51
|
Yamauchi F, Kamioka Y, Yano T, Matsuda M. In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability. Cancer Res 2016; 76:5266-76. [PMID: 27488524 DOI: 10.1158/0008-5472.can-15-3534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 07/04/2016] [Indexed: 11/16/2022]
Abstract
Vascular hyperpermeability is a pathological hallmark of cancer. Previous in vitro studies have elucidated roles of various signaling molecules in vascular hyperpermeability; however, the activities of such signaling molecules have not been examined in live tumor tissues for technical reasons. Here, by in vivo two-photon excitation microscopy with transgenic mice expressing biosensors based on Förster resonance energy transfer, we examined the activity of protein kinase A (PKA), which maintains endothelial barrier function. The level of PKA activity was significantly lower in the intratumoral endothelial cells than the subcutaneous endothelial cells. PKA activation with a cAMP analogue alleviated the tumor vascular hyperpermeability, suggesting that the low PKA activity in the endothelial cells may be responsible for the tumor-tissue hyperpermeability. Because the vascular endothelial growth factor (VEGF) receptor is a canonical inducer of vascular hyperpermeability and a molecular target of anticancer drugs, we examined the causality between VEGF receptor activity and the PKA activity. Motesanib, a kinase inhibitor for VEGF receptor, activated tumor endothelial PKA and reduced the vascular permeability in the tumor. Conversely, subcutaneous injection of VEGF decreased endothelial PKA activity and induced hyperpermeability of subcutaneous blood vessels. Notably, in cultured human umbilical vascular endothelial cells, VEGF activated PKA rather than decreasing its activity, highlighting the remarkable difference between its actions in vitro and in vivo These data suggested that the VEGF receptor signaling pathway increases vascular permeability, at least in part, by reducing endothelial PKA activity in the live tumor tissue. Cancer Res; 76(18); 5266-76. ©2016 AACR.
Collapse
Affiliation(s)
- Fumio Yamauchi
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Medical Imaging System Development Center, R&D Headquarters, Canon Inc., Japan
| | - Yuji Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Innovative Techno-Hub for Integrated Medical Bio-Imaging, Kyoto University, Kyoto, Japan
| | - Tetsuya Yano
- Medical Imaging System Development Center, R&D Headquarters, Canon Inc., Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
52
|
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
Collapse
|
53
|
Gordon EJ, Fukuhara D, Weström S, Padhan N, Sjöström EO, van Meeteren L, He L, Orsenigo F, Dejana E, Bentley K, Spurkland A, Claesson-Welsh L. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation. Sci Signal 2016; 9:ra72. [PMID: 27436360 DOI: 10.1126/scisignal.aad9256] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the VEGFR2 downstream effectors T cell-specific adaptor (TSAd) and the tyrosine kinase c-Src. We investigated whether the VEGFR2-TSAd-c-Src pathway was required for angiogenic sprouting. Indeed, Tsad-deficient embryoid bodies failed to sprout in response to VEGF. Tsad-deficient mice displayed impaired angiogenesis specifically during tracheal vessel development, but not during retinal vasculogenesis, and in VEGF-loaded Matrigel plugs, but not in those loaded with FGF. The SH2 and proline-rich domains of TSAd bridged VEGFR2 and c-Src, and this bridging was critical for the localization of activated c-Src to endothelial junctions and elongation of the growing sprout, but not for selection of the tip cell. These results revealed that vascular sprouting and permeability are both controlled through the VEGFR2-TSAd-c-Src signaling pathway in a subset of tissues, which may be useful in developing strategies to control tissue-specific pathological angiogenesis.
Collapse
Affiliation(s)
- Emma J Gordon
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden.
| | - Daisuke Fukuhara
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Simone Weström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Narendra Padhan
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Elisabet O Sjöström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Laurens van Meeteren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Fabrizio Orsenigo
- FIRC Institute of Molecular Oncology Foundation, IFOM, Milan 20139, Italy
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden. FIRC Institute of Molecular Oncology Foundation, IFOM, Milan 20139, Italy
| | - Katie Bentley
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden. Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo 0317, Norway
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden.
| |
Collapse
|
54
|
Lipoprotein-associated phospholipase A2 (Lp-PLA2) as a therapeutic target to prevent retinal vasopermeability during diabetes. Proc Natl Acad Sci U S A 2016; 113:7213-8. [PMID: 27298369 DOI: 10.1073/pnas.1514213113] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lipoprotein-associated phospholipase A2 (Lp-PLA2) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA2, darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA2 and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood-retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA2 inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA2 inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA2 may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents.
Collapse
|
55
|
Park-Windhol C, D'Amore PA. Disorders of Vascular Permeability. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:251-81. [PMID: 26907525 DOI: 10.1146/annurev-pathol-012615-044506] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endothelial barrier maintains vascular and tissue homeostasis and modulates many physiological processes, such as angiogenesis. Vascular barrier integrity can be disrupted by a variety of soluble permeability factors, and changes in barrier function can exacerbate tissue damage during disease progression. Understanding endothelial barrier function is critical for vascular homeostasis. Many of the signaling pathways promoting vascular permeability can also be triggered during disease, resulting in prolonged or uncontrolled vascular leak. It is believed that recovery of the normal vasculature requires diminishing this hyperpermeable state. Although the molecular mechanisms governing vascular leak have been studied over the last few decades, recent advances have identified new therapeutic targets that have begun to show preclinical and clinical promise. These approaches have been successfully applied to an increasing number of disease conditions. New perspectives regarding how vascular leak impacts the progression of various diseases are highlighted in this review.
Collapse
Affiliation(s)
- Cindy Park-Windhol
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| | - Patricia A D'Amore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114; , .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
56
|
Worzfeld T, Schwaninger M. Apicobasal polarity of brain endothelial cells. J Cereb Blood Flow Metab 2016; 36:340-62. [PMID: 26661193 PMCID: PMC4759676 DOI: 10.1177/0271678x15608644] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
Normal brain homeostasis depends on the integrity of the blood-brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood-brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, Marburg, Germany Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany German Research Centre for Cardiovascular Research, DZHK, Lübeck, Germany
| |
Collapse
|
57
|
Glial influences on BBB functions and molecular players in immune cell trafficking. Biochim Biophys Acta Mol Basis Dis 2015; 1862:472-82. [PMID: 26454208 DOI: 10.1016/j.bbadis.2015.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) constitutes an elaborate structure formed by specialized capillary endothelial cells, which together with pericytes and perivascular glial cells regulates the exchanges between the central nervous system (CNS) and the periphery. Intricate interactions between the different cellular constituents of the BBB are crucial in establishing a functional BBB and maintaining the delicate homeostasis of the CNS microenvironment. In this review, we discuss the role of astrocytes and microglia in inducing and maintaining barrier properties under physiological conditions as well as their involvement during neuroinflammatory pathologies. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|
58
|
Song HB, Yu HG. Optic Disc Edema Responding to Localized Anti-vascular Endothelial Growth Factor Treatment in a Patient with POEMS Syndrome. KOREAN JOURNAL OF OPHTHALMOLOGY 2015; 29:357-8. [PMID: 26457045 PMCID: PMC4595265 DOI: 10.3341/kjo.2015.29.5.357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hyun Beom Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
59
|
Ravelli C, Grillo E, Corsini M, Coltrini D, Presta M, Mitola S. β3 Integrin Promotes Long-Lasting Activation and Polarization of Vascular Endothelial Growth Factor Receptor 2 by Immobilized Ligand. Arterioscler Thromb Vasc Biol 2015; 35:2161-71. [PMID: 26293466 PMCID: PMC4894810 DOI: 10.1161/atvbaha.115.306230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— During neovessel formation, angiogenic growth factors associate with the extracellular matrix. These immobilized factors represent a persistent stimulus for the otherwise quiescent endothelial cells (ECs), driving directional EC migration and proliferation and leading to new blood vessel growth. Vascular endothelial growth factor receptor 2 (VEGFR2) is the main mediator of angiogenesis. Although VEGFR2 signaling has been deeply characterized, little is known about its subcellular localization during neovessel formation. Aim of this study was the characterization and molecular determinants of activated VEGFR2 localization in ECs during neovessel formation in response to matrix-immobilized ligand. Approach and Results— Here we demonstrate that ECs stimulated by extracellular matrix–associated gremlin, a noncanonical VEGFR2 ligand, are polarized and relocate the receptor in close contact with the angiogenic factor–enriched matrix both in vitro and in vivo. GM1 (monosialotetrahexosylganglioside)-positive planar lipid rafts, β3 integrin receptors, and the intracellular signaling transducers focal adhesion kinase and RhoA (Ras homolog gene family, member A) cooperate to promote VEGFR2 long-term polarization and activation. Conclusions— A ligand anchored to the extracellular matrix induces VEGFR2 polarization in ECs. Long-lasting VEGFR2 relocation is closely dependent on lipid raft integrity and activation of β3 integrin pathway. The study of the endothelial responses to immobilized growth factors may offer insights into the angiogenic process in physiological and pathological conditions, including cancer, and for a better engineering of synthetic tissue scaffolds to blend with the host vasculature.
Collapse
Affiliation(s)
- Cosetta Ravelli
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Stefania Mitola
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
60
|
Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. ACTA ACUST UNITED AC 2015; 209:493-506. [PMID: 26008742 PMCID: PMC4442813 DOI: 10.1083/jcb.201412147] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Unique intercellular junctional complexes between the central nervous system (CNS) microvascular endothelial cells and the choroid plexus epithelial cells form the endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier (BCSFB), respectively. These barriers inhibit paracellular diffusion, thereby protecting the CNS from fluctuations in the blood. Studies of brain barrier integrity during development, normal physiology, and disease have focused on BBB and BCSFB tight junctions but not the corresponding endothelial and epithelial adherens junctions. The crosstalk between adherens junctions and tight junctions in maintaining barrier integrity is an understudied area that may represent a promising target for influencing brain barrier function.
Collapse
Affiliation(s)
- Silvia Tietz
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
61
|
Jiang M, Qin C, Han M. Primary breast cancer induces pulmonary vascular hyperpermeability and promotes metastasis via the VEGF-PKC pathway. Mol Carcinog 2015; 55:1087-95. [PMID: 26152457 DOI: 10.1002/mc.22352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/20/2015] [Accepted: 05/28/2015] [Indexed: 01/22/2023]
Abstract
The lung is one of the most frequent target organs for breast cancer metastasis. When breast cancer cells from a primary tumor do not colonize the lung, which we named the premetastatic phase, the microenvironment of the lung has already been influenced by the primary tumor. However, little is known about the exact premetastatic alteration and regulatory mechanisms of the lung. Here, we used 4T1 cells (a mouse breast cancer cell line which can specifically metastasize to the lung) to build a mouse breast cancer model. We found that primary breast tumor induced increased pulmonary vascular permeability in the premetastatic phase, which facilitated the leakage of rhodamine-dextran and the extravasation of intravenous therapy injected cancer cells. Furthermore, tight junctions (TJs) were disrupted, and the expression of zonula occludens-1(ZO-1), one of the most important components of tight junctions, was decreased in the premetastatic lung. In addition, elevated serum vascular endothelial growth factor (VEGF) was involved in the destabilization of tight junctions and the VEGF antagonist bevacizumab reversed the primary tumor-induced vascular hyperpermeability. Moreover, activation of the protein kinase C (PKC) pathway disrupted the integrity of TJs and accordingly, the disruption could be alleviated by blocking VEGF. Taken together, these data demonstrate that primary breast cancer may induce tight junction disruptions in the premetastatic lung via the VEGF-PKC pathway and promote pulmonary vascular hyperpermeability before metastasis. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Man Jiang
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Shandong University, Jinan, PR China
| | - Chengyong Qin
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Shandong University, Jinan, PR China
| | - Mingyong Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Shandong University, Jinan, PR China
| |
Collapse
|
62
|
Cedervall J, Zhang Y, Huang H, Zhang L, Femel J, Dimberg A, Olsson AK. Neutrophil Extracellular Traps Accumulate in Peripheral Blood Vessels and Compromise Organ Function in Tumor-Bearing Animals. Cancer Res 2015; 75:2653-62. [PMID: 26071254 DOI: 10.1158/0008-5472.can-14-3299] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/30/2015] [Indexed: 12/17/2022]
Abstract
Cancer produces a variety of collateral effects in patients beyond the malignancy itself, including threats to distal organ functions. However, the basis for such effects, associated with either primary or metastatic tumors, are generally poorly understood. In this study, we show how heart and kidney vascular function is impaired by neutrophils that accumulate in those tissues as a result of tumor formation in two different transgenic mouse models of cancer (RIP1-Tag2 model of insulinoma and MMTV-PyMT model of breast cancer). Neutrophil depletion by systemic administration of an anti-Gr1 antibody improved vascular perfusion and prevented vascular leakage in kidney vessels. We also observed the accumulation of platelet-neutrophil complexes, a signature of neutrophil extracellular traps (NET), in the kidneys of tumor-bearing mice that were completely absent from healthy nontumor-bearing littermates. NET accumulation in the vasculature was associated with upregulation of the proinflammatory adhesion molecules ICAM-1, VCAM-1, and E-selectin, as well as the proinflammatory cytokines IL1β, IL6, and the chemokine CXCL1. Administering DNase I to dissolve NETs, which have a high DNA content, restored perfusion in the kidney and heart to levels seen in nontumor-bearing mice, and also prevented vessel leakage in the blood vasculature of these organs. Taken together, our findings strongly suggest that NETs mediate the negative collateral effects of tumors on distal organs, acting to impair vascular function, and to heighten inflammation at these sites.
Collapse
Affiliation(s)
- Jessica Cedervall
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Yanyu Zhang
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Lei Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Julia Femel
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Biomedical Center, Uppsala, Sweden.
| |
Collapse
|
63
|
Turowski P, Kenny BA. The blood-brain barrier and methamphetamine: open sesame? Front Neurosci 2015; 9:156. [PMID: 25999807 PMCID: PMC4419855 DOI: 10.3389/fnins.2015.00156] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/16/2015] [Indexed: 01/05/2023] Open
Abstract
The chemical and electrical microenvironment of neurons within the central nervous system is protected and segregated from the circulation by the vascular blood–brain barrier. This barrier operates on the level of endothelial cells and includes regulatory crosstalk with neighboring pericytes, astrocytes, and neurons. Within this neurovascular unit, the endothelial cells form a formidable, highly regulated barrier through the presence of inter-endothelial tight junctions, the absence of fenestrations, and the almost complete absence of fluid-phase transcytosis. The potent psychostimulant drug methamphetamine transiently opens the vascular blood–brain barrier through either or both the modulation of inter-endothelial junctions and the induction of fluid-phase transcytosis. Direct action of methamphetamine on the vascular endothelium induces acute opening of the blood-brain barrier. In addition, striatal effects of methamphetamine and resultant neuroinflammatory signaling can indirectly lead to chronic dysfunction of the blood-brain barrier. Breakdown of the blood-brain barrier may exacerbate the neuronal damage that occurs during methamphetamine abuse. However, this process also constitutes a rare example of agonist-induced breakdown of the blood-brain barrier and the adjunctive use of methamphetamine may present an opportunity to enhance delivery of chemotherapeutic agents to the underlying neural tissue.
Collapse
Affiliation(s)
- Patric Turowski
- Department of Cell Biology, UCL Institute of Ophthalmology London, UK
| | - Bridget-Ann Kenny
- Department of Cell Biology, UCL Institute of Ophthalmology London, UK
| |
Collapse
|
64
|
Abstract
The vascular network carries blood throughout the body, delivering oxygen to tissues and providing a pathway for communication between distant organs. The network is hierarchical and structured, but also dynamic, especially at the smaller scales. Remodeling of the microvasculature occurs in response to local changes in oxygen, gene expression, cell-cell communication, and chemical and mechanical stimuli from the microenvironment. These local changes occur as a result of physiological processes such as growth and exercise, as well as acute and chronic diseases including stroke, cancer, and diabetes, and pharmacological intervention. While the vasculature is an important therapeutic target in many diseases, drugs designed to inhibit vascular growth have achieved only limited success, and no drug has yet been approved to promote therapeutic vascular remodeling. This highlights the challenges involved in identifying appropriate therapeutic targets in a system as complex as the vasculature. Systems biology approaches provide a means to bridge current understanding of the vascular system, from detailed signaling dynamics measured in vitro and pre-clinical animal models of vascular disease, to a more complete picture of vascular regulation in vivo. This will translate to an improved ability to identify multi-component biomarkers for diagnosis, prognosis, and monitoring of therapy that are easy to measure in vivo, as well as better drug targets for specific disease states. In this review, we summarize systems biology approaches that have advanced our understanding of vascular function and dysfunction in vivo, with a focus on computational modeling.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
65
|
Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, Loo H, Laitman BM, Mariani JN, Straus Farber R, Zaslavsky E, Nudelman G, Raine CS, John GR. Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain 2015; 138:1548-67. [PMID: 25805644 DOI: 10.1093/brain/awv077] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an astrocyte-derived permeability factor, and suggest TYMP and VEGFA together promote blood-brain barrier breakdown.
Collapse
Affiliation(s)
- Candice Chapouly
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Azeb Tadesse Argaw
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sam Horng
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Kamilah Castro
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jingya Zhang
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Linnea Asp
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Hannah Loo
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Benjamin M Laitman
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - John N Mariani
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Rebecca Straus Farber
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Elena Zaslavsky
- 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 4 Department of Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - German Nudelman
- 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 4 Department of Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Cedric S Raine
- 5 Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gareth R John
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
66
|
Abstract
The vasculature, composed of vessels of different morphology and function, distributes blood to all tissues and maintains physiological tissue homeostasis. In pathologies, the vasculature is often affected by, and engaged in, the disease process. This may result in excessive formation of new, unstable, and hyperpermeable vessels with poor blood flow, which further promotes hypoxia and disease propagation. Chronic vessel permeability may also facilitate metastatic spread of cancer. Thus, there is a strong incentive to learn more about an important aspect of vessel biology in health and disease: the regulation of vessel permeability. The current review aims to summarize current insights into different mechanisms of vascular permeability, its regulatory factors, and the consequences for disease.
Collapse
Affiliation(s)
- Lena Claesson-Welsh
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|