptor proteins Crk (CT10 (chicken tumor virus number 10) regulator of kinase), including CrkI, CrkII and Crk-like, are important signal molecules that regulate a variety of cellular processes. Considerable progress has been made in understanding the roles of the Crk family proteins in signal transduction, with a focus on cellular transformation and differentiation. However, since Crk was identified in 1988, very few studies have addressed how Crk regulates the immune response. Recent work demonstrates that Crk proteins function as critical signal molecules in regulating immune cell functions. Emerging data on the roles of Crk in activation and inhibitory immunoreceptor signaling suggest that Crk proteins are potential immunotherapeutic targets in cancer and infectious diseases. The aim of this review is to summarize recent key findings regarding the role of Crk in immune responses mediated by T, B and natural killer (NK) cells. In particular, the roles of Crk in NK cell functions are discussed.
Collapse
|
61
|
Osoegawa K, Iovannisci DM, Lin B, Parodi C, Schultz K, Shaw GM, Lammer EJ. Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects. Am J Med Genet A 2013; 164A:397-406. [PMID: 24127225 DOI: 10.1002/ajmg.a.36291] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022]
Abstract
Congenital heart defects (CHDs) are common malformations, affecting four to eight per 1,000 total births. Conotruncal defects are an important pathogenetic subset of CHDs, comprising nearly 20% of the total. Although both environmental and genetic factors are known to contribute to the occurrence of conotruncal defects, the causes remain unknown for most. To identify novel candidate genes/loci, we used array comparative genomic hybridization to detect chromosomal microdeletions/duplications. From a population base of 974,579 total births born during 1999-2004, we screened 389 California infants born with tetralogy of Fallot or d-transposition of the great arteries. We found that 1.7% (5/288) of males with a conotruncal defect had sex chromosome aneuploidy, a sevenfold increased frequency (relative risk = 7.0; 95% confidence interval 2.9-16.9). We identified eight chromosomal microdeletions/duplications for conotruncal defects. From these duplications and deletions, we found five high priority candidate genes (GATA4, CRKL, BMPR1A, SNAI2, and ZFHX4). This is the initial report that sex chromosome aneuploidy is associated with conotruncal defects among boys. These chromosomal microduplications/deletions provide evidence that GATA4, SNAI2, and CRKL are highly dosage sensitive genes involved in outflow tract development. Genome wide screening for copy number variation can be productive for identifying novel genes/loci contributing to non-syndromic common malformations.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Center for Genetics, Children's Hospital Oakland Research Institute, Children's Hospital Research Center Oakland, Oakland, California
| | | | | | | | | | | | | |
Collapse
|
62
|
Tassy O, Pourquié O. Manteia, a predictive data mining system for vertebrate genes and its applications to human genetic diseases. Nucleic Acids Res 2013; 42:D882-91. [PMID: 24038354 PMCID: PMC3964984 DOI: 10.1093/nar/gkt807] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The function of genes is often evolutionarily conserved, and comparing the annotation of ortholog genes in different model organisms has proved to be a powerful predictive tool to identify the function of human genes. Here, we describe Manteia, a resource available online at http://manteia.igbmc.fr. Manteia allows the comparison of embryological, expression, molecular and etiological data from human, mouse, chicken and zebrafish simultaneously to identify new functional and structural correlations and gene-disease associations. Manteia is particularly useful for the analysis of gene lists produced by high-throughput techniques such as microarrays or proteomics. Data can be easily analyzed statistically to characterize the function of groups of genes and to correlate the different aspects of their annotation. Sophisticated querying tools provide unlimited ways to merge the information contained in Manteia along with the possibility of introducing custom user-designed biological questions into the system. This allows for example to connect all the animal experimental results and annotations to the human genome, and take advantage of data not available for human to look for candidate genes responsible for genetic disorders. Here, we demonstrate the predictive and analytical power of the system to predict candidate genes responsible for human genetic diseases.
Collapse
Affiliation(s)
- Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch. F-67400, France, Stowers Institute for Medical Research, Kansas City, MO 64110, USA and Howard Hughes Medical Institute, Kansas City, MO 64110, USA
| | | |
Collapse
|
63
|
Andersen TA, Troelsen KDLL, Larsen LA. Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 2013; 71:1327-52. [PMID: 23934094 PMCID: PMC3958813 DOI: 10.1007/s00018-013-1430-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
Congenital heart disease (CHD) affects nearly 1 % of the population. It is a complex disease, which may be caused by multiple genetic and environmental factors. Studies in human genetics have led to the identification of more than 50 human genes, involved in isolated CHD or genetic syndromes, where CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes and to gain further insight into the molecular pathology behind CHD. The picture emerging from these studies suggest that genetic lesions associated with CHD affect a broad range of cellular signaling components, from ligands and receptors, across down-stream effector molecules to transcription factors and co-factors, including chromatin modifiers.
Collapse
Affiliation(s)
- Troels Askhøj Andersen
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | | | | |
Collapse
|
64
|
Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet 2013; 14:125-38. [PMID: 23329113 DOI: 10.1038/nrg3373] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have facilitated the analysis of structural variants in human populations and model systems in unprecedented detail. In this Review, we describe how structural variants can affect molecular and cellular processes, leading to complex organismal phenotypes, including human disease. We further present advances in delineating disease-causing elements that are affected by structural variants, and we discuss future directions for research on the functional consequences of structural variants.
Collapse
Affiliation(s)
- Joachim Weischenfeldt
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | | | | | | |
Collapse
|
65
|
Heart defects and other features of the 22q11 distal deletion syndrome. Eur J Med Genet 2013; 56:98-107. [DOI: 10.1016/j.ejmg.2012.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022]
|
66
|
Keyte A, Hutson MR. The neural crest in cardiac congenital anomalies. Differentiation 2012; 84:25-40. [PMID: 22595346 DOI: 10.1016/j.diff.2012.04.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 02/07/2023]
Abstract
This review discusses the function of neural crest as they relate to cardiovascular defects. The cardiac neural crest cells are a subpopulation of cranial neural crest discovered nearly 30 years ago by ablation of premigratory neural crest. The cardiac neural crest cells are necessary for normal cardiovascular development. We begin with a description of the crest cells in normal development, including their function in remodeling the pharyngeal arch arteries, outflow tract septation, valvulogenesis, and development of the cardiac conduction system. The cells are also responsible for modulating signaling in the caudal pharynx, including the second heart field. Many of the molecular pathways that are known to influence specification, migration, patterning and final targeting of the cardiac neural crest cells are reviewed. The cardiac neural crest cells play a critical role in the pathogenesis of various human cardiocraniofacial syndromes such as DiGeorge, Velocardiofacial, CHARGE, Fetal Alcohol, Alagille, LEOPARD, and Noonan syndromes, as well as Retinoic Acid Embryopathy. The loss of neural crest cells or their dysfunction may not always directly cause abnormal cardiovascular development, but are involved secondarily because crest cells represent a major component in the complex tissue interactions in the head, pharynx and outflow tract. Thus many of the human syndromes linking defects in the heart, face and brain can be better understood when considered within the context of a single cardiocraniofacial developmental module with the neural crest being a key cell type that interconnects the regions.
Collapse
Affiliation(s)
- Anna Keyte
- Department of Pediatrics (Neonatology), Neonatal-Perinatal Research Institute, Box 103105, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
67
|
Breckpot J, Thienpont B, Bauters M, Tranchevent LC, Gewillig M, Allegaert K, Vermeesch JR, Moreau Y, Devriendt K. Congenital heart defects in a novel recurrent 22q11.2 deletion harboring the genes CRKL and MAPK1. Am J Med Genet A 2012; 158A:574-80. [DOI: 10.1002/ajmg.a.35217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 12/07/2011] [Indexed: 01/08/2023]
|
68
|
Seo JH, Wood LJ, Agarwal A, O'Hare T, Elsea CR, Griswold IJ, Deininger MWN, Imamoto A, Druker BJ. A specific need for CRKL in p210BCR-ABL-induced transformation of mouse hematopoietic progenitors. Cancer Res 2010; 70:7325-35. [PMID: 20807813 DOI: 10.1158/0008-5472.can-10-0607] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRKL (CRK-like) is an adapter protein predominantly phosphorylated in cells that express the tyrosine kinase p210(BCR-ABL), the fusion product of a (9;22) chromosomal translocation causative for chronic myeloid leukemia. It has been unclear, however, whether CRKL plays a functional role in p210(BCR-ABL) transformation. Here, we show that CRKL is required for p210(BCR-ABL) to support interleukin-3-independent growth of myeloid progenitor cells and long-term outgrowth of B-lymphoid cells from fetal liver-derived hematopoietic progenitor cells. Furthermore, a synthetic phosphotyrosyl peptide that binds to the CRKL SH2 domain with high affinity blocks association of endogenous CRKL with the p210(BCR-ABL) complex and reduces c-MYC levels in K562 human leukemic cells as well as in mouse hematopoietic cells transformed by p210(BCR-ABL) or the imatinib-resistant mutant T315I. These results indicate that the function of CRKL as an adapter protein is essential for p210(BCR-ABL)-induced transformation.
Collapse
Affiliation(s)
- Ji-Heui Seo
- Ben May Department for Cancer Research, Committees on Developmental Biology, Genetics, Cancer Biology, and Cell Physiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Yu S, Poe B, Schwarz M, Elliot SA, Albertine KH, Fenton S, Garg V, Moon AM. Fetal and postnatal lung defects reveal a novel and required role for Fgf8 in lung development. Dev Biol 2010; 347:92-108. [PMID: 20727874 PMCID: PMC5133699 DOI: 10.1016/j.ydbio.2010.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/15/2010] [Accepted: 08/11/2010] [Indexed: 12/18/2022]
Abstract
The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long-term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound.
Collapse
Affiliation(s)
- Shibin Yu
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Momma K. Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. Am J Cardiol 2010; 105:1617-24. [PMID: 20494672 DOI: 10.1016/j.amjcard.2010.01.333] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 11/30/2022]
Abstract
Cardiovascular anomalies are present in 80% of neonates with 22q11.2 deletion syndrome. Three genes in chromosome 22q11.2 (TBX1, CRKL, and ERK2) have been identified whose haploinsufficiency causes dysfunction of the neural crest cell and anterior heart field and anomalies of 22q11.2 deletion syndrome. The most common diseases are conotruncal anomalies, which include tetralogy of Fallot (TF), TF with pulmonary atresia, truncus arteriosus, and interrupted aortic arch. A high prevalence of the deletion is noted in patients with TF with absent pulmonary valve, TF associated with pulmonary atresia and major aortopulmonary collateral arteries, truncus arteriosus, and type B interruption of aortic arch. Right aortic arch, aberrant subclavian artery, cervical origin of the subclavian artery, crossing pulmonary arteries, and major aortopulmonary collateral arteries are frequently associated with cardiovascular anomalies associated with 22q11.2 deletion syndrome. Virtually every type of congenital heart defect has been described early in the context of a 22q11.2 deletion. In conclusion, conotruncal anomaly associated with aortic arch and ductus arteriosus anomalies should increase the suspicion of 22q11.2 deletion.
Collapse
Affiliation(s)
- Kazuo Momma
- Section of Pediatric Cardiology, Heart Center, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
71
|
Tang S, Snider P, Firulli AB, Conway SJ. Trigenic neural crest-restricted Smad7 over-expression results in congenital craniofacial and cardiovascular defects. Dev Biol 2010; 344:233-47. [PMID: 20457144 DOI: 10.1016/j.ydbio.2010.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 01/10/2023]
Abstract
Smad7 is a negative regulator of TGFbeta superfamily signaling. Using a three-component triple transgenic system, expression of the inhibitory Smad7 was induced via doxycycline within the NCC lineages at pre- and post-migratory stages. Consistent with its role in negatively regulating both TGFbeta and BMP signaling in vitro, induction of Smad7 within the NCC significantly suppressed phosphorylation levels of both Smad1/5/8 and Smad2/3 in vivo, resulting in subsequent loss of NCC-derived craniofacial, pharyngeal and cardiac OFT cushion cells. At the cellular level, increased cell death was observed in pharyngeal arches. However, cell proliferation and NCC-derived smooth muscle differentiation were unaltered. NCC lineage mapping demonstrated that cardiac NCC emigration and initial migration were not affected, but subsequent colonization of the OFT was significantly reduced. Induction of Smad7 in post-migratory NCC resulted in interventricular septal chamber septation defects, suggesting that TGFbeta superfamily signaling is also essential for cardiac NCC at post-migratory stages to govern normal cardiac development. Taken together, the data illustrate that tightly regulated TGFbeta superfamily signaling plays an essential role during craniofacial and cardiac NCC colonization and cell survival in vivo.
Collapse
Affiliation(s)
- Sunyong Tang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
72
|
Tan TY, Gordon CT, Amor DJ, Farlie PG. Developmental perspectives on copy number abnormalities of the 22q11.2 region. Clin Genet 2010; 78:201-18. [DOI: 10.1111/j.1399-0004.2010.01456.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
73
|
Scambler PJ. 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr Cardiol 2010; 31:378-90. [PMID: 20054531 DOI: 10.1007/s00246-009-9613-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/07/2009] [Indexed: 12/24/2022]
Abstract
Tbx1 is a member of the Tbox family of binding domain transcription factors. TBX1 maps within the region of 22q11 deleted in humans with DiGeorge or velocardiofacial syndrome. Mice haploinsufficient for Tbx1 have phenotypes that recapitulate major features of the syndrome, notably abnormal growth and remodelling of the pharyngeal arch arteries. The Tbx1 haploinsufficiency phenotype is modified by genetic background and by mutations in putative downstream targets. Homozygous null mutations of Tbx1 have more severe defects including failure of outflow tract septation, and absence of the caudal pharyngeal arches. Tbx1 is a transcriptional activator, and loss of this activity has been linked to alterations in the expression of various genes involved in cardiovascular morphogenesis. In particular, Fgf and retinoic acid signalling are dysregulated in Tbx1 mutants. This article summarises the tissue specific and temporal requirements for Tbx1, and attempts to synthesis what is know about the developmental pathways under its control.
Collapse
Affiliation(s)
- Peter J Scambler
- Molecular Medicine Unit, Institute of Child Health, 30, Guilford St., London WC1N 1EH, UK.
| |
Collapse
|
74
|
|
75
|
Ryckebüsch L, Bertrand N, Mesbah K, Bajolle F, Niederreither K, Kelly RG, Zaffran S. Decreased levels of embryonic retinoic acid synthesis accelerate recovery from arterial growth delay in a mouse model of DiGeorge syndrome. Circ Res 2010; 106:686-94. [PMID: 20110535 DOI: 10.1161/circresaha.109.205732] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Loss of Tbx1 and decrease of retinoic acid (RA) synthesis result in DiGeorge/velocardiofacial syndrome (DGS/VCFS)-like phenotypes in mouse models, including defects in septation of the outflow tract of the heart and anomalies of pharyngeal arch-derived structures including arteries of the head and neck, laryngeal-tracheal cartilage, and thymus/parathyroid. Wild-type levels of T-box transcription factor (Tbx)1 and RA signaling are required for normal pharyngeal arch artery development. Recent studies have shown that reduction of RA or loss of Tbx1 alters the contribution of second heart field (SHF) progenitor cells to the elongating heart tube. OBJECTIVE Here we tested whether Tbx1 and the RA signaling pathway interact during the deployment of the SHF and formation of the mature aortic arch. METHODS AND RESULTS Molecular markers of the SHF, neural crest and smooth muscle cells, were analyzed in Raldh2;Tbx1 compound heterozygous mutants. Our results revealed that the SHF and outflow tract develop normally in Raldh2(+/-);Tbx1(+/-) embryos. However, we found that decreased levels of RA accelerate the recovery from arterial growth delay observed in Tbx1(+/-) mutant embryos. This compensation coincides with the differentiation of smooth muscle cells in the 4th pharyngeal arch arteries, and is associated with severity of neural crest cell migration defects observed in these mutants. CONCLUSIONS Our data suggest that differences in levels of embryonic RA may contribute to the variability in great artery anomalies observed in DGS/VCFS patients.
Collapse
Affiliation(s)
- Lucile Ryckebüsch
- INSERM UMR S910, Université de la Méditerranée, Faculté de Médecine, 27 Bd. Jean Moulin, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
76
|
Vallejo-Illarramendi A, Zang K, Reichardt LF. Focal adhesion kinase is required for neural crest cell morphogenesis during mouse cardiovascular development. J Clin Invest 2009; 119:2218-30. [PMID: 19587446 DOI: 10.1172/jci38194] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 05/06/2009] [Indexed: 01/08/2023] Open
Abstract
Neural crest cells (NCCs) participate in the remodeling of the cardiac outflow tract and pharyngeal arch arteries during cardiovascular development. Focal adhesion kinase (FAK) mediates signal transduction by integrin and growth factor receptors, each of which is important for normal cardiovascular development. To investigate the role of FAK in NCC morphogenesis, we deleted it in murine NCCs using Wnt1cre, yielding craniofacial and cardiovascular malformations resembling those observed in individuals with DiGeorge syndrome. In these mice, we observed normal cardiac NCC migration but reduced differentiation into smooth muscle within the aortic arch arteries and impaired cardiac outflow tract rotation, which resulted in a dextroposed aortic root. Moreover, within the conotruncal cushions, Fak-deficient NCCs formed a less organized mesenchyme, with reduced expression of perlecan and semaphorin 3C, and exhibited disorganized F-actin stress fibers within the aorticopulmonary septum. Additionally, absence of Fak resulted in reduced in vivo phosphorylation of Crkl and Erk1/2, components of a signaling pathway essential for NCC development. Consistent with this, both TGF-beta and FGF induced FAK and Crkl phosphorylation in control but not Fak-deficient NCCs in vitro. Our results indicate that FAK plays an essential role in cardiac outflow tract development by promoting the activation of molecules such as Crkl and Erk1/2.
Collapse
|
77
|
Protein tyrosine phosphatase activity in the neural crest is essential for normal heart and skull development. Proc Natl Acad Sci U S A 2009; 106:11270-5. [PMID: 19541608 DOI: 10.1073/pnas.0902230106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations within the protein tyrosine phosphatase, SHP2, which is encoded by PTPN11, cause a significant proportion of Noonan syndrome (NS) cases, typically presenting with both cardiac disease and craniofacial abnormalities. Neural crest cells (NCCs) participate in both heart and skull formation, but the role of SHP2 signaling in NCC has not yet been determined. To gain insight into the role of SHP2 in NCC function, we ablated PTPN11 specifically in premigratory NCCs. SHP2-deficient NCCs initially exhibited normal migratory and proliferative patterns, but in the developing heart failed to migrate into the developing outflow tract. The embryos displayed persistent truncus arteriosus and abnormalities of the great vessels. The craniofacial deficits were even more pronounced, with large portions of the face and cranium affected, including the mandible and frontal and nasal bones. The data show that SHP2 activity in the NCC is essential for normal migration and differentiation into the diverse lineages found in the heart and skull and demonstrate the importance of NCC-based normal SHP2 activity in both heart and skull development, providing insight into the syndromic presentation characteristic of NS.
Collapse
|
78
|
Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal 2009; 7:13. [PMID: 19426560 PMCID: PMC2689226 DOI: 10.1186/1478-811x-7-13] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/10/2009] [Indexed: 01/24/2023] Open
Abstract
The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses.
Collapse
Affiliation(s)
- Raymond B Birge
- Department of Biochemistry & Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
79
|
Structural and functional basis of a role for CRKL in a fibroblast growth factor 8-induced feed-forward loop. Mol Cell Biol 2009; 29:3076-87. [PMID: 19307307 DOI: 10.1128/mcb.01686-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The adapter protein CRKL is required for the normal development of multiple tissues that rely on fibroblast growth factor 8 (FGF8). The precise role of CRKL in receptor signaling has been unclear, however. To address this issue, we first modeled the three-dimensional structure of CRKL by molecular dynamics. By taking advantage of structural simulations, we performed in silico analysis of the interactions of the autophosphorylation sites of FGR receptor 1 (FGFR1) with the SH2 domain of CRKL or a highly related protein, CRK. As predicted by simulations, we confirm the specific physical interaction of phosphorylated Y463 (pY463) in FGFR1 with the CRKL SH2 domain at an affinity approximately 30-fold stronger than that of CRK. We also provide evidence that interactions outside of the core YXXP motif have a significant impact on physical association, which is consistent with predictions from molecular-dynamics simulations. Furthermore, we identify CRKL as an essential component of an FGF8-induced feed-forward loop permissive for efficient activation of the mitogen-activated protein kinase Erk1/2, as well as FGF8-induced anchorage-independent cell growth, using Crkl-deficient cells or a pY463 synthetic peptide. Although many cells generally require cell-matrix adhesion, our results demonstrate that CRKL permits cells to bypass the strict need for adhesion in response to FGF8 through direct interaction with receptor.
Collapse
|
80
|
Abstract
The ERK MAP kinase signaling cascade plays critical roles in brain development, learning, memory, and cognition. It has recently been appreciated that mutation or deletion of elements within this signaling pathway leads to developmental syndromes in humans that are associated with impaired cognitive function and autism. Here, we review recent studies that provide insight into the biological roles of the ERKs in the brain that may underlie the cognitive deficits seen in these syndromes.
Collapse
Affiliation(s)
- Ivy S Samuels
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
81
|
Omoteyama K, Takagi M. FGF8 regulates myogenesis and induces Runx2 expression and osteoblast differentiation in cultured cells. J Cell Biochem 2009; 106:546-52. [DOI: 10.1002/jcb.22012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
82
|
Early thyroid development requires a Tbx1-Fgf8 pathway. Dev Biol 2009; 328:109-17. [PMID: 19389367 DOI: 10.1016/j.ydbio.2009.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 11/21/2022]
Abstract
The thyroid develops within the pharyngeal apparatus from endodermally-derived cells. The many derivatives of the pharyngeal apparatus develop at similar times and sometimes from common cell types, explaining why many syndromic disorders express multiple birth defects affecting different structures that share a common pharyngeal origin. Thus, different derivatives may share common genetic networks during their development. Tbx1, the major gene associated with DiGeorge syndrome, is a key player in the global development of the pharyngeal apparatus, being required for virtually all its derivatives, including the thyroid. Here we show that Tbx1 regulates the size of the early thyroid primordium through its expression in the adjacent mesoderm. Because Tbx1 regulates the expression of Fgf8 in the mesoderm, we postulated that Fgf8 mediates critical Tbx1-dependent interactions between mesodermal cells and endodermal thyrocyte progenitors. Indeed, conditional ablation of Fgf8 in Tbx1-expressing cells caused an early thyroid phenotype similar to that of Tbx1 mutant mice. In addition, expression of an Fgf8 cDNA in the Tbx1 domain rescued the early size defect of the thyroid primordium in Tbx1 mutants. Thus, we have established that a Tbx1->Fgf8 pathway in the pharyngeal mesoderm is a key size regulator of mammalian thyroid.
Collapse
|
83
|
|
84
|
Chang CP, Stankunas K, Shang C, Kao SC, Twu KY, Cleary ML. Pbx1 functions in distinct regulatory networks to pattern the great arteries and cardiac outflow tract. Development 2008; 135:3577-86. [PMID: 18849531 DOI: 10.1242/dev.022350] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The patterning of the cardiovascular system into systemic and pulmonic circulations is a complex morphogenetic process, the failure of which results in clinically important congenital defects. This process involves extensive vascular remodeling and coordinated division of the cardiac outflow tract (OFT). We demonstrate that the homeodomain transcription factor Pbx1 orchestrates separate transcriptional pathways to control great-artery patterning and cardiac OFT septation in mice. Pbx1-null embryos display anomalous great arteries owing to a failure to establish the initial complement of branchial arch arteries in the caudal pharyngeal region. Pbx1 deficiency also results in the failure of cardiac OFT septation. Pbx1-null embryos lose a transient burst of Pax3 expression in premigratory cardiac neural crest cells (NCCs) that ultimately specifies cardiac NCC function for OFT development, but does not regulate NCC migration to the heart. We show that Pbx1 directly activates Pax3, leading to repression of its target gene Msx2 in NCCs. Compound Msx2/Pbx1-null embryos display significant rescue of cardiac septation, demonstrating that disruption of this Pbx1-Pax3-Msx2 regulatory pathway partially underlies the OFT defects in Pbx1-null mice. Conversely, the great-artery anomalies of compound Msx2/Pbx1-null embryos remain within the same spectrum as those of Pbx1-null embryos. Thus, Pbx1 makes a crucial contribution to distinct regulatory pathways in cardiovascular development.
Collapse
Affiliation(s)
- Ching-Pin Chang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
85
|
Aggarwal VS, Morrow BE. Genetic modifiers of the physical malformations in velo-cardio-facial syndrome/DiGeorge syndrome. ACTA ACUST UNITED AC 2008; 14:19-25. [PMID: 18636633 DOI: 10.1002/ddrr.4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid, and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that Tbx1, a T-box containing transcription factor present on the deleted region, is likely responsible for the etiology of the syndrome. Furthermore, mutations in TBX1 have been found in rare non-deleted patients. Despite having the same sized deletion, most VCFS/DGS patients exhibit significant clinical variability. Stochastic, environmental and genetic factors likely modify the phenotype of patients with the disorder. Here, we review mouse genetics studies, which may help identify possible genetic modifiers for the physical malformations in VCFS/DGS.
Collapse
Affiliation(s)
- Vimla S Aggarwal
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
86
|
Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proc Natl Acad Sci U S A 2008; 105:17115-20. [PMID: 18952847 DOI: 10.1073/pnas.0805239105] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Disrupted ERK1/2 (MAPK3/MAPK1) MAPK signaling has been associated with several developmental syndromes in humans; however, mutations in ERK1 or ERK2 have not been described. We demonstrate haplo-insufficient ERK2 expression in patients with a novel approximately 1 Mb micro-deletion in distal 22q11.2, a region that includes ERK2. These patients exhibit conotruncal and craniofacial anomalies that arise from perturbation of neural crest development and exhibit defects comparable to the DiGeorge syndrome spectrum. Remarkably, these defects are replicated in mice by conditional inactivation of ERK2 in the developing neural crest. Inactivation of upstream elements of the ERK cascade (B-Raf and C-Raf, MEK1 and MEK2) or a downstream effector, the transcription factor serum response factor resulted in analogous developmental defects. Our findings demonstrate that mammalian neural crest development is critically dependent on a RAF/MEK/ERK/serum response factor signaling pathway and suggest that the craniofacial and cardiac outflow tract defects observed in patients with a distal 22q11.2 micro-deletion are explained by deficiencies in neural crest autonomous ERK2 signaling.
Collapse
|
87
|
Zhang J, Lin Y, Zhang Y, Lan Y, Lin C, Moon AM, Schwartz RJ, Martin JF, Wang F. Frs2alpha-deficiency in cardiac progenitors disrupts a subset of FGF signals required for outflow tract morphogenesis. Development 2008; 135:3611-22. [PMID: 18832393 DOI: 10.1242/dev.025361] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cardiac outflow tract (OFT) is a developmentally complex structure derived from multiple lineages and is often defective in human congenital anomalies. Although emerging evidence shows that fibroblast growth factor (FGF) is essential for OFT development, the downstream pathways mediating FGF signaling in cardiac progenitors remain poorly understood. Here, we report that FRS2alpha (FRS2), an adaptor protein that links FGF receptor kinases to multiple signaling pathways, mediates crucial aspects of FGF-dependent OFT development in mouse. Ablation of Frs2alpha in mesodermal OFT progenitor cells that originate in the second heart field (SHF) affects their expansion into the OFT myocardium, resulting in OFT misalignment and hypoplasia. Moreover, Frs2alpha mutants have defective endothelial-to-mesenchymal transition and neural crest cell recruitment into the OFT cushions, resulting in OFT septation defects. These results provide new insight into the signaling molecules downstream of FGF receptor tyrosine kinases in cardiac progenitors.
Collapse
Affiliation(s)
- Jue Zhang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Park EJ, Watanabe Y, Smyth G, Miyagawa-Tomita S, Meyers E, Klingensmith J, Camenisch T, Buckingham M, Moon AM. An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development 2008; 135:3599-610. [PMID: 18832392 DOI: 10.1242/dev.025437] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to understand how secreted signals regulate complex morphogenetic events, it is crucial to identify their cellular targets. By conditional inactivation of Fgfr1 and Fgfr2 and overexpression of the FGF antagonist sprouty 2 in different cell types, we have dissected the role of FGF signaling during heart outflow tract development in mouse. Contrary to expectation, cardiac neural crest and endothelial cells are not primary paracrine targets. FGF signaling within second heart field mesoderm is required for remodeling of the outflow tract: when disrupted, outflow myocardium fails to produce extracellular matrix and TGFbeta and BMP signals essential for endothelial cell transformation and invasion of cardiac neural crest. We conclude that an autocrine regulatory loop, initiated by the reception of FGF signals by the mesoderm, regulates correct morphogenesis at the arterial pole of the heart. These findings provide new insight into how FGF signaling regulates context-dependent cellular responses during development.
Collapse
Affiliation(s)
- Eon Joo Park
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Sirbu IO, Zhao X, Duester G. Retinoic acid controls heart anteroposterior patterning by down-regulating Isl1 through the Fgf8 pathway. Dev Dyn 2008; 237:1627-35. [PMID: 18498088 DOI: 10.1002/dvdy.21570] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Distinct progenitor cell populations exist in cardiac mesoderm important for patterning of the heart. During heart tube formation in mouse, Tbx5 is expressed in progenitors located more laterally, whereas Isl1 and Fgf8 are expressed in progenitors located more medially. Signals that drive mesodermal progenitors into various cardiac lineages include Fgf8, which functions to induce Isl1. Studies in chick and zebrafish have shown that retinoic acid restricts the number of cardiac progenitors, but its role in mammalian cardiac development is unclear. Here, we demonstrate that Raldh2(-/-) mouse embryos lacking retinoic acid signaling exhibit a posterior expansion of the cardiac Fgf8 expression domain as well as an expansion of Isl1 expression into mesoderm lying posterior to the cardiac field. We provide evidence that retinoic acid acts specifically in the posterior-medial region of the cardiac field to establish the heart posterior boundary potentially by reducing Fgf8 expression which restricts the Isl1 domain.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Burnham Institute for Medical Research, Development and Aging Program, La Jolla, California 92037, USA
| | | | | |
Collapse
|
90
|
Isakov N. A new twist to adaptor proteins contributes to regulation of lymphocyte cell signaling. Trends Immunol 2008; 29:388-96. [PMID: 18599349 DOI: 10.1016/j.it.2008.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/10/2008] [Accepted: 04/23/2008] [Indexed: 01/23/2023]
Abstract
Cell growth and differentiation are highly controlled processes mediated by effector molecules, which are regulated by posttranslational chemical modifications. Adaptor molecules are critical players in these mechanisms because of their ability to simultaneously interact with multiple effector molecules and orchestrate the assembly of signaling complexes downstream of activated surface receptors. One family of adaptor molecules includes the CrkII/CrkL proteins that are also involved in the regulation of lymphocyte function. Although Crk proteins are amenable to regulation by protein tyrosine kinases, recent data suggest that peptidyl-prolyl cis-trans isomerases (PPIases) can alter their conformation and hence their ability to associate with binding partners. This emerging new function of PPIases is the subject of the current review.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
91
|
Kiehl TR, Chow EWC, Mikulis DJ, George SR, Bassett AS. Neuropathologic Features in Adults with 22q11.2 Deletion Syndrome. Cereb Cortex 2008; 19:153-64. [DOI: 10.1093/cercor/bhn066] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
92
|
Cooley MA, Kern CB, Fresco VM, Wessels A, Thompson RP, McQuinn TC, Twal WO, Mjaatvedt CH, Drake CJ, Argraves WS. Fibulin-1 is required for morphogenesis of neural crest-derived structures. Dev Biol 2008; 319:336-45. [PMID: 18538758 DOI: 10.1016/j.ydbio.2008.04.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 04/22/2008] [Accepted: 04/24/2008] [Indexed: 11/24/2022]
Abstract
Here we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2-7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels.
Collapse
Affiliation(s)
- Marion A Cooley
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Congenital heart disease is the leading cause of infant morbidity in the Western world, but only in the past ten years has its aetiology been understood. Recent studies have uncovered the genetic basis for some common forms of the disease and provide new insight into how the heart develops and how dysregulation of heart development leads to disease.
Collapse
Affiliation(s)
- Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, and Department of Pediatrics, University of California San Francisco, 1650 Owens Street, San Francisco, California 94158, USA.
| |
Collapse
|
94
|
Abstract
Congenital heart defects occur in nearly 1% of human live births and many are lethal if not surgically repaired. In addition, the genetic contribution to congenital or acquired cardiovascular diseases that are silent at birth, but progress to cause significant disease in later life is being increasingly appreciated. Heart development and structure are highly conserved between mouse and human. The discoveries that are being made in this model system are highly relevant to understanding the pathogenesis of human heart defects whether they occus in isolation, or in the context of a syndrome. Many of the genes required for cardiovascular development were discovered fortuitously when early lethality or structural defects were observed in mouse mutants generated for other purposes, and relevant genes continue to be defined in this manner. Candidate genes for this process are being identified by their roles other species, or by their expression in pertinent tissues in mice. In this review, I will briefly summarize heart development as currently understood in the mouse, and then discuss how complementary studies in mouse and human have identified genes and pathways that are critical for normal cardiovascular development, and for maintaining the structure and function of this organ system throughout life.
Collapse
Affiliation(s)
- Anne Moon
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
95
|
Nagarajan S, Mansfield E, Hsieh S, Liu R, Hsieh F, Li L, Salvatierra O, Sarwal MM. Transplant reno-vascular stenoses associated with early erythropoietin use. Clin Transplant 2007; 21:597-608. [PMID: 17845633 DOI: 10.1111/j.1399-0012.2007.00694.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES This report describes an unusual presentation of severe hypertension (HTN) in a subset of pediatric kidney recipients treated with a steroid avoidance pediatric renal transplantation protocol. The HTN was secondary to atypical, reno-vascular abnormalities (RVA) of the transplanted vasculature, temporally associated with erythropoietin (EPO) use. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS To investigate the clinical significance underlying this event, a retrospective clinical study of 100 pediatric renal transplants was undertaken (50 steroid-free and 50 matched steroid-based controls), with peripheral blood transcriptional analysis of four RVA patients and controls. RESULTS Regardless of a higher observed incidence of anemia (p < 0.001) and greater overall EPO usage in the first post-transplant year in steroid-free patients, the incidence of new-onset HTN at one yr was significantly less in the steroid-free cohort (p = 0.03). Nevertheless, early EPO (first week post-transplant) was significantly associated with the combinatory findings of new-onset HTN (p = 0.03) and RVA (p = 0.007). Molecular mechanisms of RVA injury were investigated further by peripheral blood cDNA microarray gene expression profiling. A panel of 42 transcripts differentiated patients with RVA and HTN from three sets of matched controls, with and without HTN and EPO use, with 100% concordance (p < 0.001). The biological processes governed by these significant genes suggest a role for EPO regulation of growth factor receptor ubiquitination as a putative mechanism for renal vascular injury. CONCLUSION This study cautions against the use early post-transplant use of EPO in immunosuppression regimens with steroid minimization/avoidance, which may have an increased incidence of post-transplant anemia.
Collapse
Affiliation(s)
- Suja Nagarajan
- Department of Pediatrics (Nephrology) Stanford University, Palo Alto, CA 94305-5208, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Walker MB, Trainor PA. Craniofacial malformations: intrinsic vs extrinsic neural crest cell defects in Treacher Collins and 22q11 deletion syndromes. Clin Genet 2007; 69:471-9. [PMID: 16712696 DOI: 10.1111/j.0009-9163.2006.00615.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The craniofacial complex is anatomically the most sophisticated part of the body. It houses all the major sensory organ systems and its origins are synonymous with vertebrate evolution. Of fundamental importance to craniofacial development is a specialized population of stem and progenitor cells, known as the neural crest, which generate the majority of the bone, cartilage, connective and peripheral nerve tissue in the head. Approximately one third of all congenital abnormalities exhibit craniofacial malformations and consequently, most craniofacial anomalies are considered to arise through primary defects in neural crest cell development. Recent advances however, have challenged this classical dogma, underscoring the influence of tissues with which the neural crest cells interact as the primary origin of patterning defects in craniofacial morphogenesis. In this review we discuss these neural crest cell interactions with mesoderm, endoderm and ectoderm in the head in the context of a better understanding of craniofacial malformations such as in Treacher Collins and 22q11 deletion syndromes.
Collapse
Affiliation(s)
- M B Walker
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
97
|
Hakim ZS, DiMichele LA, Doherty JT, Homeister JW, Beggs HE, Reichardt LF, Schwartz RJ, Brackhan J, Smithies O, Mack CP, Taylor JM. Conditional deletion of focal adhesion kinase leads to defects in ventricular septation and outflow tract alignment. Mol Cell Biol 2007; 27:5352-64. [PMID: 17526730 PMCID: PMC1952084 DOI: 10.1128/mcb.00068-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine a role for focal adhesion kinase (FAK) in cardiac morphogenesis, we generated a line of mice with a conditional deletion of FAK in nkx2-5-expressing cells (herein termed FAKnk mice). FAKnk mice died shortly after birth, likely resulting from a profound subaortic ventricular septal defect and associated malalignment of the outflow tract. Additional less penetrant phenotypes included persistent truncus arteriosus and thickened valve leaflets. Thus, conditional inactivation of FAK in nkx2-5-expressing cells leads to the most common congenital heart defect that is also a subset of abnormalities associated with tetralogy of Fallot and the DiGeorge syndrome. No significant differences in proliferation or apoptosis between control and FAKnk hearts were observed. However, decreased myocardialization was observed for the conal ridges of the proximal outflow tract in FAKnk hearts. Interestingly, chemotaxis was significantly attenuated in isolated FAK-null cardiomyocytes in comparison to genetic controls, and these effects were concomitant with reduced tyrosine phosphorylation of Crk-associated substrate (CAS). Thus, it is possible that ventricular septation and appropriate outflow tract alignment is dependent, at least in part, upon FAK-dependent CAS activation and subsequent induction of polarized myocyte movement into the conal ridges. Future studies will be necessary to determine the precise contributions of the additional nkx2-5-derived lineages to the phenotypes observed.
Collapse
Affiliation(s)
- Zeenat S Hakim
- Department of Pathology and Carolina Cardiovascular Biology Center, 501 Brinkhous-Bullitt Bldg. CB 7525, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Harkiolaki M, Gilbert RJC, Jones EY, Feller SM. The C-terminal SH3 domain of CRKL as a dynamic dimerization module transiently exposing a nuclear export signal. Structure 2007; 14:1741-53. [PMID: 17161365 DOI: 10.1016/j.str.2006.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/30/2022]
Abstract
CRKL plays essential roles in cell signaling. It consists of an N-terminal SH2 domain followed by two SH3 domains. SH2 and SH3N bind to signaling proteins, but the function of the SH3C domain has remained largely enigmatic. We show here that the SH3C of CRKL forms homodimers in protein crystals and in solution. Evidence for dimer formation of full-length CRKL is also presented. In the SH3C dimer, a nuclear export signal (NES) is mostly buried under the domain surface. The same is true for a monomeric SH3C obtained under different crystallization conditions. Interestingly, partial SH3 unfolding, such as occurs upon dimer/monomer transition, produces a fully-accessible NES through translocation of a single beta strand. Our results document the existence of an SH3 domain dimer formed through exchange of the first SH3 domain beta strand and suggest that partial unfolding of the SH3C is important for the relay of information in vivo.
Collapse
Affiliation(s)
- Maria Harkiolaki
- Cancer Research UK Cell Signalling Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | |
Collapse
|
99
|
Shelton EL, Yutzey KE. Heart Development and T‐box Transcription Factors: Lessons from Avian Embryos. CARDIOVASCULAR DEVELOPMENT 2007. [DOI: 10.1016/s1574-3349(07)18003-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
100
|
Hutson MR, Kirby ML. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 2006; 18:101-10. [PMID: 17224285 PMCID: PMC1858673 DOI: 10.1016/j.semcdb.2006.12.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neural crest cells are multipotential cells that delaminate from the dorsal neural tube and migrate widely throughout the body. A subregion of the cranial neural crest originating between the otocyst and somite 3 has been called "cardiac neural crest" because of the importance of these cells in heart development. Much of what we know about the contribution and function of the cardiac neural crest in cardiovascular development has been learned in the chick embryo using quail-chick chimeras to study neural crest migration and derivatives as well as using ablation of premigratory neural crest cells to study their function. These studies show that cardiac neural crest cells are absolutely required to form the aorticopulmonary septum dividing the cardiac arterial pole into systemic and pulmonary circulations. They support the normal development and patterning of derivatives of the caudal pharyngeal arches and pouches, including the great arteries and the thymus, thyroid and parathyroids. Recently, cardiac neural crest cells have been shown to modulate signaling in the pharynx during the lengthening of the outflow tract by the secondary heart field. Most of the genes associated with cardiac neural crest function have been identified using mouse models. These studies show that the neural crest cells may not be the direct cause of abnormal cardiovascular development but they are a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Since, cardiac neural crest cells span from the caudal pharynx into the outflow tract, they are especially susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations as represented by the DiGeorge syndrome will necessarily require understanding development of the cardiac neural crest.
Collapse
Affiliation(s)
- Mary R Hutson
- Department of Pediatrics, Bell Building, Room 157, Neonatology, Box 3179, Duke University Medical Center, Durham, NC 27710, United States.
| | | |
Collapse
|