51
|
Omega-3 polyunsaturated fatty acid supplementation during the pre and post-natal period: A meta-analysis and systematic review of randomized and semi-randomized controlled trials. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016. [DOI: 10.1016/j.jnim.2016.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
52
|
Carlson SE, Colombo J. Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Adv Pediatr 2016; 63:453-71. [PMID: 27426911 PMCID: PMC5207030 DOI: 10.1016/j.yapd.2016.04.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, MS 4013, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - John Colombo
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Psychology, Life Span Institute, 1000 Sunnyside Avenue, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
53
|
van der Wurff ISM, Bakker EC, Hornstra G, Kirschner PA, Gielen M, Godschalk RWL, Kremers S, Zeegers MP, de Groot RHM. Association between prenatal and current exposure to selected LCPUFAs and school performance at age 7. Prostaglandins Leukot Essent Fatty Acids 2016; 108:22-9. [PMID: 27154361 DOI: 10.1016/j.plefa.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Long-chain polyunsaturated fatty acids (LCPUFAs) are important for brain functioning and might, thus, influence cognition and school performance. However, research investigating LCPUFAs relationships with school performance is limited. The objective of this study was to determine the association between levels of the LCPUFAs docosahexaenoic acid (DHA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and n-6 docosapentaenoic acid (Osbond acid, ObA) at study entry, 22 weeks of pregnancy, 32 weeks of pregnancy, at partus, in umbilical cord plasma and child's plasma at age 7 and school performance scores at age 7. METHODS Data from the Maastricht Essential Fatty Acid Birth cohort (MEFAB) were used for this study. Fatty acid levels of plasma phospholipids were measured in maternal blood plasma at study entry, 22 weeks of pregnancy, 32 weeks of pregnancy and partus. Childs fatty acid levels of plasma phospholipids were measured a in umbilical cord blood plasma, and in blood plasma of the child at age 7. Scores on national standardised tests for spelling, reading and arithmetic at age 7 were obtained via the school (scores were available for 149, 159 and 155 children, respectively). Associations between LCPUFA levels and school performance scores were analysed with categorical regression analyses with correction for covariates (smoking, maternal education, sex, breastfeeding, maternal intelligence, birth weight and BMI at age 7). RESULTS Significant (p<0.001) associations between DHA level at age 7 and both reading (β=0.158) and spelling (β=0.146) were found. Consistent significant negative associations were observed between all maternal DHA plasma levels and arithmetic scores at age 7 (all p<0.001, all β<-0.019). Additional significant negative associations were observed between maternal LCPUFA plasma levels at study entry and both reading and spelling scores at age 7; these associations were less consistent. CONCLUSION Plasma DHA levels at age 7 were positively associated with reading and spelling scores at age 7. Consistent significant negative associations between maternal plasma DHA levels and arithmetic scores of the child at age 7 were found. Although this is an observational study, which cannot proof causality, the consistent negative associations observed between maternal plasma DHA levels and the arithmetic scores of the children at age 7 calls upon prudence when considering DHA supplementation during pregnancy.
Collapse
Affiliation(s)
- I S M van der Wurff
- Faculty of Psychology and Educational Sciences, Welten Institute, Open University of the Netherlands, Heerlen, The Netherlands.
| | - E C Bakker
- Faculty of Psychology and Educational Sciences, Open University of the Netherlands, Heerlen, The Netherlands
| | - G Hornstra
- Maastricht University (retired) and Nutrisearch, Gronsveld, The Netherlands
| | - P A Kirschner
- Faculty of Psychology and Educational Sciences, Welten Institute, Open University of the Netherlands, Heerlen, The Netherlands
| | - M Gielen
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - R W L Godschalk
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - S Kremers
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - M P Zeegers
- NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; CAPHRI School for Public Health and Primary Care Maastricht University, Maastricht, The Netherlands
| | - R H M de Groot
- Faculty of Psychology and Educational Sciences, Welten Institute, Open University of the Netherlands, Heerlen, The Netherlands; NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
54
|
Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016; 8:216. [PMID: 27077882 PMCID: PMC4848685 DOI: 10.3390/nu8040216] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023] Open
Abstract
Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence.
Collapse
Affiliation(s)
- Kevin B Hadley
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Alan S Ryan
- Clinical Research Consulting, 9809 Halston Manor, Boynton Beach, FL 33473, USA.
| | - Stewart Forsyth
- School of Medicine, Dentistry & Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Sheila Gautier
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Norman Salem
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| |
Collapse
|
55
|
Abstract
Docosahexaenoic acid (DHA) is the predominant omega-3 (n-3) polyunsaturated fatty acid (PUFA) found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action.
Collapse
|
56
|
Weiser MJ, Butt CM, Mohajeri MH. Docosahexaenoic Acid and Cognition throughout the Lifespan. Nutrients 2016; 8:99. [PMID: 26901223 PMCID: PMC4772061 DOI: 10.3390/nu8020099] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/30/2022] Open
Abstract
Docosahexaenoic acid (DHA) is the predominant omega-3 (n-3) polyunsaturated fatty acid (PUFA) found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action.
Collapse
Affiliation(s)
- Michael J Weiser
- DSM Nutritional Products, R&D Human Nutrition and Health, Boulder, CO, USA.
| | - Christopher M Butt
- DSM Nutritional Products, R&D Human Nutrition and Health, Boulder, CO, USA.
| | - M Hasan Mohajeri
- DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland.
| |
Collapse
|
57
|
Infant formula and neurocognitive outcomes: impact of study end-point selection. J Perinatol 2015; 35:867-74. [PMID: 26248129 DOI: 10.1038/jp.2015.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Assessing validity and reliability of end points used in docosahexanoic and arachidonic acids (DHA and ARA) infant formula supplementation trials as an example for addressing the impact of end-point selection and critical need for well-defined, reliable and validated clinical outcome assessments for neurocognitive assessment in neonates and infants. STUDY DESIGN We searched eight electronic databases and reviewed all randomized, controlled human trials using DHA/ARA supplements with neurodevelopment clinical outcomes. We systematically evaluated the validity and reliability of end-point measures based on the criteria for studying nutritional additives recommended by the Institute of Medicine, criteria described in the Food and Drug Administration guidance for clinical outcome assessment, development and literature review. RESULTS We identified 29 articles that met the selection criteria. The end points that were used for neurodevelopment measures in 23 out of 29 original short-term studies included the Bayley Scale of Infant Development (BSID)-I and -II (n=12), Brunet-Lezine test (n=2), videotape infant's movements (n=1), record time to milestones including sitting, crawling, standing and walking (n=1), problem-solving test (n=2), brainstem auditory-evoked potential (n=1), Touwen examination (n=1), Fagan test of infant intelligence (n=2) and visual habituation protocol (n=1). None of these end points have a long-term predictive property for neurocognitive assessment. Compared with standard infant formula, the beneficial effects of DHA/ARA supplementation on neurodevelopment were reported in 2 out of 12 studies using BSID vs 8 out of 11 studies using other end-point measures. In addition, 6 out of 29 long-term follow-up studies used the end points including Stanford-Binet IQ test (n=1), Wechsler Preschool and Primary Scale of Intelligence (n=4) and Bracken Basic Concept Scale (n=1), which are generally scales of intellectual ability and typically do not change substantively in the short term. None of these long-term follow-up studies demonstrated beneficial effects of DHA/ARA supplementation on neurodevelopment. CONCLUSION The choice of end-point measures affects the outcomes of DHA/ARA-supplemented infant formula trials. Available data are currently inadequate to conclude that DHA/ARA supplementation has a clinically meaningful beneficial effect upon neurological development. Although BSID is validated to assess early developmental delays, it is not designed to predict long-term neurocognitive outcome. A well-defined, valid and reliable clinical outcome assessment that measures neurocognitive function in neonates and infants is essential to provide the scientific evidence required for future clinical trials.
Collapse
|
58
|
Developmental changes in polyunsaturated fetal plasma phospholipids and feto-maternal plasma phospholipid ratios and their association with bronchopulmonary dysplasia. Eur J Nutr 2015; 55:2265-74. [DOI: 10.1007/s00394-015-1036-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/05/2015] [Indexed: 12/31/2022]
|
59
|
Nelson EB, Van Elswyk ME. Limitations of the review and meta-analysis of the role of n-3 long-chain PUFA supplementation and cognitive function. Am J Clin Nutr 2015; 101:1305-6. [PMID: 26034102 DOI: 10.3945/ajcn.115.107078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edward B Nelson
- From DSM Nutritional Products (EBN) Columbia, MD, and Van Elswyk Consulting Inc., Longmont, CO (MVE, e-mail: )
| | - Mary E Van Elswyk
- From DSM Nutritional Products (EBN) Columbia, MD, and Van Elswyk Consulting Inc., Longmont, CO (MVE, e-mail: )
| |
Collapse
|
60
|
Jiao J, Li Q, Chu J, Zeng W, Yang M, Zhu S. Reply to EB Nelson and ME Van Elswyk. Am J Clin Nutr 2015; 101:1306-7. [PMID: 26034103 DOI: 10.3945/ajcn.115.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jingjing Jiao
- From the Chronic Disease Research Institute, Department of Nutrition, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (JJ, QL, JC, WZ, MY; SZ, e-mail: )
| | - Qingqing Li
- From the Chronic Disease Research Institute, Department of Nutrition, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (JJ, QL, JC, WZ, MY; SZ, e-mail: )
| | - Jingjing Chu
- From the Chronic Disease Research Institute, Department of Nutrition, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (JJ, QL, JC, WZ, MY; SZ, e-mail: )
| | - Weijiang Zeng
- From the Chronic Disease Research Institute, Department of Nutrition, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (JJ, QL, JC, WZ, MY; SZ, e-mail: )
| | - Min Yang
- From the Chronic Disease Research Institute, Department of Nutrition, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (JJ, QL, JC, WZ, MY; SZ, e-mail: )
| | - Shankuan Zhu
- From the Chronic Disease Research Institute, Department of Nutrition, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (JJ, QL, JC, WZ, MY; SZ, e-mail: )
| |
Collapse
|
61
|
Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematurity. J Perinatol 2015; 35:1-7. [PMID: 25357095 PMCID: PMC4281288 DOI: 10.1038/jp.2014.195] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/23/2014] [Accepted: 08/26/2014] [Indexed: 12/12/2022]
Abstract
Long-chain polyunsaturated fatty acids (LCPUFA) including docosahexaenoic acid (DHA) are essential for normal vision and neurodevelopment. DHA accretion in utero occurs primarily in the last trimester of pregnancy to support rapid growth and brain development. Premature infants, born before this process is complete, are relatively deficient in this essential fatty acid. Very low birth weight (VLBW) infants remain deficient for a long period of time due to ineffective conversion from precursor fatty acids, lower fat stores and a limited nutritional provision of DHA after birth. In addition to long-term visual and neurodevelopmental risks, VLBW infants have significant morbidity and mortality from diseases specific to premature birth, including bronchopulmonary dysplasia, necrotizing enterocolitis, and retinopathy of prematurity. There is increasing evidence that DHA has protective benefits against these disease states. The aim of this article is to identify the unique needs of premature infants, review the current recommendations for LCPUFA provision in infants and discuss the caveats and innovative new ways to overcome the DHA deficiency through postnatal supplementation, with the long-term goal of improving morbidity and mortality in this at-risk population.
Collapse
|
62
|
Jiao J, Li Q, Chu J, Zeng W, Yang M, Zhu S. Effect of n-3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2014; 100:1422-36. [PMID: 25411277 DOI: 10.3945/ajcn.114.095315] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND n-3 PUFAs play an important role in cognitive function. OBJECTIVE The objective was to investigate the effect of n-3 PUFA supplements on cognitive development, function, and decline throughout the life span. DESIGN The study included randomized controlled trials and provided ≥3 mo of treatment. Potential studies were independently screened in duplicate, and study characteristics and outcomes were extracted. A meta-analysis was performed by using fixed- or random-effects models. The results are presented as standardized mean differences (SMDs) with 95% CIs. RESULTS Of the 3692 citations retrieved, 34 studies of a total of 12,999 participants (1031 infants, 1517 children, 3657 adults, and 6794 elderly individuals) were included. Compared with placebo, n-3 PUFA supplements significantly improved cognitive development in infants, including the Mental Development Index (SMD: 0.33; 95% CI: 0.15, 0.52), the Psychomotor Development Index (0.27; 95% CI: 0.09, 0.45), and language (0.27; 95% CI: 0.13, 0.42), motor (0.29; 95% CI: 0.14, 0.43), and cognitive (0.31; 95% CI: 0.16, 0.45) abilities. However, n-3 PUFAs did not promote cognitive function in terms of composite memory, executive function, and processing speed domains in children, adults, or the elderly, except for the attention domain. No association was found between n-3 PUFA intake and improvements in cognitive performance in terms of recognition, immediate and delayed word recall, digit span backward and forward tests, rapid visual information processing, verbal fluency, and simple and choice reaction times. In addition, n-3 PUFA supplements were not associated with improvements in cognitive decline or with any effects on Alzheimer disease in elderly people. CONCLUSIONS n-3 PUFA supplements may significantly improve cognitive development in infants but do not improve cognitive performance in children, adults, or the elderly. n-3 PUFA intake, especially that of DHA supplements, may benefit cognitive development during infancy.
Collapse
Affiliation(s)
- Jingjing Jiao
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingqing Li
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Chu
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weijiang Zeng
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Yang
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shankuan Zhu
- From the Chronic Disease Research Institute, Department of Nutrition, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
63
|
de Theije CGM, van den Elsen LWJ, Willemsen LEM, Milosevic V, Korte-Bouws GAH, Lopes da Silva S, Broersen LM, Korte SM, Olivier B, Garssen J, Kraneveld AD. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice. Neuropharmacology 2014; 90:15-22. [PMID: 25445491 DOI: 10.1016/j.neuropharm.2014.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
Abstract
Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation.
Collapse
Affiliation(s)
- Caroline G M de Theije
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Lieke W J van den Elsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Vanja Milosevic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Gerdien A H Korte-Bouws
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sofia Lopes da Silva
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - Laus M Broersen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - S Mechiel Korte
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
64
|
Koletzko B, Boey CCM, Campoy C, Carlson SE, Chang N, Guillermo-Tuazon MA, Joshi S, Prell C, Quak SH, Sjarif DR, Su Y, Supapannachart S, Yamashiro Y, Osendarp SJM. Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: systematic review and practice recommendations from an early nutrition academy workshop. ANNALS OF NUTRITION AND METABOLISM 2014; 65:49-80. [PMID: 25227906 DOI: 10.1159/000365767] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022]
Abstract
The Early Nutrition Academy supported a systematic review of human studies on the roles of pre- and postnatal long-chain polyunsaturated fatty acids (LC-PUFA) published from 2008 to 2013 and an expert workshop that reviewed the information and developed recommendations, considering particularly Asian populations. An increased supply of n-3 LC-PUFA during pregnancy reduces the risk of preterm birth before 34 weeks of gestation. Pregnant women should achieve an additional supply ≥200 mg docosahexaenic acid (DHA)/day, usually achieving a total intake ≥300 mg DHA/day. Higher intakes (600-800 mg DHA/day) may provide greater protection against early preterm birth. Some studies indicate beneficial effects of pre- and postnatal DHA supply on child neurodevelopment and allergy risk. Breast-feeding is the best choice for infants. Breast-feeding women should get ≥200 mg DHA/day to achieve a human milk DHA content of ∼0.3% fatty acids. Infant formula for term infants should contain DHA and arachidonic acid (AA) to provide 100 mg DHA/day and 140 mg AA/day. A supply of 100 mg DHA/day should continue during the second half of infancy. We do not provide quantitative advice on AA levels in follow-on formula fed after the introduction of complimentary feeding due to a lack of sufficient data and considerable variation in the AA amounts provided by complimentary foods. Reasonable intakes for very-low-birth weight infants are 18-60 mg/kg/day DHA and 18-45 mg/kg/day AA, while higher intakes (55-60 mg/kg/day DHA, ∼1% fatty acids; 35-45 mg/kg/day AA, ∼0.6-0.75%) appear preferable. Research on the requirements and effects of LC-PUFA during pregnancy, lactation, and early childhood should continue. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Berthold Koletzko
- Early Nutrition Academy, Dr. von Hauner Children's Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
|
66
|
Tijhuis MJ, Doets EL, Vonk Noordegraaf‐Schouten M. Extensive literature search and review as preparatory work for the evaluation of the essential composition of infant and follow‐on formulae and growing‐up milk. ACTA ACUST UNITED AC 2014. [DOI: 10.2903/sp.efsa.2014.en-551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- MJ Tijhuis
- Pallas health research and consultancy the Netherlands
| | - EL Doets
- Pallas health research and consultancy the Netherlands
| | | |
Collapse
|
67
|
Heaton AE, Meldrum SJ, Foster JK, Prescott SL, Simmer K. Does docosahexaenoic acid supplementation in term infants enhance neurocognitive functioning in infancy? Front Hum Neurosci 2013; 7:774. [PMID: 24312040 PMCID: PMC3834239 DOI: 10.3389/fnhum.2013.00774] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/27/2013] [Indexed: 01/06/2023] Open
Abstract
The proposal that dietary docosahexaenoic acid (DHA) enhances neurocognitive functioning in term infants is controversial. Theoretical evidence, laboratory research and human epidemiological studies have convincingly demonstrated that DHA deficiency can negatively impact neurocognitive development. However, the results from randomized controlled trials (RCTs) of DHA supplementation in human term-born infants have been inconsistent. This article will (i) discuss the role of DHA in the human diet, (ii) explore the physiological mechanisms by which DHA plausibly influences neurocognitive capacity, and (iii) seek to characterize the optimal intake of DHA during infancy for neurocognitive functioning, based on existing research that has been undertaken in developed countries (specifically, within Australia). The major observational studies and RCTs that have examined dietary DHA in human infants and animals are presented, and we consider suggestions that DHA requirements vary across individuals according to genetic profile. It is important that the current evidence concerning DHA supplementation is carefully evaluated so that appropriate recommendations can be made and future directions of research can be strategically planned.
Collapse
Affiliation(s)
- Alexandra E. Heaton
- School of Paediatrics and Child Health, University of Western AustraliaPerth, WA, Australia
| | - Suzanne J. Meldrum
- School of Paediatrics and Child Health, University of Western AustraliaPerth, WA, Australia
| | - Jonathan K. Foster
- School of Paediatrics and Child Health, University of Western AustraliaPerth, WA, Australia
- School of Psychology and Speech Pathology, Curtin Health Innovation Research Institute, Curtin UniversityPerth, WA, Australia
- Neurosciences Unit, Western Australia Department of HealthPerth, WA, Australia
- Telethon Institute for Child Health ResearchPerth, WA, Australia
| | - Susan L. Prescott
- School of Paediatrics and Child Health, University of Western AustraliaPerth, WA, Australia
- Telethon Institute for Child Health ResearchPerth, WA, Australia
| | - Karen Simmer
- School of Paediatrics and Child Health, University of Western AustraliaPerth, WA, Australia
- Telethon Institute for Child Health ResearchPerth, WA, Australia
- Centre for Neonatal Research and Education, University of Western AustraliaPerth, WA, Australia
| |
Collapse
|
68
|
McNamara RK, Jandacek R, Tso P, Weber W, Chu WJ, Strakowski SM, Adler CM, Delbello MP. Low docosahexaenoic acid status is associated with reduced indices in cortical integrity in the anterior cingulate of healthy male children: a 1H MRS Study. Nutr Neurosci 2013; 16:183-90. [PMID: 23582513 DOI: 10.1179/1476830512y.0000000045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is the principal omega-3 fatty acid in mammalian brain gray matter, and emerging preclinical evidence suggests that DHA has neurotrophic and neuroprotective properties. This study investigated relationships among DHA status, neurocognitive performance, and cortical metabolism measured with proton magnetic resonance spectroscopy (1H MRS) in healthy developing male children (aged 8-10 years, n = 38). Subjects were segregated into low-DHA (n = 19) and high-DHA (n = 19) status groups by a median split of erythrocyte DHA levels. Group differences in 1H MRS indices of cortical metabolism, including choline (Cho), creatine (Cr), glutamine + glutamate + γ-aminobutyric acid (Glx), myo-inositol (mI), and n-acetyl aspartate (NAA), were determined in the right and left dorsolateral prefrontal cortex (R/L-DLPFC, BA9) and bilateral anterior cingulate cortex (ACC, BA32/33). Group differences in neurocognitive performance were evaluated with the Kaufman Brief Intelligence Test and identical-pairs version of the continuous performance task (CPT-IP). Subjects in the low-DHA group consumed fish less frequently (P = 0.02), had slower reaction times on the CPT-IP (P = 0.007), and exhibited lower mI (P = 0.007), NAA (P = 0.007), Cho (P = 0.009), and Cr (P = 0.01) concentrations in the ACC compared with the high-DHA group. There were no group differences in ACC Glx or any metabolite in the L-DLPFC and R-DLPFC. These data indicate that low-DHA status is associated with reduced indices of metabolic function in the ACC and slower reaction time during sustained attention in developing male children.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Center for Imaging Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Colombo J, Carlson SE, Cheatham CL, Shaddy DJ, Kerling EH, Thodosoff JM, Gustafson KM, Brez C. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am J Clin Nutr 2013; 98:403-12. [PMID: 23803884 PMCID: PMC3712550 DOI: 10.3945/ajcn.112.040766] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/14/2013] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The effect of long-chain polyunsaturated fatty acid (LCPUFA) intake on cognitive development is controversial. Most randomized trials have assessed cognition at 18 mo, although significant development of cognitive abilities (early executive function) emerge later. OBJECTIVE The objective was to evaluate cognition beyond 18 mo and longitudinal cognitive change from 18 mo to 6 y in children who were fed variable amounts of docosahexaenoic acid (0.32%, 0.64%, and 0.96% of total fatty acids) and arachidonic acid (ARA; 0.64%) compared with children who were not fed LCPUFA as infants. DESIGN Eighty-one children (19 placebo, 62 LCPUFA) who participated in a double-blind, randomized trial of LCPUFA supplementation as infants were re-enrolled at 18 mo and tested every 6 mo until 6 y on age-appropriate standardized and specific cognitive tests. RESULTS LCPUFA supplementation did not influence performance on standardized tests of language and performance at 18 mo; however, significant positive effects were observed from 3 to 5 y on rule-learning and inhibition tasks, the Peabody Picture Vocabulary Test at 5 y, and the Weschler Primary Preschool Scales of Intelligence at 6 y. Effects of LCPUFAs were not found on tasks of spatial memory, simple inhibition, or advanced problem solving. CONCLUSIONS The data from this relatively small trial suggest that, although the effects of LCPUFAs may not always be evident on standardized developmental tasks at 18 mo, significant effects may emerge later on more specific or fine-grained tasks. The results imply that studies of nutrition and cognitive development should be powered to continue through early childhood. This parent trial was registered at clinicaltrials.gov as NCT00266825.
Collapse
Affiliation(s)
- John Colombo
- Schiefelbusch Life Span Institute and Department of Psychology, University of Kansas, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Glick NR, Fischer MH. The Role of Essential Fatty Acids in Human Health. J Evid Based Complementary Altern Med 2013. [DOI: 10.1177/2156587213488788] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fatty acid research began about 90 years ago but intensified in recent years. Essential fatty acids (linoleic and α-linolenic) must come from diet. Other fatty acids may come from diet or may be synthesized. Fatty acids are major components of cell membrane structure, modulate gene transcription, function as cytokine precursors, and serve as energy sources in complex, interconnected systems. It is increasingly apparent that dietary fatty acids influence these vital functions and affect human health. While the strongest evidence for influence is found in cardiovascular disease and mental health, many additional conditions are affected. Problematic changes in the fatty acid composition of human diet have also taken place over the last century. This review summarizes current understanding of the pervasive roles of essential fatty acids and their metabolites in human health.
Collapse
|
71
|
Reardon HT, Hsieh AT, Park WJ, Kothapalli KS, Anthony JC, Nathanielsz PW, Brenna JT. Dietary long-chain polyunsaturated fatty acids upregulate expression of FADS3 transcripts. Prostaglandins Leukot Essent Fatty Acids 2013; 88:15-9. [PMID: 22398025 PMCID: PMC3386357 DOI: 10.1016/j.plefa.2012.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/10/2012] [Indexed: 12/18/2022]
Abstract
The fatty acid desaturase (FADS) gene family at 11q12-13.1 includes FADS1 and FADS2, both known to mediate biosynthesis of omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFA). FADS3 is a putative desaturase due to its sequence similarity with FADS1 and FADS2, but its function is unknown. We have previously described 7 FADS3 alternative transcripts (AT) and 1 FADS2 AT conserved across multiple species. This study examined the effect of dietary LCPUFA levels on liver FADS gene expression in vivo and in vitro, evaluated by qRT-PCR. Fourteen baboon neonates were randomized to three diet groups for their first 12 weeks of life, C: Control, no LCPUFA, L: 0.33% docosahexaenoic acid (DHA)/0.67% arachidonic acid (ARA) (w/w); and L3: 1.00% DHA/0.67% ARA (w/w). Liver FADS1 and both FADS2 transcripts were downregulated by at least 50% in the L3 group compared to controls. In contrast, FADS3 AT were upregulated (L3 > C), with four transcripts significantly upregulated by 40% or more. However, there was no evidence for a shift in liver fatty acids to coincide with increased FADS3 expression. Significant upregulation of FADS3 AT was also observed in human liver-derived HepG2 cells after DHA or ARA treatment. The PPARγ antagonist GW9662 prevented FADS3 upregulation, while downregulation of FADS1 and FADS2 was unaffected. Thus, FADS3 AT were directly upregulated by LCPUFA by a PPARγ-dependent mechanism unrelated to regulation of other desaturases. This opposing pattern and mechanism of regulation suggests a dissimilar function for FADS3 AT compared to other FADS gene products.
Collapse
Affiliation(s)
- Holly T. Reardon
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Andrea T. Hsieh
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Woo Jung Park
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | | - Joshua C. Anthony
- Mead Johnson Nutrition, 2400 W. Lloyd Expressway, Evansville, Indiana, USA
| | - Peter W. Nathanielsz
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, Texas, USA
| | - J. Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Corresponding author: voice (607) 255-9182, fax (607) 255-1033,
| |
Collapse
|
72
|
A randomized trial of DHA intake during infancy: school readiness and receptive vocabulary at 2-3.5 years of age. Early Hum Dev 2012; 88:885-91. [PMID: 22835597 DOI: 10.1016/j.earlhumdev.2012.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Studies investigating the effects of docosahexaenoic acid (DHA) in infant formula on language development yield conflicting results. No study to date has investigated the effects of DHA in infant formula on school readiness. AIM To determine the effects of different dietary concentrations of DHA provided during the first 12 months of life on language development and school readiness. DESIGN This was a double-masked, randomized, controlled, prospective trial. A total of 182 infants were enrolled at 1-9 days of age and assigned randomly to receive infant formula with one of four levels of DHA: control (0% DHA), 0.32% DHA, 0.64% DHA, or 0.96% DHA. All formulas with DHA also contained 0.64% arachidonic acid. One hundred forty-one children completed the 12-month feeding trial and were eligible for this study. Consent was obtained from 131 participants. School readiness was assessed at 2.5 years using the Bracken Basic Concept Scale-Revised (BBCS-R) and receptive vocabulary was assessed at 2 and 3.5 years using the Peabody Picture Vocabulary Test-Third Edition (PPVT-III). RESULTS There were no diet group differences on any of the BBCS-R subscales. On the PPVT-III, the control group had higher raw scores and standard scores than both the 0.32% and 0.96% groups at 2 years of age. These differences were not evident at 3.5 years. CONCLUSIONS Dietary DHA during the first year of life did not enhance school readiness or language development. Children who consumed infant formula with 0.32% and 0.96% DHA showed lower receptive vocabulary scores than controls at 2 but not 3.5 years of age.
Collapse
|
73
|
Morse NL. Benefits of docosahexaenoic acid, folic acid, vitamin D and iodine on foetal and infant brain development and function following maternal supplementation during pregnancy and lactation. Nutrients 2012; 4:799-840. [PMID: 22852064 PMCID: PMC3407995 DOI: 10.3390/nu4070799] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/09/2012] [Accepted: 07/12/2012] [Indexed: 11/17/2022] Open
Abstract
UNLABELLED Scientific literature is increasingly reporting on dietary deficiencies in many populations of some nutrients critical for foetal and infant brain development and function. PURPOSE To highlight the potential benefits of maternal supplementation with docosahexaenoic acid (DHA) and other important complimentary nutrients, including vitamin D, folic acid and iodine during pregnancy and/or breast feeding for foetal and/or infant brain development and/or function. METHODS English language systematic reviews, meta-analyses, randomised controlled trials, cohort studies, cross-sectional and case-control studies were obtained through searches on MEDLINE and the Cochrane Register of Controlled Trials from January 2000 through to February 2012 and reference lists of retrieved articles. Reports were selected if they included benefits and harms of maternal supplementation of DHA, vitamin D, folic acid or iodine supplementation during pregnancy and/or lactation. RESULTS Maternal DHA intake during pregnancy and/or lactation can prolong high risk pregnancies, increase birth weight, head circumference and birth length, and can enhance visual acuity, hand and eye co-ordination, attention, problem solving and information processing. Vitamin D helps maintain pregnancy and promotes normal skeletal and brain development. Folic acid is necessary for normal foetal spine, brain and skull development. Iodine is essential for thyroid hormone production necessary for normal brain and nervous system development during gestation that impacts childhood function. CONCLUSION Maternal supplementation within recommended safe intakes in populations with dietary deficiencies may prevent many brain and central nervous system malfunctions and even enhance brain development and function in their offspring.
Collapse
Affiliation(s)
- Nancy L Morse
- Efamol Ltd., 14 Mole Business Park, Leatherhead KT22 7BA, UK.
| |
Collapse
|
74
|
Abstract
The aim of this review is to evaluate the effects of omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) supplementation in pregnant and lactating women and infants during postnatal life, on the visual acuity, psychomotor development, mental performance and growth of infants and children. Eighteen publications (11 sets of randomized control clinical trial [RCTs]) assessed the effects of the n-3 LCPUFA supplementation duringpregnancyon neurodevelopment and growth, in the same subjects at different time points; 4 publications (2 data sets from RCTs) addressed physiological responses to n-3 LCPUFA supplementation duringpregnancy & lactationand 5 publications (3 data sets from RCTs) exclusively duringlactation. Some of these studies showed beneficial effects of docosahexaenoic acid (DHA) supplementation during pregnancy and/or lactation especially on visual acuity outcomes and some on long-term neurodevelopment; a few, showed positive effects on growth. There were also 15 RCTs involving term infants who received infant formula supplemented with DHA, which met our selection criteria. Many of these studies claimed a beneficial effect of such supplementation on visual, neural, or developmental outcomes and no effects on growth. Although new well designed and conducted studies are being published, evidence from RCTs does not demonstrate still a clear and consistent benefit of n-3 LCPUFA supplementation during pregnancy and/or lactation on term infants growth, neurodevelopment and visual acuity. These results should be interpreted with caution due to methodological limitations of the included studies.
Collapse
|
75
|
Simmer K, Patole SK, Rao SC. Long-chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev 2011:CD000376. [PMID: 22161363 DOI: 10.1002/14651858.cd000376.pub3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The n-3 and n-6 fatty acids linolenic acid and linoleic acid are precursors of the n-3 and n-6 long chain fatty acids (LCPUFA). Infant formula has historically only contained the precursor fatty acids. Over the last few years, some manufacturers have added LCPUFA to formulae and marketed them as providing an advantage for the development of term infants. OBJECTIVES To assess whether supplementation of formula with LCPUFA is safe and of benefit to term infants. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (The Cochrane Library, April, 2011), MEDLINE (1966 to April 2011), EMBASE (1980 to April 2011), CINAHL (December 1982 to April 2011) and abstracts of the Society for Pediatric Research (1980 to 2010). No language restrictions were applied. SELECTION CRITERIA Randomised and quasi randomised trials comparing LCPUFA supplemented vs. non-supplemented formula milk and with clinical endpoints were reviewed. DATA COLLECTION AND ANALYSIS Methodological quality of studies was assessed using the guidelines of Cochrane neonatal review group. Data were sought regarding effects on visual acuity, neurodevelopmental outcomes and physical growth. When appropriate, meta-analysis was conducted to provide a pooled estimate of effect. MAIN RESULTS Twenty-five randomised studies were identified; fifteen were included (n = 1889) and ten excluded.Visual acuity was assessed by nine studies. Visual evoked potential was used in six studies, two used Teller cards and one used both. Four studies reported beneficial effects while the remaining five did not.Neurodevelopmental outcome was measured by eleven studies. Bayley scales of infant development (BSID) was used in nine studies; only two showed beneficial effects. Meta-analysis did not show significant benefits of supplementation. One study followed the infants up to nine years of age and did not find benefit of supplementation. One study reported better novelty preference measured by Fagan Infant test at nine months. Another study reported better problem solving at 10 months. One study used Brunet and Lezine test to assess the developmental quotient and did not find beneficial effects.Physical growth was measured by thirteen studies; none found beneficial or harmful effects of supplementation. Meta-analysis found that supplemented group may have marginally lower weight at one year of age. AUTHORS' CONCLUSIONS Majority of the RCTS have not shown beneficial effects of LCPUFA supplementation on the neurodevelopmental outcomes of term infants. The beneficial effects on visual acuity have not been consistently demonstrated. Routine supplementation of term infant milk formula with LCPUFA can not be recommended.
Collapse
Affiliation(s)
- Karen Simmer
- Neonatal Care Unit, King Edward Memorial Hospital for Women and Princess Margaret Hospital for Children, Bagot Road, Subiaco, WA, Australia, 6008
| | | | | |
Collapse
|