51
|
Abáigar M, Robledo C, Benito R, Ramos F, Díez-Campelo M, Hermosín L, Sánchez-del-Real J, Alonso JM, Cuello R, Megido M, Rodríguez JN, Martín-Núñez G, Aguilar C, Vargas M, Martín AA, García JL, Kohlmann A, del Cañizo MC, Hernández-Rivas JM. Chromothripsis Is a Recurrent Genomic Abnormality in High-Risk Myelodysplastic Syndromes. PLoS One 2016; 11:e0164370. [PMID: 27741277 PMCID: PMC5065168 DOI: 10.1371/journal.pone.0164370] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022] Open
Abstract
To explore novel genetic abnormalities occurring in myelodysplastic syndromes (MDS) through an integrative study combining array-based comparative genomic hybridization (aCGH) and next-generation sequencing (NGS) in a series of MDS and MDS/myeloproliferative neoplasms (MPN) patients. 301 patients diagnosed with MDS (n = 240) or MDS/MPN (n = 61) were studied at the time of diagnosis. A genome-wide analysis of DNA copy number abnormalities was performed. In addition, a mutational analysis of DNMT3A, TET2, RUNX1, TP53 and BCOR genes was performed by NGS in selected cases. 285 abnormalities were identified in 71 patients (23.6%). Three high-risk MDS cases (1.2%) displayed chromothripsis involving exclusively chromosome 13 and affecting some cancer genes: FLT3, BRCA2 and RB1. All three cases carried TP53 mutations as revealed by NGS. Moreover, in the whole series, the integrative analysis of aCGH and NGS enabled the identification of cryptic recurrent deletions in 2p23.3 (DNMT3A; n = 2.8%), 4q24 (TET2; n = 10%) 17p13 (TP53; n = 8.5%), 21q22 (RUNX1; n = 7%), and Xp11.4 (BCOR; n = 2.8%), while mutations in the non-deleted allele where found only in DNMT3A (n = 1), TET2 (n = 3), and TP53 (n = 4). These cryptic abnormalities were detected mainly in patients with normal (45%) or non-informative (15%) karyotype by conventional cytogenetics, except for those with TP53 deletion and mutation (15%), which had a complex karyotype. In addition to well-known copy number defects, the presence of chromothripsis involving chromosome 13 was a novel recurrent change in high-risk MDS patients. Array CGH analysis revealed the presence of cryptic abnormalities in genomic regions where MDS-related genes, such as TET2, DNMT3A, RUNX1 and BCOR, are located.
Collapse
Affiliation(s)
- María Abáigar
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Cristina Robledo
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Rocío Benito
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Fernando Ramos
- IBIOMED, Instituto de Biomedicina, Universidad de León, León, Spain
- Servicio de Hematología, Hospital Universitario de León, León, Spain
| | - María Díez-Campelo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Lourdes Hermosín
- Servicio de Hematología, Hospital Jerez de la Frontera, Cádiz, Spain
| | | | - Jose M. Alonso
- Servicio de Hematología, Hospital Río Carrión, Palencia, Spain
| | - Rebeca Cuello
- Servicio de Hematología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Marta Megido
- Servicio de Hematología, Hospital del Bierzo, Ponferrada, Spain
| | | | | | - Carlos Aguilar
- Servicio de Hematología, Hospital General de Soria, Soria, Spain
| | - Manuel Vargas
- Servicio de Hematología, Hospital Comarcal de Jarrio, Jarrio-Coaña, Spain
| | - Ana A. Martín
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Juan L. García
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Alexander Kohlmann
- AstraZeneca, Personalized Healthcare and Biomarkers, Innovative Medicines and Early Development, Cambridge, United Kingdom
| | - M. Consuelo del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Jesús M. Hernández-Rivas
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
52
|
Difference Makers: Chromosomal Instability versus Aneuploidy in Cancer. Trends Cancer 2016; 2:561-571. [DOI: 10.1016/j.trecan.2016.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/26/2016] [Accepted: 09/01/2016] [Indexed: 01/06/2023]
|
53
|
Willis RE. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment. Int J Mol Sci 2016; 17:ijms17091552. [PMID: 27649156 PMCID: PMC5037825 DOI: 10.3390/ijms17091552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis.
Collapse
Affiliation(s)
- Rudolph E Willis
- OncoStem Biotherapeutics LLC, 423 W 127th St., New York, NY 10027, USA.
| |
Collapse
|
54
|
Koirala P, Roth ME, Gill J, Chinai JM, Ewart MR, Piperdi S, Geller DS, Hoang BH, Fatakhova YV, Ghorpade M, Zang X, Gorlick R. HHLA2, a member of the B7 family, is expressed in human osteosarcoma and is associated with metastases and worse survival. Sci Rep 2016; 6:31154. [PMID: 27531281 PMCID: PMC4987662 DOI: 10.1038/srep31154] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/11/2016] [Indexed: 12/02/2022] Open
Abstract
Over the past four decades there have been minimal improvements in outcomes for patients with osteosarcoma. New targets and novel therapies are needed to improve outcomes for these patients. We sought to evaluate the prevalence and clinical significance of the newest immune checkpoint, HHLA2, in osteosarcoma. HHLA2 protein expression was evaluated in primary tumor specimens and metastatic disease using an osteosarcoma tumor microarray (TMA) (n = 62). The association of HHLA2 with the presence of tumor infiltrating lymphocytes (TILs) and five-year-event-free-survival were examined. HHLA2 was expressed in 68% of osteosarcoma tumors. HHLA2 was expressed in almost all metastatic disease specimens and was more prevalent than in primary specimens without known metastases (93% vs 53%, p = 0.02). TILs were present in 75% of all osteosarcoma specimens. Patients whose tumors were ≥25% or ≥50% HHLA2 positive had significantly worse five-year event-free-survival (33% vs 64%, p = 0.03 and 14% vs 59%, p = 0.02). Overall, we have shown that HHLA2 is expressed in the majority of osteosarcoma tumors and its expression is associated with metastatic disease and poorer survival. Along with previously reported findings that HHLA2 is a T cell co-inhibitor, these results suggest that HHLA2 may be a novel immunosuppressive mechanism within the osteosarcoma tumor microenvironment.
Collapse
Affiliation(s)
- Pratistha Koirala
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael E Roth
- Division of Pediatric Hematology, Oncology, Marrow &Blood Cell Transplantation, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jonathan Gill
- Division of Pediatric Hematology, Oncology, Marrow &Blood Cell Transplantation, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jordan M Chinai
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michelle R Ewart
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sajida Piperdi
- Division of Pediatric Hematology, Oncology, Marrow &Blood Cell Transplantation, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Division of Pediatric Hematology, Oncology, Marrow &Blood Cell Transplantation, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Maya Ghorpade
- Division of Pediatric Hematology, Oncology, Marrow &Blood Cell Transplantation, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Gorlick
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Pediatric Hematology, Oncology, Marrow &Blood Cell Transplantation, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
55
|
Kovtun IV, Murphy SJ, Johnson SH, Cheville JC, Vasmatzis G. Chromosomal catastrophe is a frequent event in clinically insignificant prostate cancer. Oncotarget 2016; 6:29087-96. [PMID: 26337081 PMCID: PMC4745713 DOI: 10.18632/oncotarget.4900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/11/2015] [Indexed: 11/27/2022] Open
Abstract
Massive genomic rearrangements, a result of single catastrophic event termed chromothrispsis or chromosomal catastrophe, have been identified in a variety of human cancers. In a few cancer types, chromothripsis was found to be associated with poor prognosis. We performed mate-pair sequencing and analysis of structural rearrangements in 132 prostate cancer cases which included clinically insignificant Gleason score 6 tumors, clinically significant tumors of higher grade (7+) and high grade prostatic intraepithelial neoplasia. Chromothripsis was observed at least 30 per cent of the samples across different grades. Surprisingly, it was frequently observed in clinically insignificant Gleason score 6 tumors, indicating that chromothripsis does not define more aggressive phenotype. The degree of chromothripsis did not increase significantly in tumors of advanced grades and did not appear to contribute to tumor progression. Our data showed that distribution of chromothriptic rearrangements differed from that of fragile sites but correlated with the size of chromosomes. We also provided evidence that rearrangements resulting from chromothripsis were present in the cells of neighboring Gleason patterns of the same tumor. Our data suggest that that chromothripsis plays role in prostate cancer initiation.
Collapse
Affiliation(s)
- Irina V Kovtun
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Department of Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen J Murphy
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah H Johnson
- Department of Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
56
|
Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci Rep 2016; 6:30093. [PMID: 27456063 PMCID: PMC4960483 DOI: 10.1038/srep30093] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma patient survival has remained stagnant for 30 years. Novel therapeutic approaches are needed to improve outcomes. We examined the expression of Programmed Death Ligand 1 (PD-L1) and defined the tumor immune microenvironment to assess the prognostic utility in osteosarcoma. PD-L1 expression in osteosarcoma was examined in two patient cohorts using immunohistochemistry (IHC) (n = 48, n = 59) and expression was validated using quantitative real time PCR (n = 21) and western blotting (n = 9). IHC was used to determine the presence of tumor infiltrating lymphocytes and antigen-presenting cells (APCs) in the tumor. Expression of PD-L1 was correlated with immune cell infiltration and event-free-survival (EFS). The 25% of primary osteosarcoma tumors that express PD-L1 were more likely to contain cells that express PD-1 than PD-L1 negative tumors (91.7% vs 47.2%, p = 0.002). Expression of PD-L1 was significantly associated with the presence of T cells, dendritic cells, and natural killer cells. Although all immune cell types examined were present in osteosarcoma samples, only infiltration by dendritic cells (28.3% vs. 83.9%, p = 0.001) and macrophages (45.5% vs. 84.4%, p = 0.031) were associated with worse five-year-EFS. PD-L1 expression was significantly associated with poorer five-year-EFS (25.0%. vs. 69.4%, p = 0.014). Further studies in osteosarcoma are needed to determine if targeting the PD-L1:PD-1 axis improves survival.
Collapse
|
57
|
Habermann N, Mardin BR, Yakneen S, Korbel JO. Using large-scale genome variation cohorts to decipher the molecular mechanism of cancer. C R Biol 2016; 339:308-13. [PMID: 27342254 DOI: 10.1016/j.crvi.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 12/18/2022]
Abstract
Characterizing genomic structural variations (SVs) in the human genome remains challenging, and there is a growing interest to understand somatic SVs occurring in cancer, a disease of the genome. A havoc-causing SV process known as chromothripsis scars the genome when localized chromosome shattering and repair occur in a one-off catastrophe. Recent efforts led to the development of a set of conceptual criteria for the inference of chromothripsis events in cancer genomes and to the development of experimental model systems for studying this striking DNA alteration process in vitro. We discuss these approaches, and additionally touch upon current "Big Data" efforts that employ hybrid cloud computing to enable studies of numerous cancer genomes in an effort to search for commonalities and differences in molecular DNA alteration processes in cancer.
Collapse
Affiliation(s)
- Nina Habermann
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Balca R Mardin
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Sergei Yakneen
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, CB10 1SD Cambridge, UK.
| |
Collapse
|
58
|
Abstract
The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1+/- mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis.
Collapse
Affiliation(s)
- Lukas Tamayo-Orrego
- a Molecular Biology of Neural Development , Institut de Recherches Cliniques de Montréal (IRCM) , Montreal , Quebec , Canada.,b Integrated Program in Neuroscience , McGill University , Montreal , Quebec , Canada
| | - Shannon M Swikert
- a Molecular Biology of Neural Development , Institut de Recherches Cliniques de Montréal (IRCM) , Montreal , Quebec , Canada.,b Integrated Program in Neuroscience , McGill University , Montreal , Quebec , Canada
| | - Frédéric Charron
- a Molecular Biology of Neural Development , Institut de Recherches Cliniques de Montréal (IRCM) , Montreal , Quebec , Canada.,b Integrated Program in Neuroscience , McGill University , Montreal , Quebec , Canada.,c Department of Medicine , University of Montreal , Montreal , Quebec , Canada.,d Division of Experimental Medicine , Department of Medicine, Department of Anatomy and Cell Biology, Department of Biology , McGill University , Quebec , Canada
| |
Collapse
|
59
|
Del Rey J, Santos M, González-Meneses A, Milà M, Fuster C. Heterogeneity of a Constitutional Complex Chromosomal Rearrangement in 2q. Cytogenet Genome Res 2016; 148:156-64. [PMID: 27216161 DOI: 10.1159/000445859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 11/19/2022] Open
Abstract
Complex chromosome rearrangements (CCRs) are unusual structural chromosome alterations found in humans, and to date only a few have been characterized molecularly. New mechanisms, such as chromothripsis, have been proposed to explain the presence of the CCRs in cancer cells and in patients with congenital disorders and/or mental retardation. The aim of the present study was the molecular characterization of a constitutional CCR in a girl with multiple congenital disorders and intellectual disability in order to determine the genotype-phenotype relation and to clarify whether the CCR could have been caused by chromosomal catastrophic events. The present CCR was characterized by G-banding, high-resolution CGH, multiplex ligation-dependent probe amplification and subtelomeric 2q-FISH analyses. Preliminary results indicate that the de novo CCR is unbalanced showing a 2q37.3 deletion and 2q34q37.2 partial trisomy. Our patient shows some of the typical traits and intellectual disability described in patients with 2q37 deletion and also in carriers of 2q34q37.2 partial trisomy; thus, the clinical disorders could be explained by additional effects of both chromosome alterations (deletions and duplications). A posterior, sequential FISH study using BAC probes revealed the unexpected presence of at least 17 different reorganizations affecting 2q34q37.2, suggesting the existence of chromosome instability in this region. The present CCR is the first case described in the literature of heterogeneity of unbalanced CCRs affecting a small region of 2q, indicating that the mechanisms involved in constitutional chromosome rearrangement may be more complex than previously thought.
Collapse
Affiliation(s)
- Javier Del Rey
- Unitat de Biologia Celx00B7;lular i Genx00E8;tica Mx00E8;dica, Facultat de Medicina, Universitat Autx00F2;noma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
60
|
Nakayama Y, Inoue T. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons. Molecules 2016; 21:molecules21050663. [PMID: 27213315 PMCID: PMC6274067 DOI: 10.3390/molecules21050663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubule poisons inhibit spindle function, leading to activation of spindle assembly checkpoint (SAC) and mitotic arrest. Cell death occurring in prolonged mitosis is the first target of microtubule poisons in cancer therapies. However, even in the presence of microtubule poisons, SAC and mitotic arrest are not permanent, and the surviving cells exit the mitosis without cytokinesis (mitotic slippage), becoming tetraploid. Another target of microtubule poisons-based cancer therapy is antiproliferative fate after mitotic slippage. The ultimate goal of both the microtubule poisons-based cancer therapies involves the induction of a mechanism defined as mitotic catastrophe, which is a bona fide intrinsic oncosuppressive mechanism that senses mitotic failure and responds by driving a cell to an irreversible antiproliferative fate of death or senescence. This mechanism of antiproliferative fate after mitotic slippage is not as well understood. We provide an overview of mitotic catastrophe, and explain new insights underscoring a causal association between basal autophagy levels and antiproliferative fate after mitotic slippage, and propose possible improved strategies. Additionally, we discuss nuclear alterations characterizing the mitotic catastrophe (micronuclei, multinuclei) after mitotic slippage, and a possible new type of nuclear alteration (clustered micronuclei).
Collapse
Affiliation(s)
- Yuji Nakayama
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| | - Toshiaki Inoue
- Division of Human Genome Science, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
61
|
BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nat Struct Mol Biol 2016; 23:540-8. [PMID: 27159561 PMCID: PMC4899182 DOI: 10.1038/nsmb.3228] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
Abstract
Bromodomain protein 4 (BRD4) is a chromatin-binding protein implicated in cancer and autoimmune diseases that functions as a scaffold for transcription factors at promoters and super-enhancers. Whereas chromatin de-compaction and transcriptional activation of target genes are associated with BRD4 binding, the mechanism(s) involved are unknown. We report that BRD4 is a novel histone acetyltransferase (HAT) that acetylates histones H3 and H4 with a pattern distinct from other HAT’s. Both mouse and human BRD4 demonstrate intrinsic HAT activity. Importantly, BRD4 acetylates H3K122, a residue critical for nucleosome stability, resulting in nucleosome eviction and chromatin de-compaction. Nucleosome clearance by BRD4 occurs genome-wide, including at its targets MYC, FOS and AURKB (Aurora B kinase), resulting in increased transcription. Since BRD4 regulates transcription, these findings lead to a model where BRD4 actively links chromatin structure and transcription: It mediates chromatin de-compaction by acetylating and evicting nucleosomes of target genes, thereby activating their transcription.
Collapse
|
62
|
Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat Res 2016; 789:15-25. [PMID: 27208973 DOI: 10.1016/j.mrfmmm.2016.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/17/2016] [Accepted: 05/01/2016] [Indexed: 12/30/2022]
Abstract
The recent demonstration that massive scale chromosomal shattering or pulverization can occur abruptly due to errors induced by interference with the microtubule machinery of the mitotic spindle followed by haphazard chromosomal annealing, together with sophisticated insights from epigenetics, provide profound mechanistic insights into some of the most perplexing classical observations of addiction medicine, including cancerogenesis, the younger and aggressive onset of addiction-related carcinogenesis, the heritability of addictive neurocircuitry and cancers, and foetal malformations. Tetrahydrocannabinol (THC) and other addictive agents have been shown to inhibit tubulin polymerization which perturbs the formation and function of the microtubules of the mitotic spindle. This disruption of the mitotic machinery perturbs proper chromosomal segregation during anaphase and causes micronucleus formation which is the primary locus and cause of the chromosomal pulverization of chromothripsis and downstream genotoxic events including oncogene induction and tumour suppressor silencing. Moreover the complementation of multiple positive cannabis-cancer epidemiological studies, and replicated dose-response relationships with established mechanisms fulfils causal criteria. This information is also consistent with data showing acceleration of the aging process by drugs of addiction including alcohol, tobacco, cannabis, stimulants and opioids. THC shows a non-linear sigmoidal dose-response relationship in multiple pertinent in vitro and preclinical genotoxicity assays, and in this respect is similar to the serious major human mutagen thalidomide. Rising community exposure, tissue storage of cannabinoids, and increasingly potent phytocannabinoid sources, suggests that the threshold mutagenic dose for cancerogenesis will increasingly be crossed beyond the developing world, and raise transgenerational transmission of teratogenicity as an increasing concern.
Collapse
|
63
|
Forero-Castro M, Robledo C, Benito R, Abáigar M, África Martín A, Arefi M, Fuster JL, de las Heras N, Rodríguez JN, Quintero J, Riesco S, Hermosín L, de la Fuente I, Recio I, Ribera J, Labrador J, Alonso JM, Olivier C, Sierra M, Megido M, Corchete-Sánchez LA, Ciudad Pizarro J, García JL, Ribera JM, Hernández-Rivas JM. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome. PLoS One 2016; 11:e0148972. [PMID: 26872047 PMCID: PMC4752220 DOI: 10.1371/journal.pone.0148972] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL) is still a challenge. Aims: To characterize the presence of additional DNA copy number alterations (CNAs) in children and adults with ALL by whole-genome oligonucleotide array (aCGH) analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults). The NimbleGen CGH 12x135K array (Roche) was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q). CNAs were associated with age, phenotype, genetic subtype and overall survival (OS). In the whole cohort of children, the losses on 14q32.33 (p = 0.019) and 15q13.2 (p = 0.04) were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001) and Xp21.1 (p = 0.029), and the loss of 17p (p = 0.014) were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.
Collapse
Affiliation(s)
- Maribel Forero-Castro
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
- School of Biological Sciences (GEBIMOL), Pedagogical and Technological University of Colombia (UPTC), Tunja, Colombia
| | - Cristina Robledo
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
| | - Rocío Benito
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
| | - María Abáigar
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
| | - Ana África Martín
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Maryam Arefi
- Department of Hematology, Clinical University Hospital of Valladolid, Valladolid, Spain
| | - José Luis Fuster
- Department of Pediatric Oncohematology, Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
| | | | - Juan N. Rodríguez
- Department of Hematology, Juan Ramón Jiménez Hospital, Huelva, Spain
| | | | - Susana Riesco
- Department of Pediatric Oncohematology, University Hospital of Salamanca, Salamanca, Spain
| | - Lourdes Hermosín
- Department of Hematology, Jerez Hospital, Jerez de la Frontera, Cádiz, Spain
| | | | - Isabel Recio
- Department of Hematology, Nuestra Señora de Sonsoles Hospital, Avila, Spain
| | - Jordi Ribera
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Jorge Labrador
- Department of Hematology, University Hospital of Burgos, Burgos, Spain
| | - José M. Alonso
- Department of Hematology, Rio Carrión Hospital, Palencia, Spain
| | - Carmen Olivier
- Department of Hematology, General Hospital of Segovia, Segovia, Spain
| | - Magdalena Sierra
- Department of Hematology, Virgen de la Concha Hospital, Zamora, Spain
| | - Marta Megido
- Department of Hematology, Bierzo Hospital, León/Ponferrada, Spain
| | | | - Juana Ciudad Pizarro
- Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Juan Luis García
- Institute of Health Science Studies of Castile and León (IESCYL), Salamanca, Spain
| | - José M. Ribera
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Jesús M. Hernández-Rivas
- IBSAL, IBMCC, University of Salamanca, CSIC, Cancer Research Center, Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
64
|
Abstract
The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.
Collapse
|
65
|
Formation of Nup98-containing nuclear bodies in HeLa sublines is linked to genomic rearrangements affecting chromosome 11. Chromosoma 2015; 125:789-805. [PMID: 26685999 DOI: 10.1007/s00412-015-0567-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/06/2015] [Accepted: 12/10/2015] [Indexed: 01/23/2023]
Abstract
Nup98 is an important component of the nuclear pore complex (NPC) and also a rare but recurrent target for chromosomal translocation in leukaemogenesis. Nup98 contains multiple cohesive Gly-Leu-Phe-Gly (GLFG) repeats that are critical notably for the formation of intranuclear GLFG bodies. Previous studies have reported the existence of GLFG bodies in cells overexpressing exogenous Nup98 or in a HeLa subline (HeLa-C) expressing an unusual elevated amount of endogenous Nup98. Here, we have analysed the presence of Nup98-containing bodies in several human cell lines. We found that HEp-2, another HeLa subline, contains GLFG bodies that are distinct from those identified in HeLa-C. Rapid amplification of cDNA ends (RACE) revealed that HEp-2 cells express additional truncated forms of Nup98 fused to a non-coding region of chromosome 11q22.1. Cytogenetic analyses using FISH and array-CGH further revealed chromosomal rearrangements that were distinct from those observed in leukaemic cells. Indeed, HEp-2 cells feature a massive amplification of juxtaposed NUP98 and 11q22.1 loci on a chromosome marker derived from chromosome 3. Unexpectedly, minor co-amplifications of NUP98 and 11q22.1 loci were also observed in other HeLa sublines, but on rearranged chromosomes 11. Altogether, this study reveals that distinct genomic rearrangements affecting NUP98 are associated with the formation of GLFG bodies in specific HeLa sublines.
Collapse
|
66
|
Kimura K, Koike A. Analysis of genomic rearrangements by using the Burrows-Wheeler transform of short-read data. BMC Bioinformatics 2015; 16 Suppl 18:S5. [PMID: 26678411 PMCID: PMC4708002 DOI: 10.1186/1471-2105-16-s18-s5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background The potential utility of the Burrows-Wheeler transform (BWT) of a large amount of short-read data ("reads") has not been fully studied. The BWT basically serves as a lossless dictionary of reads, unlike the heuristic and lossy reads-to-genome mapping results conventionally obtained in the first step of sequence analysis. Thus, it is naturally expected to lead to development of sensitive methods for analysis of short-read data. Recently, one of the most active areas of research in sequence analysis is sensitive detection of rare genomic rearrangements from whole-genome sequencing (WGS) data of heterogeneous cancer samples. The application the BWT of reads to the analysis of genomic rearrangements is addressed in this study. Results A new method for sensitive detection of genomic rearrangements by using the BWT of reads in the following three steps is proposed: first, breakpoint regions, which contain breakpoints and are joined together by rearrangement, are predicted from the distribution of so-called discordant pairs by using a kind of the conjugate gradient method; second, reads partially matching the breakpoint regions are collected from the BWT of reads; and third, breakpoints are detected as branching points among the collected reads, and their precise positions are determined. The method was experimentally implemented, and its performance (i.e., sensitivity and specificity) was evaluated by using simulated data with known artificial rearrangements. It was applied to publicly available real biological WGS data of cancer patients, and the detection results were compared with published results. Conclusions Serving as a lossless dictionary of reads, the BWT of short reads enables sensitive analysis of genomic rearrangements in heterogeneous cancer-genome samples when used in conjunction with breakpoint-region predictions based on a conjugate gradient method.
Collapse
|
67
|
Leibowitz ML, Zhang CZ, Pellman D. Chromothripsis: A New Mechanism for Rapid Karyotype Evolution. Annu Rev Genet 2015; 49:183-211. [DOI: 10.1146/annurev-genet-120213-092228] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mitchell L. Leibowitz
- Department of Pediatric Oncology,
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
| | - Cheng-Zhong Zhang
- Department of Pediatric Oncology,
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215;
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;
| | - David Pellman
- Department of Pediatric Oncology,
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;
- Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
68
|
Abstract
The combination of next-generation sequencing technologies and high-throughput genotyping platforms has revolutionized the pursuit of genetic variants that contribute towards disease. Furthermore, these technologies have provided invaluable insight into the genetic factors that prevent individuals from developing disease. Exploiting the evolutionary mechanisms that were designed by nature to help prevent disease is an attractive line of enquiry. Such efforts have the potential to generate a therapeutic target roadmap and rejuvenate the current drug-discovery pathway. By delineating the genomic factors that are protective against disease, there is potential to derive highly effective, genomically anchored medicines that assist in maintaining health.
Collapse
|
69
|
Mardin BR, Drainas AP, Waszak SM, Weischenfeldt J, Isokane M, Stütz AM, Raeder B, Efthymiopoulos T, Buccitelli C, Segura-Wang M, Northcott P, Pfister SM, Lichter P, Ellenberg J, Korbel JO. A cell-based model system links chromothripsis with hyperploidy. Mol Syst Biol 2015; 11:828. [PMID: 26415501 PMCID: PMC4592670 DOI: 10.15252/msb.20156505] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one-off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis has remained elusive. We developed an integrative method termed “complex alterations after selection and transformation (CAST),” enabling efficient in vitro generation of complex DNA rearrangements including chromothripsis, using cell perturbations coupled with a strong selection barrier followed by massively parallel sequencing. We employed this methodology to characterize catastrophic SR formation processes, their temporal sequence, and their impact on gene expression and cell division. Our in vitro system uncovered a propensity of chromothripsis to occur in cells with damaged telomeres, and in particular in hyperploid cells. Analysis of primary medulloblastoma cancer genomes verified the link between hyperploidy and chromothripsis in vivo. CAST provides the foundation for mechanistic dissection of complex DNA rearrangement processes.
Collapse
Affiliation(s)
- Balca R Mardin
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | - Sebastian M Waszak
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | - Mayumi Isokane
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | | | - Maia Segura-Wang
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Paul Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Ellenberg
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
70
|
Bertelsen B, Nazaryan-Petersen L, Sun W, Mehrjouy MM, Xie G, Chen W, Hjermind LE, Taschner PEM, Tümer Z. A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med 2015; 18:494-500. [PMID: 26312826 DOI: 10.1038/gim.2015.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Parentally transmitted germ-line chromothripsis (G-CTH) has been identified in only a few cases. Most of these rearrangements were stably transmitted, in an unbalanced form, from a healthy mother to her child with congenital abnormalities probably caused by de novo copy-number changes of dosage sensitive genes. We describe a G-CTH transmitted through three generations in 11 healthy carriers. METHODS Conventional cytogenetic analysis, mate-pair sequencing, and polymerase chain reaction (PCR) were used to identify the chromosome rearrangement and characterize the breakpoints in all three generations. RESULTS We identified an apparently balanced translocation t(3;5), later shown to be a G-CTH, in all individuals of a three-generation family. The G-CTH stably segregated without occurrence of additional rearrangements; however, several spontaneous abortions were reported, possibly due to unbalanced transmission. Although seven protein-coding genes are interrupted, no clinical features can be definitively attributed to the affected genes. However, it can be speculated that truncation of one of these genes, encoding ataxia-telangiectasia and Rad3-related protein kinase (ATR), a key component of the DNA damage response, may be related to G-CTH formation. CONCLUSION G-CTH rearrangements are not always associated with abnormal phenotypes and may be misinterpreted as balanced two-way translocations, suggesting that G-CTH is an underdiagnosed phenomenon.Genet Med 18 5, 494-500.
Collapse
Affiliation(s)
- Birgitte Bertelsen
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Glostrup, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Glostrup, Denmark
| | - Wei Sun
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Mana M Mehrjouy
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Gangcai Xie
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Wei Chen
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Lena E Hjermind
- Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, and Department of Cellular and Molecular Medicine, Section of Neurogenetics, University of Copenhagen, Copenhagen, Denmark
| | - Peter E M Taschner
- Generade Center of Expertise Genomics; University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Zeynep Tümer
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Glostrup, Denmark
| |
Collapse
|
71
|
Abstract
Chromothripsis is a recently recognized mode of genetic instability that generates chromosomes with strikingly large numbers of segmental re-arrangements. While the characterization of these derivative chromosomes has provided new insights into the processes by which cancer genomes can evolve, the underlying signaling events and molecular mechanisms remain unknown. In medulloblastomas, chromothripsis has been observed to occur in the context of mutational inactivation of p53 and activation of the canonical Hedgehog (Hh) pathway. Recent studies have illuminated mechanistic links between these 2 signaling pathways, including a novel PTCH1 homolog that is regulated by p53. Here, we integrate this new pathway into a hypothetical model for the catastrophic DNA breakage that appears to trigger profound chromosomal rearrangements.
Collapse
Affiliation(s)
- Robert Ivkov
- a Department of Radiation Oncology and Molecular Radiation Sciences ; The Kimmel Cancer Center at Johns Hopkins ; Baltimore MD USA
| | - Fred Bunz
- a Department of Radiation Oncology and Molecular Radiation Sciences ; The Kimmel Cancer Center at Johns Hopkins ; Baltimore MD USA
| |
Collapse
|
72
|
Replication stress in Mammalian cells and its consequences for mitosis. Genes (Basel) 2015; 6:267-98. [PMID: 26010955 PMCID: PMC4488665 DOI: 10.3390/genes6020267] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022] Open
Abstract
The faithful transmission of genetic information to daughter cells is central to maintaining genomic stability and relies on the accurate and complete duplication of genetic material during each cell cycle. However, the genome is routinely exposed to endogenous and exogenous stresses that can impede the progression of replication. Such replication stress can be an early cause of cancer or initiate senescence. Replication stress, which primarily occurs during S phase, results in consequences during mitosis, jeopardizing chromosome segregation and, in turn, genomic stability. The traces of replication stress can be detected in the daughter cells during G1 phase. Alterations in mitosis occur in two types: 1) local alterations that correspond to breaks, rearrangements, intertwined DNA molecules or non-separated sister chromatids that are confined to the region of the replication dysfunction; 2) genome-wide chromosome segregation resulting from centrosome amplification (although centrosomes do not contain DNA), which amplifies the local replication stress to the entire genome. Here, we discuss the endogenous causes of replication perturbations, the mechanisms of replication fork restart and the consequences for mitosis, chromosome segregation and genomic stability.
Collapse
|
73
|
Tan EH, Henry IM, Ravi M, Bradnam KR, Mandakova T, Marimuthu MP, Korf I, Lysak MA, Comai L, Chan SW. Catastrophic chromosomal restructuring during genome elimination in plants. eLife 2015; 4. [PMID: 25977984 PMCID: PMC4461816 DOI: 10.7554/elife.06516] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/14/2015] [Indexed: 11/13/2022] Open
Abstract
Genome instability is associated with mitotic errors and cancer. This phenomenon can lead to deleterious rearrangements, but also genetic novelty, and many questions regarding its genesis, fate and evolutionary role remain unanswered. Here, we describe extreme chromosomal restructuring during genome elimination, a process resulting from hybridization of Arabidopsis plants expressing different centromere histones H3. Shattered chromosomes are formed from the genome of the haploid inducer, consistent with genomic catastrophes affecting a single, laggard chromosome compartmentalized within a micronucleus. Analysis of breakpoint junctions implicates breaks followed by repair through non-homologous end joining (NHEJ) or stalled fork repair. Furthermore, mutation of required NHEJ factor DNA Ligase 4 results in enhanced haploid recovery. Lastly, heritability and stability of a rearranged chromosome suggest a potential for enduring genomic novelty. These findings provide a tractable, natural system towards investigating the causes and mechanisms of complex genomic rearrangements similar to those associated with several human disorders. DOI:http://dx.doi.org/10.7554/eLife.06516.001 The genome of an individual organism contains all the instructions needed to build and maintain that individual. Any changes to the DNA in the genome can alter the instructions that are given to cells, which can lead to cancer and other diseases. However, changes to the genome can sometimes be beneficial as they can introduce more variety into the instructions carried by different individuals, which increases their potential to adapt to changes in their environment. In plants and animals, DNA is arranged into structures called chromosomes. Generally, an individual's genome contains two copies of each chromosome; one inherited from their mother and one from their father. However, occasionally during reproduction, all the chromosomes from one of the parents are left out from the cells of the offspring in a process called ‘genome elimination’. This makes individuals that carry only half the normal number of chromosomes, known as haploids. Sometimes the process of genome elimination is disrupted, which leads to individuals that have incomplete genomes or chromosomes that carry big rearrangements of the DNA, as if they had been shattered and put back together incorrectly. In a small plant known as Arabidopsis thaliana, genome elimination frequently happens in the offspring of two individuals that carry different versions of a gene called centromeric histone H3 (CENH3). However, it is not clear how this works, or what roles genome elimination plays in evolution and disease. Here, Tan et al. studied genome elimination by cross-breeding Arabidopsis plants that carried a mutant form of CENH3 with plants that have a normal version of the protein. The experiments found that many of the offspring were haploid. Some of the others carried an extra copy of an entire chromosome or a section of a chromosome. A third group had an extra copy of a chromosome that was missing some sections or had been rearranged. These ‘shattered’ chromosomes were always formed from chromosomes that came from the parent plant with a mutant form of CENH3. Tan et al. also found that a protein called DNA Ligase 4, which helps reconnect broken DNA strands, is involved in repairing the breaks in these shattered chromosomes. Some of the genetic rearrangements documented in the experiments were passed on to subsequent generations of plants, which suggests that these genomic changes can be stable enough to be inherited. The genomic rearrangements observed in the Arabidopsis plants are similar to those seen in patients with cancer and other genetic diseases. Tan et al. findings show that Arabidopsis plants provide a useful system for studying these genome rearrangements, which may inform efforts to treat these human diseases. DOI:http://dx.doi.org/10.7554/eLife.06516.002
Collapse
Affiliation(s)
- Ek Han Tan
- Department of Plant Biology, University of California, Davis, Davis, United States.,Genome Center, University of California, Davis, Davis, United States
| | - Isabelle M Henry
- Department of Plant Biology, University of California, Davis, Davis, United States.,Genome Center, University of California, Davis, Davis, United States
| | - Maruthachalam Ravi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | - Keith R Bradnam
- Genome Center, University of California, Davis, Davis, United States
| | - Terezie Mandakova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mohan Pa Marimuthu
- Department of Plant Biology, University of California, Davis, Davis, United States.,Genome Center, University of California, Davis, Davis, United States
| | - Ian Korf
- Genome Center, University of California, Davis, Davis, United States.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Luca Comai
- Department of Plant Biology, University of California, Davis, Davis, United States.,Genome Center, University of California, Davis, Davis, United States
| | - Simon Wl Chan
- Department of Plant Biology, University of California, Davis, Davis, United States.,Gordon and Betty Moore Foundation, Howard Hughes Medical Institute, University of California, Davis, Davis, United States
| |
Collapse
|
74
|
De La Fuente R, Baumann C, Viveiros MM. ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo. Development 2015; 142:1806-17. [PMID: 25926359 DOI: 10.1242/dev.118927] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/24/2015] [Indexed: 01/25/2023]
Abstract
A striking proportion of human cleavage-stage embryos exhibit chromosome instability (CIN). Notably, until now, no experimental model has been described to determine the origin and mechanisms of complex chromosomal rearrangements. Here, we examined mouse embryos deficient for the chromatin remodeling protein ATRX to determine the cellular mechanisms activated in response to CIN. We demonstrate that ATRX is required for silencing of major satellite transcripts in the maternal genome, where it confers epigenetic asymmetry to pericentric heterochromatin during the transition to the first mitosis. This stage is also characterized by a striking kinetochore size asymmetry established by differences in CENP-C protein between the parental genomes. Loss of ATRX results in increased centromeric mitotic recombination, a high frequency of sister chromatid exchanges and double strand DNA breaks, indicating the formation of mitotic recombination break points. ATRX-deficient embryos exhibit a twofold increase in transcripts for aurora kinase B, the centromeric cohesin ESCO2, DNMT1, the ubiquitin-ligase (DZIP3) and the histone methyl transferase (EHMT1). Thus, loss of ATRX activates a pathway that integrates epigenetic modifications and DNA repair in response to chromosome breaks. These results reveal the cellular response of the cleavage-stage embryo to CIN and uncover a mechanism by which centromeric fission induces the formation of large-scale chromosomal rearrangements. Our results have important implications to determine the epigenetic origins of CIN that lead to congenital birth defects and early pregnancy loss, as well as the mechanisms involved in the oocyte to embryo transition.
Collapse
Affiliation(s)
- Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
75
|
Abstract
With the advent of next-generation sequencing technologies, we have witnessed a rapid pace of discovery of new patterns of somatic structural variation in cancer genomes, and an attempt to figure out their underlying mechanisms. Some of these mechanisms are associated with particular cancer types, and in some cases are the main cause of the structural mutations that drive the oncogenic process. This review provides an overview of the patterns of somatic structural variation and chromosomal structures that characterize cancer genomes, their causal mechanisms and their impact in oncogenesis.
Collapse
|
76
|
Bekier ME, Mazur T, Rashid MS, Taylor WR. Borealin dimerization mediates optimal CPC checkpoint function by enhancing localization to centromeres and kinetochores. Nat Commun 2015; 6:6775. [PMID: 25854549 PMCID: PMC4392389 DOI: 10.1038/ncomms7775] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
The Chromosomal Passenger Complex (CPC) localizes to centromeres where it activates the mitotic checkpoint in response to inappropriate inter-kinetochore tension. This error correction function is essential for proper chromosome segregation. Here we define several critical features of CPC localization and function. First, the Borealin dimerization domain suppresses dynamic exchange at the centromere to allow optimal CPC function. Second, Borealin dimerization is essential to target a subpopulation of CPC proximal to the kinetochore when the mitotic spindle is disrupted. This subpopulation is also needed for full CPC checkpoint function. The existence of a pool of CPC at the kinetochore suggests that error correction is more complicated than predicted from the Aurora B phosphorylation gradient model. Finally, Haspin kinase plays a key role in maintaining the slowly exchanging centromere Borealin pool, while Aurora B and Mps1 play minimal roles in maintaining CPC localization once cells are in mitosis.
Collapse
Affiliation(s)
- Michael E Bekier
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, MS 601, Toledo, Ohio 43606, USA
| | - Travis Mazur
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, MS 601, Toledo, Ohio 43606, USA
| | - Maisha S Rashid
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, MS 601, Toledo, Ohio 43606, USA
| | - William R Taylor
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, MS 601, Toledo, Ohio 43606, USA
| |
Collapse
|
77
|
Mahaseth T, Kuzminov A. Cyanide enhances hydrogen peroxide toxicity by recruiting endogenous iron to trigger catastrophic chromosomal fragmentation. Mol Microbiol 2015; 96:349-67. [PMID: 25598241 DOI: 10.1111/mmi.12938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 11/28/2022]
Abstract
Hydrogen peroxide (HP) or cyanide (CN) are bacteriostatic at low-millimolar concentrations for growing Escherichia coli, whereas CN + HP mixture is strongly bactericidal. We show that this synergistic toxicity is associated with catastrophic chromosomal fragmentation. Since CN alone does not kill at any concentration, while HP alone kills at 20 mM, CN must potentiate HP poisoning. The CN + HP killing is blocked by iron chelators, suggesting Fenton's reaction. Indeed, we show that CN enhances plasmid DNA relaxation due to Fenton's reaction in vitro. However, mutants with elevated iron or HP pools are not acutely sensitive to HP-alone treatment, suggesting that, in addition, in vivo CN recruits iron from intracellular depots. We found that part of the CN-recruited iron pool is managed by ferritin and Dps: ferritin releases iron on cue from CN, while Dps sequesters it, quelling Fenton's reaction. We propose that disrupting intracellular iron trafficking is a common strategy employed by the immune system to kill microbes.
Collapse
Affiliation(s)
- Tulip Mahaseth
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801-3709, USA
| | | |
Collapse
|
78
|
McDermott DH, Gao JL, Liu Q, Siwicki M, Martens C, Jacobs P, Velez D, Yim E, Bryke CR, Hsu N, Dai Z, Marquesen MM, Stregevsky E, Kwatemaa N, Theobald N, Long Priel DA, Pittaluga S, Raffeld MA, Calvo KR, Maric I, Desmond R, Holmes KL, Kuhns DB, Balabanian K, Bachelerie F, Porcella SF, Malech HL, Murphy PM. Chromothriptic cure of WHIM syndrome. Cell 2015; 160:686-699. [PMID: 25662009 PMCID: PMC4329071 DOI: 10.1016/j.cell.2015.01.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/03/2014] [Accepted: 01/05/2015] [Indexed: 12/18/2022]
Abstract
Chromothripsis is a catastrophic cellular event recently described in cancer in which chromosomes undergo massive deletion and rearrangement. Here, we report a case in which chromothripsis spontaneously cured a patient with WHIM syndrome, an autosomal dominant combined immunodeficiency disease caused by gain-of-function mutation of the chemokine receptor CXCR4. In this patient, deletion of the disease allele, CXCR4(R334X), as well as 163 other genes from one copy of chromosome 2 occurred in a hematopoietic stem cell (HSC) that repopulated the myeloid but not the lymphoid lineage. In competitive mouse bone marrow (BM) transplantation experiments, Cxcr4 haploinsufficiency was sufficient to confer a strong long-term engraftment advantage of donor BM over BM from either wild-type or WHIM syndrome model mice, suggesting a potential mechanism for the patient's cure. Our findings suggest that partial inactivation of CXCR4 may have general utility as a strategy to promote HSC engraftment in transplantation.
Collapse
Affiliation(s)
- David H McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qian Liu
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Siwicki
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig Martens
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Paejonette Jacobs
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Velez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Yim
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine R Bryke
- Quest Diagnostics, Chantilly, VA 20151, USA; Department of Cytogenetics, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nancy Hsu
- Quest Diagnostics, Chantilly, VA 20151, USA; Department of Cytogenetics, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Zunyan Dai
- Quest Diagnostics, Chantilly, VA 20151, USA; Department of Human Genetics, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Martha M Marquesen
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elina Stregevsky
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nana Kwatemaa
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Narda Theobald
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra A Long Priel
- Clinical Services Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine R Calvo
- Division of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Irina Maric
- Division of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronan Desmond
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Haematology, Tallaght Hospital, Dublin 24, Ireland
| | - Kevin L Holmes
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas B Kuhns
- Clinical Services Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Karl Balabanian
- INSERM UMR- S996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, 92140 Clamart, France
| | - Françoise Bachelerie
- INSERM UMR- S996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, 92140 Clamart, France
| | - Stephen F Porcella
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
79
|
Vogt N, Gibaud A, Lemoine F, de la Grange P, Debatisse M, Malfoy B. Amplicon rearrangements during the extrachromosomal and intrachromosomal amplification process in a glioma. Nucleic Acids Res 2014; 42:13194-205. [PMID: 25378339 PMCID: PMC4245956 DOI: 10.1093/nar/gku1101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023] Open
Abstract
The mechanisms of gene amplification in tumour cells are poorly understood and the relationship between extrachromosomal DNA molecules, named double minutes (dmins), and intrachromosomal homogeneously staining regions (hsr) is not documented at nucleotide resolution. Using fluorescent in situ hybridization and whole genome sequencing, we studied a xenografted human oligodendroglioma where the co-amplification of the EGFR and MYC loci was present in the form of dmins at early passages and of an hsr at later passages. The amplified regions underwent multiple rearrangements and deletions during the formation of the dmins and their transformation into hsr. In both forms of amplification, non-homologous end-joining and microhomology-mediated end-joining rather than replication repair mechanisms prevailed in fusions. Small fragments, some of a few tens of base pairs, were associated in contigs. They came from clusters of breakpoints localized hundreds of kilobases apart in the amplified regions. The characteristics of some pairs of junctions suggest that at least some fragments were not fused randomly but could result from the concomitant repair of neighbouring breakpoints during the interaction of remote DNA sequences. This characterization at nucleotide resolution of the transition between extra- and intrachromosome amplifications highlights a hitherto uncharacterized organization of the amplified regions suggesting the involvement of new mechanisms in their formation.
Collapse
Affiliation(s)
- Nicolas Vogt
- Institut Curie, Centre de Recherche, F-75248 Paris, France CNRS, UMR3244, F-75248 Paris, France UPMC, F-75248 Paris, France
| | - Anne Gibaud
- Institut Curie, Centre de Recherche, F-75248 Paris, France CNRS, UMR3244, F-75248 Paris, France UPMC, F-75248 Paris, France
| | | | | | - Michelle Debatisse
- Institut Curie, Centre de Recherche, F-75248 Paris, France CNRS, UMR3244, F-75248 Paris, France UPMC, F-75248 Paris, France
| | - Bernard Malfoy
- Institut Curie, Centre de Recherche, F-75248 Paris, France CNRS, UMR3244, F-75248 Paris, France UPMC, F-75248 Paris, France
| |
Collapse
|
80
|
Pellestor F, Gatinois V, Puechberty J, Geneviève D, Lefort G. Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review. Fertil Steril 2014; 102:1785-96. [PMID: 25439810 DOI: 10.1016/j.fertnstert.2014.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To review the discovery of chromothripsis and analyze its impact on human reproduction. DESIGN Database and literature analysis. SETTING University hospital. PATIENT(S) Carriers of massive and complex chromosomal rearrangements. INTERVENTION(S) Cytogenetic analysis and molecular testing (fluorescence in situ hybridization, microarray, whole-genome sequencing). MAIN OUTCOME MEASURE(S) Chromothripsis occurrence in human gametes and preimplantation embryos, with regard to the potential causative mechanisms described in literature. RESULT(S) Databases were searched for the literature published up to March 2014. Chromothripsis is characterized by the shattering of one (or a few) chromosome segments followed by a haphazard reassembly of the fragments generated, arising through a single initial catastrophic event. Several mechanisms involving abortive apoptosis, telomere erosion, mitotic errors, micronuclei formation, and p53 inactivation might cause chromothripsis. The remarkable point is that all these plausible mechanisms have been identified in the field of human reproduction as causal factors for reproductive failures and the genesis of chromosomal abnormalities. Specific features of gametogenesis and early embryonic development such as the weakness of cell cycle and mitosis checkpoints and the rapid kinetics of division in germ cells and early cleavage embryos may contribute to the emergence of chromothripsis. CONCLUSION(S) The discovery of this new class of massive chromosomal rearrangement has deeply modified our understanding on the genesis of complex genomic rearrangements. Data presented in this review support the assumption that chromothripsis could operate in human germlines and during early embryonic development. Chromothripsis might arise more frequently than previously thought in both gametogenesis and early human embryogenesis.
Collapse
Affiliation(s)
- Franck Pellestor
- Laboratory of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, Montpellier, France; INSERM Unit Plasticity of the Genome and Aging, Institute of Functional Genomics, Montpellier, France.
| | - Vincent Gatinois
- Laboratory of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, Montpellier, France; INSERM Unit Plasticity of the Genome and Aging, Institute of Functional Genomics, Montpellier, France
| | - Jacques Puechberty
- Laboratory of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, Montpellier, France
| | - David Geneviève
- Laboratory of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, Montpellier, France
| | - Geneviève Lefort
- Laboratory of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, Montpellier, France
| |
Collapse
|
81
|
Mawer JSP, Leach DRF. Branch migration prevents DNA loss during double-strand break repair. PLoS Genet 2014; 10:e1004485. [PMID: 25102287 PMCID: PMC4125073 DOI: 10.1371/journal.pgen.1004485] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/18/2014] [Indexed: 11/19/2022] Open
Abstract
The repair of DNA double-strand breaks must be accurate to avoid genomic rearrangements that can lead to cell death and disease. This can be accomplished by promoting homologous recombination between correctly aligned sister chromosomes. Here, using a unique system for generating a site-specific DNA double-strand break in one copy of two replicating Escherichia coli sister chromosomes, we analyse the intermediates of sister-sister double-strand break repair. Using two-dimensional agarose gel electrophoresis, we show that when double-strand breaks are formed in the absence of RuvAB, 4-way DNA (Holliday) junctions are accumulated in a RecG-dependent manner, arguing against the long-standing view that the redundancy of RuvAB and RecG is in the resolution of Holliday junctions. Using pulsed-field gel electrophoresis, we explain the redundancy by showing that branch migration catalysed by RuvAB and RecG is required for stabilising the intermediates of repair as, when branch migration cannot take place, repair is aborted and DNA is lost at the break locus. We demonstrate that in the repair of correctly aligned sister chromosomes, an unstable early intermediate is stabilised by branch migration. This reliance on branch migration may have evolved to help promote recombination between correctly aligned sister chromosomes to prevent genomic rearrangements. Genetic recombination is critically important for the repair of DNA double-strand breaks and is the only repair mechanism available to the bacterium Escherichia coli. Repair requires that the appropriate location on an unbroken sister chromosome is recognised as a repair template, and this can be accomplished by a system that detects the presence of extensive DNA sequence identity. We show here that the two known branch migration activities of the cell, RuvAB and RecG, provide alternative mechanisms for stabilising early recombination intermediates. In their absence, broken DNA is extensively degraded at the site of the break consistent with abortion of recombination. It has previously been proposed that RuvABC and RecG can substitute for each other in the resolution of four-way Holliday junctions, whereas we show that they play a synergistic role in the formations of these junctions. Our results demonstrate that branch migration provides a mechanism capable of stabilising recombination intermediates when extensive DNA sequence homology is available, a reaction that may contribute to ensuring that repair occurs at an appropriate location on a sister chromosome.
Collapse
Affiliation(s)
- Julia S. P. Mawer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, Edinburgh, United Kingdom
| | - David R. F. Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
82
|
Sarova I, Brezinova J, Lhotska H, Berkova A, Ransdorfova S, Zemanova Z, Soukupova J, Michalova K. Jumping-like translocation-a rare chromosomal rearrangement in a patient with Burkitt lymphoma/leukemia. Cancer Genet 2014; 207:221-5. [PMID: 24957271 DOI: 10.1016/j.cancergen.2014.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/14/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022]
Abstract
Chromosomal translocations are acquired genetic rearrangements in human cancers. Jumping translocations are rare nonreciprocal rearrangements involving the same donor chromosome segment translocated to two or more recipient chromosomes. In this report, we describe a patient with Burkitt lymphoma/leukemia (BL) and a complex karyotype including a t(2;8)(p12;q24), copy-neutral loss of heterozygosity at 17p13.1-p13.3 and 19q13.1-q13.2, trisomy 20, and two uncommon chromosomal aberrations. The first uncommon aberration was a complex rearrangement of chromosome 15 (probably the consequence of chromothripsis) masked by an apparently balanced reciprocal translocation, t(11;15)(p11.2;q21). The second one was a special type of unbalanced "vice versa" jumping translocation, which involved the same acceptor chromosome arm (13q) and various donor chromosome segments. It is unclear whether both atypical rearrangements are the consequence of the TP53 alteration or whether assumed chromothripsis influenced the development of the jumping-like translocation. However, the presence of the t(11;15)(p11.2;q21) in all pathological cells suggests that it occurred in the early stage of the disease, whereas the jumping-like translocation, as an additional change, subsequently accelerated the progression of the disease.
Collapse
Affiliation(s)
- Iveta Sarova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Center of Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, General Faculty Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic.
| | - Jana Brezinova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Halka Lhotska
- Center of Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, General Faculty Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Adela Berkova
- Center of Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, General Faculty Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Sarka Ransdorfova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zuzana Zemanova
- Center of Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, General Faculty Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic
| | | | - Kyra Michalova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Center of Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, General Faculty Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic
| |
Collapse
|
83
|
Aneuploidy in pluripotent stem cells and implications for cancerous transformation. Protein Cell 2014; 5:569-79. [PMID: 24899134 PMCID: PMC4130921 DOI: 10.1007/s13238-014-0073-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation.
Collapse
|
84
|
Nuclear pores protect genome integrity by assembling a premitotic and Mad1-dependent anaphase inhibitor. Cell 2014; 156:1017-31. [PMID: 24581499 DOI: 10.1016/j.cell.2014.01.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/21/2013] [Accepted: 01/03/2014] [Indexed: 11/23/2022]
Abstract
The spindle assembly checkpoint (SAC) delays anaphase until all chromosomes are bioriented on the mitotic spindle. Under current models, unattached kinetochores transduce the SAC by catalyzing the intramitotic production of a diffusible inhibitor of APC/C(Cdc20) (the anaphase-promoting complex/cyclosome and its coactivator Cdc20, a large ubiquitin ligase). Here we show that nuclear pore complexes (NPCs) in interphase cells also function as scaffolds for anaphase-inhibitory signaling. This role is mediated by Mad1-Mad2 complexes tethered to the nuclear basket, which activate soluble Mad2 as a binding partner and inhibitor of Cdc20 in the cytoplasm. Displacing Mad1-Mad2 from nuclear pores accelerated anaphase onset, prevented effective correction of merotelic errors, and increased the threshold of kinetochore-dependent signaling needed to halt mitosis in response to spindle poisons. A heterologous Mad1-NPC tether restored Cdc20 inhibitor production and normal M phase control. We conclude that nuclear pores and kinetochores both emit "wait anaphase" signals that preserve genome integrity.
Collapse
|
85
|
Abstract
DNA replication must be tightly regulated to ensure that the genome is accurately duplicated during each cell cycle. When these regulatory mechanisms fail, replicative stress and DNA damage ensue. Activated oncogenes promote replicative stress, inducing a DNA damage response (DDR) early in tumorigenesis. Senescence or apoptosis result, forming a barrier against tumour progression. This may provide a selective pressure for acquisition of mutations in the DDR pathway during tumorigenesis. Despite its potential importance in early cancer development, the precise nature of oncogene-induced replicative stress remains poorly understood. Here, we review our current understanding of replication initiation and its regulation, describe mechanisms by which activated oncogenes might interfere with these processes and discuss how replicative stress might contribute to the genomic instability seen in cancers.
Collapse
Affiliation(s)
- Stephanie A Hills
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK
| | - John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK.
| |
Collapse
|
86
|
Pellestor F, Gatinois V, Puechberty J, Geneviève D, Lefort G. [Chromothripsis, an unexpected novel form of complexity for chromosomal rearrangements]. Med Sci (Paris) 2014; 30:266-73. [PMID: 24685217 DOI: 10.1051/medsci/20143003014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The recent discovery of a new kind of massive chromosomal rearrangement in different cancers, named "chromothripsis" (chromo for chromosome, thripsis for shattering) has questioned the established models for a progressive development of tumors. Indeed, this phenomenon, which is characterized by the shattering of one (or a few) chromosome segments followed by a random reassembly of the fragments generated, occurs during one unique cellular event. The same phenomenon was identified in constitutional genetics in patients with various developmental pathologies, indicating that chromothripsis also occurs at the germ cell level. Diverse situations can cause chromothripsis (radiations, telomere erosion, abortive apoptosis, etc.), and two express "repair routes" are used by the cell to chaotically reorganise the chromosomal regions concerned: non-homologous end-joining and repair by replicative stress. The in-depth analysis of the DNA sequences involved in the regions of chromothripsis leads to a better understanding of the molecular basis of chromothripsis and also helps to better apprehend its unexpected role in the development of constitutional pathologies and the progression of cancers.
Collapse
Affiliation(s)
- Franck Pellestor
- Laboratoire de génétique chromosomique, hôpital Arnaud de Villeneuve, CHRU de Montpellier, 371, avenue du doyen Gaston Giraud, 34295 Montpellier, France
| | - Vincent Gatinois
- Laboratoire de génétique chromosomique, hôpital Arnaud de Villeneuve, CHRU de Montpellier, 371, avenue du doyen Gaston Giraud, 34295 Montpellier, France
| | - Jacques Puechberty
- Laboratoire de génétique chromosomique, hôpital Arnaud de Villeneuve, CHRU de Montpellier, 371, avenue du doyen Gaston Giraud, 34295 Montpellier, France
| | - David Geneviève
- Laboratoire de génétique chromosomique, hôpital Arnaud de Villeneuve, CHRU de Montpellier, 371, avenue du doyen Gaston Giraud, 34295 Montpellier, France
| | - Geneviève Lefort
- Laboratoire de génétique chromosomique, hôpital Arnaud de Villeneuve, CHRU de Montpellier, 371, avenue du doyen Gaston Giraud, 34295 Montpellier, France
| |
Collapse
|
87
|
Cai H, Kumar N, Bagheri HC, von Mering C, Robinson MD, Baudis M. Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. BMC Genomics 2014; 15:82. [PMID: 24476156 PMCID: PMC3909908 DOI: 10.1186/1471-2164-15-82] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/10/2014] [Indexed: 01/22/2023] Open
Abstract
Background Chromothripsis is a recently discovered phenomenon of genomic rearrangement, possibly arising during a single genome-shattering event. This could provide an alternative paradigm in cancer development, replacing the gradual accumulation of genomic changes with a “one-off” catastrophic event. However, the term has been used with varying operational definitions, with the minimal consensus being a large number of locally clustered copy number aberrations. The mechanisms underlying these chromothripsis-like patterns (CTLP) and their specific impact on tumorigenesis are still poorly understood. Results Here, we identified CTLP in 918 cancer samples, from a dataset of more than 22,000 oncogenomic arrays covering 132 cancer types. Fragmentation hotspots were found to be located on chromosome 8, 11, 12 and 17. Among the various cancer types, soft-tissue tumors exhibited particularly high CTLP frequencies. Genomic context analysis revealed that CTLP rearrangements frequently occurred in genomes that additionally harbored multiple copy number aberrations (CNAs). An investigation into the affected chromosomal regions showed a large proportion of arm-level pulverization and telomere related events, which would be compatible to a number of underlying mechanisms. We also report evidence that these genomic events may be correlated with patient age, stage and survival rate. Conclusions Through a large-scale analysis of oncogenomic array data sets, this study characterized features associated with genomic aberrations patterns, compatible to the spectrum of “chromothripsis”-definitions as previously used. While quantifying clustered genomic copy number aberrations in cancer samples, our data indicates an underlying biological heterogeneity behind these chromothripsis-like patterns, beyond a well defined “chromthripsis” phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
88
|
Pellestor F. Chromothripsis: how does such a catastrophic event impact human reproduction? Hum Reprod 2014; 29:388-93. [DOI: 10.1093/humrep/deu003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
89
|
Bétermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 2014; 10:e1004086. [PMID: 24453986 PMCID: PMC3894167 DOI: 10.1371/journal.pgen.1004086] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone alternative end-joining process; 2) the adaptability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV-dependent) to imperfect complementary ends; and 3) the requirement to first process chemically incompatible DNA ends that cannot be ligated directly. Thus, C-NHEJ is conservative but adaptable, and the accuracy of the repair is dictated by the structure of the DNA ends rather than by the C-NHEJ machinery. We present data from different organisms that describe the conservative/versatile properties of C-NHEJ. The advantages of the adaptability/versatility of C-NHEJ are discussed for the development of the immune repertoire and the resistance to ionizing radiation, especially at low doses, and for targeted genome manipulation.
Collapse
Affiliation(s)
- Mireille Bétermier
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- CNRS, Centre de Recherches de Gif-sur-Yvette, FRC3115, Gif-sur-Yvette, France
- Université Paris-Sud, Département de Biologie, Orsay, France
| | - Pascale Bertrand
- CEA, DSV, Institut de Radiobiologie Moléculaire et Cellulaire, Laboratoire Réparation et Vieillissement, Fontenay-aux-Roses, France
- UMR 8200 CNRS, Villejuif, France
| | - Bernard S. Lopez
- Université Paris-Sud, Département de Biologie, Orsay, France
- UMR 8200 CNRS, Villejuif, France
- Institut de Cancérologie, Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
90
|
Wang Q, Wen B, Wang T, Xu Z, Yin X, Xu S, Ren Z, Hou G, Zhou R, Zhao H, Zi J, Zhang S, Gao H, Lou X, Sun H, Feng Q, Chang C, Qin P, Zhang C, Li N, Zhu Y, Gu W, Zhong J, Zhang G, Yang P, Yan G, Shen H, Liu X, Lu H, Zhong F, He QY, Xu P, Lin L, Liu S. Omics evidence: single nucleotide variants transmissions on chromosome 20 in liver cancer cell lines. J Proteome Res 2013; 13:200-11. [PMID: 24261934 DOI: 10.1021/pr400899b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer genomics unveils many cancer-related mutations, including some chromosome 20 (Chr.20) genes. The mutated messages have been found in the corresponding mRNAs; however, whether they could be translated to proteins still requires more evidence. Herein, we proposed a transomics strategy to profile the expression status of human Chr.20 genes (555 in Ensembl v72). The data of transcriptome and translatome (the mRNAs bound with ribosome, translating mRNAs) revealed that ∼80% of the coding genes on Chr.20 were detected with mRNA signals in three liver cancer cell lines, whereas of the proteome identified, only ∼45% of the Chr.20 coding genes were detected. The high amount of overlapping of identified genes in mRNA and RNC-mRNA (ribosome nascent-chain complex-bound mRNAs, translating mRNAs) and the consistent distribution of the abundance averages of mRNA and RNC-mRNA along the Chr.20 subregions in three liver cancer cell lines indicate that the mRNA information is efficiently transmitted from transcriptional to translational stage, qualitatively and quantitatively. Of the 457 genes identified in mRNAs and RNC-mRNA, 136 were found to contain SNVs with 213 sites, and >40% of these SNVs existed only in metastatic cell lines, suggesting them as the metastasis-related SNVs. Proteomics analysis showed that 16 genes with 20 SNV sites were detected with reliable MS/MS signals, and some SNVs were further validated by the MRM approach. With the integration of the omics data at the three expression phases, therefore, we are able to achieve the overall view of the gene expression of Chr.20, which is constructive in understanding the potential trend of encoding genes in a cell line and exploration of a new type of markers related to cancers.
Collapse
Affiliation(s)
- Quanhui Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences , No. 1 Beichen West Road, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Liu G, Stevens JB, Horne SD, Abdallah BY, Ye KJ, Bremer SW, Ye CJ, Chen DJ, Heng HH. Genome chaos: survival strategy during crisis. Cell Cycle 2013; 13:528-37. [PMID: 24299711 DOI: 10.4161/cc.27378] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.
Collapse
Affiliation(s)
- Guo Liu
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Joshua B Stevens
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Steven D Horne
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Batoul Y Abdallah
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | | | - Steven W Bremer
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Christine J Ye
- Department of Hematology Oncology; Karmanos Cancer Institute; Detroit, MI USA
| | - David J Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology; The University of Texas Southwestern Medical Center; Dallas TX USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA; Department of Pathology; Wayne State University School of Medicine; Detroit, MI USA
| |
Collapse
|
92
|
Zhang CZ, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 2013; 27:2513-30. [PMID: 24298051 PMCID: PMC3861665 DOI: 10.1101/gad.229559.113] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event. These discoveries identify ways that genomes can be altered in single large jumps rather than by many incremental steps. Here we compare and contrast these phenomena and examine the evidence that they arise "all at once." We consider the impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally. Finally, we summarize current models for underlying mechanisms and discuss strategies for testing these models.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Mitchell L. Leibowitz
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Pellman
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
93
|
Puls F, Niblett AJ, Mangham DC. Molecular pathology of bone tumours: diagnostic implications. Histopathology 2013; 64:461-76. [DOI: 10.1111/his.12275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/04/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Florian Puls
- Department of Musculoskeletal Pathology; Royal Orthopaedic Hospital NHS Trust; Robert Aitken Institute of Clinical Research; Birmingham UK
| | - Angela J Niblett
- Department of Musculoskeletal Pathology; Royal Orthopaedic Hospital NHS Trust; Robert Aitken Institute of Clinical Research; Birmingham UK
| | - D Chas Mangham
- Department of Musculoskeletal Pathology; Royal Orthopaedic Hospital NHS Trust; Robert Aitken Institute of Clinical Research; Birmingham UK
- Department of Musculoskeletal Pathology; Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Trust; Oswestry Shropshire UK
| |
Collapse
|
94
|
Kim TM, Lee SH, Chung YJ. Clinical applications of next-generation sequencing in colorectal cancers. World J Gastroenterol 2013; 19:6784-6793. [PMID: 24187453 PMCID: PMC3812477 DOI: 10.3748/wjg.v19.i40.6784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/22/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Like other solid tumors, colorectal cancer (CRC) is a genomic disorder in which various types of genomic alterations, such as point mutations, genomic rearrangements, gene fusions, or chromosomal copy number alterations, can contribute to the initiation and progression of the disease. The advent of a new DNA sequencing technology known as next-generation sequencing (NGS) has revolutionized the speed and throughput of cataloguing such cancer-related genomic alterations. Now the challenge is how to exploit this advanced technology to better understand the underlying molecular mechanism of colorectal carcinogenesis and to identify clinically relevant genetic biomarkers for diagnosis and personalized therapeutics. In this review, we will introduce NGS-based cancer genomics studies focusing on those of CRC, including a recent large-scale report from the Cancer Genome Atlas. We will mainly discuss how NGS-based exome-, whole genome- and methylome-sequencing have extended our understanding of colorectal carcinogenesis. We will also introduce the unique genomic features of CRC discovered by NGS technologies, such as the relationship with bacterial pathogens and the massive genomic rearrangements of chromothripsis. Finally, we will discuss the necessary steps prior to development of a clinical application of NGS-related findings for the advanced management of patients with CRC.
Collapse
|
95
|
Leufke C, Leykauf J, Krunic D, Jauch A, Holtgreve-Grez H, Böhm-Steuer B, Bröcker EB, Mauch C, Utikal J, Hartschuh W, Purdie KJ, Boukamp P. The telomere profile distinguishes two classes of genetically distinct cutaneous squamous cell carcinomas. Oncogene 2013; 33:3506-18. [DOI: 10.1038/onc.2013.323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 05/14/2013] [Accepted: 06/17/2013] [Indexed: 12/12/2022]
|
96
|
Emerging metabolic targets in the therapy of hematological malignancies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:946206. [PMID: 24024216 PMCID: PMC3759275 DOI: 10.1155/2013/946206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
Abstract
During the last decade, the development of anticancer therapies has focused on targeting neoplastic-related metabolism. Cancer cells display a variety of changes in their metabolism, which enable them to satisfy the high bioenergetic and biosynthetic demands for rapid cell division. One of the crucial alterations is referred to as the "Warburg effect", which involves a metabolic shift from oxidative phosphorylation towards the less efficient glycolysis, independent of the presence of oxygen. Although there are many examples of solid tumors having altered metabolism with high rates of glucose uptake and glycolysis, it was only recently reported that this phenomenon occurs in hematological malignancies. This review presents evidence that targeting the glycolytic pathway at different levels in hematological malignancies can inhibit cancer cell proliferation by restoring normal metabolic conditions. However, to achieve cancer regression, high concentrations of glycolytic inhibitors are used due to limited solubility and biodistribution, which may result in toxicity. Besides using these inhibitors as monotherapies, combinatorial approaches using standard chemotherapeutic agents could display enhanced efficacy at eradicating malignant cells. The identification of the metabolic enzymes critical for hematological cancer cell proliferation and survival appears to be an interesting new approach for the targeted therapy of hematological malignancies.
Collapse
|
97
|
|
98
|
Gibaud A, Vogt N, Brison O, Debatisse M, Malfoy B. Characterization at nucleotide resolution of the homogeneously staining region sites of insertion in two cancer cell lines. Nucleic Acids Res 2013; 41:8210-9. [PMID: 23821669 PMCID: PMC3783161 DOI: 10.1093/nar/gkt566] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms of formation of intrachromosomal amplifications in tumours are still poorly understood. By using quantitative polymerase chain reaction, DNA sequencing, chromosome walking, in situ hybridization on metaphase chromosomes and whole-genome analysis, we studied two cancer cell lines containing an MYC oncogene amplification with acquired copies ectopically inserted in rearranged chromosomes 17. These intrachromosomal amplifications result from the integration of extrachromosomal DNA molecules. Replication stress could explain the formation of the double-strand breaks involved in their insertion and in the rearrangements of the targeted chromosomes. The sequences of the junctions indicate that homologous recombination was not involved in their formation and support a non-homologous end-joining process. The replication stress-inducible common fragile sites present in the amplicons may have driven the intrachromosomal amplifications. Mechanisms associating break-fusion-bridge cycles and/or chromosome fragmentation may have led to the formation of the uncovered complex structures. To our knowledge, this is the first characterization of an intrachromosomal amplification site at nucleotide resolution.
Collapse
Affiliation(s)
- Anne Gibaud
- Institut Curie, Centre de Recherche, CNRS, UMR3244 and UPMC, 26 Rue d'Ulm, F-75248 Paris, France
| | | | | | | | | |
Collapse
|
99
|
Krem MM, Horwitz MS. Mitotic errors, aneuploidy and micronuclei in Hodgkin lymphoma pathogenesis. Commun Integr Biol 2013; 6:e23544. [PMID: 23713010 PMCID: PMC3656006 DOI: 10.4161/cib.23544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 12/12/2022] Open
Abstract
The Reed-Sternberg (RS) cell is the driving force behind Hodgkin lymphoma (HL), a unique malignancy in which the rare RS cell creates an inflammatory microenvironment that recruits a reactive tumor infiltrate. Well-known oncogenic factors such as nuclear factor kappa B (NFκB) signaling and Epstein-Barr virus infection are linked to HL pathogenesis but do not adequately explain the RS cell’s key pathologic features of multi-nucleation, abnormalities of centrosome function and number and aneuploidy. Chromosomal instability is also considered a key pathway in the origin of the RS cell, though the molecular mechanisms have largely been a “black box.” We demonstrated that the midbody kelch domain protein KLHDC8B protects against mitotic errors, centrosomal amplification and chromosomal instability. Here we discuss how the new findings linking KLHDC8B to mitotic integrity and faithful chromosomal segregation are providing mechanistic explanations for the origin of the RS cell and the molecular pathogenesis of chromosomal instability in HL.
Collapse
Affiliation(s)
- Maxwell M Krem
- Department of Medicine; Institute for Stem Cell and Regenerative Medicine; University of Washington School of Medicine; Seattle, WA USA
| | | |
Collapse
|
100
|
Abstract
Widespread structural alterations of cancer genomes are increasingly observed in a broad spectrum of tumors. In a recent issue of Cell, Baca and colleagues describe large chains of rearrangements that coordinately affect multiple chromosomes in prostate cancer. This phenomenon of chromoplexy may define cancer subtypes and drive punctuated tumor evolution.
Collapse
Affiliation(s)
- Michael M Shen
- Departments of Medicine and Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|