51
|
Zou W, Wang X, Sun R, Hu J, Ye D, Bai G, Liu S, Hong W, Guo M, Ran P. PM2.5 Induces Airway Remodeling in Chronic Obstructive Pulmonary Diseases via the Wnt5a/β-Catenin Pathway. Int J Chron Obstruct Pulmon Dis 2021; 16:3285-3295. [PMID: 34887658 PMCID: PMC8650833 DOI: 10.2147/copd.s334439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
Background Fine-particulate matter ≤2.5 μm in diameter (PM2.5)-associated airway remodeling has recently been recognized as a central feature of COPD. Activation of the Wnt/β-catenin pathway is closely related to the occurrence of airway remodeling. Accordingly, the goal of this study was to determine whether the Wnt5a/β-Catenin pathway is involved in PM2.5-induced smooth muscle proliferation in vivo and in vitro, which promotes the development of airway remodeling in subjects with COPD. Methods The effect of Wnt5a on β-Catenin-mediated airway remodeling was assessed using an in vivo model of PM2.5-induced COPD and PM2.5-exposed human bronchial smooth muscle cells (HBSMCs) in vitro. Small animal spirometry was used to measure lung function in mice. H&E staining and immunohistochemistry were performed to inspect emphysema and airway remodeling indices. Real-time PCR was used to detect Wnt5a, β-Catenin, TGF-β1, CyclinD1 and c-myc mRNA expression. The CCK8 assay was performed to detect cellular activity. Western blotting was performed to assess PCNA, α-SMA, Wnt5a, β-Catenin, PDGFRβ and TenascinC protein expression. β-Catenin expression was detected using cellular immunofluorescence. Results Exposure to PM2.5 led to emphysema, airway wall thickening, an increased smooth muscle layer thickness, decreased lung function and increased expression of the Wnt5a, β-Catenin, PDGFRβ and Tenascin C proteins in the mouse lung tissue. BOX5 (a Wnt5a antagonist) alleviated these PM2.5-induced outcomes in mice. Moreover, PM2.5 induced the expression of the Wnt5a, β-Catenin, TGF-β1, CyclinD1 and c-myc mRNAs in HBSMCs. BOX5 also inhibited the PM2.5-induced increases in PCNA, α-SMA, Wnt5a, β-Catenin, PDGFRβ and Tenascin C protein expression in HBSMCs. Conclusion Our findings suggest that PM2.5 exposure induces HBSMC proliferation, contributing to airway remodeling via the Wnt5a/β-Catenin signaling pathway in vivo and in vitro, which might be a target for COPD treatment.
Collapse
Affiliation(s)
- Weifeng Zou
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoqian Wang
- The Third Hospital of Mianyang, Mianyang, Sichuan, People's Republic of China
| | - Ruiting Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Dong Ye
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ge Bai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Sha Liu
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Meihua Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
52
|
PM2.5 Induces Early Epithelial Mesenchymal Transition in Human Proximal Tubular Epithelial Cells through Activation of IL-6/STAT3 Pathway. Int J Mol Sci 2021; 22:ijms222312734. [PMID: 34884542 PMCID: PMC8657854 DOI: 10.3390/ijms222312734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Particulate matter exposure has been known as a potential risk for the global burden of disease, such as respiratory and cardiovascular diseases. Accumulating evidence suggests that PM2.5 (particulate matter with a diameter less than 2.5 μm) is associated with increased risk of kidney disease, but the mechanisms underlying the renal injury caused by PM2.5 remain to be elucidated. This study investigated the effects of PM2.5 on human proximal tubular epithelial (HK-2) cells by monolayer and 3D spheroid cultures and explored the potential mechanisms. The typical morphology of HK-2 cells showed epithelial–mesenchymal transition (EMT), resulting in reduced adhesion and enhanced migration after PM2.5 exposure, and was accompanied by decreased E-cadherin expression and increased vimentin and α-SMA expressions. Exposure to PM2.5 in the HK-2 cells could lead to an increase in interleukin-6 (IL-6) levels and cause the activation of signal transducer and activator of transcription 3 (STAT3), which is involved in EMT features of HK-2 cells. Furthermore, blocking IL-6/STAT3 signaling by an IL-6 neutralizing antibody or STAT3 inhibitor was sufficient to reverse PM2.5-induced EMT characteristics of the HK-2 cells. Our study suggests that PM2.5 could induce early renal tubule cell injury, contributing to EMT change, and the induction of IL-6/STAT3 pathway may play an important role in this process.
Collapse
|
53
|
Kim C, Jeong SH, Kim J, Kang JY, Nam YJ, Togloom A, Cha J, Lee KY, Lee CH, Park EK, Lee JH. Evaluation of the effect of filtered ultrafine particulate matter on bleomycin-induced lung fibrosis in a rat model using computed tomography, histopathologic analysis, and RNA sequencing. Sci Rep 2021; 11:22672. [PMID: 34811439 PMCID: PMC8609022 DOI: 10.1038/s41598-021-02140-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
We aimed to investigate the effect of chronic particulate matter (PM) exposure on bleomycin-induced lung fibrosis in a rat model using chest CT, histopathologic evaluation, and RNA-sequencing. A bleomycin solution was intratracheally administrated to 20 male rats. For chronic PM exposure, after four weeks of bleomycin treatment to induce lung fibrosis, PM suspension (experimental group) or normal saline (control group) was intratracheally administrated for 10 weeks. Chest CT was carried out in all rats, and then both lungs were extracted for histopathologic evaluation. One lobe from three rats in each group underwent RNA sequencing, and one lobe from five rats in each group was evaluated by western blotting. Inflammation and fibrosis scores in both chest CT and pathologic analysis were significantly more aggravated in rats with chronic PM exposure than in the control group. Several genes associated with inflammation and immunity were also upregulated with chronic PM exposure. Our study revealed that chronic PM exposure in a bleomycin-induced lung fibrosis rat model aggravated pulmonary fibrosis and inflammation, proven by chest CT, pathologic analysis, and RNA sequencing.
Collapse
Affiliation(s)
- Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Ariunaa Togloom
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Jaehyung Cha
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Ki Yeol Lee
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Chang Hyun Lee
- Department of Radiology, College of Medicine, Seoul National University, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, 49267, South Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea.
| |
Collapse
|
54
|
Ning J, Du H, Zhang Y, Liu Q, Jiang T, Pang Y, Tian X, Yan L, Niu Y, Zhang R. N6-methyladenosine modification of CDH1 mRNA promotes PM2.5-induced pulmonary fibrosis via mediating epithelial mesenchymal transition. Toxicol Sci 2021; 185:143-157. [PMID: 34735003 DOI: 10.1093/toxsci/kfab133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The association between ambient airborne fine particulate matter (PM2.5) exposure and respiratory diseases has been investigated in epidemiological studies. To explore the potential mechanism of PM2.5-induced pulmonary fibrosis, sixty mice were divided into 3 groups to expose to different levels of PM2.5 for 8 and 16 weeks: filtered air (FA), unfiltered air (UA) and concentrated PM2.5 air (CA), respectively. BEAS-2B cells were treated with 0, 25, 50 and 100 μg/ml PM2.5 for 24 h. The biomarkers of pulmonary fibrosis, epithelial-mesenchymal transition (EMT), N6-methyladenosine (m6A) modification and metabolism of mRNAs were detected to characterize the effect of PM2.5 exposure. The results illustrated that PM2.5 exposure induced pathological alteration and pulmonary fibrosis in mice. The expression of E-cadherin (E-cad) was decreased whereas vimentin and N-cadherin (N-cad) expression were increased in a dose- and time-dependent manner after PM2.5 exposure. Mechanistically, PM2.5 exposure increased the levels of METTL3-mediated m6A modification of CDH1 mRNA. As a target gene of miR-494-3p, YTHDF2 was up-regulated by miR-494-3p down-regulation and then recognized m6A-modified CDH1 mRNA to inhibit the E-cad expression, consequently induced the EMT progression after PM2.5 exposure. Our study indicated that PM2.5 exposure triggered EMT progression to promote the pulmonary fibrosis via miR-494-3p/YTHDF2 recognized and METTL3 mediated m6A modification.
Collapse
Affiliation(s)
- Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Hairong Du
- Guangming District Center for Disease Control and Prevention, Shenzhen, 518016, China Guangdong PR
| | - Yaling Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Tao Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiaochen Tian
- Department of Orthopaedic Surgery, Shijiazhuang People's Hospital, Shijiazhuang, 050011, PR China
| | - Liqun Yan
- Departments of Radiology, Second Hospital of Hebei Medical University, Shijiazhuang, PR, 050000, China
| | - Yujie Niu
- Department of Occupation Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China.,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China.,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| |
Collapse
|
55
|
Wang ZJ, Yu H, Hao JJ, Peng Y, Yin TT, Qiu YN. PM 2.5 promotes Drp1-mediated mitophagy to induce hepatic stellate cell activation and hepatic fibrosis via regulating miR-411. Exp Cell Res 2021; 407:112828. [PMID: 34508745 DOI: 10.1016/j.yexcr.2021.112828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Particulate matter≤ 2.5 μm (PM2.5) is a type of environmental agent associated with air pollution, which induces hepatic fibrosis. However, the function and mechanism of PM2.5 on hepatic stellate cell (HSC) proliferation and fibrosis remain largely unknown. METHODS Human HSC line (LX-2) and murine HSCs were exposed to various doses of PM2.5. microRNA (miR)-411 expression was detected via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation, fibrosis, mitochondrial dynamics dysfunction and mitophagy were determined via cell counting kit-8 (CCK-8), qRT-PCR, Western blotting and immunofluorescence. RESULTS PM2.5 facilitated HSC proliferation and fibrosis via increasing the levels of ACTA2, Collagen 1, TIMP1 and TGF-β1. PM2.5 reduced miR-411 expression, and contributed to mitochondrial dynamics dysfunction via increasing Drp1 and decreasing OPA1, TOM20 and PGC-1α levels. PM2.5 promoted mitophagy by upregulating the levels of Beclin-1, LC3II/I, PINK1 and Parkin. miR-411 overexpression or autophagy blockage using 3-methyladenine (3-MA) relieved PM2.5-mediated cell proliferation and fibrosis-associated factor expression in HSCs. Drp1 was targeted by miR-411. miR-411 mitigated PM2.5-induced mitophagy via targeting Drp1. Drp1 overexpression abolished the inhibitory role of miR-411 in cell proliferation and fibrosis-associated factor levels in HSCs. CONCLUSION PM2.5 induced HSC activation and fibrosis via promoting Drp1-mediated mitophagy by decreasing miR-411, thereby causing liver fibrosis.
Collapse
Affiliation(s)
- Zhong-Jian Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Jin-Jin Hao
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Yun Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Tian-Tian Yin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Yi-Ning Qiu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
56
|
Ghosh AK, Soberanes S, Lux E, Shang M, Aillon RP, Eren M, Budinger GRS, Miyata T, Vaughan DE. Pharmacological inhibition of PAI-1 alleviates cardiopulmonary pathologies induced by exposure to air pollutants PM 2.5. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117283. [PMID: 34426376 PMCID: PMC8434953 DOI: 10.1016/j.envpol.2021.117283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 05/09/2023]
Abstract
Numerous studies have established that acute or chronic exposure to environmental pollutants like particulate matter (PM) leads to the development of accelerated aging related pathologies including pulmonary and cardiovascular diseases, and thus air pollution is one of the major global threats to human health. Air pollutant particulate matter 2.5 (PM2.5)-induced cellular dysfunction impairs tissue homeostasis and causes vascular and cardiopulmonary damage. To test a hypothesis that elevated plasminogen activator inhibitor-1 (PAI-1) levels play a pivotal role in air pollutant-induced cardiopulmonary pathologies, we examined the efficacy of a drug-like novel inhibitor of PAI-1, TM5614, in treating PM2.5-induced vascular and cardiopulmonary pathologies. Results from biochemical, histological, and immunohistochemical studies revealed that PM2.5 increases the circulating levels of PAI-1 and thrombin and that TM5614 treatment completely abrogates these effects in plasma. PM2.5 significantly augments the levels of pro-inflammatory cytokine interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF), and this also can be reversed by TM5614, indicating its efficacy in amelioration of PM2.5-induced increases in inflammatory and pro-thrombotic factors. TM5614 reduces PM2.5-induced increased levels of inflammatory markers cluster of differentiation 107 b (Mac3) and phospho-signal transducer and activator of transcription-3 (pSTAT3), adhesion molecule vascular cell adhesion molecule 1 (VCAM1), and apoptotic marker cleaved caspase 3. Longer exposure to PM2.5 induces pulmonary and cardiac thrombosis, but TM5614 significantly ameliorates PM2.5-induced vascular thrombosis. TM5614 also reduces PM2.5-induced increased blood pressure and heart weight. In vitro cell culture studies revealed that PM2.5 induces the levels of PAI-1, type I collagen, fibronectin (Millipore), and sterol regulatory element binding protein-1 and 2 (SREBP-1 and SREBP-2), transcription factors that mediate profibrogenic signaling, in cardiac fibroblasts. TM5614 abrogated that stimulation, indicating that it may block PM2.5-induced PAI-1 and profibrogenic signaling through suppression of SREBP-1 and 2. Furthermore, TM5614 blocked PM2.5-mediated suppression of nuclear factor erythroid related factor 2 (Nrf2), a major antioxidant regulator, in cardiac fibroblasts. Pharmacological inhibition of PAI-1 with TM5614 is a promising therapeutic approach to control air pollutant PM2.5-induced cardiopulmonary and vascular pathologies.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Saul Soberanes
- Pulmonary and Critical Care Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth Lux
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Meng Shang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Raul Piseaux Aillon
- Pulmonary and Critical Care Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mesut Eren
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Pulmonary and Critical Care Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University, Miyagi, Japan
| | - Douglas E Vaughan
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
57
|
Dai S, Wang Z, Yang Y, Guo T, Li W. Assessment on the lung injury of mice posed by airborne PM 2.5 collected from developing area in China and associated molecular mechanisms by integrated analysis of mRNA-seq and miRNA-seq. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112661. [PMID: 34416640 DOI: 10.1016/j.ecoenv.2021.112661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Some epidemiological evidences showed exposure of airborne fine particulate matter (PM2.5) was associated with lung dysfunction. However, the adverse effects of PM2.5 from mid-scale city of China on the respiratory system were unknown. Correspondingly, the mechanisms, especially the epigenetic mechanism regulated by miRNAs, involved in PM2.5-induced lung injury has not been fully understood. In this study, male Balb/C mice were exposed to PM2.5 collected from mid-scale city (Baoji), China for 8 weeks (mean concentration 298.52 ± 25.86 μg/m3 at exposure chamber) using a whole-body exposure system. The carbon component was the main ingredient (45.80%) of PM2.5 followed by ions (43.19%). Meanwhile, the sum concentrations of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes (C18-C33) were 570.48 and 2029.13 ng/m3 in the exposure chamber, respectively. Obvious lung injury including pulmonary inflammation and fibrosis (p < 0.05 compared with the control) were found from PM2.5 exposure group determined by micro-CT and histopathological assays, respectively, suggesting the health risk posed by PM2.5 from mid-scale city of China should be concerned. The integrated analysis between mRNA-seq and miRNA-seq revealed the differentially expression genes in lung tissues were enriched in immune pathways including B cell receptor signaling (p = 0.078) and cell adhesion molecules (CAMs) (p = 0.0068). The expression profiles of the genes and corresponding mRNAs involved into the immune pathways determined by RT-qPCR analysis were consistent with them conducted by transcriptome. Moreover, the expression levels of the proteins (i.e., CD19, CD81, PIK3CD, and CD22) involved into B cell receptor signaling pathway from exposure group were 1.71- to 6.948- folds compared with the control, validating the results of the genes expression profiles. Further, canonical correlation analysis (CCA) and multiple correlation analysis between the target genes and components of PM2.5 documented the organic compounds (i.e., Benzo(a)pyrene (p = 0.012) and octadecane (p = 0.05)) and inorganic elements (i.e., Cl-, Ti, Al, and Zn) was the key environmental factors. Cd19, Pik3cd, and Cd8b1 might be the key genes for lung dysfunction induced by PM2.5 illuminated using interactive analysis (p < 0.05). This work for the first time showed the adverse effects of PM2.5 in mid-scale city in China on respiratory system should be concerned, and the associated epigenetic mechanism regulated by miRNA were revealed. These results may provide new insight into the development of future assessment on the air pollution associated respiratory disease.
Collapse
Affiliation(s)
- Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenglu Wang
- College of oceanography, Hohai University, Nanjing 210098, China
| | - Ying Yang
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Guo
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weimin Li
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
58
|
Xu M, Wang X, Xu L, Zhang H, Li C, Liu Q, Chen Y, Chung KF, Adcock IM, Li F. Chronic lung inflammation and pulmonary fibrosis after multiple intranasal instillation of PM 2 .5 in mice. ENVIRONMENTAL TOXICOLOGY 2021; 36:1434-1446. [PMID: 33780121 DOI: 10.1002/tox.23140] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5 ) is an important component of air pollution and can induce lung inflammation and oxidative stress. We hypothesized that PM2.5 could play a role in the induction of pulmonary fibrosis. We examined whether multiple intranasal instillation of PM2.5 can induce pulmonary fibrosis in the mouse, and also investigated the underlying pro-fibrotic signaling pathways. C57/BL6 mice were intranasally instilled with 50 μl of PM2.5 suspension (7.8 μg/g body weight) or PBS three times a week over 3 weeks, 6 weeks or 9 weeks. To observe the recovery of pulmonary fibrosis after the termination of PM2.5 exposure, 9 week-PM2.5 instilled mice were also studied at 3 weeks after termination of instillation. There were significant decreases in total lung capacity (TLC) and compliance (Cchord) in the 9-week PM2.5 -instilled mice, while there were increased histological fibrosis scores with enhanced type I collagen and hydroxyproline deposition, increased mitochondrial ROS levels and NOX activity, decreased total SOD and GSH levels, accompanied by decreased mitochondrial number and aberrant mitochondrial morphology (swelling, vacuolization, cristal disruption, reduced matrix density) in PM2.5 -instilled mice. Multiple PM2.5 instillation resulted in increased expression of TGFβ1, increases of N-Cadherin and Vimentin and a decrease of E-Cadherin. It also led to decreases in OPA1 and MFN2, and increases in Parkin, SQSTM1/p62, the ratio of light china (LC) 3B II to LC3B I, PI3k/Akt phosphorylation, and NLRP3 expression. Intranasal instillation of PM2.5 for 9 weeks induced lung inflammation and pulmonary fibrosis, which was linked with aberrant epithelial-mesenchymal transition, oxidative stress, mitochondrial damage and mitophagy, as well as activation of TGFβ1-PI3K/Akt, TGFβ1- NOX and TGFβ1-NLRP3 pathways.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohui Wang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hai Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chenfei Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
59
|
Wang C, Wang D, Zhao H, Wang J, Liu N, Shi H, Tian J, Wang X, Zhang Z. Traffic-related PM 2.5 and diverse constituents disturb the balance of Th17/Treg cells by STAT3/RORγt-STAT5/Foxp3 signaling pathway in a rat model of asthma. Int Immunopharmacol 2021; 96:107788. [PMID: 34162152 DOI: 10.1016/j.intimp.2021.107788] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/08/2023]
Abstract
Water-soluble ions (WSI) and organic extract (OE) in traffic-related particulate matter with aerodynamic diameters ≤ 2.5 μm (TRPM2.5) are potential risk factors for asthma exacerbation. Although CD4+ T lymphocytes mediated immune response is involved in the pathogenesis of asthma, the effect of WSI-TRPM2.5 and OE-TRPM2.5 on the balance of Th17/Treg cells in asthma remains poorly understood. In this study, the ovalbumin (OVA)-sensitized rats were repeatedly exposure to TRPM2.5 (3 mg/kg·bw), WSI-TRPM2.5 (1.8 mg/kg·bw, 7.2 mg/kg·bw) and OE-TRPM2.5 (0.6 mg/kg·bw, 2.4 mg/kg·bw) every three days for five times. The inflammation response and hyperemia edema were observed in the lung and trachea tissues. DNA methylation levels of STAT3 and RORγt genes in rats with WSI-TRPM2.5 and OE-TRPM2.5 treatment were decreased. DNA methylation level in STAT5 gene tended to decrease, with no change observed on Foxp3 expression. WSI-TRPM2.5 and OE-TRPM2.5 enhanced the mRNA and protein expression of STAT3 and RORγt while inhibited the expression of STAT5 and Foxp3, which may contribute to the imbalance of Th17/Treg cells (P < 0.05). More importantly, recovered balance of Th17/Treg cell subsets, upregulated p-STAT5 and Foxp3 expression and reduced p-STAT3 and RORγt levels were observed after 5-Aza treatment. Our results demonstrate that the STAT3/RORγt-STAT5/Foxp3 signaling pathway is involved in asthma exacerbation induced by WSI-TRPM2.5 and OE-TRPM2.5 through disrupting the balance of Th17/Treg cells. The alteration of DNA methylation of STAT3, STAT5, and RORγt genes may be involved in asthma exacerbation as well.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Dan Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Huichao Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266000, Shandong, China
| | - Jing Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Hao Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xin Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
60
|
Wu H, Wang D, Shi H, Liu N, Wang C, Tian J, Wang X, Zhang Z. PM 2.5 and water-soluble components induce airway fibrosis through TGF-β1/Smad3 signaling pathway in asthmatic rats. Mol Immunol 2021; 137:1-10. [PMID: 34175710 DOI: 10.1016/j.molimm.2021.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 01/12/2023]
Abstract
Epidemiological studies have suggested that fine particulate matter (PM2.5) and asthma have been independently associated with pulmonary fibrosis but rarely studied together. Furthermore, it is unknown whether airway fibrosis in asthma is more attributable to water-soluble ions of PM2.5. Our current study was to explore the potential mechanism of PM2.5 and water-soluble components on airway fibrosis in ovalbumin (OVA)-sensitized asthmatic rats. Rats were intratracheally instilled with PM2.5 and water-soluble components every 3 days for 4 times or 8 times. Histopathological examination demonstrated that lung inflammatory and airway fibrosis were induced after PM2.5 and water-soluble components exposure. Meanwhile, PM2.5, in particular water-soluble extracts, increased expression of collagen 1 (COL-1), connective tissue growth factor (CTGF), interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1), Smad family member 3 (Smad3), and p-Smad3, whereas decreased secretion of heme oxygenase-1 (HO-1). However, pretreating asthmatic rats with SB432542, the inhibitor of TGF-β1, and SIS3 HCl, the antagonist of Smad3, both reversed the activation of airway fibrosis induced by water-soluble extracts. Therefore, TGF-β1/Smad3 signaling pathway may be responsible for the pathological process of airway fibrosis in asthmatic rats following PM2.5 and water-soluble components exposure.
Collapse
Affiliation(s)
- Hongyan Wu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
| | - Dan Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
| | - Hao Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
| | - Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
| | - Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
| | - Xin Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
| |
Collapse
|
61
|
Gao J, Yuan J, Liu Q, Wang Y, Wang H, Chen Y, Ding W, Ji G, Lu Z. Adipose-derived stem cells therapy effectively attenuates PM 2.5-induced lung injury. Stem Cell Res Ther 2021; 12:355. [PMID: 34147136 PMCID: PMC8214780 DOI: 10.1186/s13287-021-02441-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The adverse health effects of fine particulate matter (PM2.5) exposure are associated with marked inflammatory responses. Adipose-derived stem cells (ADSCs) have immunosuppressive effects, and ADSC transplantation could attenuate pulmonary fibrosis in different animal disease models. However, whether ADSCs affect PM2.5-induced lung injury has not been investigated. METHOD C57BL/6 mice were exposed to PM2.5 every other day via intratracheal instillation for 4 weeks. After that, the mice received tail vein injections of ADSCs every 2 weeks. RESULTS ADSC transplantation significantly attenuated systemic and pulmonary inflammation, cardiac dysfunction, fibrosis, and cell death in PM2.5-exposed mice. RNA-sequencing results and bioinformatic analysis suggested that the downregulated differentially expressed genes (DEGs) were mainly enriched in inflammatory and immune pathways. Moreover, ADSC transplantation attenuated PM2.5-induced cell apoptosis and pyroptosis in the lungs and hearts. CONCLUSION ADSCs protect against PM2.5-induced adverse health effects through attenuating pulmonary inflammation and cell death. Our findings suggest that ADSC transplantation may be a potential therapeutic approach for severe air pollution-associated diseases.
Collapse
Affiliation(s)
- Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Qun Liu
- Institute of Biophysics, Chinese Academy of Sciences, Datun Road 15, Chaoyang district, Beijing, 100101, China
| | - Yuanli Wang
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Huiwen Wang
- Institute of Biophysics, Chinese Academy of Sciences, Datun Road 15, Chaoyang district, Beijing, 100101, China
| | - Yingjie Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, USA
| | - Wenjun Ding
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Guangju Ji
- Institute of Biophysics, Chinese Academy of Sciences, Datun Road 15, Chaoyang district, Beijing, 100101, China.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China.
| |
Collapse
|
62
|
Sulforaphane attenuates oxidative stress and inflammation induced by fine particulate matter in human bronchial epithelial cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
63
|
Udompornpitak K, Bhunyakarnjanarat T, Charoensappakit A, Dang CP, Saisorn W, Leelahavanichkul A. Lipopolysaccharide-Enhanced Responses against Aryl Hydrocarbon Receptor in FcgRIIb-Deficient Macrophages, a Profound Impact of an Environmental Toxin on a Lupus-Like Mouse Model. Int J Mol Sci 2021; 22:ijms22084199. [PMID: 33919603 PMCID: PMC8073880 DOI: 10.3390/ijms22084199] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
Fc gamma receptor IIb (FcgRIIb) is the only inhibitory-FcgR in the FcgR family, and FcgRIIb-deficient (FcgRIIb−/−) mice develop a lupus-like condition with hyper-responsiveness against several stimulations. The activation of aryl hydrocarbon receptor (Ahr), a cellular environmental sensor, might aggravate activity of the lupus-like condition. As such, 1,4-chrysenequinone (1,4-CQ), an Ahr-activator, alone did not induce supernatant cytokines from macrophages, while the 24 h pre-treatment by lipopolysaccharide (LPS), a representative inflammatory activator, prior to 1,4-CQ activation (LPS/1,4-CQ) predominantly induced macrophage pro-inflammatory responses. Additionally, the responses from FcgRIIb−/− macrophages were more prominent than wild-type (WT) cells as determined by (i) supernatant cytokines (TNF-α, IL-6, and IL-10), (ii) expression of the inflammation associated genes (NF-κB, aryl hydrocarbon receptor, iNOS, IL-1β and activating-FcgRIV) and cell-surface CD-86 (a biomarker of M1 macrophage polarization), and (iii) cell apoptosis (Annexin V), with the lower inhibitory-FcgRIIb expression. Moreover, 8-week-administration of 1,4-CQ in 8 week old FcgRIIb−/− mice, a genetic-prone lupus-like model, enhanced lupus characteristics as indicated by anti-dsDNA, serum creatinine, proteinuria, endotoxemia, gut-leakage (FITC-dextran), and glomerular immunoglobulin deposition. In conclusion, an Ahr activation worsened the disease severity in FcgRIIb−/− mice possibly through the enhanced inflammatory responses. The deficiency of inhibitory-FcgRIIb in these mice, at least in part, prominently enhanced the pro-inflammatory responses. Our data suggest that patients with lupus might be more vulnerable to environmental pollutants.
Collapse
Affiliation(s)
- Kanyarat Udompornpitak
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
| | - Thansita Bhunyakarnjanarat
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
| | - Awirut Charoensappakit
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
| | - Cong Phi Dang
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.); (A.C.); (C.P.D.); (W.S.)
- Correspondence: ; Tel.: +66-2-256-4251; Fax: +66-2-252-6920
| |
Collapse
|
64
|
Tang M, Wang Y, Tang D, Xiu P, Yang Z, Chen Y, Wang H. Influence of the PM 2.5 Water-Soluble Compound on the Biophysical Properties of A549 Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4042-4048. [PMID: 33754728 DOI: 10.1021/acs.langmuir.1c00522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the influence of fine atmospheric particles (PM2.5) on cellular biophysical properties is an integral part for comprehending the mechanisms underlying PM2.5-induced diseases because they are closely related to the behaviors and functions of cells. However, hitherto little work has been done in this area. In the present work, we aimed to interrogate the influence of the PM2.5 water-soluble compound (PM2.5-WSC) on the biophysical performance of a human lung carcinoma epithelial cell line (A549) by exploring the cellular morphological and mechanical changes using atomic force microscopy (AFM)-based imaging and nanomechanics. AFM imaging showed that PM2.5-WSC treated cells exhibited evidently reduced lamellipodia and an increased height when compared to the control group. AFM nanomechanical measurements indicated that the treated cells had higher elastic energy and lower adhesion work than the control group. Our western blot assay and transmission electron microscopy (TEM) results revealed that after PM2.5-WSC treatment, the contents of cytoskeletal components (β-actin and β-tubulin) increased, but the abundance of cell surface microvilli decreased. The biophysical changes of PM2.5-WSC-treated cells measured by AFM can be well correlated to the alterations of the cytoskeleton and surface microvilli identified by the western blot assay and TEM imaging. The above findings confirm that the adverse risks of PM2.5 on cells can be reliably assessed biophysically by characterizing the cellular morphology and nanomechanics. The demonstrated technique can be used to diminish the gap of our understanding between PM2.5 and its harmful effects on cellular functions.
Collapse
Affiliation(s)
- Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Yan Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Dongyun Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Zhongbo Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huabin Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| |
Collapse
|
65
|
Shen YH, Cheng MH, Liu XY, Zhu DW, Gao J. Sodium Houttuyfonate Inhibits Bleomycin Induced Pulmonary Fibrosis in Mice. Front Pharmacol 2021; 12:596492. [PMID: 33716736 PMCID: PMC7947865 DOI: 10.3389/fphar.2021.596492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary fibrosis (PF) could severely disrupt the normal lung architecture and function with fatal consequences. Currently, there is no effective treatment for PF or idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the effects of Sodium Houttuyfonate (SH) on bleomycin (BLM) induced PF mice model. Our results indicated that SH could attenuate BLM induced lung injury by reducing the inflammation, fibrogenesis and lung/body weight ratio. The proposed mechanisms for the protective effects of SH include: 1) improvement of pulmonary function in BLM mice, for instance, it can elevate the vital capacity (VC), increase the forced expiratory flow at 50% of forced vital capacity (FEF50) and improve other pulmonary function indices; 2) inhibition of collagen formation in BLM mice; 3) attenuation of the elevation of inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), which are triggered by BLM administration; 4) reduction of the mRNA level and protein production of transforming growth factor-β1 (TGF-β1) in BLM mice. Furthermore, it was found that the protective effects of SH against BLM induced PF in mice was comparable to that of prednisone acetate (PA) tablets, a widely used drug for immunological diseases. Although Houttuynia Cordata Thunb has been widely used in China for lung infection and inflammation, the mechanism has not yet been fully elucidated. Our study provides the evidence that SH is an effective compound against pulmonary injury, irritation and fibrogenesis.
Collapse
Affiliation(s)
- Yun-Hui Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Han Cheng
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Xin-Yu Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - De-Wei Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Gao
- The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
66
|
Zhao X, Wang S, Li X, Liu H, Xu S. Cadmium exposure induces TNF-α-mediated necroptosis via FPR2/TGF-β/NF-κB pathway in swine myocardium. Toxicology 2021; 453:152733. [PMID: 33626375 DOI: 10.1016/j.tox.2021.152733] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is one common environmental pollutant with systemic toxicity. Lipoxin A4 (LXA4) can regulate transforming growth factor-β (TGF-β) pathway and alleviate tissue injury via binding to formyl peptide receptor 2 (FPR2). The activation of nuclear factor-κB (NF-κB) pathway can promote the occurence of necroptosis. However, whether Cd exposure induces necroptosis in swine myocardium and the role of FPR2/TGF-β/NF-κB pathway in this process are unclear. Hence, we established Cd-exposed swine myocardial injury model by feeding a CdCl2 added diet (20 mg Cd/kg diet). Hematoxylin-eosin (H&E) staining was used to observe the morphological changes, and inductively coupled plasma mass spectrometry (ICP-MS) was performed to detect the levels of ion elements in myocardium. We further detected LXA4 and its receptor FPR2, TGF-β, Nrf2, NF-κB pathway and necroptosis related-genes expressions by RT-PCR and western blot. The results showed that Cd exposure induced necrotic cell death and ion homeostasis imbalance in swine myocardium. Moreover, Cd exposure increased the LXA4 content, inhibited the FPR2 expression, activated TGF-β pathway and suppressed Nrf2 pathway, activating the NF-κB pathway. In addition, Cd exposure increased the expressions of necroptosis related-genes TNF-α, TNFR1, RIP1, RIP3 and MLKL. It indicated Cd exposure induced necroptosis via FPR2/TGF-β/NF-κB pathway, revealing the potential mechanism of Cd-induced cardiotoxicity in swine myocardium.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
67
|
Zhang ZQ, Tian HT, Liu H, Xie R. The role of macrophage-derived TGF-β1 on SiO 2-induced pulmonary fibrosis: A review. Toxicol Ind Health 2021; 37:240-250. [PMID: 33588701 DOI: 10.1177/0748233721989896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Silicosis is an occupational fibrotic lung disease caused by inhaling large amounts of crystalline silica dust. Transforming growth factor-β1 (TGF-β1), which is secreted from macrophages, has an important role in the development of this disease. Macrophages can recognize and capture silicon dust, undergo M2 polarization, synthesize TGF-β1 precursors, and secrete them out of the cell where they are activated. Activated TGF-β1 induces cells from different sources, transforming them into myofibroblasts through autocrine and paracrine mechanisms, ultimately causing silicosis. These processes involve complex molecular events, which are not yet fully understood. This systematic summary may further elucidate the location and development of pulmonary fibrosis in the formation of silicosis. In this review, we discussed the proposed cellular and molecular mechanisms of production, secretion, activation of TGF-β1, as well as the mechanisms through which TGF-β1 induces cells from three different sources into myofibroblasts during the pathogenesis of silicosis. This study furthers the medical understanding of the pathogenesis and theoretical basis for diagnosing silicosis, thereby promoting silicosis prevention and treatment.
Collapse
Affiliation(s)
- Zhao-Qiang Zhang
- Department of Public Health, 74496Jining Medical University, Jining, China
| | - Hai-Tao Tian
- Department of Public Health, 74496Jining Medical University, Jining, China.,Jining No. 1 People's Hospital, Jining, China
| | - Hu Liu
- Department of Public Health, 74496Jining Medical University, Jining, China
| | - Ruining Xie
- Department of Public Health, 74496Jining Medical University, Jining, China
| |
Collapse
|
68
|
Air Pollution-An Overlooked Risk Factor for Idiopathic Pulmonary Fibrosis. J Clin Med 2020; 10:jcm10010077. [PMID: 33379260 PMCID: PMC7794751 DOI: 10.3390/jcm10010077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a major environmental risk to health and a global public health concern. In 2016, according to the World Health Organization (WHO), ambient air pollution in cities and rural areas was estimated to cause 4.2 million premature deaths. It is estimated that around 91% of the world’s population lives in places where air pollution exceeds the limits recommended by the WHO. Sources of air pollution are multiple and context-specific. Air pollution exposures are established risk factors for development and adverse health outcomes in many respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), or lung cancer. However, possible associations between air pollution and idiopathic pulmonary fibrosis (IPF) have not been adequately studied and air pollution seems to be an underrecognized risk factor for IPF. This narrative review describes potential mechanisms triggered by ambient air pollution and their possible roles in the initiation of the pathogenic process and adverse health effects in IPF. Additionally, we summarize the most current research evidence from the clinical studies supporting links between air pollution and IPF.
Collapse
|
69
|
Yang L, Liu G, Fu L, Zhong W, Li X, Pan Q. DNA repair enzyme OGG1 promotes alveolar progenitor cell renewal and relieves PM2.5-induced lung injury and fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111283. [PMID: 32977282 DOI: 10.1016/j.ecoenv.2020.111283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) airborne pollution increases the risk of chronic respiratory diseases, such as idiopathic pulmonary fibrosis (IPF), which is characterized by non-specific inflammation of the interstitial lung and extensive deposition of collagen fibers. Type 2 alveolar epithelial cells (AEC2s) are alveolar stem cells in the adult lung that contribute to the lung repair process through complex signaling. Our previous studies demonstrated that OGG1, a kind of DNA repair enzyme, have a critical role in protecting cells from oxidative damage and apoptosis induced by PM2.5, but the contribution of OGG1 in proliferation and self-renewal of AEC2s is not known. Here, we constructed OGG1-/-mice to test the effect and mechanism of OGG1 on PM2.5-induced pulmonary fibrosis and injury in vivo. We detected proliferation and self-renewal of OGG1 overexpression or OGG1 knockout AEC2s after PM2.5 injury by flow cytometry and clone formation. We observed that knockout of OGG1 aggravated pulmonary fibrosis, oxidative stress, and AEC2 cell death in PM2.5-injured mice. In addition, OGG1 is required for the proliferation and renewal of AEC2s after PM2.5 injury. Overexpression of OGG1 promotes the proliferation and self-renewal of AEC2s by inhibiting PM2.5-mediated oxidative stress and NF-κB signaling hyperactivation in vitro. Furthermore, NF-κB inhibitors promoted proliferation and self-renewal of OGG1-deficient AEC2s cells after PM2.5 injury, and attenuated PM2.5-induced pulmonary fibrosis and injury in mice. These data establish OGG1 as a regulator of NF-κB signal that serves to regulate AEC2 cell proliferation and self-renewal, and suggest a mechanism that inhibition of the NF-κB signaling pathway may represent a potential therapeutic strategy for IPF patients with low-expression of OGG1.
Collapse
Affiliation(s)
- Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liyuan Fu
- Guangdong Ocean University Cunjin College, Zhanjiang, 524086, China
| | - Weifeng Zhong
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qingjun Pan
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
70
|
Cáceres L, Paz ML, Garcés M, Calabró V, Magnani ND, Martinefski M, Martino Adami PV, Caltana L, Tasat D, Morelli L, Tripodi V, Valacchi G, Alvarez S, González Maglio D, Marchini T, Evelson P. NADPH oxidase and mitochondria are relevant sources of superoxide anion in the oxinflammatory response of macrophages exposed to airborne particulate matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111186. [PMID: 32853868 DOI: 10.1016/j.ecoenv.2020.111186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Exposure to ambient air particulate matter (PM) is associated with increased cardiorespiratory morbidity and mortality. In this context, alveolar macrophages exhibit proinflammatory and oxidative responses as a result of the clearance of particles, thus contributing to lung injury. However, the mechanisms linking these pathways are not completely clarified. Therefore, the oxinflammation phenomenon was studied in RAW 264.7 macrophages exposed to Residual Oil Fly Ash (ROFA), a PM surrogate rich in transition metals. While cell viability was not compromised under the experimental conditions, a proinflammatory phenotype was observed in cells incubated with ROFA 100 μg/mL, characterized by increased levels of TNF-α and NO production, together with PM uptake. This inflammatory response seems to precede alterations in redox metabolism, characterized by augmented levels of H2O2, diminished GSH/GSSG ratio, and increased SOD activity. This scenario resulted in increased oxidative damage to phospholipids. Moreover, alterations in mitochondrial respiration were observed following ROFA incubation, such as diminished coupling efficiency and spare respiratory capacity, together with augmented proton leak. These findings were accompanied by a decrease in mitochondrial membrane potential. Finally, NADPH oxidase (NOX) and mitochondria were identified as the main sources of superoxide anion () in our model. These results indicate that PM exposure induces direct activation of macrophages, leading to inflammation and increased reactive oxygen species production through NOX and mitochondria, which impairs antioxidant defense and may cause mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lourdes Cáceres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina
| | - Mariela L Paz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Facultad de Farmacia y Bioquímica, Argentina
| | - Mariana Garcés
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina
| | - Valeria Calabró
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Natalia D Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Manuela Martinefski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica I, Argentina
| | - Pamela V Martino Adami
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Argentina
| | - Laura Caltana
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN), Facultad de Medicina, Argentina
| | - Deborah Tasat
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología, Centro de Estudios en Salud y Medio Ambiente, Argentina
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Argentina
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica I, Argentina
| | - Giuseppe Valacchi
- NC State University, Plants for Human Health Institute, Animal Science Department, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Alvarez
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Daniel González Maglio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Facultad de Farmacia y Bioquímica, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| |
Collapse
|
71
|
Bachmann MC, Bellalta S, Basoalto R, Gómez-Valenzuela F, Jalil Y, Lépez M, Matamoros A, von Bernhardi R. The Challenge by Multiple Environmental and Biological Factors Induce Inflammation in Aging: Their Role in the Promotion of Chronic Disease. Front Immunol 2020; 11:570083. [PMID: 33162985 PMCID: PMC7591463 DOI: 10.3389/fimmu.2020.570083] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The aging process is driven by multiple mechanisms that lead to changes in energy production, oxidative stress, homeostatic dysregulation and eventually to loss of functionality and increased disease susceptibility. Most aged individuals develop chronic low-grade inflammation, which is an important risk factor for morbidity, physical and cognitive impairment, frailty, and death. At any age, chronic inflammatory diseases are major causes of morbimortality, affecting up to 5-8% of the population of industrialized countries. Several environmental factors can play an important role for modifying the inflammatory state. Genetics accounts for only a small fraction of chronic-inflammatory diseases, whereas environmental factors appear to participate, either with a causative or a promotional role in 50% to 75% of patients. Several of those changes depend on epigenetic changes that will further modify the individual response to additional stimuli. The interaction between inflammation and the environment offers important insights on aging and health. These conditions, often depending on the individual's sex, appear to lead to decreased longevity and physical and cognitive decline. In addition to biological factors, the environment is also involved in the generation of psychological and social context leading to stress. Poor psychological environments and other sources of stress also result in increased inflammation. However, the mechanisms underlying the role of environmental and psychosocial factors and nutrition on the regulation of inflammation, and how the response elicited for those factors interact among them, are poorly understood. Whereas certain deleterious environmental factors result in the generation of oxidative stress driven by an increased production of reactive oxygen and nitrogen species, endoplasmic reticulum stress, and inflammation, other factors, including nutrition (polyunsaturated fatty acids) and behavioral factors (exercise) confer protection against inflammation, oxidative and endoplasmic reticulum stress, and thus ameliorate their deleterious effect. Here, we discuss processes and mechanisms of inflammation associated with environmental factors and behavior, their links to sex and gender, and their overall impact on aging.
Collapse
Affiliation(s)
| | - Sofía Bellalta
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roque Basoalto
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Yorschua Jalil
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Lépez
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anibal Matamoros
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Biological Sciences (ICB), Federal University of Pará, Belem, Brazil
| | - Rommy von Bernhardi
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
72
|
Li M, Wei X, Li Y, Feng T, Jiang L, Zhu H, Yu X, Tang J, Chen G, Zhang J, Zhang X. PM2.5 in poultry houses synergizes with Pseudomonas aeruginosa to aggravate lung inflammation in mice through the NF-κB pathway. J Vet Sci 2020; 21:e46. [PMID: 32476320 PMCID: PMC7263920 DOI: 10.4142/jvs.2020.21.e46] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background High concentrations of particulate matter less than 2.5 µm in diameter (PM2.5) in poultry houses is an important cause of respiratory disease in animals and humans. Pseudomonas aeruginosa is an opportunistic pathogen that can induce severe respiratory disease in animals under stress or with abnormal immune functions. When excessively high concentrations of PM2.5 in poultry houses damage the respiratory system and impair host immunity, secondary infections with P. aeruginosa can occur and produce a more intense inflammatory response, resulting in more severe lung injury. Objectives In this study, we focused on the synergistic induction of inflammatory injury in the respiratory system and the related molecular mechanisms induced by PM2.5 and P. aeruginosa in poultry houses. Methods High-throughput 16S rDNA sequence analysis was used for characterizing the bacterial diversity and relative abundance of the PM2.5 samples, and the effects of PM2.5 and P. aeruginosa stimulation on inflammation were detected by in vitro and in vivo. Results Sequencing results indicated that the PM2.5 in poultry houses contained a high abundance of potentially pathogenic genera, such as Pseudomonas (2.94%). The lung tissues of mice had more significant pathological damage when co-stimulated by PM2.5 and P. aeruginosa, and it can increase the expression levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α through nuclear factor (NF)-κB pathway in vivo and in vitro. Conclusions The results confirmed that poultry house PM2.5 in combination with P. aeruginosa could aggravate the inflammatory response and cause more severe respiratory system injuries through a process closely related to the activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Meng Li
- College of Life Science, Ludong University, Yantai 264000, China.,Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Xiuli Wei
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Tao Feng
- Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Ji'nan 250022, China
| | - Linlin Jiang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Hongwei Zhu
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Xin Yu
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Jinxiu Tang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Guozhong Chen
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China
| | - Jianlong Zhang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China.
| | - Xingxiao Zhang
- College of Life Science, Ludong University, Yantai 264000, China.,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264000, China.
| |
Collapse
|
73
|
Yang L, Liu G, Li X, Xia Z, Wang Y, Lin W, Zhang W, Zhang W, Li X. Small GTPase RAB6 deficiency promotes alveolar progenitor cell renewal and attenuates PM2.5-induced lung injury and fibrosis. Cell Death Dis 2020; 11:827. [PMID: 33012781 PMCID: PMC7533251 DOI: 10.1038/s41419-020-03027-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by chronic non-specific inflammation of the interstitial lung and extensive deposition of collagen fibers leading to destruction of lung function. Studies have demonstrated that exposure to fine particulate matter (PM2.5) increases the risk of IPF. In order to recover from PM2.5-induced lung injury, alveolar epithelial cells need to be repaired and regenerated to maintain lung function. Type 2 alveolar epithelial cells (AEC2) are stem cells in the adult lung that contribute to the lung repair process through complex signaling. Our previous studies demonstrated that RAB6, a RAS family member lowly expressed in lung cancer, inhibited lung cancer stem cell self-renewal, but it is unclear whether or not and how RAB6 may regulate AEC2 cell proliferation and self-renewal in PM2.5-induced pulmonary fibrosis. Here, we demonstrated that knockout of RAB6 inhibited pulmonary fibrosis, oxidative stress, and AEC2 cell death in PM2.5-injured mice. In addition, knockout of RAB6 decreased Dickkopf 1(DKK1) autocrine and activated proliferation, self-renewal, and wnt/β-catenin signaling of PM2.5-injured AEC2 cells. RAB6 overexpression increased DKK1 autocrine and inhibited proliferation, self-renewal and wnt/β-catenin signaling in AEC2 cells in vitro. Furthermore, DKK1 inhibitors promoted proliferation, self-renewal and wnt/β-catenin signaling of RAB6 overexpressing AEC2 cells, and attenuated PM2.5-induced pulmonary fibrosis in mice. These data establish RAB6 as a regulator of DKK1 autocrine and wnt/β-catenin signal that serves to regulate AEC2 cell proliferation and self-renewal, and suggest a mechanism that RAB6 disruption may promote AEC2 cell proliferation and self-renewal to enhance lung repair following PM2.5 injury.
Collapse
Affiliation(s)
- Lawei Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.,Clinical Research Center, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, China
| | - Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Zhengyuan Xia
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, China.,Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, China
| | - Weihao Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
74
|
Cochard M, Ledoux F, Landkocz Y. Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: state of the art and critical review of the in vitro studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:293-318. [PMID: 32921295 DOI: 10.1080/10937404.2020.1816238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with several diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. Mechanisms such as oxidative stress and inflammation are well-documented and are considered as the starting point of some of the pathological responses. However, a number of studies also focused on epithelial-mesenchymal transition (EMT), which is a biological process involved in fibrotic diseases and cancer progression notably via metastasis induction. Up until now, EMT was widely reported in vivo and in vitro in various cell types but investigations dealing with in vitro studies of PM2.5 induced EMT in pulmonary cells are limited. Further, few investigations combined the necessary endpoints for validation of the EMT state in cells: such as expression of several surface, cytoskeleton or extracellular matrix biomarkers and activation of transcription markers and epigenetic factors. Studies explored various cell types, cultured under differing conditions and exposed for various durations to different doses. Such unharmonized protocols (1) might introduce bias, (2) make difficult comparison of results and (3) preclude reaching a definitive conclusion regarding the ability of airborne PM2.5 to induce EMT in pulmonary cells. Some questions remain, in particular the specific PM2.5 components responsible for EMT triggering. The aim of this review is to examine the available PM2.5 induced EMT in vitro studies on pulmonary cells with special emphasis on the critical parameters considered to carry out future research in this field. This clarification appears necessary for production of reliable and comparable results.
Collapse
Affiliation(s)
- Margaux Cochard
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| |
Collapse
|
75
|
Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: Implications for human health. Adv Colloid Interface Sci 2020; 284:102244. [PMID: 32871405 PMCID: PMC7435289 DOI: 10.1016/j.cis.2020.102244] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022]
Abstract
Particulate matter (PM), which is the primary contributor to air pollution, has become a pervasive global health threat. When PM enters into a respiratory tract, the first body tissues to be directly exposed are the cells of respiratory tissues and pulmonary surfactant. Pulmonary surfactant is a pivotal component to modulate surface tension of alveoli during respiration. Many studies have proved that PM would interact with pulmonary surfactant to affect the alveolar activity, and meanwhile, pulmonary surfactant would be adsorbed to the surface of PM to change the toxic effect of PM. This review focuses on recent studies of the interactions between micro/nanoparticles (synthesized and environmental particles) and pulmonary surfactant (natural surfactant and its models), as well as the health effects caused by PM through a few significant aspects, such as surface properties of PM, including size, surface charge, hydrophobicity, shape, chemical nature, etc. Moreover, in vitro and in vivo studies have shown that PM leads to oxidative stress, inflammatory response, fibrosis, and cancerization in living bodies. By providing a comprehensive picture of PM-surfactant interaction, this review will benefit both researchers for further studies and policy-makers for setting up more appropriate regulations to reduce the adverse effects of PM on public health.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
76
|
Differential contribution of bone marrow-derived infiltrating monocytes and resident macrophages to persistent lung inflammation in chronic air pollution exposure. Sci Rep 2020; 10:14348. [PMID: 32873817 PMCID: PMC7462977 DOI: 10.1038/s41598-020-71144-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Abstract
Chronic exposure to particulate matter < 2.5µ (PM2.5) has been linked to cardiopulmonary disease. Tissue-resident (TR) alveolar macrophages (AΦ) are long-lived, self-renew and critical to the health impact of inhalational insults. There is an inadequate understanding of the impact of PM2.5 exposure on the nature/time course of transcriptional responses, self-renewal of AΦ, and the contribution from bone marrow (BM) to this population. Accordingly, we exposed chimeric (CD45.2/CD45.1) mice to concentrated PM2.5 or filtered air (FA) to evaluate the impact on these end-points. PM2.5 exposure for 4-weeks induced an influx of BM-derived monocytes into the lungs with no contribution to the overall TR-AΦ pool. Chronic (32-weeks) PM2.5 exposure on the other hand while associated with increased recruitment of BM-derived monocytes and their incorporation into the AΦ population, resulted in enhanced apoptosis and decreased proliferation of TR-AΦ. RNA-seq analysis of isolated TR-AΦ and BM-AΦ from 4- and 32-weeks exposed mice revealed a unique time-dependent pattern of differentially expressed genes. PM2.5 exposure resulted in altered histological changes in the lungs, a reduced alveolar fraction which corresponded to protracted lung inflammation. Our findings suggest a time-dependent entrainment of BM-derived monocytes into the AΦ population of PM2.5 exposed mice, that together with enhanced apoptosis of TR-AΦ and reorganization of transcriptional responses, could collectively contribute to the perpetuation of chronic inflammation.
Collapse
|
77
|
Ning R, Shi Y, Jiang J, Liang S, Xu Q, Duan J, Sun Z. Mitochondrial dysfunction drives persistent vascular fibrosis in rats after short-term exposure of PM 2.5. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139135. [PMID: 32438194 DOI: 10.1016/j.scitotenv.2020.139135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 05/20/2023]
Abstract
Nowadays, the great majority of toxicological studies have focused on immediate cardiovascular effects of simultaneous exposure to long-term or short-term PM2.5; yet, whether the persistent vascular fibrosis will be induced after short-term PM2.5 exposure and its related underlying mechanisms remain unclear. In this study, we adopted SD rats treated with PM2.5 for 1 month and followed by 12 months and 18 months recovery. Results from Doppler ultrasonography and histopathological analysis found that PM2.5-evoked vascular fibrosis was comprised of structural injury, including thickening of aortic media and carotid intima media thickness (CIMT), narrow left common carotid artery (LCCA), collagen deposition, impaired elasticity and functional alterations in aortal stiffness during long-term recovery. The protein expression levels of collagen I, collagen III, proliferating cell nuclear antigen (PNCA), TGF-β and osteopontin (OPN) remained elevated trends in PM2.5-treated groups for the related period than in control groups. Additionally, PM2.5 upregulated the protein expression levels of superoxide dismutase 2 (SOD2), mitochondrial fission related proteins (Drp1 and Fis1), while downregulated the protein expression levels of mitochondrial fusion related proteins (Mfn2 and OPA1). Moreover, PM2.5 significantly activated the mitophagy-related protein expression, including LC3, p62, PINK, Parkin. In summary, our results demonstrated that short-term PM2.5 exposure could trigger mitophagy, further lead to mitochondrial dysfunction which regulated persistent vascular fibrosis during long-term recovery.
Collapse
Affiliation(s)
- Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jinjin Jiang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facilities Center, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
78
|
Cui Y, Chen G, Yang Z. Mitochondrial superoxide mediates PM 2.5-induced cytotoxicity in human pulmonary lymphatic endothelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114423. [PMID: 32222623 DOI: 10.1016/j.envpol.2020.114423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/29/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Exposure to airborne fine particulate matter (PM2.5) is associated with a variety of respiratory health effects and contributes to premature mortality. Lymphatic vessels are instrumental in facilitating the transport of toxic materials away from the lung to maintain alveolar clearance and have been shown to play important roles in lung injury and repair. Despite intense research efforts in delineating the effects of PM2.5 on blood vascular endothelial cells, the impacts of PM2.5 on lymphatic endothelial cells (LECs), a specialized subset of endothelial cells that comprise lymphatic vessels, remain enigmatic. Here, we conducted MTT assay and show that treatment of human pulmonary LECs with PM2.5 suppresses cell viability in a time- and dose-dependent manner. We subsequently performed Annexin V/propidium iodide labeling and demonstrate that PM2.5 induces LECs apoptosis and necrosis. Furthermore, we found that manganese superoxide dismutase (SOD2) expression and mitochondrial SOD activity were profoundly reduced following PM2.5 exposure. Mechanistically, we provide compelling evidence that PM2.5 reduces SOD2 expression through activation of Akt pathway, which leads to a disruption of mitochondrial redox homeostasis characterized by increased accumulation of mitochondrial superoxide. Conversely, mitochondria-targeted SOD mimetic (MitoTEMPO) corrects the disturbed oxidative milieu in PM2.5-treated LECs. Additionally, MitoTEMPO ameliorates the deleterious impacts of PM2.5 on mitochondrial DNA integrity and preserves the viability of LECs. Taken together, these novel data support a critical role for mitochondrial superoxide in the pathogenesis of PM2.5-induced LECs injury and identity mitochondrial-targeted antioxidants as promising therapeutic options to treat environmental lung diseases. Our findings are limited to experimental studies with primary LECs, and future investigations in animal models are warranted to shed light on the precise pathophysiology of lymphatic system in response to PM exposure.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, People's Republic of China.
| | - Guang Chen
- Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zeran Yang
- Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
79
|
Ma Xing Shi Gan Decoction Protects against PM2.5-Induced Lung Injury through Suppression of Epithelial-to-Mesenchymal Transition (EMT) and Epithelial Barrier Disruption. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7176589. [PMID: 32655666 PMCID: PMC7317335 DOI: 10.1155/2020/7176589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
This research was designed to explore the effect of Ma Xing Shi Gan decoction (MXD) in alleviating particulate matter less than 2.5 μm in diameter (PM2.5) induced lung injury from the perspective of epithelial barrier protection and inhibition of epithelial-to-mesenchymal transition (EMT). Rats were exposed to PM2.5 to establish a lung injury model in vivo, and a PM2.5-stimulated primary cultured type II alveolar epithelial cell model was introduced in vitro. Our results indicated that MXD alleviated the weight loss and pathologic changes and improved the epithelial barrier dysfunction. MXD also significantly inhibited the TGF-β/Smad3 pathway, increased the level of ZO-1 and claudin-5, and reversed the EMT process. Notably, the protection of MXD was abolished by TGF-β in vitro. Our results indicated that MXD has a protection against PM2.5-induced lung injury. The proposed mechanism is reversing PM2.5-induced EMT through inhibiting TGF-β/Smad3 pathway and then upregulating the expression of tight-junction proteins.
Collapse
|
80
|
Alyaseer AAA, de Lima MHS, Braga TT. The Role of NLRP3 Inflammasome Activation in the Epithelial to Mesenchymal Transition Process During the Fibrosis. Front Immunol 2020; 11:883. [PMID: 32508821 PMCID: PMC7251178 DOI: 10.3389/fimmu.2020.00883] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is considered a complex form of tissue damage commonly present in the end stage of many diseases. It is also related to a high percentage of death, whose predominant characteristics are an excessive and abnormal deposition of fibroblasts and myofibroblasts -derived extracellular matrix (ECM) components. Epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells gradually change to mesenchymal ones, is a major contributor in the pathogenesis of fibrosis. The key mediator of EMT is a multifunctional cytokine called transforming growth factor-β (TGF-β) that acts as the main inducer of the ECM assembly and remodeling through the phosphorylation of Smad2/3, which ultimately forms a complex with Smad4 and translocates into the nucleus. On the other hand, the bone morphogenic protein-7 (BMP-7), a member of the TGF family, reverses EMT by directly counteracting TGF-β induced Smad-dependent cell signaling. NLRP3 (NACHT, LRR, and PYD domains-containing protein 3), in turn, acts as cytosolic sensors of microbial and self-derived molecules and forms an immune complex called inflammasome in the context of inflammatory commitments. NLRP3 inflammasome assembly is triggered by extracellular ATP, reactive oxygen species (ROS), potassium efflux, calcium misbalance, and lysosome disruption. Due to its involvement in multiple diseases, NLRP3 has become one of the most studied pattern-recognition receptors (PRRs). Nevertheless, the role of NLRP3 in fibrosis development has not been completely elucidated. In this review, we described the relation of the previously mentioned fibrosis pathway with the NLRP3 inflammasome complex formation, especially EMT-related pathways. For now, it is suggested that the EMT happens independently from the oligomerization of the whole inflammasome complex, requiring just the presence of the NLRP3 receptor and the ASC protein to trigger the EMT events, and we will present different pieces of research that give controversial point of views.
Collapse
Affiliation(s)
| | | | - Tarcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba, Brazil.,Instituto Carlos Chagas, Fiocruz-Parana, Curitiba, Brazil
| |
Collapse
|
81
|
Ge C, Hu L, Lou D, Li Q, Feng J, Wu Y, Tan J, Xu M. Nrf2 deficiency aggravates PM 2.5-induced cardiomyopathy by enhancing oxidative stress, fibrosis and inflammation via RIPK3-regulated mitochondrial disorder. Aging (Albany NY) 2020; 12:4836-4865. [PMID: 32182211 PMCID: PMC7138545 DOI: 10.18632/aging.102906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/05/2020] [Indexed: 01/04/2023]
Abstract
PM2.5 is a well-known air pollutant threatening public health, and long-term exposure to PM2.5 increases the risk of cardiovascular diseases. Nrf2 plays a pivotal role in the amelioration of PM2.5-induced lung injury. However, if Nrf2 is involved in PM2.5-induced heart injury, and the underlying molecular mechanisms have not been explored. In this study, wild type (Nrf2+/+) and Nrf2 knockout (Nrf2-/-) mice were exposed to PM2.5 for 6 months. After PM2.5 exposure, Nrf2-/- mice developed severe physiological changes, lung injury and cardiac dysfunction. In the PM2.5-exposed hearts, Nrf2 deficiency caused significant collagen accumulation through promoting the expression of fibrosis-associated signals. Additionally, Nrf2-/- mice exhibited greater oxidative stress in cardiac tissues after PM2.5 exposure. Furthermore, PM2.5-induced inflammation in heart samples were accelerated in Nrf2-/- mice through promoting inhibitor of α/nuclear factor κB (IκBα/NF-κB) signaling pathways. We also found that Nrf2-/- aggravated autophagy initiation and glucose metabolism disorder in hearts of mice with PM2.5 challenge. Cardiac receptor-interacting protein kinase 3 (RIPK3) expression triggered by PM2.5 was further enhanced in mice with the loss of Nrf2. Collectively, these results suggested that strategies for enhancing Nrf2 could be used to treat PM2.5-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Yekuan Wu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| |
Collapse
|
82
|
Sun B, Shi Y, Li Y, Jiang J, Liang S, Duan J, Sun Z. Short-term PM 2.5 exposure induces sustained pulmonary fibrosis development during post-exposure period in rats. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121566. [PMID: 31761645 DOI: 10.1016/j.jhazmat.2019.121566] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 05/05/2023]
Abstract
Up to now, while some toxicological studies have identified pulmonary fibrosis immediately induced by long-term PM2.5 exposure, there has been no evidence indicating, whether short-term exposure can lead to post-exposure development of pulmonary fibrosis. Here, we treated rats with PM2.5 for 1 month (10 times), followed by normal feeding for 18 months. 18F-FDG intake, which is linked with the initiation and development of pulmonary fibrosis in living bodies, was found to gradually increase in lung following exposure through micro PET/CT imaging. Histolopathological examination revealed continuous deterioration of pulmonary injury post-exposure. Collagen deposition and hydroxyproline content continued to increase all along in the post-exposure duration, indicating pulmonary fibrosis development. Chronic and persistent induction of pulmonary inflammatory gene expression (Tnf, Il1b, Il6, Ccl2, and Icam1), epithelial mesenchymal transition (EMT, reduction of E-cadherin and elevation of fibronectin) and RelA/p65 upregulation, as well as serum inflammatory cytokine production, were also found in PM2.5-treated rats. Pulmonary oxidative stress, manifested by increase of MDA and decrease of GSH and SOD, was induced during exposure but disappeared in later post-exposure duration. These results suggested that short-term PM2.5 exposure could lead to sustained post-exposure pulmonary fibrosis development, which was mediated by oxidative-stress-initiated NF-κB/inflammation/EMT pathway.
Collapse
Affiliation(s)
- Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jinjin Jiang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
83
|
Kim SH, Kwon D, Lee S, Son SW, Kwon JT, Kim PJ, Lee YH, Jung YS. Concentration- and Time-Dependent Effects of Benzalkonium Chloride in Human Lung Epithelial Cells: Necrosis, Apoptosis, or Epithelial Mesenchymal Transition. TOXICS 2020; 8:toxics8010017. [PMID: 32121658 PMCID: PMC7151738 DOI: 10.3390/toxics8010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Benzalkonium chloride (BAC), an antimicrobial agent in inhalable medications and household sprays, has been reported to be toxic to pulmonary organs. Although cell membrane damage has been considered as the main cytotoxic mechanism of BAC, its concentration- and time-dependent cellular effects on lung epithelium have not been fully understood. In the present study, human lung epithelial (H358) cells were exposed to 0.2–40 μg/mL of BAC for 30 min or 21 days. Cell membranes were rapidly disrupted by 30 min exposure, but 24 h incubation of BAC (4–40 μg/mL) predominantly caused apoptosis rather than necrosis. BAC (2–4 μg/mL) induced mitochondrial depolarization, which may be associated with increased expression of pro-apoptotic proteins (caspase-3, PARP, Bax, p53, and p21), and decreased levels of the anti-apoptotic protein Bcl-2. The protein expression levels of IRE1α, BiP, CHOP, and p-JNK were also elevated by BAC (2–4 μg/mL) suggesting the possible involvement of endoplasmic reticulum stress in inducing apoptosis. Long-term (7–21 days) incubation with BAC (0.2–0.6 μg/mL) did not affect cell viability but led to epithelial-mesenchymal transition (EMT) as shown by the decrease of E-cadherin and the increase of N-cadherin, fibronectin, and vimentin, caused by the upregulation of EMT transcription factors, such as Snail, Slug, Twist1, Zeb1, and Zeb2. Therefore, we conclude that apoptosis could be an important mechanism of acute BAC cytotoxicity in lung epithelial cells, and chronic exposure to BAC even at sub-lethal doses can promote pulmonary EMT.
Collapse
Affiliation(s)
- Sou Hyun Kim
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Doyoung Kwon
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Seunghyun Lee
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Seung Won Son
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Jung-Taek Kwon
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Pil-Je Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: (Y.-H.L.); (Y.-S.J.); Tel.: +82-2-880-2139 (Y.-H.L.); 82-51-510-2816 (Y.-S.J.)
| | - Young-Suk Jung
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence: (Y.-H.L.); (Y.-S.J.); Tel.: +82-2-880-2139 (Y.-H.L.); 82-51-510-2816 (Y.-S.J.)
| |
Collapse
|
84
|
Han X, Liu H, Zhang Z, Yang W, Wu C, Liu X, Zhang F, Sun B, Zhao Y, Jiang G, Yang YG, Ding W. Epitranscriptomic 5-Methylcytosine Profile in PM 2.5-induced Mouse Pulmonary Fibrosis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:41-51. [PMID: 32135311 PMCID: PMC7393542 DOI: 10.1016/j.gpb.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/26/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022]
Abstract
Exposure of airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM2.5) is epidemiologically associated with lung dysfunction and respiratory symptoms, including pulmonary fibrosis. However, whether epigenetic mechanisms are involved in PM2.5-induced pulmonary fibrosis is currently poorly understood. Herein, using a PM2.5-induced pulmonary fibrosis mouse model, we found that PM2.5 exposure leads to aberrant mRNA 5-methylcytosine (m5C) gain and loss in fibrotic lung tissues. Moreover, we showed the m5C-mediated regulatory map of gene functions in pulmonary fibrosis after PM2.5 exposure. Several genes act as m5C gain-upregulated factors, probably critical for the development of PM2.5-induced fibrosis in mouse lungs. These genes, including Lcn2, Mmp9, Chi3l1, Adipoq, Atp5j2, Atp5l, Atpif1, Ndufb6, Fgr, Slc11a1, and Tyrobp, are highly related to oxidative stress response, inflammatory responses, and immune system processes. Our study illustrates the first epitranscriptomic RNA m5C profile in PM2.5-induced pulmonary fibrosis and will be valuable in identifying biomarkers for PM2.5 exposure-related lung pathogenesis with translational potential.
Collapse
Affiliation(s)
- Xiao Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hanchen Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zezhong Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenlan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunyan Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xueying Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenjun Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
85
|
Zhang M, Li H, Li H, Zhao X, Zhou Q, Rao Q, Han Y, Lan Y, Deng H, Sun X, Lou X, Ye C, Zhou X. Quantitative evaluation of lung injury caused by PM 2.5 using hyperpolarized gas magnetic resonance. Magn Reson Med 2019; 84:569-578. [PMID: 31868253 DOI: 10.1002/mrm.28145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To demonstrate the feasibility of 129 Xe MR in evaluating the pulmonary physiological changes caused by PM2.5 in animal models. METHODS Six rats were treated with PM2.5 solution (16.2 mg/kg) by intratracheal instillation twice a week for 4 weeks, and another six rats treated with normal saline served as the control cohort. Pulmonary function tests, hyperpolarized 129 Xe multi-b diffusion-weighted imaging, and chemical shift saturation recovery MR spectroscopy were performed on all rats, and the pulmonary structure and functional parameters were obtained from hyperpolarized 129 Xe MR data. Additionally, histological analysis was performed on all rats to evaluate alveolar septal thickness. Statistical analysis of all the obtained parameters was performed using unpaired 2-tailed t tests. RESULTS Compared with the control group, the measured exchange time constant increased from 11.74 ± 2.39 to 14.00 ± 2.84 ms (P < .05), and the septal wall thickness increased from 6.17 ± 0.48 to 6.74 ± 0.52 μm (P < .05) in the PM2.5 cohort by 129 Xe MR spectroscopy, which correlated well with that obtained using quantitative histology (increased from 5.52 ± 0.32 to 6.20 ± 0.36 μm). Additionally, the mean TP/GAS ratio increased from 0.828 ± 0.115 to 1.019 ± 0.140 in the PM2.5 cohort (P = .021). CONCLUSIONS Hyperpolarized 129 Xe MR could quantify the changes in gas exchange physiology caused by PM2.5 , indicating that the technique has the potential to be a useful tool for evaluation of pulmonary injury caused by air pollution in the future.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hongchuang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qian Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiuchen Rao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yina Lan
- Department of Radiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - He Deng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
86
|
Zu YY, Liu QF, Tian SX, Jin LX, Jiang FS, Li MY, Zhu BQ, Ding ZS. Effective fraction of Bletilla striata reduces the inflammatory cytokine production induced by water and organic extracts of airborne fine particulate matter (PM 2.5) in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:369. [PMID: 31842843 PMCID: PMC6916096 DOI: 10.1186/s12906-019-2790-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/08/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Bletilla striata is a traditional Chinese medicine used to treat hemorrhage, scald, gastric ulcer, pulmonary diseases and inflammations. In this study, we investigated bioactivity of the effective fraction of B. striata (EFB) in reducing the inflammatory cytokine production induced by water or organic extracts of PM2.5. METHODS PM2.5 extracts were collected and analyzed by chromatographic system and inductively coupled plasma mass spectrometer. Cell viability was measured using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, and cell supernatant was analyzed by flow cytometry, ELISA, and qRT-PCR in cultured mouse macrophage cell line RAW264.7 treated with EFB and PM2.5 extracts. Expressions of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway were measured by Western blot. RESULTS PM2.5 composition is complex and the toxicity of PM2.5 extracts were not noticeable. The treatment of EFB at a wide dose-range of 0-40 μg/mL did not cause significant change of RAW264.7 cell proliferation. EFB pretreatment decreased the inflammatory cytokines in the macrophage. Further analysis showed that EFB significantly attenuated PM2.5-induced proinflammatory protein expression and downregulated the levels of phosphorylated NF-κBp65, inhibitor of kappa B (IκB)-α, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38. CONCLUSIONS Our study demonstrated the potential effectiveness of B. striata extracts for treating PM2.5-triggered pulmonary inflammation.
Collapse
Affiliation(s)
- Yu-Yao Zu
- College of Life Science, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Quan-Fang Liu
- College of Life Science, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Shu-Xin Tian
- College of Life Science, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Li-Xia Jin
- College of Medical Technology, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Fu-Sheng Jiang
- College of Life Science, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Mei-Ya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Zhejiang, 310053, Hangzhou, China.
| |
Collapse
|
87
|
Xu Z, Ding W, Deng X. PM 2.5, Fine Particulate Matter: A Novel Player in the Epithelial-Mesenchymal Transition? Front Physiol 2019; 10:1404. [PMID: 31849690 PMCID: PMC6896848 DOI: 10.3389/fphys.2019.01404] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) refers to the conversion of epithelial cells to mesenchymal phenotype, which endows the epithelial cells with enhanced migration, invasion, and extracellular matrix production abilities. These characteristics link EMT with the pathogenesis of organ fibrosis and cancer progression. Recent studies have preliminarily established that fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) is correlated with EMT initiation. In this pathological process, PM2.5 particles, excessive reactive oxygen species (ROS) derived from PM2.5, and certain components in PM2.5, such as ions and polyaromatic hydrocarbons (PAHs), have been implicated as potential EMT mediators that are linked to the activation of transforming growth factor β (TGF-β)/SMADs, NF-κB, growth factor (GF)/extracellular signal-regulated protein kinase (ERK), GF/phosphatidylinositol 3-kinase (PI3K)/Akt, wingless/integrated (Wnt)/β-catenin, Notch, Hedgehog, high mobility group box B1 (HMGB1)-receptor for advanced glycation end-products (RAGE), and aryl hydrocarbon receptor (AHR) signaling cascades and to cytoskeleton rearrangement. These pathways directly and indirectly transduce pro-EMT signals that regulate EMT-related gene expression in epithelial cells, finally inducing the characteristic alterations in morphology and functions of epithelia. In addition, novel associations between autophagy, ATP citrate lyase (ACLY), and exosomes with PM2.5-induced EMT have also been summarized. However, some debates and paradoxes remain to be consolidated. This review discusses the potential molecular mechanisms underlying PM2.5-induced EMT, which might account for the latent role of PM2.5 in cancer progression and fibrogenesis.
Collapse
Affiliation(s)
- Zihan Xu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobei Deng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
88
|
Xu Z, Wang N, Xu Y, Hua L, Zhou D, Zheng M, Deng X. Effects of chronic PM 2.5 exposure on pulmonary epithelia: Transcriptome analysis of mRNA-exosomal miRNA interactions. Toxicol Lett 2019; 316:49-59. [PMID: 31520698 DOI: 10.1016/j.toxlet.2019.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 09/10/2019] [Indexed: 02/08/2023]
Abstract
Epidemiological studies have established the correlations between PM2.5 and a wide variety of pulmonary diseases. However, their underlying pathogeneses have not been clearly elucidated yet. In the present study, the epithelial-mesenchymal transition (EMT) phenotype with enhanced proliferation and migration activity of human pulmonary epithelial cell line BEAS-2B was observed after exposure to low dose PM2.5 exposure (50 μg/ml) for 30 passages. Then, epithelial cells derived-exosomal micro-RNA (miRNA) and intracellular total RNA were extracted, and the differentially expressed exosomal miRNAs (DE-Exo-MiRs) as well as differentially expressed protein coding genes (DEGs) were identified by RNA sequencing (RNA-seq) and transcriptome analysis. We found that chronic PM2.5 exposure stimulated the release of pulmonary epithelium derived exosomes. 45 DE-Exo-MiRs including 32 novelly predicted miRNAs and 843 DEGs between PM2.5 exposed group and the normal control were detected. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DEGs were significantly enriched in extracellular matrix organization, focal adhesion and cancer related terms. Besides, the enrichment analyses on 7774 mRNA targets of 27 DE-Exo-MiRs predicted by MiRanda software also revealed the potential regulatory role of exosomal miRNAs in pathways in cancer, Wingless/Integrated (Wnt) signaling pathway, focal adhesion related genes and other multiple pathogenic pathways. Moreover, the interactive exosomal miRNA-mRNA pair networks were constructed using Cytoscape software. Our results provided a novel basis for a better understanding of the mechanisms of chronic PM2.5 exposure induced pulmonary disorders including pulmonary fibrosis and cancer, in which exosomal miRNAs (Exo-MiRs) potentially functions by dynamically regulating gene expressions.
Collapse
Affiliation(s)
- Zihan Xu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ning Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Ye Xu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Li Hua
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dan Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Min Zheng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Xiaobei Deng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|