51
|
Devall M, Roubroeks J, Mill J, Weedon M, Lunnon K. Epigenetic regulation of mitochondrial function in neurodegenerative disease: New insights from advances in genomic technologies. Neurosci Lett 2016; 625:47-55. [PMID: 26876477 DOI: 10.1016/j.neulet.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
The field of mitochondrial epigenetics has received increased attention in recent years and changes in mitochondrial DNA (mtDNA) methylation has been implicated in a number of diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis. However, current publications have been limited by the use of global or targeted methods of measuring DNA methylation. In this review, we discuss current findings in mitochondrial epigenetics as well as its potential role as a regulator of mitochondria within the brain. Finally, we summarize the current technologies best suited to capturing mtDNA methylation, and how a move towards whole epigenome sequencing of mtDNA may help to advance our current understanding of the field.
Collapse
Affiliation(s)
- Matthew Devall
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, University of Exeter, Devon, UK
| | - Janou Roubroeks
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, University of Exeter, Devon, UK; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, The Netherlands
| | - Jonathan Mill
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, University of Exeter, Devon, UK; Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, De Crespigny Park, London, UK
| | - Michael Weedon
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, University of Exeter, Devon, UK
| | - Katie Lunnon
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, University of Exeter, Devon, UK.
| |
Collapse
|
52
|
Stein A, Kalifa L, Sia EA. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005664. [PMID: 26540255 PMCID: PMC4634946 DOI: 10.1371/journal.pgen.1005664] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.
Collapse
Affiliation(s)
- Alexis Stein
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Lidza Kalifa
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elaine A. Sia
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
53
|
Mattson MP. Late-onset dementia: a mosaic of prototypical pathologies modifiable by diet and lifestyle. NPJ Aging Mech Dis 2015. [PMID: 28642821 PMCID: PMC5478237 DOI: 10.1038/npjamd.2015.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic late-onset dementia (ILOD) describes impairments of memory, reasoning and/or social abilities in the elderly that compromise their daily functioning. Dementia occurs in several major prototypical neurodegenerative disorders that are currently defined by neuropathological criteria, most notably Alzheimer’s disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD) and hippocampal sclerosis of aging (HSA). However, people who die with ILOD commonly exhibit mixed pathologies that vary within and between brain regions. Indeed, many patients diagnosed with probable AD exhibit only modest amounts of disease-defining amyloid β-peptide plaques and p-Tau tangles, and may have features of FTD (TDP-43 inclusions), Parkinson’s disease (α-synuclein accumulation), HSA and vascular lesions. Here I argue that this ‘mosaic neuropathological landscape’ is the result of commonalities in aging-related processes that render neurons vulnerable to the entire spectrum of ILODs. In this view, all ILODs involve deficits in neuronal energy metabolism, neurotrophic signaling and adaptive cellular stress responses, and associated dysregulation of neuronal calcium handling and autophagy. Although this mosaic of neuropathologies and underlying mechanisms poses major hurdles for development of disease-specific therapeutic interventions, it also suggests that certain interventions would be beneficial for all ILODs. Indeed, emerging evidence suggests that the brain can be protected against ILOD by lifelong intermittent physiological challenges including exercise, energy restriction and intellectual endeavors; these interventions enhance cellular stress resistance and facilitate neuroplasticity. There is also therapeutic potential for interventions that bolster neuronal bioenergetics and/or activate one or more adaptive cellular stress response pathways in brain cells. A wider appreciation that all ILODs share age-related cellular and molecular alterations upstream of aggregated protein lesions, and that these upstream events can be mitigated, may lead to implementation of novel intervention strategies aimed at reversing the rising tide of ILODs.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
54
|
Yue R, Xia X, Jiang J, Yang D, Han Y, Chen X, Cai Y, Li L, Wang WE, Zeng C. Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats: cardioprotective role of lycopene. J Cell Physiol 2015; 230:2128-41. [PMID: 25656550 DOI: 10.1002/jcp.24941] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/23/2015] [Indexed: 11/09/2022]
Abstract
Mitochondrial (mt) dysfunction and oxidative stress are involved in the pathogenesis of ischemia/reperfusion (I/R)-injury. Lycopene, a lipophilic antioxidant found mainly in tomatoes and in other vegetables and fruits, can protect mtDNA against oxidative damage. However, the role of mtDNA in myocardial I/R-injury is unclear. In the present study, we aimed to determine if and how lycopene protects cardiomyocytes from I/R-injury. In both in vitro and in vivo studies, I/R-injury increased mt 8-hydroxyguanine (8-OHdG) content, decreased mtDNA content and mtDNA transcription levels, and caused mitochondrial dysfunction in cardiomyocytes. These effects of I/R injury on cardiomycoytes were blocked by pre-treatment with lycopene. MtDNA depletion alone was sufficient to induce cardiomyocyte death. I/R-injury decreased the protein level of a key activator of mt transcription, mitochondrial transcription factor A (Tfam), which was blocked by lycopene. The protective effect of lycopene on mtDNA was associated with a reduction in mitochondrial ROS production and stabilization of Tfam. In conclusion, lycopene protects cardiomyocytes from the oxidative damage of mtDNA induced by I/R-injury.
Collapse
Affiliation(s)
- Rongchuan Yue
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Xuewei Xia
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Jiahui Jiang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Dezhong Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Yu Han
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Xiongwen Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Cardiovascular Research Center & Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Yue Cai
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| |
Collapse
|
55
|
Ito H, Fujita K, Tagawa K, Chen X, Homma H, Sasabe T, Shimizu J, Shimizu S, Tamura T, Muramatsu SI, Okazawa H. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO Mol Med 2015; 7:78-101. [PMID: 25510912 PMCID: PMC4309669 DOI: 10.15252/emmm.201404392] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutant ataxin-1 (Atxn1), which causes spinocerebellar ataxia type 1 (SCA1), binds to and impairs the function of high-mobility group box 1 (HMGB1), a crucial nuclear protein that regulates DNA architectural changes essential for DNA damage repair and transcription. In this study, we established that transgenic or virus vector-mediated complementation with HMGB1 ameliorates motor dysfunction and prolongs lifespan in mutant Atxn1 knock-in (Atxn1-KI) mice. We identified mitochondrial DNA damage repair by HMGB1 as a novel molecular basis for this effect, in addition to the mechanisms already associated with HMGB1 function, such as nuclear DNA damage repair and nuclear transcription. The dysfunction and the improvement of mitochondrial DNA damage repair functions are tightly associated with the exacerbation and rescue, respectively, of symptoms, supporting the involvement of mitochondrial DNA quality control by HMGB1 in SCA1 pathology. Moreover, we show that the rescue of Purkinje cell dendrites and dendritic spines by HMGB1 could be downstream effects. Although extracellular HMGB1 triggers inflammation mediated by Toll-like receptor and receptor for advanced glycation end products, upregulation of intracellular HMGB1 does not induce such side effects. Thus, viral delivery of HMGB1 is a candidate approach by which to modify the disease progression of SCA1 even after the onset.
Collapse
Affiliation(s)
- Hikaru Ito
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| | - Xigui Chen
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| | - Toshikazu Sasabe
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| | - Jun Shimizu
- Department of Neurology, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| | - Shin-ichi Muramatsu
- Department of Neurology, Jichi Medical University, Shimotsuke Tochigi, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| |
Collapse
|
56
|
Razack S, Kumar KH, Nallamuthu I, Naika M, Khanum F. Antioxidant, Biomolecule Oxidation Protective Activities of Nardostachys jatamansi DC and Its Phytochemical Analysis by RP-HPLC and GC-MS. Antioxidants (Basel) 2015; 4:185-203. [PMID: 26785345 PMCID: PMC4665568 DOI: 10.3390/antiox4010185] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/04/2015] [Accepted: 03/02/2015] [Indexed: 12/15/2022] Open
Abstract
The study aimed at analyzing the metabolite profile of Nardostachys jatamansi using RP-HPLC, GC-MS and also its antioxidant, biomolecule protective and cytoprotective properties. The 70% ethanolic extract of Nardostachys jatamansi (NJE) showed the presence of polyphenols and flavonoids (gallic acid, catechin, chlorogenic acid, homovanillin, epicatechin, rutin hydrate and quercetin-3-rhamnoside) analyzed by RP-HPLC, whereas hexane extract revealed an array of metabolites (fatty acids, sesquiterpenes, alkane hydrocarbons and esters) by GC-MS analysis. The antioxidant assays showed the enhanced potency of NJE with a half maximal inhibitory concentration (IC50) value of 222.22 ± 7.4 μg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 13.90 ± 0.5 μg/mL for 2,2'-azino-bis(3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 113.81 ± 4.2 μg/mL for superoxide, 948 ± 21.1 μg/mL for metal chelating and 12.3 ± 0.43 mg FeSO₄ equivalent/g of extract for ferric reducing antioxidant power assays and was more potent than hexane extract. NJE effectively inhibited 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidation of biomolecules analyzed by pBR322 plasmid DNA damage, protein oxidation of bovine serum albumin and lipid peroxidation assays. The observed effects might be due to the high content of polyphenols, 53.06 ± 2.2 mg gallic acid equivalents/g, and flavonoids, 25.303 ± 0.9 mg catechin equivalents/g, of NJE compared to the hexane fraction. Additionally, the extract abrogated the protein, carbonyl, and ROS formation, and NJE showed cytotoxicity in SH-SY5Y neuronal cells above 75 μg/mL. Thus, the study suggests that the herb unequivocally is a potential source of antioxidants and could aid in alleviating oxidative stress-mediated disorders.
Collapse
Affiliation(s)
- Sakina Razack
- Biochemistry and Nanosciences Division, Defence Food Research Laboratory, Mysore-570011, India.
| | | | - Ilaiyaraja Nallamuthu
- Biochemistry and Nanosciences Division, Defence Food Research Laboratory, Mysore-570011, India.
| | - Mahadeva Naika
- Applied Nutrition Division, Defence Food Research Laboratory, Mysore-570011, India.
| | - Farhath Khanum
- Biochemistry and Nanosciences Division, Defence Food Research Laboratory, Mysore-570011, India.
| |
Collapse
|
57
|
Leandro GS, Sykora P, Bohr VA. The impact of base excision DNA repair in age-related neurodegenerative diseases. Mutat Res 2015; 776:31-9. [PMID: 26255938 PMCID: PMC5576886 DOI: 10.1016/j.mrfmmm.2014.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 12/29/2022]
Abstract
The aging process and several age-related neurodegenerative disorders have been linked to elevated levels of DNA damage induced by ROS and deficiency in DNA repair mechanisms. DNA damage induced by ROS is a byproduct of cellular respiration and accumulation of damage over time, is a fundamental aspect of a main theory of aging. Mitochondria have a pivotal role in generating cellular oxidative stress, and mitochondrial dysfunction has been associated with several diseases. DNA base excision repair is considered the major pathway for repair of oxidized bases in DNA both in the nuclei and in mitochondria, and in neurons this mechanism is particularly important because non-diving cells have limited back-up DNA repair mechanisms. An association between elevated oxidative stress and a decrease in BER is strongly related to the aging process and has special relevance in age-related neurodegenerative diseases. Here, we review the role of DNA repair in aging, focusing on the implications of the DNA base excision repair pathways and how alterations in expression of these DNA repair proteins are related to the aging process and to age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovana S Leandro
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program (NIA IRP), Biomedical Research Center, 251 Bayview Blvd., Baltimore, MD 21224, United States; Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Peter Sykora
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program (NIA IRP), Biomedical Research Center, 251 Bayview Blvd., Baltimore, MD 21224, United States.
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program (NIA IRP), Biomedical Research Center, 251 Bayview Blvd., Baltimore, MD 21224, United States.
| |
Collapse
|
58
|
Wang Y, Xu S, Cao Y, Xie Z, Lai C, Ji X, Bi J. Folate deficiency exacerbates apoptosis by inducing hypomethylation and resultant overexpression of DR4 together with altering DNMTs in Alzheimer's disease. Int J Clin Exp Med 2014; 7:1945-1957. [PMID: 25232375 PMCID: PMC4161535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
This study was to evaluate patterns of gene expression and promoter methylation of DR4 from peripheral circulating blood lymphocytes of AD patients and folate-deficiency medium cultured neuroblast cells, and also expression levels of DNMT1, DNMT3a, and MECP2. Blood samples of 25 pairs of AD patients and age- and sex-matched controls were collected. SH-SY5Y cells were cultured with folate-deficiency medium. Bisulfite cloning coupled with sequencing was employed to analyze methylation levels of DR4 gene promoters, and quantitative real time PCR (qRT-PCR) was used to detect gene expression levels of DR4, and also DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3a (DNMT3a) and methyl CpG binding protein 2 (MECP2). Folate concentration was calculated in serum of blood samples. 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay was used to analyze cell viability. The results showed that, the promoter of DR4 was hypomethylated in AD patients and cells cultured in folate-deficiency medium and had site-specific changes (P < 0.05), and these sites were mostly at or nearby some key transcription factor binding sites. Accordance with the hypomethylation, increased expression level of DR4 was observed (P < 0.05). DNMT1 and DNMT3a mRNA level were elevated (P < 0.05) in AD patients and folate deficient medium cultured cells compared with controls (P < 0.05), together with lower folate concentration in AD. MTT assay showed that folate deficiency inhibited cell growth. In summary, folate deficiency can induce apoptosis by increasing DR4 expression with DNA promoter hypomethylation in AD, together with upregulating DNMTs expression, which may be associated with folate deficiency-induced DNA damage.
Collapse
Affiliation(s)
- Yun Wang
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| | - Yanjun Cao
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| | - Zhaohong Xie
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| | - Chao Lai
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| | - Xiaowei Ji
- Department of Neurology, The Second Hospital of Shandong Traditional Chinese Medicine UniversityJinan 250001, PR China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Shandong UniversityJinan 250033, PR China
| |
Collapse
|
59
|
Canugovi C, Shamanna RA, Croteau DL, Bohr VA. Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease. Neurobiol Aging 2014; 35:1293-300. [PMID: 24485507 PMCID: PMC5576885 DOI: 10.1016/j.neurobiolaging.2014.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/20/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is a senile dementia with increased incidence in older subjects (age >65 years). One of the earliest markers of AD is oxidative DNA damage. Recently, it has been reported that preclinical AD patient brains show elevated levels of oxidative damage in both nuclear and mitochondrial nucleic acids. Moreover, different oxidative lesions in mitochondrial DNA are between 5- and 10-fold higher than in nuclear DNA in both control and AD postmortem brains. We previously showed that there is a significant loss of base excision repair (BER) components in whole tissue extracts of AD and mild cognitive impairment subjects relative to matched control subjects. However, comprehensive analysis of specific steps in BER levels in mitochondrial extracts of AD patient brains is not available. In this study, we mainly investigated various components of BER in mitochondrial extracts of AD and matched control postmortem brain samples. We found that the 5-hydroxyuracil incision and ligase activities are significantly lower in AD brains, whereas the uracil incision, abasic site cleavage, and deoxyribonucleotide triphosphate incorporation activities are normal in these samples.
Collapse
Affiliation(s)
- Chandrika Canugovi
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | | | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
60
|
Chen L, Na R, Ran Q. Enhanced defense against mitochondrial hydrogen peroxide attenuates age-associated cognition decline. Neurobiol Aging 2014; 35:2552-2561. [PMID: 24906890 DOI: 10.1016/j.neurobiolaging.2014.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/09/2014] [Accepted: 05/02/2014] [Indexed: 11/27/2022]
Abstract
Increased mitochondrial hydrogen peroxide (H2O2) is associated with Alzheimer's disease and brain aging. Peroxiredoxin 3 (Prdx3) is the key mitochondrial antioxidant defense enzyme in detoxifying H2O2. To investigate the importance of mitochondrial H2O2 in age-associated cognitive decline, we compared cognition between aged (17-19 months) APP transgenic mice and APP/Prdx3 double transgenic mice (dTG) and between old (24 months) wild-type mice and Prdx3 transgenic mice (TG). Compared with aged APP mice, aged dTG mice showed improved cognition that was correlated with reduced brain amyloid beta levels and decreased amyloid beta production. Old TG mice also showed significantly increased cognitive ability compared with old wild-type mice. Both aged dTG mice and old TG mice had reduced mitochondrial oxidative stress and increased mitochondrial function. Moreover, CREB signaling, a signaling pathway important for cognition was enhanced in both aged dTG mice and old TG mice. Thus, our results indicate that mitochondrial H2O2 is a key culprit of age-associated cognitive impairment, and that a reduction of mitochondrial H2O2 could improve cognition by maintaining mitochondrial health and enhancing CREB signaling.
Collapse
Affiliation(s)
- Liuji Chen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ren Na
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Qitao Ran
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Geriatrics Research Education and Clinical Center, Research and Development Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
61
|
Yang JL, Lin YT, Chuang PC, Bohr VA, Mattson MP. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Med 2014; 16:161-174. [PMID: 24114393 PMCID: PMC3948322 DOI: 10.1007/s12017-013-8270-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/26/2013] [Indexed: 01/11/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Center for Translation Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Kaohsiung 83301, Taiwan
| | - Yu-Ting Lin
- Center for Translation Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Kaohsiung 83301, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung, Memorial Hospital, 123 Ta Pei Road, Kaohsiung 83301, Taiwan
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
62
|
Oxidative stress in aging: advances in proteomic approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:573208. [PMID: 24688629 PMCID: PMC3943264 DOI: 10.1155/2014/573208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/07/2013] [Indexed: 11/18/2022]
Abstract
Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.
Collapse
|
63
|
Mousavizadeh K, Rajabi P, Alaee M, Dadgar S, Houshmand M. Usage of mitochondrial D-loop variation to predict risk for Huntington disease. ACTA ACUST UNITED AC 2014; 26:579-82. [PMID: 24471944 DOI: 10.3109/19401736.2013.878902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Huntington's disease (HD) is an inherited autosomal neurodegenerative disease caused by the abnormal expansion of the CAG repeats in the Huntingtin (Htt) gene. It has been proven that mitochondrial dysfunction is contributed to the pathogenesis of Huntington's disease. The mitochondrial displacement loop (D-loop) is proven to accumulate mutations at a higher rate than other regions of mtDNA. Thus, we hypothesized that specific SNPs in the D-loop may contribute to the pathogenesis of Huntington's disease. In the present study, 30 patients with Huntington's disease and 463 healthy controls were evaluated for mitochondrial mutation sites within the D-loop region using PCR-sequencing method. Sequence analysis revealed 35 variations in HD group from Cambridge Mitochondrial Sequences. A significant difference (p < 0.05) was seen between patients and control group in eight SNPs. Polymorphisms at C16069T, T16126C, T16189C, T16519C and C16223T were correlated with an increased risk of HD while SNPs at C16150T, T16086C and T16195C were associated with a decreased risk of Huntington's disease.
Collapse
Affiliation(s)
- Kazem Mousavizadeh
- Department of Molecular Medicine, Iran University of Medical Sciences , Tehran , Iran
| | | | | | | | | |
Collapse
|
64
|
Liu L, Liu Y, Cui J, Liu H, Liu YB, Qiao WL, Sun H, Yan CD. Oxidative stress induces gastric submucosal arteriolar dysfunction in the elderly. World J Gastroenterol 2013; 19:9439-9446. [PMID: 24409074 PMCID: PMC3882420 DOI: 10.3748/wjg.v19.i48.9439] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate human gastric submucosal vascular dysfunction and its mechanism during the aging process.
METHODS: Twenty male patients undergoing subtotal gastrectomy were enrolled in this study. Young and elderly patient groups aged 25-40 years and 60-85 years, respectively, were included. Inclusion criteria were: no clinical evidence of cardiovascular, renal or diabetic diseases. Conventional clinical examinations were carried out. After surgery, gastric submucosal arteries were immediately dissected free of fat and connective tissue. Vascular responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were measured by isolated vascular perfusion. Morphological changes in the gastric mucosal vessels were observed by hematoxylin and eosin (HE) staining and Verhoeff van Gieson (EVG) staining. The expression of xanthine oxidase (XO) and manganese-superoxide dismutase (Mn-SOD) was assessed by Western blotting analysis. The malondialdehyde (MDA) and hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were determined according to commercial kits.
RESULTS: The overall structure of vessel walls was shown by HE and EVG staining, respectively. Disruption of the internal elastic lamina or neointimal layers was not observed in vessels from young or elderly patients; however, cell layer number in the vessel wall increased significantly in the elderly group. Compared with submucosal arteries in young patients, the amount of vascular collagen fibers, lumen diameter and media cross-sectional area were significantly increased in elderly patients. Ach- and SNP-induced vasodilatation in elderly arterioles was significantly decreased compared with that of gastric submucosal arterioles from young patients. Compared with the young group, the expression of XO and the contents of MDA and H2O2 in gastric submucosal arterioles were increased in the elderly group. In addition, the expression of Mn-SOD and the activities of SOD and GSH-Px in the elderly group decreased significantly compared with those in the young group.
CONCLUSION: Gastric vascular dysfunction and senescence may be associated with increased oxidative stress and decreased antioxidative defense in the aging process.
Collapse
|
65
|
A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 2013; 16:38-49. [PMID: 24220222 DOI: 10.1016/j.mito.2013.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.
Collapse
|
66
|
Ayala-Peña S. Role of oxidative DNA damage in mitochondrial dysfunction and Huntington's disease pathogenesis. Free Radic Biol Med 2013; 62:102-110. [PMID: 23602907 PMCID: PMC3722255 DOI: 10.1016/j.freeradbiomed.2013.04.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/21/2013] [Accepted: 04/12/2013] [Indexed: 12/20/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder with an autosomal dominant expression pattern and typically a late-onset appearance. HD is a movement disorder with a heterogeneous phenotype characterized by involuntary dance-like gait, bioenergetic deficits, motor impairment, and cognitive and psychiatric deficits. Compelling evidence suggests that increased oxidative stress and mitochondrial dysfunction may underlie HD pathogenesis. However, the exact mechanisms underlying mutant huntingtin-induced neurological toxicity remain unclear. The objective of this paper is to review recent literature regarding the role of oxidative DNA damage in mitochondrial dysfunction and HD pathogenesis.
Collapse
Affiliation(s)
- Sylvette Ayala-Peña
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, P.O. Box 365067, San Juan, Puerto Rico 00936-5067.
| |
Collapse
|
67
|
Abstract
Dysfunction of the mitochondrial (mt) system is thought to play an important role in the mechanism of progression of various neurodegenerative disorders, including demyelinating disorders. They are characterized by neuroinflammation, ultimately leading to neurodegeneration. Mitochondria (mt) dysfunction is closely related to the mechanism of neuroinflammation, causing increased production of reactive oxygen species, which is detrimental to neurons and glia. Vice versa, neuroinflammation is increasingly recognized to produce mt failure, which then contributes to further neuronal injury and degeneration. Multiple sclerosis and X-linked adrenoleukodystrophy are examples of neurodemyelinating diseases that despite having a diverse etiology have in common a progressive course and significant neuroinflammation and neurodegeneration, leading to severe neurologic disability. The scientific community has become increasingly interested in how mt dysfunction relates to neuroinflammation and demyelination and what role it may play in the natural history of progressive demyelinating diseases. Research studies investigating how mt failure contributes to the progression of these conditions are emerging. A better understanding of the role of oxidative stress in progressive inflammatory demyelinating diseases might generate new potential neuroprotective therapeutic approaches for these devastating neurologic conditions.
Collapse
Affiliation(s)
- Karen S Carvalho
- Section of Neurology, St. Christopher's Hospital for Children, Philadelphia, PA; Departments of Pediatrics and Neurology, Drexel University College of Medicine, Philadelphia, PA.
| |
Collapse
|
68
|
Santos RX, Correia SC, Zhu X, Smith MA, Moreira PI, Castellani RJ, Nunomura A, Perry G. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease. Antioxid Redox Signal 2013; 18:2444-57. [PMID: 23216311 PMCID: PMC3671662 DOI: 10.1089/ars.2012.5039] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE Mitochondria are fundamental to the life and proper functioning of cells. These organelles play a key role in energy production, in maintaining homeostatic levels of second messengers (e.g., reactive oxygen species and calcium), and in the coordination of apoptotic cell death. The role of mitochondria in aging and in pathophysiological processes is constantly being unraveled, and their involvement in neurodegenerative processes, such as Alzheimer's disease (AD), is very well known. RECENT ADVANCES A considerable amount of evidence points to oxidative damage to mitochondrial DNA (mtDNA) as a determinant event that occurs during aging, which may cause or potentiate mitochondrial dysfunction favoring neurodegenerative events. Concomitantly to reactive oxygen species production, an inefficient mitochondrial base excision repair (BER) machinery has also been pointed to favor the accumulation of oxidized bases in mtDNA during aging and AD progression. CRITICAL ISSUES The accumulation of oxidized mtDNA bases during aging increases the risk of sporadic AD, an event that is much less relevant in the familial forms of the disease. This aspect is critical for the interpretation of data arising from tissue of AD patients and animal models of AD, as the major part of animal models rely on mutations in genes associated with familial forms of the disease. FUTURE DIRECTIONS Further investigation is important to unveil the role of mtDNA and BER in aging brain and AD in order to design more effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Renato X Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Vianello D, Sevini F, Castellani G, Lomartire L, Capri M, Franceschi C. HAPLOFIND: a new method for high-throughput mtDNA haplogroup assignment. Hum Mutat 2013; 34:1189-94. [PMID: 23696374 DOI: 10.1002/humu.22356] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/03/2013] [Indexed: 11/06/2022]
Abstract
Deep sequencing technologies are completely revolutionizing the approach to DNA analysis. Mitochondrial DNA (mtDNA) studies entered in the "postgenomic era": the burst in sequenced samples observed in nuclear genomics is expected also in mitochondria, a trend that can already be detected checking complete mtDNA sequences database submission rate. Tools for the analysis of these data are available, but they fail in throughput or in easiness of use. We present here a new pipeline based on previous algorithms, inherited from the "nuclear genomic toolbox," combined with a newly developed algorithm capable of efficiently and easily classify new mtDNA sequences according to PhyloTree nomenclature. Detected mutations are also annotated using data collected from publicly available databases. Thanks to the analysis of all freely available sequences with known haplogroup obtained from GenBank, we were able to produce a PhyloTree-based weighted tree, taking into account each haplogroup pattern conservation. The combination of a highly efficient aligner, coupled with our algorithm and massive usage of asynchronous parallel processing, allowed us to build a high-throughput pipeline for the analysis of mtDNA sequences that can be quickly updated to follow the ever-changing nomenclature. HaploFind is freely accessible at the following Web address: https://haplofind.unibo.it.
Collapse
Affiliation(s)
- Dario Vianello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | | | | | | | | | | |
Collapse
|
70
|
McInnes J. Insights on altered mitochondrial function and dynamics in the pathogenesis of neurodegeneration. Transl Neurodegener 2013; 2:12. [PMID: 23711354 PMCID: PMC3669018 DOI: 10.1186/2047-9158-2-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/25/2013] [Indexed: 11/27/2022] Open
Abstract
In neurons, mitochondria are enriched to provide energy and calcium buffering required for synaptic transmission. Additionally, mitochondria localize to the synapse, where they are critical for the mobilization of reserve pool vesicles and for neurotransmitter release. Previously, functional defects in mitochondria were considered to be downstream effects of neurodegenerative diseases. However, more recent findings suggest mitochondria may serve as key mediators in the onset and progression of some types of neurodegeneration. In this review, we explore the possible roles of altered mitochondrial function and dynamics in the pathogenesis of neurodegenerative disorders, with a particular focus on Alzheimer’s disease (AD) and Parkinson’s disease (PD), which have highlighted the important role of mitochondria in neurodegeneration. While inheritable diseases like Charcot-Marie-Tooth disease type 2A are concretely linked to gene mutations affecting mitochondrial function, the cause of mitochondrial dysfunction in primarily sporadic diseases such as AD and PD is less clear. Neuronal death in PD is associated with defects in mitochondrial function and dynamics arising from mutations in proteins affecting these processes, including α-synuclein, DJ-1, LRRK2, Parkin and Pink1. In the case of AD, however, the connection between mitochondria and the onset of neurodegeneration has been less clear. Recent findings, however, have implicated altered function of ER-mitochondria contact sites and amyloid beta- and/or tau-induced defects in mitochondrial function and dynamics in the pathogenesis of AD, suggesting that mitochondrial defects may act as key mediators in the pathogenesis of AD as well. With recent findings at hand, it may be postulated that defects in mitochondrial processes comprise key events in the onset of neurodegeneration.
Collapse
Affiliation(s)
- Joseph McInnes
- School of Engineering and Science, Research Center MOLIFE-Molecular Life Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
71
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
72
|
Abstract
Age is the main risk factor for the prevalent diseases of developed countries: cancer, cardiovascular disease and neurodegeneration. The ageing process is deleterious for fitness, but can nonetheless evolve as a consequence of the declining force of natural selection at later ages, attributable to extrinsic hazards to survival: ageing can then occur as a side-effect of accumulation of mutations that lower fitness at later ages, or of natural selection in favour of mutations that increase fitness of the young but at the cost of a higher subsequent rate of ageing. Once thought of as an inexorable, complex and lineage-specific process of accumulation of damage, ageing has turned out to be influenced by mechanisms that show strong evolutionary conservation. Lowered activity of the nutrient-sensing insulin/insulin-like growth factor/Target of Rapamycin signalling network can extend healthy lifespan in yeast, multicellular invertebrates, mice and, possibly, humans. Mitochondrial activity can also promote ageing, while genome maintenance and autophagy can protect against it. We discuss the relationship between evolutionarily conserved mechanisms of ageing and disease, and the associated scientific challenges and opportunities.
Collapse
Affiliation(s)
- Teresa Niccoli
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower St, London WC1E 6BT, UK
| | | |
Collapse
|
73
|
Modulation of DNA base excision repair during neuronal differentiation. Neurobiol Aging 2013; 34:1717-27. [PMID: 23375654 DOI: 10.1016/j.neurobiolaging.2012.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 12/21/2012] [Accepted: 12/22/2012] [Indexed: 11/22/2022]
Abstract
Neurons are terminally differentiated cells with a high rate of metabolism and multiple biological properties distinct from their undifferentiated precursors. Previous studies showed that nucleotide excision DNA repair is downregulated in postmitotic muscle cells and neurons. Here, we characterize DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because they have robust BER capacity, which is heavily attenuated in postmitotic neurons. The reduction in BER activity in differentiated cells correlates with diminished protein levels of key long patch BER components, flap endonuclease-1, proliferating cell nuclear antigen, and ligase I. Thus, because of their higher BER capacity, proliferative neural progenitor cells are more efficient at repairing DNA damage compared with their neuronally differentiated progeny.
Collapse
|
74
|
Kolesnikova EÉ. Mitochondrial Dysfunction and Molecular Bases of Neurodegenerative Diseases. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9341-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
MicroRNAs in Neurodegenerative Disorders. CURRENT GERIATRICS REPORTS 2012. [DOI: 10.1007/s13670-012-0030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
76
|
Marques-Aleixo I, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. Physical exercise as a possible strategy for brain protection: Evidence from mitochondrial-mediated mechanisms. Prog Neurobiol 2012; 99:149-62. [DOI: 10.1016/j.pneurobio.2012.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/14/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023]
|
77
|
A possible role for mitochondrial dysfunction in migraine. Mol Genet Genomics 2012; 287:837-44. [DOI: 10.1007/s00438-012-0723-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
|
78
|
Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice. Proc Natl Acad Sci U S A 2012; 109:14948-53. [PMID: 22927410 DOI: 10.1073/pnas.1204156109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent findings suggest that neurons can efficiently repair oxidatively damaged DNA, and that both DNA damage and repair are enhanced by activation of excitatory glutamate receptors. However, in pathological conditions such as ischemic stroke, excessive DNA damage can trigger the death of neurons. Oxidative DNA damage is mainly repaired by base excision repair (BER), a process initiated by DNA glycosylases that recognize and remove damaged DNA bases. Endonuclease VIII-like 1 (NEIL1) is a DNA glycosylase that recognizes a broad range of oxidative lesions. Here, we show that mice lacking NEIL1 exhibit impaired memory retention in a water maze test, but no abnormalities in tests of motor performance, anxiety, or fear conditioning. NEIL1 deficiency results in increased brain damage and a defective functional outcome in a focal ischemia/reperfusion model of stroke. The incision capacity on a 5-hydroxyuracil-containing bubble substrate was lower in the ipsilateral side of ischemic brains and in the mitochondrial lysates of unstressed old NEIL1-deficient mice. These results indicate that NEIL1 plays an important role in learning and memory and in protection of neurons against ischemic injury.
Collapse
|
79
|
Yao J, Irwin R, Chen S, Hamilton R, Cadenas E, Brinton RD. Ovarian hormone loss induces bioenergetic deficits and mitochondrial β-amyloid. Neurobiol Aging 2012; 33:1507-21. [PMID: 21514693 PMCID: PMC3181273 DOI: 10.1016/j.neurobiolaging.2011.03.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/15/2011] [Accepted: 03/01/2011] [Indexed: 01/08/2023]
Abstract
Previously, we demonstrated that reproductive senescence was associated with mitochondrial deficits comparable to those of female triple-transgenic Alzheimer's mice (3xTgAD). Herein, we investigated the impact of chronic ovarian hormone deprivation and 17β-estradiol (E2) replacement on mitochondrial function in nontransgenic (nonTg) and 3xTgAD female mouse brain. Depletion of ovarian hormones by ovariectomy (OVX) in nontransgenic mice significantly decreased brain bioenergetics, and induced mitochondrial dysfunction and oxidative stress. In 3xTgAD mice, OVX significantly exacerbated mitochondrial dysfunction and induced mitochondrial β-amyloid and β-amyloid (Aβ)-binding-alcohol-dehydrogenase (ABAD) expression. Treatment with E2 at OVX prevented OVX-induced mitochondrial deficits, sustained mitochondrial bioenergetic function, decreased oxidative stress, and prevented mitochondrial β-amyloid and ABAD accumulation. In vitro, E2 increased maximal mitochondrial respiration in neurons and basal and maximal respiration in glia. Collectively, these data demonstrate that ovarian hormone loss induced a mitochondrial phenotype comparable to a transgenic female model of Alzheimer's disease (AD), which was prevented by E2. These findings provide a plausible mechanism for increased risk of Alzheimer's disease in premenopausally oophorectomized women while also suggesting a therapeutic strategy for prevention.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033
| | - Ronald Irwin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033
| | - Shuhua Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033
| | - Ryan Hamilton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
80
|
Furda AM, Marrangoni AM, Lokshin A, Van Houten B. Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction. DNA Repair (Amst) 2012; 11:684-92. [PMID: 22766155 DOI: 10.1016/j.dnarep.2012.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 05/30/2012] [Accepted: 06/09/2012] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H(2)O(2)) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60min treatment with H(2)O(2) causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60min treatment with 2mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction.
Collapse
Affiliation(s)
- Amy M Furda
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
81
|
Kim JB, Lim N, Kim SJ, Heo TH. N-acetylcysteine normalizes the urea cycle and DNA repair in cells from patients with Batten disease. Cell Biochem Funct 2012; 30:677-82. [DOI: 10.1002/cbf.2849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/11/2022]
Affiliation(s)
- June-Bum Kim
- Department of Pediatrics; Seoul Children's Hospital; Seoul; Korea
| | - Nary Lim
- Department of Biotechnology; Hoseo University; 165, Baebang; Asan; Chungnam; 336-795; Korea
| | - Sung-Jo Kim
- Department of Biotechnology; Hoseo University; 165, Baebang; Asan; Chungnam; 336-795; Korea
| | - Tae-Hwe Heo
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy; The Catholic University of Korea; Bucheon; 420-743; Korea
| |
Collapse
|
82
|
Xu SC, Chen YB, Lin H, Pi HF, Zhang NX, Zhao CC, Shuai L, Zhong M, Yu ZP, Zhou Z, Bie P. Damage to mtDNA in liver injury of patients with extrahepatic cholestasis: the protective effects of mitochondrial transcription factor A. Free Radic Biol Med 2012; 52:1543-51. [PMID: 22306509 DOI: 10.1016/j.freeradbiomed.2012.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/05/2012] [Accepted: 01/13/2012] [Indexed: 12/24/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are involved in the pathogenesis of chronic liver cholestasis. Mitochondrial DNA (mtDNA) is highly susceptible to oxidative stress and mtDNA damage leads to mitochondrial dysfunction. This study aimed to investigate the mtDNA alterations that occurred during liver injury in patients with extrahepatic cholestasis. Along with an increase in malondialdehyde (MDA) levels and a decrease in ATP levels, extrahepatic cholestatic patients presented a significant increase in mitochondrial 8-hydroxydeoxyguanosine (8-OHdG) levels and decreases in mtDNA copy number, mtDNA transcript levels, and mtDNA nucleoid structure. In L02 cells, glycochenodeoxycholic acid (GCDCA) induced similar damage to the mtDNA and mitochondria. In line with the mtDNA alterations, the mRNA and protein levels of mitochondrial transcription factor A (TFAM) were significantly decreased both in cholestatic patients and in GCDCA-treated L02 cells. Moreover, overexpression of TFAM could efficiently attenuate the mtDNA damage induced by GCDCA in L02 cells. However, without its C-tail, ΔC-TFAM appeared less effective against the hepatotoxicity of GCDCA than the wild-type TFAM. Overall, our study demonstrates that mtDNA damage is involved in liver damage in extrahepatic cholestatic patients. The mtDNA damage is attributable to the loss of TFAM. TFAM has mtDNA-protective effects against the hepatotoxicity of bile acid during cholestasis.
Collapse
Affiliation(s)
- Shang-Cheng Xu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 2012; 33:399-417. [PMID: 22510306 DOI: 10.1016/j.mam.2012.03.009] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 12/24/2022]
Abstract
The retina resides in an environment that is primed for the generation of reactive oxygen species (ROS) and resultant oxidative damage. The retina is one of the highest oxygen-consuming tissues in the human body. The highest oxygen levels are found in the choroid, but this falls dramatically across the outermost retina, creating a large gradient of oxygen towards the retina and inner segments of the photoreceptors which contain high levels of polyunsaturated fatty acids. This micro-environment together with abundant photosensitizers, visible light exposure and a high energy demand supports a highly oxidative milieu. However, oxidative damage is normally minimized by the presence of a range of antioxidant and efficient repair systems. Unfortunately, as we age oxidative damage increases, antioxidant capacity decreases and the efficiency of reparative systems become impaired. The result is retinal dysfunction and cell loss leading to visual impairment. It appears that these age-related oxidative changes are a hallmark of early age-related macular degeneration (AMD) which, in combination with hereditary susceptibility and other retinal modifiers, can progress to the pathology and visual morbidity associated with advanced AMD. This review reassesses the consequences of oxidative stress in AMD and strategies for preventing or reversing oxidative damage in retinal tissues.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
84
|
Lagali PS, Picketts DJ. Matters of life and death: the role of chromatin remodeling proteins in retinal neuron survival. J Ocul Biol Dis Infor 2012; 4:111-20. [PMID: 23289056 PMCID: PMC3382293 DOI: 10.1007/s12177-012-9080-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/05/2012] [Indexed: 12/13/2022] Open
Abstract
Retinal neurons are highly vulnerable to a diverse array of neurotoxic stimuli that leads to their degeneration, which is a major contributor to blindness. This review summarizes the role of epigenetic factors in mediating neuronal homeostasis and survival to protect against cell death and neurodegenerative conditions. Studies in human patients and mouse models implicate numerous chromatin modifications in neuroprotective processes including histone protein acetylation and methylation, DNA methylation, and ATP-dependent nucleosome remodeling. Recent research has begun to uncover specific epigenetic mechanisms invoked by neurotoxic stimuli. Continued investigation in this area will be the key to the generation of therapeutic strategies for the intervention of retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Pamela S Lagali
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON Canada K1H 8L6 ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON Canada K1H 8M5
| | | |
Collapse
|
85
|
Kalifa L, Quintana DF, Schiraldi LK, Phadnis N, Coles GL, Sia RA, Sia EA. Mitochondrial genome maintenance: roles for nuclear nonhomologous end-joining proteins in Saccharomyces cerevisiae. Genetics 2012; 190:951-64. [PMID: 22214610 PMCID: PMC3296257 DOI: 10.1534/genetics.111.138214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/31/2011] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial DNA (mtDNA) deletions are associated with sporadic and inherited diseases and age-associated neurodegenerative disorders. Approximately 85% of mtDNA deletions identified in humans are flanked by short directly repeated sequences; however, mechanisms by which these deletions arise are unknown. A limitation in deciphering these mechanisms is the essential nature of the mitochondrial genome in most living cells. One exception is budding yeast, which are facultative anaerobes and one of the few organisms for which directed mtDNA manipulation is possible. Using this model system, we have developed a system to simultaneously monitor spontaneous direct-repeat-mediated deletions (DRMDs) in the nuclear and mitochondrial genomes. In addition, the mitochondrial DRMD reporter contains a unique KpnI restriction endonuclease recognition site that is not present in otherwise wild-type (WT) mtDNA. We have expressed KpnI fused to a mitochondrial localization signal to induce a specific mitochondrial double-strand break (mtDSB). Here we report that loss of the MRX (Mre11p, Rad50p, Xrs2p) and Ku70/80 (Ku70p, Ku80p) complexes significantly impacts the rate of spontaneous deletion events in mtDNA, and these proteins contribute to the repair of induced mtDSBs. Furthermore, our data support homologous recombination (HR) as the predominant pathway by which mtDNA deletions arise in yeast, and suggest that the MRX and Ku70/80 complexes are partially redundant in mitochondria.
Collapse
Affiliation(s)
- Lidza Kalifa
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Daniel F. Quintana
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Laura K. Schiraldi
- Department of Biology, University of Rochester, Rochester, New York 14627
- Department of Biology, The College at Brockport, State University of New York, Brockport, New York 14420
| | - Naina Phadnis
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Garry L. Coles
- Department of Biology, The College at Brockport, State University of New York, Brockport, New York 14420
| | - Rey A. Sia
- Department of Biology, The College at Brockport, State University of New York, Brockport, New York 14420
| | - Elaine A. Sia
- Department of Biology, University of Rochester, Rochester, New York 14627
| |
Collapse
|
86
|
Abstract
AbstractGenetic, neuropathological and biochemical evidence implicates α-synuclein, a 140 amino acid presynaptic neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The aggregated protein inclusions mainly containing aberrant α-synuclein are widely accepted as morphological hallmarks of α-synucleinopathies, but their composition and location vary between disorders along with neuronal networks affected. α-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured and α-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are involved in β-pleated aggregation resulting in formation of typical inclusions. The physiological function of α-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric, not fully fibrillar α-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The effects of aberrant α-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common mechanism in the pathogenesis of neuronal degeneration in α-synucleinopathies. However, how α-synuclein induces neurodegeneration remains elusive as its physiological function. Genome wide association studies demonstrated the important role for genetic variants of the SNCA gene encoding α-synuclein in the etiology of Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function. The neuropathology of synucleinopathies and the role of α-synuclein as a potential biomarker are briefly summarized. Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence, in addition to synergistic interactions of α-synuclein with various pathogenic proteins, suggests that prionlike induction and seeding of α-synuclein could lead to the spread of the pathology and disease progression. Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of α-synuclein might be targets for neuroprotection and disease-modifying therapy.
Collapse
|
87
|
Ichikawa T, Arai M, Miyashita M, Arai M, Obata N, Nohara I, Oshima K, Niizato K, Okazaki Y, Doi N, Itokawa M. Schizophrenia: maternal inheritance and heteroplasmy of mtDNA mutations. Mol Genet Metab 2012; 105:103-9. [PMID: 22030097 DOI: 10.1016/j.ymgme.2011.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022]
Abstract
Role of mitochondrial pathology in schizophrenia has not been fully clarified. We searched for distinctive variants in mtDNA extracted from the gray matter of postmortem brains and from peripheral blood samples. We screened mtDNA region containing 5 genes encoding subunits of cytochrome c oxidase and ATPases. Polymorphisms not already reported in databases are recorded as unregistered rare variants. Four unregistered, non-synonymous rare variants were detected in 4 schizophrenic samples. Seven registered non-synonymous variants were not previously detected in non-psychotic Japanese samples registered in the mtSNP database. These variants may contribute to disease pathophysiology. In one family, compound mutations showed co-segregation with schizophrenia. MtDNA mutations could confer a risk for schizophrenia in the Japanese population, although further analyses are needed.
Collapse
Affiliation(s)
- Tomoe Ichikawa
- Project for schizophrenia and affective disorders Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Xu SC, He MD, Lu YH, Li L, Zhong M, Zhang YW, Wang Y, Yu ZP, Zhou Z. Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin. J Pineal Res 2011; 51:426-33. [PMID: 21797922 DOI: 10.1111/j.1600-079x.2011.00906.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies suggest that oxidative stress and mitochondrial dysfunction play important roles in the neurotoxicity of nickel. Because mitochondrial DNA (mtDNA) is highly vulnerable to oxidative stress and melatonin can efficiently protect mtDNA against oxidative damage in various pathological conditions, the aims of this study were to determine whether mtDNA oxidative damage was involved in the neurotoxicity of nickel and to assay the neuroprotective effects of melatonin in mtDNA. In this study, we exposed mouse neuroblastoma cell lines (Neuro2a) to different concentrations of nickel chloride (NiCl(2), 0.125, 0.25, and 0.5 mm) for 24 hr. We found that nickel significantly increased reactive oxygen species (ROS) production and mitochondrial superoxide levels. In addition, nickel exposure increased mitochondrial 8-hydroxyguanine (8-OHdG) content and reduced mtDNA content and mtDNA transcript levels. Consistent with this finding, nickel was found to destroy mtDNA nucleoid structure and decrease protein levels of Tfam, a key protein component for nucleoid organization. However, all the oxidative damage to mtDNA induced by nickel was efficiently attenuated by melatonin pretreatment. Our results suggest that oxidative damage to mtDNA may account for the neurotoxicity of nickel. Melatonin has great pharmacological potential in protecting mtDNA against the adverse effects of nickel in the nervous system.
Collapse
Affiliation(s)
- Shang-Cheng Xu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Parkinson's disease is caused by the premature death of neurons in the midbrain. By contrast, cancer spawns from cells that refuse to die. We would therefore expect their pathogenic mechanisms to be very different. However, recent genetic studies and emerging functional work show that strikingly similar and overlapping pathways are involved in both diseases. We consider these areas of convergence and discuss how insights from one disease can inform us about, and possibly help us to treat, the other.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
90
|
Wen Q, Hu Y, Ji F, Qian G. Mitochondrial DNA alterations of peripheral lymphocytes in acute lymphoblastic leukemia patients undergoing total body irradiation therapy. Radiat Oncol 2011; 6:133. [PMID: 21978541 PMCID: PMC3198693 DOI: 10.1186/1748-717x-6-133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) alterations, including mtDNA copy number and mtDNA 4977 bp common deletion (CD), are key indicators of irradiation-induced damage. The relationship between total body irradiation (TBI) treatment and mtDNA alterations in vivo, however, has not been postulated yet. The aim of this study is to analyze mtDNA alterations in irradiated human peripheral lymphocytes from acute lymphoblastic leukemia (ALL) patients as well as to take them as predictors for radiation toxicity. Methods Peripheral blood lymphocytes were isolated from 26 ALL patients 24 hours after TBI preconditioning (4.5 and 9 Gy, respectively). Extracted DNA was analyzed by real-time PCR method. Results Average 2.31 times mtDNA and 0.53 fold CD levels were observed after 4.5 Gy exposure compared to their basal levels. 9 Gy TBI produced a greater response of both mtDNA and CD levels than 4.5 Gy. Significant inverse correlation was found between mtDNA content and CD level at 4.5 and 9 Gy (P = 0.037 and 0.048). Moreover, mtDNA content of lymphocytes without irradiation was found to be correlated to age. Conclusions mtDNA and CD content may be considered as predictive factors to radiation toxicity.
Collapse
Affiliation(s)
- Quan Wen
- Third Department of Oncology, The second affiliated hospital, Third Military Medical University, Chongqing 400037, China
| | | | | | | |
Collapse
|
91
|
Pietrzak M, Smith SC, Geralds JT, Hagg T, Gomes C, Hetman M. Nucleolar disruption and apoptosis are distinct neuronal responses to etoposide-induced DNA damage. J Neurochem 2011; 117:1033-46. [PMID: 21517844 DOI: 10.1111/j.1471-4159.2011.07279.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although DNA damaging topoisomerase inhibitors induce apoptosis in developing neurons, their effects on adult neurons have not yet been characterized. We report a blockage of RNA-Polymerase-1-driven transcription and nucleolar stress in neocortical neurons of adult rats after intracarotid injection of the DNA-topoisomerase-2 inhibitor, etoposide. Intracerebroventricular injection of etoposide induced a similar response in neonatal rats. In contrast, etoposide triggered neuronal apoptosis in the neonates, but not the adults. Nucleolar disruption and apoptosis were also observed in etoposide-challenged cultured cortical neurons from newborn rats. In that system, activation of the DNA double strand break signaling kinase ataxia telangiectasia-mutated protein kinase, p53 and p53-dependent apoptosis required lower etoposide concentrations than did the p53-independent induction of nucleolar stress. These distinct responses may be coupled to different forms of etoposide-induced DNA damage. Indeed, double strand breaks by the over-expressed endonuclease I-Ppo1 were sufficient to induce p53-dependent apoptosis. Moreover, nucleolar transcription was insensitive to such damage implying single strand breaks and/or topoisomerase-2-DNA adducts as triggers of nucleolar stress. Because nucleolar stress is not age-restricted, it may underlie non-apoptotic neurotoxicity of chemotherapy- or neurodegeneration-associated DNA damage by reducing ribosomal biogenesis in adult brain. Conversely, nucleolar insensitivity to double strand breaks likely contributes to mature neuron tolerance of such lesions.
Collapse
Affiliation(s)
- Maciej Pietrzak
- Kentucky Spinal Cord Injury Research Center and the Departments of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | | | |
Collapse
|
92
|
Jeppesen DK, Bohr VA, Stevnsner T. DNA repair deficiency in neurodegeneration. Prog Neurobiol 2011; 94:166-200. [PMID: 21550379 DOI: 10.1016/j.pneurobio.2011.04.013] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington's disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration.
Collapse
Affiliation(s)
- Dennis Kjølhede Jeppesen
- Danish Centre for Molecular Gerontology and Danish Aging Research Center, University of Aarhus, Department of Molecular Biology, Aarhus, Denmark
| | | | | |
Collapse
|
93
|
Kristian T, Balan I, Schuh R, Onken M. Mitochondrial dysfunction and nicotinamide dinucleotide catabolism as mechanisms of cell death and promising targets for neuroprotection. J Neurosci Res 2011; 89:1946-55. [PMID: 21488086 DOI: 10.1002/jnr.22626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/07/2011] [Accepted: 01/17/2011] [Indexed: 11/12/2022]
Abstract
Both acute and chronic neurodegenerative diseases are frequently associated with mitochondrial dysfunction as an essential component of mechanisms leading to brain damage. Although loss of mitochondrial functions resulting from prolonged activation of the mitochondrial permeability transition (MPT) pore has been shown to play a significant role in perturbation of cellular bioenergetics and in cell death, the detailed mechanisms are still elusive. Enzymatic reactions linked to glycolysis, the tricarboxylic acid cycle, and mitochondrial respiration are dependent on the reduced or oxidized form of nicotinamide dinucleotide [NAD(H)] as a cofactor. Loss of mitochondrial NAD(+) resulting from MPT pore opening, although transient, allows detrimental depletion of mitochondrial and cellular NAD(+) pools by activated NAD(+) glycohydrolases. Poly(ADP-ribose) polymerase (PARP) is considered to be a major NAD(+) degrading enzyme, particularly under conditions of extensive DNA damage. We propose that CD38, a main cellular NAD(+) level regulator, can significantly contribute to NAD(+) catabolism. We discuss NAD(+) catabolic and NAD(+) synthesis pathways and their role in different strategies to prevent cellular NAD(+) degradation in brain, particularly following an ischemic insult. These therapeutic approaches are based on utilizing endogenous intermediates of NAD(+) metabolism that feed into the NAD(+) salvage pathway and also inhibit CD38 activity.
Collapse
Affiliation(s)
- Tibor Kristian
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
94
|
Miyamae Y, Han J, Sasaki K, Terakawa M, Isoda H, Shigemori H. 3,4,5-tri-O-caffeoylquinic acid inhibits amyloid β-mediated cellular toxicity on SH-SY5Y cells through the upregulation of PGAM1 and G3PDH. Cytotechnology 2011; 63:191-200. [PMID: 21424281 DOI: 10.1007/s10616-011-9341-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/02/2011] [Indexed: 11/28/2022] Open
Abstract
Caffeoylquinic acid (CQA) is one of the phenylpropanoids found in a variety of natural resources and foods, such as sweet potatoes, propolis, and coffee. Previously, we reported that 3,5-di-O-caffeoylquinic acid (3,5-di-CQA) has a neuroprotective effect against amyloid-β (Aβ)-induced cell death through the overexpression of glycolytic enzyme. Additionally, 3,5-di-CQA administration induced the improvement of spatial learning and memory on senescence accelerated-prone mice (SAMP8). The aim of this study was to investigate whether 3,4,5-tri-O-caffeoylquinic acid (3,4,5-tri-CQA), isolated from propolis, shows a neuroprotective effect against Aβ-induced cell death on human neuroblastoma SH-SY5Y cells. To clarify the possible mechanism, we performed proteomics and real-time RT-PCR as well as a measurement of the intracellular adenosine triphosphate (ATP) level. These results showed that 3,4,5-tri-CQA attenuated the cytotoxicity and prevented Aβ-mediated apoptosis. Glycolytic enzymes, phosphoglycerate mutase 1 (PGAM1) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were overexpressed in co-treated cells with both 3,4,5-tri-CQA and Aβ. The mRNA expression of PGAM1, G3PDH, and phosphoglycerate kinase 1 (PGK1), and intracellular ATP level were also increased in 3,4,5-tri-CQA treated cells. Taken together the findings in our study suggests that 3,4,5-tri-CQA shows a neuroprotective effect against Aβ-induced cell death through the upregulation of glycolytic enzyme mRNA as well as ATP production activation.
Collapse
Affiliation(s)
- Yusaku Miyamae
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
95
|
Ghazavi F, Fazlali Z, Banihosseini SS, Hosseini SR, Kazemi MH, Shojaee S, Parsa K, Sadeghi H, Sina F, Rohani M, Shahidi GA, Ghaemi N, Ronaghi M, Elahi E. PRKN, DJ-1, and PINK1 screening identifies novel splice site mutation in PRKN and two novel DJ-1 mutations. Mov Disord 2010; 26:80-9. [DOI: 10.1002/mds.23417] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/27/2010] [Accepted: 08/02/2010] [Indexed: 01/17/2023] Open
|
96
|
Mitochondrial abnormalities in the putamen in Parkinson's disease dyskinesia. Acta Neuropathol 2010; 120:623-31. [PMID: 20740286 DOI: 10.1007/s00401-010-0740-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/15/2010] [Accepted: 08/15/2010] [Indexed: 10/19/2022]
Abstract
Prolonged treatment of Parkinson's disease (PD) with levodopa leads to disabling side effects collectively referred to as 'dyskinesias'. We hypothesized that bioenergetic function in the putamen might play a crucial role in the development of dyskinesias. To test this hypothesis, we used post mortem samples of the human putamen and applied real time-PCR approaches and gene expression microarrays. We found that mitochondrial DNA (mtDNA) levels are decreased in patients who have developed dyskinesias, and mtDNA damage is concomitantly increased. These pathologies were not observed in PD subjects without signs of dyskinesias. The group of nuclear mRNA transcripts coding for the proteins of the mitochondrial electron transfer chain was decreased in patients with dyskinesias to a larger extent than in patients who had not developed dyskinesias. To examine whether dopamine fluctuations affect mtDNA levels in dopaminoceptive neurons, rat striatal neurons in culture were repeatedly exposed to levodopa, dopamine or their metabolites. MtDNA levels were reduced after treatment with dopamine, but not after treatment with dopamine metabolites. Levodopa led to an increase in mtDNA levels. We conclude that mitochondrial susceptibility in the putamen plays a role in the development of dyskinesias.
Collapse
|
97
|
Eichenlaub-Ritter U, Wieczorek M, Lüke S, Seidel T. Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion 2010; 11:783-96. [PMID: 20817047 DOI: 10.1016/j.mito.2010.08.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 12/26/2022]
Abstract
Mammalian oocytes are long-lived cells in the human body. They initiate meiosis already in the embryonic ovary, arrest meiotically for long periods in dictyate stage, and resume meiosis only after extensive growth and a surge of luteinizing hormone which mediates signaling events that overcome meiotic arrest. Few mitochondria are initially present in the primordial germ cells while there are mitogenesis and structural and functional differentiation and stage-specific formation of functionally diverse domains of mitochondria during oogenesis. Mitochondria are most prominent cell organelles in oocytes and their activities appear essential for normal spindle formation and chromosome segregation, and they are one of the most important maternal contributions to early embryogenesis. Dysfunctional mitochondria are discussed as major factor in predisposition to chromosomal nondisjunction during first and second meiotic division and mitotic errors in embryos, and in reduced quality and developmental potential of aged oocytes and embryos. Several lines of evidence suggest that damage by oxidative stress/reactive oxygen species in dependence of age, altered antioxidative defence and/or altered environment and bi-directional signaling between oocyte and the somatic cells in the follicle contribute to reduced quality of oocytes and blocked or aberrant development of embryos after fertilization. The review provides an overview of mitogenesis during oogenesis and some recent data on oxidative defence systems in mammalian oocytes, and on age-related changes as well as novel approaches to study redox regulation in mitochondria and ooplasm. The latter may provide new insights into age-, environment- and cryopreservation-induced stress and mitochondrial dysfunction in oocytes and embryos.
Collapse
Affiliation(s)
- U Eichenlaub-Ritter
- University of Bielefeld, Faculty of Biology, Gene Technology/Microbiology, Bielefeld, Germany.
| | | | | | | |
Collapse
|
98
|
Abstract
Deoxyribonucleic acid (DNA) damage has been implicated in ageing and neurodegenerative disorders including Alzheimer's disease (AD) for a few decades. Although it is an established finding, yet there are limited studies on DNA damage. In both nucleus and mitochondria, DNA damage is primarily free radical mediated. It has been proven that mitochondrial DNA is more vulnerable to damage compared to the nuclear DNA. A few studies summarized in this review throw light on the mechanisms of free radical mediated DNA damage and impairment of DNA repair mechanisms in AD. There is a growing need to initiate studies on DNA damage and repair and unravel the molecular underpinnings entailed in the etiopathogenesis of the disease. The outcome of such studies substantiates the corner stone streamlined to employ therapeutic strategies.
Collapse
Affiliation(s)
- M Obulesu
- Department of Biotechnology, Srikrishnadevaraya University, Anantapur, Andhra Pradesh, India
| | | |
Collapse
|
99
|
Hetman M, Vashishta A, Rempala G. Neurotoxic mechanisms of DNA damage: focus on transcriptional inhibition. J Neurochem 2010; 114:1537-49. [PMID: 20557419 DOI: 10.1111/j.1471-4159.2010.06859.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although DNA damage-induced neurotoxicity is implicated in various pathologies of the nervous system, its underlying mechanisms are not completely understood. Transcription is a DNA transaction that is highly active in the nervous system. In addition to its direct role in expression of the genetic information, transcription contributes to DNA damage detection and repair as well as chromatin organization including biogenesis of the nucleolus. Transcription is inhibited by DNA single-strand breaks and DNA adducts. Hence, transcription inhibition may be an important contributor to the neurotoxic consequences of such types of DNA damage. This review discusses the existing evidence in support of the latter hypothesis. The presented literature suggests that neuronal DNA damage interferes with the RNA-Polymerase-2-dependent transcription of genes encoding proteins with critical functions in neurotransmission and intracellular signaling. The latter category includes extracellular signal-regulated kinase-1/2 mitogen-activated protein kinase phosphatases whose lowered expression results in chronic activation of extracellular signal-regulated kinase-1/2 and its reduced responsiveness to physiological stimuli. Conversely, DNA damage-induced inhibition of RNA-Polymerase-1 and the subsequent disruption of the nucleolus induce p53-mediated apoptosis of developing neurons. Finally, decreasing nucleolar transcription may link DNA damage to chronic neurodegeneration in adults.
Collapse
Affiliation(s)
- Michal Hetman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
100
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|