51
|
Alves AD, Cavaco JS, Guerreiro F, Lourenço JP, Rosa da Costa AM, Grenha A. Inhalable Antitubercular Therapy Mediated by Locust Bean Gum Microparticles. Molecules 2016; 21:molecules21060702. [PMID: 27240337 PMCID: PMC6273308 DOI: 10.3390/molecules21060702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis remains a major global health problem and alternative therapeutic approaches are needed. Considering the high prevalence of lung tuberculosis (80% of cases), the pulmonary delivery of antitubercular drugs in a carrier system capable of reaching the alveoli, being recognised and phagocytosed by alveolar macrophages (mycobacterium hosts), would be a significant improvement to current oral drug regimens. Locust bean gum (LBG) is a polysaccharide composed of galactose and mannose residues, which may favour specific recognition by macrophages and potentiate phagocytosis. LBG microparticles produced by spray-drying are reported herein for the first time, incorporating either isoniazid or rifabutin, first-line antitubercular drugs (association efficiencies >82%). Microparticles have adequate theoretical properties for deep lung delivery (aerodynamic diameters between 1.15 and 1.67 μm). The cytotoxic evaluation in lung epithelial cells (A549 cells) and macrophages (THP-1 cells) revealed a toxic effect from rifabutin-loaded microparticles at the highest concentrations, but we may consider that these were very high comparing with in vivo conditions. LBG microparticles further evidenced strong ability to be captured by macrophages (percentage of phagocytosis >94%). Overall, the obtained data indicated the potential of the proposed system for tuberculosis therapy.
Collapse
Affiliation(s)
- Ana D Alves
- Center for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
| | - Joana S Cavaco
- Center for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
| | - Filipa Guerreiro
- Center for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
- Centre for Marine Sciences (CCMar), University of Algarve, 8005-139 Faro, Portugal.
| | - João P Lourenço
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
- Algarve Chemistry Research Center (CIQA) and Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
| | - Ana M Rosa da Costa
- Algarve Chemistry Research Center (CIQA) and Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
| | - Ana Grenha
- Center for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal.
- Centre for Marine Sciences (CCMar), University of Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
52
|
Chen L, Okuda T, Lu XY, Chan HK. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev 2016; 100:102-15. [PMID: 26780404 DOI: 10.1016/j.addr.2016.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/23/2015] [Accepted: 01/02/2016] [Indexed: 11/25/2022]
Abstract
For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles.
Collapse
|
53
|
Parumasivam T, Chan JGY, Pang A, Quan DH, Triccas JA, Britton WJ, Chan HK. In Vitro Evaluation of Inhalable Verapamil-Rifapentine Particles for Tuberculosis Therapy. Mol Pharm 2016; 13:979-89. [PMID: 26808409 DOI: 10.1021/acs.molpharmaceut.5b00833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies have demonstrated that efflux pumps of Mycobacterium tuberculosis (M. tb) provide a crucial mechanism in the development of drug resistant to antimycobacterial drugs. Drugs that inhibit these efflux pumps, such as verapamil, have shown the potential in enhancing the treatment success. We therefore hypothesized that the combined inhaled administration of verapamil and a first-line rifamycin antibiotic will further improve the treatment efficacy. An inhalable dry powder consisting of amorphous verapamil and crystalline rifapentine with l-leucine as an excipient was produced by spray drying. The in vitro aerosol characteristic of the powder, its microbiological activity and stability were assessed. When the powder was dispersed by an Osmohaler, the total fine particle fraction (FPFtotal, wt % of particles in aerosol <5 μm) of verapamil and rifapentine was 77.4 ± 1.1% and 71.5 ± 2.0%, respectively. The combination drug formulation showed a minimum inhibitory concentration (MIC90) similar to that of rifapentine alone when tested against both M. tb H37Ra and M. tb H37Rv strains. Importantly, the combination resulted in increased killing of M. tb H37Ra within the infected macrophage cells compared to either verapamil or rifapentine alone. In assessing cellular toxicity, the combination exhibited an acceptable half maximal inhibitory concentration (IC50) values (62.5 μg/mL) on both human monocytic (THP-1) and lung alveolar basal epithelial (A549) cell lines. Finally, the powder was stable after 3 months storage in 0% relative humidity at 20 ± 3 °C.
Collapse
Affiliation(s)
- T Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - J G Y Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney , Sydney, New South Wales 2006, Australia.,JHL Biotech, Incorporated , Hsinchu 300, Taiwan
| | - A Pang
- Tuberculosis Research Program, Centenary Institute, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - D H Quan
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - J A Triccas
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - W J Britton
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney , Sydney, New South Wales 2006, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - H K Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
54
|
Wang W, Zhou QT, Sun SP, Denman JA, Gengenbach TR, Barraud N, Rice SA, Li J, Yang M, Chan HK. Effects of Surface Composition on the Aerosolisation and Dissolution of Inhaled Antibiotic Combination Powders Consisting of Colistin and Rifampicin. AAPS JOURNAL 2015; 18:372-84. [PMID: 26603890 DOI: 10.1208/s12248-015-9848-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/15/2015] [Indexed: 11/30/2022]
Abstract
Colistin is often the only effective antibiotic against the respiratory infections caused by multidrug-resistant Gram-negative bacteria. However, colistin-resistant multidrug-resistant isolates have been increasingly reported and combination therapy is preferred to combat resistance. In this study, five combination formulations containing colistin (COL) and rifampicin (RIF) were prepared by spray drying. The lowest minimum inhibitory concentration (MIC) value against Pseudomonas aeruginosa PAO1 was measured for the formulation of COL/RIF = 4:1 with relatively high emitted doses (over 80%) and satisfactory fine particle fractions (over 60%). Data from X-ray photoelectron spectroscopy (XPS) and nano-time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed the surfaces of particles were mainly covered by rifampicin even for the formulation with a mass ratio of COL/RIF = 4:1. Because colistin is hygroscopic and rifampicin is hydrophobic, moisture absorption of combination formulations was significantly lower than the pure colistin formulation in the dynamic vapour sorption results. To investigate the dissolution characteristics, four dissolution test methods (diffusion Franz cell, modified Franz cell, flow-through and beaker methods) were employed and compared. The modified Franz cell method was selected to test the dissolution behaviour of aerosolised powder formulations to eliminate the effect of membrane on dissolution. The results showed that surface enrichment of hydrophobic rifampicin neither affected aerosolisation nor retarded dissolution rate of colistin in the combination formulations. For the first time, advanced surface characterisation techniques of XPS and ToF-SIMS have shown their capability to understand the effect of surface composition on the aerosolisation and dissolution of combination powders.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.,Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907-2091, USA
| | - Si-Ping Sun
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - John A Denman
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | | | - Nicolas Barraud
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.,Department of Microbiology, Genetics of Biofilms Unit, Institut Pasteur, Paris, France
| | - Scott A Rice
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.,Singapore Centre for Environmental Life Sciences Engineering, and the School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Mingshi Yang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
55
|
Inhaled drug treatment for tuberculosis: Past progress and future prospects. J Control Release 2015; 240:127-134. [PMID: 26596254 DOI: 10.1016/j.jconrel.2015.11.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023]
Abstract
Since the 1990s the rising incidence of multiple drug resistant TB, particularly in the context of human immunodeficiency virus co-infected patients, has threatened global TB control. At that time funding agencies began to support formal investigation of aerosol therapy which until then had been the subject of case reports of individual investigators. Over the last decade, proponents of aerosol therapy have increased in number within the TB research community as the incidence of multiple and extremely drug resistant TB has increased dramatically around the world. Aerosol therapy offers the potential to deliver drug at target concentrations directly into the lungs, use the alveolar-capillary interface to achieve systemic levels, while reducing the risk of systemic toxicity seen with parentally administered doses. In addition, there are insufficient new drugs in the pipeline to anticipate the appearance of a new regimen in time to assure future control of drug resistance. Consequently, alternative strategies are critical to achieving global TB control, and inhaled therapies should be considered as one such strategy.
Collapse
|
56
|
Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci 2015; 223:40-54. [PMID: 26043877 DOI: 10.1016/j.cis.2015.05.003] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/11/2015] [Accepted: 05/17/2015] [Indexed: 01/09/2023]
Abstract
Spray-drying is a rapid, continuous, cost-effective, reproducible and scalable process for the production of dry powders from a fluid material by atomization through an atomizer into a hot drying gas medium, usually air. Often spray-drying is considered only a dehydration process, though it also can be used for the encapsulation of hydrophilic and hydrophobic active compounds within different carriers without substantial thermal degradation, even of heat-sensitive substances due to fast drying (seconds or milliseconds) and relatively short exposure time to heat. The solid particles obtained present relatively narrow size distribution at the submicron-to-micron scale. Generally, the yield% of spray-drying at laboratory scale with conventional spray-dryers is not optimal (20-70%) due to the loss of product in the walls of the drying chamber and the low capacity of the cyclone to separate fine particles (<2 μm). Aiming to overcome this crucial drawback in early development stages, new devices that enable the production of submicron particles with high yield, even for small sample amounts, have been introduced into the market. This review describes the most outstanding advantages and challenges of the spray-drying method for the production of pure drug particles and drug-loaded polymeric particles and discusses the potential of this technique and the more advanced equipment to pave the way toward reproducible and scalable processes that are critical to the bench-to-bedside translation of innovative pharmaceutical products.
Collapse
|
57
|
Feng TS, Tian HY, Xu CN, Lin L, Lam MHW, Liang HJ, Chen XS. Doxorubicin-loaded PLGA microparticles with internal pores for long-acting release in pulmonary tumor inhalation treatment. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1642-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
58
|
Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev 2015; 85:83-99. [PMID: 25451137 DOI: 10.1016/j.addr.2014.10.022] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 11/16/2022]
Abstract
Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.
Collapse
Affiliation(s)
- Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sharon Shui Yee Leung
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zhi Hui Loh
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
59
|
Pham DD, Fattal E, Tsapis N. Pulmonary drug delivery systems for tuberculosis treatment. Int J Pharm 2014; 478:517-29. [PMID: 25499020 DOI: 10.1016/j.ijpharm.2014.12.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023]
Abstract
Tuberculosis (TB) remains a major global health problem as it is the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). Conventional treatments fail either because of poor patient compliance to the drug regimen or due to the emergence of multidrug-resistant tuberculosis. The aim of this review is to give an update on the information available on tuberculosis, its pathogenesis and current antitubercular chemotherapies. Direct lung delivery of anti-TB drugs using pulmonary delivery systems is then reviewed since it appears as an interesting strategy to improve first and second line drugs. A particular focus is place on research performed on inhalable dry powder formulations of antitubercular drugs to target alveolar macrophages where the bacteria develop. Numerous studies show that anti-TB drugs can be incorporated into liposomes, microparticles or nanoparticles which can be delivered as dry powders to the deep lungs for instantaneous, targeted and/or controlled release. Treatments of infected animals show a significant reduction of the number of viable bacteria as well as a decrease in tissue damage. These new formulations appear as interesting alternatives to deliver directly drugs to the lungs and favor efficient TB treatment.
Collapse
Affiliation(s)
- Dinh-Duy Pham
- Univ Paris-Sud Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Châtenay-Malabry, France; University of Medicine and Pharmacy, Faculty of Pharmacy, Pharmaceutics Department, 41-43 Dinh Tien Hoang, District 1, Ho Chi Minh City, Viet Nam; Ton Duc Thang University, Faculty of Applied Science, Division of Pharmacotechnology and Biopharmacy, Ho Chi Minh City, Viet Nam.
| | - Elias Fattal
- Univ Paris-Sud Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Châtenay-Malabry, France
| | - Nicolas Tsapis
- Univ Paris-Sud Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Châtenay-Malabry, France.
| |
Collapse
|
60
|
Kaewjan K, Srichana T. Nano spray-dried pyrazinamide-l-leucine dry powders, physical properties and feasibility used as dry powder aerosols. Pharm Dev Technol 2014; 21:68-75. [DOI: 10.3109/10837450.2014.971373] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
61
|
Mortensen NP, Durham P, Hickey AJ. The role of particle physico-chemical properties in pulmonary drug delivery for tuberculosis therapy. J Microencapsul 2014; 31:785-95. [DOI: 10.3109/02652048.2014.932029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
62
|
Chan JGY, Wong J, Zhou QT, Leung SSY, Chan HK. Advances in device and formulation technologies for pulmonary drug delivery. AAPS PharmSciTech 2014; 15:882-97. [PMID: 24728868 DOI: 10.1208/s12249-014-0114-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 12/31/2022] Open
Abstract
Inhaled pharmaceuticals are formulated and delivered differently according to the therapeutic indication. However, specific device-formulation coupling is often fickle, and new medications or indications also demand new strategies. The discontinuation of chlorofluorocarbon propellants has seen replacement of older metered dose inhalers with dry powder inhaler formulations. High-dose dry powder inhalers are increasingly seen as an alternative dosage form for nebulised medications. In other cases, new medications have completely bypassed conventional inhalers and been formulated for use with unique inhalers such as the Staccato® device. Among these different devices, integration of software and electronic assistance has become a shared trend. This review covers recent device and formulation advances that are forming the current landscape of inhaled therapeutics.
Collapse
|
63
|
Zhou Q(T, Tang P, Leung SSY, Chan JGY, Chan HK. Emerging inhalation aerosol devices and strategies: where are we headed? Adv Drug Deliv Rev 2014; 75:3-17. [PMID: 24732364 DOI: 10.1016/j.addr.2014.03.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Novel inhaled therapeutics including antibiotics, vaccines and anti-hypertensives, have led to innovations in designing suitable delivery systems. These emerging design technologies are in urgent demand to ensure high aerosolisation performance, consistent efficacy and satisfactory patient adherence. Recent vibrating-mesh and software technologies have resulted in nebulisers that have remarkably accurate dosing and portability. Alternatively, dry powder inhalers (DPIs) have become highly favourable for delivering high-dose and single-dose drugs with the aid of advanced particle engineering. In contrast, innovations are needed to overcome the technical constrains in drug-propellant incompatibility and delivering high-dose drugs with pressurised metered dose inhalers (pMDIs). This review discusses recent and emerging trends in pulmonary drug delivery systems.
Collapse
|
64
|
Buttini F, Miozzi M, Balducci AG, Royall PG, Brambilla G, Colombo P, Bettini R, Forbes B. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers. Int J Pharm 2014; 465:42-51. [PMID: 24491530 DOI: 10.1016/j.ijpharm.2014.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/29/2022]
Abstract
Solution composition alters the dynamics of beclomethasone diproprionate (BDP) particle formation from droplets emitted by pressurised metered dose inhalers (pMDIs). The hypothesis that differences in inhaler solutions result in different solid particle physical chemistry was tested using a suite of complementary calorimetric techniques. The atomisation of BDP-ethanol solutions from commercial HFA-pMDI produced aerodynamically-equivalent solid particle aerosols. However, differences in particle physico-chemistry (morphology and solvate/clathrate formation) were detected by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and supported by hot stage microscopy (HSM). Increasing the ethanol content of the formulation from 8 to 12% (w/w), which retards the evaporation of propellant and slows the increase in droplet surface viscosity, enhanced the likelihood of particles drying with a smooth surface. The dissolution rate of BDP from the 12% (w/w) ethanol formulation-derived particles (63% dissolved over 120 min) was reduced compared to the 8% (w/w) ethanol formulation-derived particles (86% dissolved over 120 min). The addition of 0.01% (w/w) formoterol fumarate or 1.3% (w/w) glycerol to the inhaler solution modified the particles and reduced the BDP dissolution rate further to 34% and 16% dissolved in 120 min, respectively. These data provide evidence that therapeutic aerosols from apparently similar inhaler products, including those with similar aerodynamic performance, may behave non-equivalently after deposition in the lungs.
Collapse
Affiliation(s)
- Francesca Buttini
- Department of Pharmacy, University of Parma, Viale delle Scienze 27/a, 43124 Parma, Italy.
| | - Michele Miozzi
- Department of Pharmacy, University of Parma, Viale delle Scienze 27/a, 43124 Parma, Italy
| | - Anna Giulia Balducci
- Interdepartmental Center, Biopharmanet-TEC, University of Parma, Viale delle Scienze 27/a, 43124 Parma, Italy
| | - Paul G Royall
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK
| | | | - Paolo Colombo
- Department of Pharmacy, University of Parma, Viale delle Scienze 27/a, 43124 Parma, Italy
| | - Ruggero Bettini
- Department of Pharmacy, University of Parma, Viale delle Scienze 27/a, 43124 Parma, Italy
| | - Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK
| |
Collapse
|
65
|
Chan JGY, Tyne AS, Pang A, Chan HK, Young PM, Britton WJ, Duke CC, Traini D. A Rifapentine-Containing Inhaled Triple Antibiotic Formulation for Rapid Treatment of Tubercular Infection. Pharm Res 2013; 31:1239-53. [DOI: 10.1007/s11095-013-1245-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
|
66
|
Parikh R, Patel L, Dalwadi S. Microparticles of rifampicin: comparison of pulmonary route with oral route for drug uptake by alveolar macrophages, phagocytosis activity and toxicity study in albino rats. Drug Deliv 2013; 21:406-11. [DOI: 10.3109/10717544.2013.851302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
67
|
Zhou QT, Gengenbach T, Denman JA, Yu HH, Li J, Chan HK. Synergistic antibiotic combination powders of colistin and rifampicin provide high aerosolization efficiency and moisture protection. AAPS JOURNAL 2013; 16:37-47. [PMID: 24129586 DOI: 10.1208/s12248-013-9537-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/17/2013] [Indexed: 11/30/2022]
Abstract
For many respiratory infections caused by multidrug-resistant Gram-negative bacteria, colistin is the only effective antibiotic despite its nephrotoxicity. A novel inhaled combination formulation of colistin with a synergistic antimicrobial component of rifampicin was prepared via co-spray drying, aiming to deliver the drug directly to the respiratory tract and minimize drug resistance and adverse effects. Synergistic antibacterial activity against Acinetobacter baumannii was demonstrated for the combination formulation with high emitted doses (96%) and fine particle fraction total (FPFtotal; 92%). Storage of the spray-dried colistin alone formulation in the elevated relative humidity (RH) of 75% resulted in a substantial deterioration in the aerosolization performance because the amorphous colistin powders absorbed significant amount of water up to 30% by weight. In contrast, the FPFtotal values of the combination formulation stored at various RH were unchanged, which was similar to the aerosolization behavior of the spray-dried rifampicin-alone formulation. Advanced surface chemistry measurements by XPS and ToF-SIMS demonstrated a dominance of rifampicin on the combination particle surfaces, which contributed to the moisture protection at the elevated RH. This study shows a novel inhalable powder formulation of antibiotic combination with the combined beneficial properties of synergistic antibacterial activity, high aerosolization efficiency, and moisture protection.
Collapse
Affiliation(s)
- Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
68
|
Zarogoulidis P, Kioumis I, Porpodis K, Spyratos D, Tsakiridis K, Huang H, Li Q, Turner JF, Browning R, Hohenforst-Schmidt W, Zarogoulidis K. Clinical experimentation with aerosol antibiotics: current and future methods of administration. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1115-34. [PMID: 24115836 PMCID: PMC3793595 DOI: 10.2147/dddt.s51303] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Currently almost all antibiotics are administered by the intravenous route. Since several systems and situations require more efficient methods of administration, investigation and experimentation in drug design has produced local treatment modalities. Administration of antibiotics in aerosol form is one of the treatment methods of increasing interest. As the field of drug nanotechnology grows, new molecules have been produced and combined with aerosol production systems. In the current review, we discuss the efficiency of aerosol antibiotic studies along with aerosol production systems. The different parts of the aerosol antibiotic methodology are presented. Additionally, information regarding the drug molecules used is presented and future applications of this method are discussed.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Zhou Q(T, Morton DA, Yu HH, Jacob J, Wang J, Li J, Chan HK. Colistin Powders with High Aerosolisation Efficiency for Respiratory Infection: Preparation and In Vitro Evaluation. J Pharm Sci 2013; 102:3736-47. [DOI: 10.1002/jps.23685] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/01/2013] [Accepted: 07/10/2013] [Indexed: 11/12/2022]
|
70
|
Formation and characterization of chitosan-polylacticacid-polyethylene glycol-gelatin nanoparticles: a novel biosystem for controlled drug delivery. Carbohydr Polym 2013; 98:951-8. [PMID: 23987433 DOI: 10.1016/j.carbpol.2013.05.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 02/08/2023]
Abstract
Chitosan (CS)-polylacticacid (PLA)-polyethylene glycol (PEG)-gelatin (G) nanoparticles, a novel drug vehicle for the controlled release of an antitubercluosis drug, rifampicin (RIF) was developed and its chemical and biochemical activities were studied by various standard methods. The designed carriers CS, PEG and G nanoparticles were prepared by emulsion solvent evaporation technique, and then used for entrapping RIF. Linking was confirmed by FTIR spectroscopy. The surface morphology of the nanoparticles was studied using scanning electron microscope and polarizing microscope. The influence of process variables, on particle size, zeta potential and matrix entrapment of RIF was studied. The encapsulation and loading capacity were evaluated, and an in vitro release of RIF was assessed using the dialysis method. The effect of nanoencapsulation of RIF on the antibacterial activity of RIF against Mycobacterium strains was evaluated. The preliminary results clearly suggested that the cross linked CS-PLA-PEG-G matrix may be a potential polymeric carrier for controlled delivery of RIF.
Collapse
|