51
|
Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. Int J Biol Macromol 2018; 111:400-414. [PMID: 29305884 DOI: 10.1016/j.ijbiomac.2017.12.157] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AARSs) are the enzymes that catalyze the aminoacylation reaction by covalently linking an amino acid to its cognate tRNA in the first step of protein translation. Beyond this classical function, these enzymes are also known to have a role in several metabolic and signaling pathways that are important for cell viability. Study of these enzymes is of great interest to the researchers due to its pivotal role in the growth and survival of an organism. Further, unfolding the interesting structural and functional aspects of these enzymes in the last few years has qualified them as a potential drug target against various diseases. Here we review the classification, function, and the conserved as well the appended structural architecture of these enzymes in detail, including its association with multi-synthetase complexes. We also considered their role in human diseases in terms of mutations and autoantibodies against AARSs. Finally, we have discussed the available inhibitors against AARSs. This review offers comprehensive information on AARSs under a single canopy that would be a good inventory for researchers working in this area.
Collapse
|
52
|
Grube CD, Roy H. A continuous assay for monitoring the synthetic and proofreading activities of multiple aminoacyl-tRNA synthetases for high-throughput drug discovery. RNA Biol 2017; 15:659-666. [PMID: 29168435 PMCID: PMC6103669 DOI: 10.1080/15476286.2017.1397262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze the aminoacylation of tRNAs to produce the aminoacyl-tRNAs (aa-tRNAs) required by ribosomes for translation of the genetic message into proteins. To ensure the accuracy of tRNA aminoacylation, and consequently the fidelity of protein synthesis, some aaRSs exhibit a proofreading (editing) site, distinct from the aa-tRNA synthetic site. The aaRS editing site hydrolyzes misacylated products formed when a non-cognate amino acid is used during tRNA charging. Because aaRSs play a central role in protein biosynthesis and cellular life, these proteins represent longstanding targets for therapeutic drug development to combat infectious diseases. Most existing aaRS inhibitors target the synthetic site, and it is only recently that drugs targeting the proofreading site have been considered. In the present study, we developed a robust assay for the high-throughput screening of libraries of inhibitors targeting both the synthetic and the proofreading sites of up to four aaRSs simultaneously. Thus, this assay allows for screening of eight distinct enzyme active sites in a single experiment. aaRSs from several prominent human pathogens (i.e., Mycobacterium tuberculosis, Plasmodium falciparum, and Escherichia coli) were used for development of this assay.
Collapse
Affiliation(s)
- Christopher D Grube
- a Burnett School of Biomedical Sciences, College of Medicine , University of Central Florida , Orlando , Florida , United States of America
| | - Hervé Roy
- a Burnett School of Biomedical Sciences, College of Medicine , University of Central Florida , Orlando , Florida , United States of America
| |
Collapse
|
53
|
Reen GK, Kumar A, Sharma P. In vitro and in silico evaluation of 2-(substituted phenyl) oxazolo[4,5-b]pyridine derivatives as potential antibacterial agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2026-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
54
|
Affiliation(s)
- Juan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- School of Life Sciences, Shandong University of Technology, Zibo, PR China
| | - Peng-Cheng Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- School of Life Sciences, Shandong University of Technology, Zibo, PR China
| |
Collapse
|
55
|
Fernandes JAL, Prandini THR, Castro MDCA, Arantes TD, Giacobino J, Bagagli E, Theodoro RC. Evolution and Application of Inteins in Candida species: A Review. Front Microbiol 2016; 7:1585. [PMID: 27777569 PMCID: PMC5056185 DOI: 10.3389/fmicb.2016.01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
Inteins are invasive intervening sequences that perform an autocatalytic splicing from their host proteins. Among eukaryotes, these elements are present in many fungal species, including those considered opportunistic or primary pathogens, such as Candida spp. Here we reviewed and updated the list of Candida species containing inteins in the genes VMA, THRRS and GLT1 and pointed out the importance of these elements as molecular markers for molecular epidemiological researches and species-specific diagnosis, since the presence, as well as the size of these inteins, is polymorphic among the different species. Although absent in Candida albicans, these elements are present in different sizes, in some environmental Candida spp. and also in most of the non-albicans Candida spp. considered emergent opportunistic pathogens. Besides, the possible role of these inteins in yeast physiology was also discussed in the light of the recent findings on the importance of these elements as post-translational modulators of gene expression, reinforcing their relevance as alternative therapeutic targets for the treatment of non-albicans Candida infections, because, once the splicing of an intein is inhibited, its host protein, which is usually a housekeeping protein, becomes non-functional.
Collapse
Affiliation(s)
- José A L Fernandes
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| | - Tâmara H R Prandini
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Maria da Conceiçao A Castro
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| | - Thales D Arantes
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do NorteNatal, Brazil; Post-graduation Program in Biochemistry, Universidade Federal do Rio Grande do NorteNatal, Brazil
| | - Juliana Giacobino
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Eduardo Bagagli
- Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista Julio de Mesquita Filho Botucatu, Brazil
| | - Raquel C Theodoro
- Institute of Tropical Medicine of Rio Grande do Norte, Universidade Federal do Rio Grande do Norte Natal, Brazil
| |
Collapse
|
56
|
Galili T, Gingold H, Shaul S, Benjamini Y. Identifying the ligated amino acid of archaeal tRNAs based on positions outside the anticodon. RNA (NEW YORK, N.Y.) 2016; 22:1477-1491. [PMID: 27516383 PMCID: PMC5029447 DOI: 10.1261/rna.053777.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Proper recognition of tRNAs by their aminoacyl-tRNA synthetase is essential for translation accuracy. Following evidence that the enzymes can recognize the correct tRNA even when anticodon information is masked, we search for additional nucleotide positions within the tRNA molecule that potentially contain information for amino acid identification. Analyzing 3936 sequences of tRNA genes from 86 archaeal species, we show that the tRNAs' cognate amino acids can be identified by the information embedded in the tRNAs' nucleotide positions without relying on the anticodon information. We present a small set of six to 10 informative positions along the tRNA, which allow for amino acid identification accuracy of 90.6% to 97.4%, respectively. We inspected tRNAs for each of the 20 amino acid types for such informative positions and found that tRNA genes for some amino acids are distinguishable from others by as few as one or two positions. The informative nucleotide positions are in agreement with nucleotide positions that were experimentally shown to affect the loaded amino acid identity. Interestingly, the knowledge gained from the tRNA genes of one archaeal phylum does not extrapolate well to another phylum. Furthermore, each species has a unique ensemble of nucleotides in the informative tRNA positions, and the similarity between the sets of positions of two distinct species reflects their evolutionary distance. Hence, we term this set of informative positions a "tRNA cipher." It is tempting to suggest that the diverging code identified here might also serve the aminoacyl tRNA synthetase in the task of tRNA recognition.
Collapse
Affiliation(s)
- Tal Galili
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Ramat-Aviv 69978, Israel
| | - Hila Gingold
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shaul Shaul
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Ramat-Aviv 69978, Israel
| | - Yoav Benjamini
- Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Ramat-Aviv 69978, Israel The Edmond J. Safra Center for Bioinformatics and The Sagol School for Neuroscience, Tel Aviv University, Ramat-Aviv 69978, Israel
| |
Collapse
|
57
|
Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target Leucyl-tRNA Synthetase. Antimicrob Agents Chemother 2016; 60:6271-80. [PMID: 27503647 PMCID: PMC5038265 DOI: 10.1128/aac.01339-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/31/2016] [Indexed: 11/30/2022] Open
Abstract
The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis. Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid.
Collapse
|
58
|
Cryptosporidium and Toxoplasma Parasites Are Inhibited by a Benzoxaborole Targeting Leucyl-tRNA Synthetase. Antimicrob Agents Chemother 2016; 60:5817-27. [PMID: 27431220 PMCID: PMC5038320 DOI: 10.1128/aac.00873-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022] Open
Abstract
The apicomplexan parasites Cryptosporidium and Toxoplasma are serious threats to human health. Cryptosporidiosis is a severe diarrheal disease in malnourished children and immunocompromised individuals, with the only FDA-approved drug treatment currently being nitazoxanide. The existing therapies for toxoplasmosis, an important pathology in immunocompromised individuals and pregnant women, also have serious limitations. With the aim of developing alternative therapeutic options to address these health problems, we tested a number of benzoxaboroles, boron-containing compounds shown to be active against various infectious agents, for inhibition of the growth of Cryptosporidium parasites in mammalian cells. A 3-aminomethyl benzoxaborole, AN6426, with activity in the micromolar range and with activity comparable to that of nitazoxanide, was identified and further characterized using biophysical measurements of affinity and crystal structures of complexes with the editing domain of Cryptosporidium leucyl-tRNA synthetase (LeuRS). The same compound was shown to be active against Toxoplasma parasites, with the activity being enhanced in the presence of norvaline, an amino acid that can be mischarged by LeuRS. Our observations are consistent with AN6426 inhibiting protein synthesis in both Cryptosporidium and Toxoplasma by forming a covalent adduct with tRNA(Leu) in the LeuRS editing active site and suggest that further exploitation of the benzoxaborole scaffold is a valid strategy to develop novel, much needed antiparasitic agents.
Collapse
|
59
|
Monteferrante CG, Jirgensons A, Varik V, Hauryliuk V, Goessens WHF, Hays JP. Evaluation of the characteristics of leucyl-tRNA synthetase (LeuRS) inhibitor AN3365 in combination with different antibiotic classes. Eur J Clin Microbiol Infect Dis 2016; 35:1857-1864. [PMID: 27506217 PMCID: PMC5059401 DOI: 10.1007/s10096-016-2738-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/18/2016] [Indexed: 12/04/2022]
Abstract
Aminoacyl tRNA synthetases are enzymes involved in the key process of coupling an amino acid to its cognate tRNA. AN3365 is a novel antibiotic that specifically targets leucyl-tRNA synthetase, whose development was halted after evaluation in phase II clinical trials owing to the rapid selection of resistance. In an attempt to bring AN3365 back into the developmental pipeline we have evaluated the efficacy of AN3365 in combination with different classes of antibiotic and characterized its mechanism of action. Although we detect no synergy or antagonism in combination with a range of antibiotic classes, a combination of AN3365 with colistin reduces the accumulation of AN3365-resistant and colistin resistance mutations. We also demonstrate that treatment with AN3365 results in the dramatic accumulation of the alarmone (p)ppGpp, the effector of the stringent response—a key player in antibiotic tolerance.
Collapse
Affiliation(s)
- C G Monteferrante
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam (Erasmus MC), Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - A Jirgensons
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - V Varik
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, 901 87, Umeå, Sweden
| | - V Hauryliuk
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, 901 87, Umeå, Sweden
| | - W H F Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam (Erasmus MC), Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - J P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam (Erasmus MC), Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
60
|
Skupińska M, Stępniak P, Łętowska I, Rychlewski L, Barciszewska M, Barciszewski J, Giel-Pietraszuk M. Natural Compounds as Inhibitors of Tyrosyl-tRNA Synthetase. Microb Drug Resist 2016; 23:308-320. [PMID: 27487455 DOI: 10.1089/mdr.2015.0272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tyrosyl-tRNA synthetases (TyrRSs) as essential enzymes for all living organisms are good candidates for therapeutic target in the prevention and therapy of microbial infection. We examined the effect of various polyphenols, alkaloids, and terpenes-secondary metabolites produced by higher plants showing many beneficial properties for the human organism, on bacterial aminoacylation reaction. The most potent inhibitors of Escherichia coli TyrRS are epigallocatechin gallate, acacetin, kaempferide, and chrysin, whereas the enzymes from Staphylococcus aureus and Pseudomonas aeruginosa are inhibited mainly by acacetin and chrysin. Most of them act as competitive inhibitors. Structure-activity relationship showed that the most potent flavonoid inhibitors contain hydroxyl group at position 5 and 7 of A ring and OCH3 group at position 4' of B ring.
Collapse
Affiliation(s)
- Mirosława Skupińska
- 1 Institute of Bioorganic Chemistry , Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | | | - Iwona Łętowska
- 3 Center of Microbiology and Infectious Diseases, National Institute of Public Health , Chelmska, Warsaw, Poland
| | | | - Mirosława Barciszewska
- 1 Institute of Bioorganic Chemistry , Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | - Jan Barciszewski
- 1 Institute of Bioorganic Chemistry , Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | | |
Collapse
|
61
|
Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase. Antimicrob Agents Chemother 2016; 60:4886-95. [PMID: 27270277 DOI: 10.1128/aac.00820-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/26/2016] [Indexed: 01/18/2023] Open
Abstract
There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.
Collapse
|
62
|
Chen LW, Wang PF, Tang DJ, Tao XX, Man RJ, Qiu HY, Wang ZC, Xu C, Zhu HL. Metronidazole containing pyrazole derivatives potently inhibit tyrosyl-tRNA synthetase: design, synthesis, and biological evaluation. Chem Biol Drug Des 2016; 88:592-8. [DOI: 10.1111/cbdd.12793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/24/2016] [Accepted: 05/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Long-Wang Chen
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing China
| | - Peng-Fei Wang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing China
| | - Dan-Jie Tang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing China
| | - Xiang-Xiang Tao
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing China
| | - Ruo-Jun Man
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing China
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing China
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing China
| |
Collapse
|
63
|
Gudzera OI, Golub AG, Bdzhola VG, Volynets GP, Kovalenko OP, Boyarshin KS, Yaremchuk AD, Protopopov MV, Yarmoluk SM, Tukalo MA. Identification of Mycobacterium tuberculosis leucyl-tRNA synthetase (LeuRS) inhibitors among the derivatives of 5-phenylamino-2H-[1,2,4]triazin-3-one. J Enzyme Inhib Med Chem 2016; 31:201-207. [DOI: 10.1080/14756366.2016.1190712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Olga I. Gudzera
- Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine and
| | | | | | - Galyna P. Volynets
- Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine and
| | - Oksana P. Kovalenko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine and
| | | | - Anna D. Yaremchuk
- Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine and
| | | | - Sergiy M. Yarmoluk
- Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine and
| | - Michail A. Tukalo
- Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine and
| |
Collapse
|
64
|
Grube CD, Roy H. A Quantitative Spectrophotometric Assay to Monitor the tRNA-Dependent Pathway for Lipid Aminoacylation In Vitro. ACTA ACUST UNITED AC 2016; 21:722-8. [PMID: 27073192 DOI: 10.1177/1087057116642987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 11/15/2022]
Abstract
The transfer RNA (tRNA)-dependent pathway for lipid aminoacylation is a two-step pathway composed of (1) a tRNA aminoacylation step catalyzed by an aminoacyl-tRNA synthetase, forming a specific aa-tRNA, and (2) a tRNA-dependent transfer step in which the amino acid acylating the tRNA is transferred to an acceptor lipid. The latter step is catalyzed by a transferase located within the cytoplasmic membrane of certain bacteria. Lipid aminoacylation modifies the biochemical properties of the membrane and enhances resistance of some pathogens to various classes of antimicrobial agents and components of the innate immune response. Lipid aminoacylation has also been linked to increased virulence of various pathogenic bacteria. Inhibition of this mechanism would render pathogens more susceptible to existing drugs or to natural defenses of a host organism. Because lipid aminoacylation is widespread in many bacterial genera and absent from eukaryotes, and because the tRNA aminoacylation step of this pathway is also used in protein biosynthesis (a process essential for bacterial life), this pathway represents an attractive target for drug design. We have reconstituted the lipid aminoacylation pathway in vitro and optimized it for high-throughput screening of libraries of compounds to simultaneously identify inhibitors targeting each step of the pathway in a single assay.
Collapse
Affiliation(s)
- Christopher D Grube
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Hervé Roy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
65
|
Discovery of potent anti-tuberculosis agents targeting leucyl-tRNA synthetase. Bioorg Med Chem 2016; 24:1023-31. [DOI: 10.1016/j.bmc.2016.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/23/2015] [Accepted: 01/15/2016] [Indexed: 01/05/2023]
|
66
|
Qiu HY, Wang PF, Wang ZZ, Luo YL, Hu DQ, Qi JL, Lu GH, Pang YJ, Yang RW, Zhu HL, Wang XM, Yang YH. Shikonin derivatives as inhibitors of tyrosyl-tRNA synthetase: design, synthesis and biological evaluation. RSC Adv 2016. [DOI: 10.1039/c6ra17742e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel tyrosyl-tRNA synthetase inhibitors was designed and synthesized as anti-bacteria agents based on natural product shikonin and in silico scaffold modification strategy.
Collapse
|
67
|
Fang P, Guo M. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification. Life (Basel) 2015; 5:1703-25. [PMID: 26670257 PMCID: PMC4695845 DOI: 10.3390/life5041703] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.
Collapse
Affiliation(s)
- Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
68
|
Xiao ZP, Wei W, Wang PF, Shi WK, Zhu N, Xie MQ, Sun YW, Li LX, Xie YX, Zhu LS, Tang N, Ouyang H, Li XH, Wang GC, Zhu HL. Synthesis and evaluation of new tyrosyl-tRNA synthetase inhibitors as antibacterial agents based on a N2-(arylacetyl)glycinanilide scaffold. Eur J Med Chem 2015; 102:631-8. [DOI: 10.1016/j.ejmech.2015.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 12/23/2022]
|
69
|
Design, synthesis and molecular docking of salicylic acid derivatives containing metronidazole as a new class of antimicrobial agents. Bioorg Med Chem 2015; 23:6148-56. [DOI: 10.1016/j.bmc.2015.07.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
|
70
|
Fang P, Han H, Wang J, Chen K, Chen X, Guo M. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor. ACTA ACUST UNITED AC 2015; 22:734-44. [PMID: 26074468 DOI: 10.1016/j.chembiol.2015.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/03/2015] [Accepted: 05/09/2015] [Indexed: 01/26/2023]
Abstract
Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development.
Collapse
Affiliation(s)
- Pengfei Fang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Hongyan Han
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA; School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Jing Wang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kaige Chen
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Xin Chen
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Cell and Molecular Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
71
|
First EA. A continuous spectrophotometric assay for monitoring adenosine 5'-monophosphate production. Anal Biochem 2015; 483:34-9. [PMID: 25957126 DOI: 10.1016/j.ab.2015.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022]
Abstract
A number of biologically important enzymes release adenosine 5'-monophosphate (AMP) as a product, including aminoacyl-tRNA synthetases, cyclic AMP (cAMP) phosphodiesterases, ubiquitin and ubiquitin-like ligases, DNA ligases, coenzyme A (CoA) ligases, polyA deadenylases, and ribonucleases. In contrast to the abundance of assays available for monitoring the conversion of adenosine 5'-triphosphate (ATP) to ADP, there are relatively few assays for monitoring the conversion of ATP (or cAMP) to AMP. In this article, we describe a homogeneous assay that continuously monitors the production of AMP. Specifically, we have coupled the conversion of AMP to inosine 5'-monophosphate (IMP) (by AMP deaminase) to the oxidation of IMP (by IMP dehydrogenase). This results in the reduction of oxidized nicotine adenine dinucleotide (NAD(+)) to reduced nicotine adenine dinucleotide (NADH), allowing AMP formation to be monitored by the change in the absorbance at 340 nm. Changes in AMP concentrations of 5 μM or more can be reliably detected. The ease of use and relatively low expense make the AMP assay suitable for both high-throughput screening and kinetic analyses.
Collapse
Affiliation(s)
- Eric A First
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
72
|
Blais SP, Kornblatt JA, Barbeau X, Bonnaure G, Lagüe P, Chênevert R, Lapointe J. tRNAGlu increases the affinity of glutamyl-tRNA synthetase for its inhibitor glutamyl-sulfamoyl-adenosine, an analogue of the aminoacylation reaction intermediate glutamyl-AMP: mechanistic and evolutionary implications. PLoS One 2015; 10:e0121043. [PMID: 25860020 PMCID: PMC4393105 DOI: 10.1371/journal.pone.0121043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/11/2015] [Indexed: 12/05/2022] Open
Abstract
For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of –TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant Kd is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3’-OH oxygen of the 3’-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP.
Collapse
Affiliation(s)
- Sébastien P. Blais
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
- * E-mail: (SPB); (JL)
| | - Jack A. Kornblatt
- Department of Biology, Centre for Structural and Functional Genomics, Faculty of Arts and Science, Concordia University, Montréal, Canada
| | - Xavier Barbeau
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Chimie, Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
| | - Guillaume Bonnaure
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
| | - Patrick Lagüe
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
| | - Robert Chênevert
- Département de Chimie, Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
| | - Jacques Lapointe
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
- * E-mail: (SPB); (JL)
| |
Collapse
|
73
|
Gadakh B, Pouyez J, Wouters J, Venkatesham A, Cos P, Van Aerschot A. N-Acylated sulfonamide congeners of fosmidomycin lack any inhibitory activity against DXR. Bioorg Med Chem Lett 2015; 25:1577-9. [DOI: 10.1016/j.bmcl.2015.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022]
|
74
|
Gadakh B, Smaers S, Rozenski J, Froeyen M, Van Aerschot A. 5'-(N-aminoacyl)-sulfonamido-5'-deoxyadenosine: attempts for a stable alternative for aminoacyl-sulfamoyl adenosines as aaRS inhibitors. Eur J Med Chem 2015; 93:227-36. [PMID: 25686591 DOI: 10.1016/j.ejmech.2015.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
Synthesis of aminoacyl-sulfamoyl adenosines (aaSAs) and their peptidyl conjugates as aminoacyl tRNA synthetase (aaRS) inhibitors remains problematic due to the low yield of the aminoacylation and the subsequent conjugation reaction causing concomitant formation of a cyclic adenosine derivative. In an effort to reduce this undesirable side reaction, we aimed to prepare the corresponding aminoacyl sulfonamide (aaSoA) analogues as more stable alternatives for aaSA derivatives. Deletion of the 5'-oxygen in aaSA analogues should render the C-5' less electrophilic and therefore improve the stability of the aminoacyl sulfamate analogues. We therefore synthesized six sulfonamides and compared their activity against the respective aaSA analogues. However, except for the aspartyl derivative, the new compounds are not able to inhibit the corresponding aaRS. Possible reasons for this loss of activity are discussed by modeling and comparison of the newly synthesized aaSoA derivatives with their parent aaSA analogues.
Collapse
Affiliation(s)
- Bharat Gadakh
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Simon Smaers
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Mathy Froeyen
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
75
|
Wang PF, Qiu HY, Ma JT, Yan XQ, Gong HB, Wang ZC, Zhu HL. Dihydropyrazoles containing morpholine: design, synthesis and bioassay testing as potent antimicrobial agents. RSC Adv 2015. [DOI: 10.1039/c4ra15201h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of dihydropyrazole derivatives were designed and synthesized as antimicrobial agents. In both docking simulation and bioassay tests, these compounds showed potent S. aureus TyrRS enzyme inhibition activity.
Collapse
Affiliation(s)
- Peng-Fei Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jun-Ting Ma
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Xiao-Qiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Hai-Bin Gong
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
- Xuzhou Central Hospital
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
76
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
77
|
Gurcha SS, Usha V, Cox JAG, Fütterer K, Abrahams KA, Bhatt A, Alderwick LJ, Reynolds RC, Loman NJ, Nataraj V, Alemparte C, Barros D, Lloyd AJ, Ballell L, Hobrath JV, Besra GS. Biochemical and structural characterization of mycobacterial aspartyl-tRNA synthetase AspS, a promising TB drug target. PLoS One 2014; 9:e113568. [PMID: 25409504 PMCID: PMC4237437 DOI: 10.1371/journal.pone.0113568] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (TB), a disease with high worldwide mortality rates. Current treatment programs are under significant threat from multi-drug and extensively-drug resistant strains of M. tuberculosis, and it is essential to identify new inhibitors and their targets. We generated spontaneous resistant mutants in Mycobacterium bovis BCG in the presence of 10× the minimum inhibitory concentration (MIC) of compound 1, a previously identified potent inhibitor of mycobacterial growth in culture. Whole genome sequencing of two resistant mutants revealed in one case a single nucleotide polymorphism in the gene aspS at 535GAC>535AAC (D179N), while in the second mutant a single nucleotide polymorphism was identified upstream of the aspS promoter region. We probed whole cell target engagement by overexpressing either M. bovis BCG aspS or Mycobacterium smegmatis aspS, which resulted in a ten-fold and greater than ten-fold increase, respectively, of the MIC against compound 1. To analyse the impact of inhibitor 1 on M. tuberculosis AspS (Mt-AspS) activity we over-expressed, purified and characterised the kinetics of this enzyme using a robust tRNA-independent assay adapted to a high-throughput screening format. Finally, to aid hit-to-lead optimization, the crystal structure of apo M. smegmatis AspS was determined to a resolution of 2.4 Å.
Collapse
Affiliation(s)
- Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Veeraraghavan Usha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Jonathan A. G. Cox
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Klaus Fütterer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Katherine A. Abrahams
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Luke J. Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Robert C. Reynolds
- Department of Chemistry, University of Alabama at Birmingham, College of Arts and Sciences, 1530 3rd Avenue South, Birmingham, Alabama, 35294-1240, United States of America
| | - Nicholas J. Loman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - VijayaShankar Nataraj
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Carlos Alemparte
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - David Barros
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Adrian J. Lloyd
- Department of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Judith V. Hobrath
- Organic Chemistry Department, Southern Research Institute, Birmingham, Alabama, 35205, United States of America
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- * E-mail:
| |
Collapse
|
78
|
Koh CY, Wetzel AB, de van der Schueren WJ, Hol WGJ. Comparison of histidine recognition in human and trypanosomatid histidyl-tRNA synthetases. Biochimie 2014; 106:111-20. [PMID: 25151410 DOI: 10.1016/j.biochi.2014.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/12/2014] [Indexed: 02/05/2023]
Abstract
As part of a project aimed at obtaining selective inhibitors and drug-like compounds targeting tRNA synthetases from trypanosomatids, we have elucidated the crystal structure of human cytosolic histidyl-tRNA synthetase (Hs-cHisRS) in complex with histidine in order to be able to compare human and parasite enzymes. The resultant structure of Hs-cHisRS•His represents the substrate-bound state (H-state) of the enzyme. It provides an interesting opportunity to compare with ligand-free and imidazole-bound structures Hs-cHisRS published recently, both of which represent the ligand-free state (F-state) of the enzyme. The H-state Hs-cHisRS undergoes conformational changes in active site residues and several conserved motif of HisRS, compared to F-state structures. The histidine forms eight hydrogen bonds with HisRS of which six engage the amino and carboxylate groups of this amino acid. The availability of published imidazole-bound structure provides a unique opportunity to dissect the structural roles of individual chemical groups of histidine. The analysis revealed the importance of the amino and carboxylate groups, of the histidine in leading to these dramatic conformational changes of the H-state. Further, comparison with previously published trypanosomatid HisRS structures reveals a pocket in the F-state of the parasite enzyme that may provide opportunities for developing specific inhibitors of Trypanosoma brucei HisRS.
Collapse
Affiliation(s)
- Cho Yeow Koh
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Allan B Wetzel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Wim G J Hol
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
79
|
Identification of borrelidin binding site on threonyl-tRNA synthetase. Biochem Biophys Res Commun 2014; 451:485-90. [PMID: 25128830 DOI: 10.1016/j.bbrc.2014.07.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/22/2014] [Indexed: 01/06/2023]
Abstract
Borrelidin exhibits a wide spectrum of biological activities and has been considered as a non-competitive inhibitor of threonyl-tRNA synthetase (ThrRS). However, the detailed mechanisms of borrelidin against ThrRS, especially borrelidin binding site on ThrRS, are still unclear, which limits the development of novel borrelidin derivatives and rational design of structure-based ThrRS inhibitors. In this study, the binding site of borrelidin on Escherichia coli ThrRS was predicted by molecular docking. To validate our speculations, the ThrRS mutants of E. coli (P424K, E458Δ, and G459Δ) were constructed and their sensitivity to borrelidin was compared to that of the wild-type ThrRS by enzyme kinetics and stopped-flow fluorescence analysis. The docking results showed that borrelidin binds the pocket outside but adjacent to the active site of ThrRS, consisting of residue Y313, R363, R375, P424, E458, G459, and K465. Site-directed mutagenesis results showed that sensitivities of P424K, E458Δ, and G459Δ ThrRSs to borrelidin were reduced markedly. All the results showed that residue Y313, P424, E458, and G459 play vital roles in the binding of borrelidin to ThrRS. It indicated that borrelidin may induce the cleft closure, which blocks the release of Thr-AMP and PPi, to inhibit activity of ThrRS rather than inhibit the binding of ATP and threonine. This study provides new insight into inhibitory mechanisms of borrelidin against ThrRS.
Collapse
|
80
|
Koh CY, Kim JE, Wetzel AB, de van der Schueren WJ, Shibata S, Ranade RM, Liu J, Zhang Z, Gillespie JR, Buckner FS, Verlinde CLMJ, Fan E, Hol WGJ. Structures of Trypanosoma brucei methionyl-tRNA synthetase with urea-based inhibitors provide guidance for drug design against sleeping sickness. PLoS Negl Trop Dis 2014; 8:e2775. [PMID: 24743796 PMCID: PMC3990509 DOI: 10.1371/journal.pntd.0002775] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/20/2014] [Indexed: 01/07/2023] Open
Abstract
Methionyl-tRNA synthetase of Trypanosoma brucei (TbMetRS) is an important target in the development of new antitrypanosomal drugs. The enzyme is essential, highly flexible and displaying a large degree of changes in protein domains and binding pockets in the presence of substrate, product and inhibitors. Targeting this protein will benefit from a profound understanding of how its structure adapts to ligand binding. A series of urea-based inhibitors (UBIs) has been developed with IC50 values as low as 19 nM against the enzyme. The UBIs were shown to be orally available and permeable through the blood-brain barrier, and are therefore candidates for development of drugs for the treatment of late stage human African trypanosomiasis. Here, we expand the structural diversity of inhibitors from the previously reported collection and tested for their inhibitory effect on TbMetRS and on the growth of T. brucei cells. The binding modes and binding pockets of 14 UBIs are revealed by determination of their crystal structures in complex with TbMetRS at resolutions between 2.2 Å to 2.9 Å. The structures show binding of the UBIs through conformational selection, including occupancy of the enlarged methionine pocket and the auxiliary pocket. General principles underlying the affinity of UBIs for TbMetRS are derived from these structures, in particular the optimum way to fill the two binding pockets. The conserved auxiliary pocket might play a role in binding tRNA. In addition, a crystal structure of a ternary TbMetRS•inhibitor•AMPPCP complex indicates that the UBIs are not competing with ATP for binding, instead are interacting with ATP through hydrogen bond. This suggests a possibility that a general 'ATP-engaging' binding mode can be utilized for the design and development of inhibitors targeting tRNA synthetases of other disease-causing pathogen.
Collapse
Affiliation(s)
- Cho Yeow Koh
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jessica E. Kim
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Allan B. Wetzel
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | | | - Sayaka Shibata
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Ranae M. Ranade
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jiyun Liu
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - J. Robert Gillespie
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Frederick S. Buckner
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
81
|
Gadakh B, Vondenhoff G, Lescrinier E, Rozenski J, Froeyen M, Van Aerschot A. Base substituted 5'-O-(N-isoleucyl)sulfamoyl nucleoside analogues as potential antibacterial agents. Bioorg Med Chem 2014; 22:2875-86. [PMID: 24746466 DOI: 10.1016/j.bmc.2014.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
Aminoacyl-sulfamoyl adenosines are well-known nanomolar inhibitors of the corresponding prokaryotic and eukaryotic tRNA synthetases in vitro. Inspired by the aryl-tetrazole containing compounds of Cubist Pharmaceuticals and the modified base as found in the natural antibiotic albomycin, the selectivity issue of the sulfamoylated adenosines prompted us to investigate the pharmacophoric importance of the adenine base. We therefore synthesized and evaluated several isoleucyl-sulfamoyl nucleoside analogues with either uracil, cytosine, hypoxanthine, guanine, 1,3-dideaza-adenine (benzimidazole) or 4-nitro-benzimidazole as the heterocyclic base. Based on the structure and antibacterial activity of microcin C, we also prepared their hexapeptidyl conjugates in an effort to improve their uptake potential. We further compared their antibacterial activity with the parent isoleucyl-sulfamoyl adenosine (Ile-SA), both in in vitro and in cellular assays. Surprisingly, the strongest in vitro inhibition was found for the uracil containing analogue 16f. Unfortunately, only very weak growth inhibitory properties were found as of low uptake. The results are discussed in the light of previous literature findings.
Collapse
Affiliation(s)
- Bharat Gadakh
- KU Leuven, Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Gaston Vondenhoff
- KU Leuven, Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Eveline Lescrinier
- KU Leuven, Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven, Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Mathy Froeyen
- KU Leuven, Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Arthur Van Aerschot
- KU Leuven, Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium.
| |
Collapse
|
82
|
Genetic validation of aminoacyl-tRNA synthetases as drug targets in Trypanosoma brucei. EUKARYOTIC CELL 2014; 13:504-16. [PMID: 24562907 DOI: 10.1128/ec.00017-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts.
Collapse
|
83
|
Highlights on trypanosomatid aminoacyl-tRNA synthesis. Subcell Biochem 2013; 74:271-304. [PMID: 24264250 DOI: 10.1007/978-94-007-7305-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Aminoacyl-tRNA synthetases aaRSs are responsible for the aminoacylation of tRNAs in the first step of protein synthesis. They comprise a group of enzymes that catalyze the formation of each possible aminoacyl-tRNA necessary for messenger RNA decoding in a cell. These enzymes have been divided into two classes according to structural features of their active sites and, although each class shares a common active site core, they present an assorted array of appended domains that makes them sufficiently diverse among the different living organisms. Here we will explore what is known about the diversity encountered among trypanosomatids' aaRSs that has helped us not only to understand better the biology of these parasites but can be used rationally for the design of drugs against these protozoa.
Collapse
|
84
|
Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CFA, Turner KEC, Ralph SA. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 4:1-13. [PMID: 24596663 PMCID: PMC3940080 DOI: 10.1016/j.ijpddr.2013.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases are essential and many aaRS inhibitors kill parasites. We examine compound inhibitors tested experimentally against parasite aaRSs. Successful inhibitors were discovered by both phenotype and target-based approaches. Selectivity and resistance are ongoing challenges for development of parasite drugs.
Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- James S Pham
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Karen L Dawson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Katherine E Jackson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Erin E Lim
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Charisse Flerida A Pasaje
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Kelsey E C Turner
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
85
|
Vondenhoff GH, Pugach K, Gadakh B, Carlier L, Rozenski J, Froeyen M, Severinov K, Van Aerschot A. N-alkylated aminoacyl sulfamoyladenosines as potential inhibitors of aminoacylation reactions and microcin C analogues containing D-amino acids. PLoS One 2013; 8:e79234. [PMID: 24223911 PMCID: PMC3817062 DOI: 10.1371/journal.pone.0079234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022] Open
Abstract
Microcin C analogues were recently envisaged as important compounds for the development of novel antibiotics. Two issues that may pose problems to these potential antibiotics are possible acquisition of resistance through acetylation and in vivo instability of the peptide chain. N-methylated aminoacyl sulfamoyladenosines were synthesized to investigate their potential as aminoacyl tRNA synthetase inhibitors and to establish whether these N-alkylated analogues would escape the natural inactivation mechanism via acetylation of the alpha amine. It was shown however, that these compounds are not able to effectively inhibit their respective aminoacyl tRNA synthetase. In addition, we showed that (D)-aspartyl-sulfamoyladenosine (i.e. with a (D)-configuration for the aspartyl moiety), is a potent inhibitor of aspartyl tRNA synthetase. However, we also showed that the inhibitory effect of (D)- aspartyl-sulfamoyladenosine is relatively short-lasting. Microcin C analogues with (D)-amino acids throughout from positions two to six proved inactive. They were shown to be resistant against metabolism by the different peptidases and therefore not able to release the active moiety. This observation could not be reversed by incorporation of (L)-amino acids at position six, showing that none of the available peptidases exhibit endopeptidase activity.
Collapse
Affiliation(s)
- Gaston H. Vondenhoff
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Ksenia Pugach
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Bharat Gadakh
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Laurence Carlier
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Mathy Froeyen
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Konstantin Severinov
- Department of Molecular Biology and Biochemistry Waksman Institute, Rutgers, the State University, Piscataway, New Jersey, United States of America
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Arthur Van Aerschot
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
- * E-mail:
| |
Collapse
|
86
|
Lloyd AJ, Potter NJ, Fishwick CWG, Roper DI, Dowson CG. Adenosine tetraphosphoadenosine drives a continuous ATP-release assay for aminoacyl-tRNA synthetases and other adenylate-forming enzymes. ACS Chem Biol 2013; 8:2157-63. [PMID: 23898887 DOI: 10.1021/cb400248f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases are essential for the correct linkage of amino acids to cognate tRNAs to maintain the fidelity of protein synthesis. Tractable, continuous assays are valuable for characterizing the functions of synthetases and for their exploitation as drug targets. We have exploited the unexplored ability of these enzymes to consume adenosine tetraphosphoadenosine (diadenosine 5',5‴ P(1) P(4) tetraphosphate; Ap4A) and produce ATP to develop such an assay. We have used this assay to probe the stereoselectivity of isoleucyl-tRNA(Ile) and Valyl-tRNA(Val) synthetases and the impact of tRNA on editing by isoleucyl-tRNA(Ile) synthetase (IleRS) and to identify analogues of intermediates of these enzymes that might allow targeting of multiple synthetases. We further report the utility of Ap4A-based assays for identification of synthetase inhibitors with nanomolar to millimolar affinities. Finally, we demonstrate the broad application of Ap4A utilization with a continuous Ap4A-driven RNA ligase assay.
Collapse
Affiliation(s)
- Adrian J. Lloyd
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry,
West Midlands CV4 7AL, U.K
| | | | | | - David I. Roper
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry,
West Midlands CV4 7AL, U.K
| | - Christopher G. Dowson
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry,
West Midlands CV4 7AL, U.K
| |
Collapse
|
87
|
|
88
|
Redwan IN, Bliman D, Tokugawa M, Lawson C, Grøtli M. Synthesis and photophysical characterization of 1- and 4-(purinyl)triazoles. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
89
|
Novel hybrid virtual screening protocol based on molecular docking and structure-based pharmacophore for discovery of methionyl-tRNA synthetase inhibitors as antibacterial agents. Int J Mol Sci 2013; 14:14225-39. [PMID: 23839093 PMCID: PMC3742241 DOI: 10.3390/ijms140714225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/14/2013] [Accepted: 06/20/2013] [Indexed: 02/05/2023] Open
Abstract
Methione tRNA synthetase (MetRS) is an essential enzyme involved in protein biosynthesis in all living organisms and is a potential antibacterial target. In the current study, the structure-based pharmacophore (SBP)-guided method has been suggested to generate a comprehensive pharmacophore of MetRS based on fourteen crystal structures of MetRS-inhibitor complexes. In this investigation, a hybrid protocol of a virtual screening method, comprised of pharmacophore model-based virtual screening (PBVS), rigid and flexible docking-based virtual screenings (DBVS), is used for retrieving new MetRS inhibitors from commercially available chemical databases. This hybrid virtual screening approach was then applied to screen the Specs (202,408 compounds) database, a structurally diverse chemical database. Fifteen hit compounds were selected from the final hits and shifted to experimental studies. These results may provide important information for further research of novel MetRS inhibitors as antibacterial agents.
Collapse
|
90
|
Orelle C, Szal T, Klepacki D, Shaw KJ, Vázquez-Laslop N, Mankin AS. Identifying the targets of aminoacyl-tRNA synthetase inhibitors by primer extension inhibition. Nucleic Acids Res 2013; 41:e144. [PMID: 23761439 PMCID: PMC3737564 DOI: 10.1093/nar/gkt526] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aminoacyl-transfer RNA (tRNA) synthetases (RS) are essential components of the cellular translation machinery and can be exploited for antibiotic discovery. Because cells have many different RS, usually one for each amino acid, identification of the specific enzyme targeted by a new natural or synthetic inhibitor can be cumbersome. We describe the use of the primer extension technique in conjunction with specifically designed synthetic genes to identify the RS targeted by an inhibitor. Suppression of a synthetase activity reduces the amount of the cognate aminoacyl-tRNA in a cell-free translation system resulting in arrest of translation when the corresponding codon enters the decoding center of the ribosome. The utility of the technique is demonstrated by identifying a switch in target specificity of some synthetic inhibitors of threonyl-tRNA synthetase.
Collapse
Affiliation(s)
- Cédric Orelle
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, IL 60607, USA and Trius Therapeutics, Inc., San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
91
|
Koh CY, Kim JE, Napoli AJ, Verlinde CL, Fan E, Buckner FS, Van Voorhis WC, Hol WG. Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design. Mol Biochem Parasitol 2013; 189:26-32. [PMID: 23665145 PMCID: PMC3680109 DOI: 10.1016/j.molbiopara.2013.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 01/05/2023]
Abstract
Malaria, most commonly caused by the parasite Plasmodium falciparum, is a devastating disease that remains a large global health burden. Lack of vaccines and drug resistance necessitate the continual development of new drugs and exploration of new drug targets. Due to their essential role in protein synthesis, aminoacyl-tRNA synthetases are potential anti-malaria drug targets. Here we report the crystal structures of P. falciparum cytosolic tryptophanyl-tRNA synthetase (Pf-cTrpRS) in its ligand-free state and tryptophanyl-adenylate (WAMP)-bound state at 2.34 Å and 2.40 Å resolutions, respectively. Large conformational changes are observed when the ligand-free protein is bound to WAMP. Multiple residues, completely surrounding the active site pocket, collapse onto WAMP. Comparison of the structures to those of human cytosolic TrpRS (Hs-cTrpRS) provides information about the possibility of targeting Pf-cTrpRS for inhibitor development. There is a high degree of similarity between Pf-cTrpRS and Hs-cTrpRS within the active site. However, the large motion that Pf-cTrpRS undergoes during transitions between different functional states avails an opportunity to arrive at compounds which selectively perturb the motion, and may provide a starting point for the development of new anti-malaria therapeutics.
Collapse
Affiliation(s)
- Cho Yeow Koh
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Jessica E. Kim
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Alberto J. Napoli
- Division of Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Frederick S. Buckner
- Division of Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Wesley C. Van Voorhis
- Division of Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Wim G.J. Hol
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
92
|
Wilson DJ, Shi C, Teitelbaum AM, Gulick AM, Aldrich CC. Characterization of AusA: a dimodular nonribosomal peptide synthetase responsible for the production of aureusimine pyrazinones. Biochemistry 2013; 52:926-37. [PMID: 23302043 PMCID: PMC3577359 DOI: 10.1021/bi301330q] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aureusimines have been identified as potential virulence factors in Staphylococcus aureus. These pyrazinone secondary metabolites are produced by a nonribosomal peptide synthetase (NRPS) annotated as AusA. We report the overproduction of AusA as a 277 kDa soluble protein with A(1)-T(1)-C-A(2)-T(2)-R bimodular architecture. The substrate specificity of each adenylation (A) domain was initially probed using an ATP-pyrophosphate exchange assay with A-domain selective bisubstrate inhibitors to chemically knock out each companion A-domain. The activity of AusA was then reconstituted in vitro and shown to produce all naturally occurring aureusimines and non-natural pyrazinone products with k(cat) values ranging from 0.4 to 1.3 min(-1). Steady-state kinetic parameters were determined for all substrates and cofactors, providing the first comprehensive steady-state characterization of a NRPS employing a product formation assay. The K(M) values for the amino acids were up to 60-fold lower with the product formation assay than with the ATP-pyrophosphate exchange assay, most commonly used to assess A-domain substrate specificity. The C-terminal reductase (R) domain catalyzes reductive release of the dipeptidyl intermediate, leading to formation of an amino aldehyde that cyclizes to a dihydropyrazinone. We show oxidation to the final pyrazinone heterocycle is spontaneous. The activity and specificity of the R-domain was independently investigated using a NADPH consumption assay. AusA is a minimal autonomous two-module NRPS that represents an excellent model system for further kinetic and structural characterization.
Collapse
Affiliation(s)
- Daniel J. Wilson
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ce Shi
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455
| | - Aaron M. Teitelbaum
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, MN 55455
| | - Andrew M. Gulick
- Hauptman-Woodward Institute and Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203 USA
| | - Courtney C. Aldrich
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
93
|
Dewan V, Reader J, Forsyth KM. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top Curr Chem (Cham) 2013; 344:293-329. [PMID: 23666077 DOI: 10.1007/128_2013_425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 "housekeeping" enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles. AARSs are involved in the regulation of transcription, translation, and various signaling pathways, thereby ensuring cell survival. Based in part on their versatility, AARSs have been recruited by viruses to perform essential functions. For example, host synthetases are packaged into some retroviruses and are required for their replication. Other viruses mimic tRNA-like structures in their genomes, and these motifs are aminoacylated by the host synthetase as part of the viral replication cycle. More recently, it has been shown that certain large DNA viruses infecting animals and other diverse unicellular eukaryotes encode tRNAs, AARSs, and additional components of the protein-synthesis machinery. This chapter will review our current understanding of the role of host AARSs and tRNA-like structures in viruses and discuss their potential as anti-viral drug targets. The identification and development of compounds that target bacterial AARSs, thereby serving as novel antibiotics, will also be discussed. Particular attention will be given to recent work on a number of tRNA-dependent AARS inhibitors and to advances in a new class of natural "pro-drug" antibiotics called Trojan Horse inhibitors. Finally, we will explore how bacteria that naturally produce AARS-targeting antibiotics must protect themselves against cell suicide using naturally antibiotic resistant AARSs, and how horizontal gene transfer of these AARS genes to pathogens may threaten the future use of this class of antibiotics.
Collapse
Affiliation(s)
- Varun Dewan
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, Center for RNA Biology, and Center for Retroviral Research, The Ohio State University, Columbus, OH, 43210, USA
| | | | | |
Collapse
|
94
|
Lapointe J. Mechanism and evolution of multidomain aminoacyl-tRNA synthetases revealed by their inhibition by analogues of a reaction intermediate, and by properties of truncated forms. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.610115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
95
|
Hu QH, Huang Q, Wang ED. Crucial role of the C-terminal domain of Mycobacterium tuberculosis leucyl-tRNA synthetase in aminoacylation and editing. Nucleic Acids Res 2012; 41:1859-72. [PMID: 23268443 PMCID: PMC3561953 DOI: 10.1093/nar/gks1307] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The C-terminal extension of prokaryotic leucyl-tRNA synthetase (LeuRS) has been shown to make contacts with the tertiary structure base pairs of tRNA(Leu) as well as its long variable arm. However, the precise role of the flexibly linked LeuRS C-terminal domain (CTD) in aminoacylation and editing processes has not been clarified. In this study, we carried out aspartic acid scanning within the CTD of Mycobacterium tuberculosis LeuRS (MtbLeuRS) and studied the effects on tRNA(Leu)-binding capacity and enzymatic activity. Several critical residues were identified to impact upon the interactions between LeuRS and tRNA(Leu) due to their contributions in the maintenance of structural stability or a neutral interaction interface between the CTD platform and tRNA(Leu) elbow region. Moreover, we propose Arg921 as a crucial recognition site for the tRNA(Leu) long variable arm in aminoacylation and tRNA-dependent pre-transfer editing. We also show here the CTD flexibility conferred by Val910 in regulation of LeuRS-tRNA(Leu) interaction. Taken together, our results suggest the structural importance of the CTD in modulating precise interactions between LeuRS and tRNA(Leu) during the quality control of leucyl-tRNA(Leu) synthesis. This system for the investigation of the interactions between MtbLeuRS and tRNA(Leu) provides a platform for the development of novel antitubercular drugs.
Collapse
Affiliation(s)
- Qing-Hua Hu
- State Key Laboratory of Molecular Biology, Center for RNA research, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | |
Collapse
|
96
|
Gadakh B, Van Aerschot A. Aminoacyl-tRNA synthetase inhibitors as antimicrobial agents: a patent review from 2006 till present. Expert Opin Ther Pat 2012; 22:1453-65. [PMID: 23062029 DOI: 10.1517/13543776.2012.732571] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Aminoacyl-tRNA synthetases (aaRSs) are one of the leading targets for development of antimicrobial agents. Although these enzymes are well conserved among prokaryotes, significant divergence has occurred between prokaryotic and eukaryotic aaRSs, which can be exploited in the discovery of broad-spectrum antibacterial agents. Although several aaRS inhibitors have been reported before, they failed as a result of poor selectivity and limited cell penetration. AREAS COVERED This review covers January 2006 to April 2012 wherein several new analogues were claimed as aaRS inhibitors. Anacor Pharmaceuticals patented several boron-containing derivatives inhibiting the function of the editing domain of aaRSs. Two patents describe the combination of aaRS inhibitors with other antibacterial agents. Patents disclosing aaRS inhibitors for indications other than antimicrobial agents are not considered for review here. EXPERT OPINION Several recently disclosed leads may form the foundation for development of potent and selective bacterial aaRS inhibitors. In comparison with, for example, terbinafine and itraconazole, compound C10 (AN2690) is a very promising candidate for treatment of ungual and periungual infections with improved nail penetration and low keratin binding. In addition, Raplidyne, Inc. reported bicyclic heteroaromatic compounds as potent and selective inhibitors of bacterial MetRS. These have proven to be particularly effective for treatment of Clostridium difficile-associated diarrhea. Finally, combination of aaRS inhibitors to attenuate resistance looks as a viable strategy to expand the lifespan of existing antibiotics.
Collapse
Affiliation(s)
- Bharat Gadakh
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | |
Collapse
|
97
|
Koh CY, Kim JE, Shibata S, Ranade RM, Yu M, Liu J, Gillespie JR, Buckner FS, Verlinde CL, Fan E, Hol WG. Distinct states of methionyl-tRNA synthetase indicate inhibitor binding by conformational selection. Structure 2012; 20:1681-91. [PMID: 22902861 PMCID: PMC3472110 DOI: 10.1016/j.str.2012.07.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 02/07/2023]
Abstract
To guide development of new drugs targeting methionyl-tRNA synthetase (MetRS) for treatment of human African trypanosomiasis, crystal structure determinations of Trypanosoma brucei MetRS in complex with its substrate methionine and its intermediate product methionyl-adenylate were followed by those of the enzyme in complex with high-affinity aminoquinolone inhibitors via soaking experiments. Drastic changes in conformation of one of the two enzymes in the asymmetric unit allowed these inhibitors to occupy an enlarged methionine pocket and a new so-called auxiliary pocket. Interestingly, a small low-affinity compound caused the same conformational changes, removed the methionine without occupying the methionine pocket, and occupied the previously not existing auxiliary pocket. Analysis of these structures indicates that the binding of the inhibitors is the result of conformational selection, not induced fit.
Collapse
Affiliation(s)
- Cho Yeow Koh
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Jessica E. Kim
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Sayaka Shibata
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA,Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Ranae M. Ranade
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Mingyan Yu
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA,Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, P.R. China
| | - Jiyun Liu
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - J. Robert Gillespie
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Frederick S. Buckner
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Wim G.J. Hol
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA,Correspondence to:
| |
Collapse
|
98
|
Vondenhoff GH, Gadakh B, Severinov K, Van Aerschot A. Microcin C and Albomycin Analogues with Aryl-tetrazole Substituents as Nucleobase Isosters Are Selective Inhibitors of Bacterial Aminoacyl tRNA Synthetases but Lack Efficient Uptake. Chembiochem 2012; 13:1959-69. [DOI: 10.1002/cbic.201200174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Indexed: 11/09/2022]
|
99
|
Redwan IN, Ingemyr HJ, Ljungdahl T, Lawson CP, Grøtli M. Solid-Phase Synthesis of 5′-O-[N-(Acyl)sulfamoyl]adenosine Derivatives. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
100
|
Agarwal V, Nair SK. Aminoacyl tRNA synthetases as targets for antibiotic development. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20032e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|