51
|
Demirel HH, Zemheri-Navruz F, Kucukkurt İ, Arslan-Acaroz D, Tureyen A, Ince S. Synergistic toxicity of 2,4-dichlorophenoxyacetic acid and arsenic alters biomarkers in rats. Toxicol Res (Camb) 2023; 12:574-583. [PMID: 37663805 PMCID: PMC10470338 DOI: 10.1093/toxres/tfad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 09/05/2023] Open
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) and arsenic cause severe and extensive biological toxicity in organisms. However, their interactions and toxic mechanisms in co-exposure remain to be fully elucidated. In this study, 28 four-week-old female rats were divided into four groups and exposed to 100 mg/L arsenic or/and 600 mg/L 2,4-D through drinking water for a period of 28 days. As a result, it was revealed that biochemical indicators (ALT, AST, ALP, blood urea nitrogen, and creatinine) were increased and decreased hormonal parameters (FSH, LH, PG, and E2) in arsenic and 2,4-D and arsenic combination-treated groups. Moreover, increased lipid peroxidation (malondialdehyde level) and decreased antioxidant status (superoxide dismutase and catalase activities) were found in the co-exposure groups compared with the individual-exposure groups. Meanwhile, severe DNA damage was observed in co-exposure groups. Additionally, the levels of apoptotic (Bax, Caspase-3, Caspase-8, Caspase-9, p53, and PARP) and inflammation (NFκB, Cox-2, TNF-α, and TGFβI) indexes in the co-exposure groups were markedly increased, whereas the levels of anti-apoptosis index (Bcl-2) were decreased. It was also observed that co-exposure with 2,4-D and arsenic caused more histopathological changes in tissues. Generally, these results show that co-exposure to 2,4-D and arsenic can seriously cause oxidative stress, DNA damage, apoptosis and inflammation while having toxicological risk for organisms.
Collapse
Affiliation(s)
| | - Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Bartın University, Faculty of Science, Bartın 74110, Turkey
| | - İsmail Kucukkurt
- Department of Biochemistry, Afyon Kocatepe University, Faculty of Veterinary Medicine, Afyonkarahisar 03200, Turkey
| | - Damla Arslan-Acaroz
- Department of Biochemistry, Afyon Kocatepe University, Faculty of Veterinary Medicine, Afyonkarahisar 03200, Turkey
| | - Ali Tureyen
- Department of Gastroenterology, Ministry of Health Eskisehir City Hospital, Eskisehir 26080, Turkey
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Afyon Kocatepe University, Faculty of Veterinary Medicine, Afyonkarahisar 03200, Turkey
| |
Collapse
|
52
|
Hiep H, Tuan Anh P, Dao VD, Viet Quang D. Greener Method for the Application of TiO 2 Nanoparticles to Remove Herbicide in Water. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:3806240. [PMID: 37469972 PMCID: PMC10353906 DOI: 10.1155/2023/3806240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
TiO2 nanoparticles have emerged as a great photocatalyst to degrade organic contaminants in water; however, the nanoparticles dispersed in water could be difficult to be recovered and potentially become contaminant. Herbicide like 2,4-dichlorophenoxyacetic acid (2,4-D) used in agriculture usually ends up with a large fraction remaining in water and sediment, which may cause potential risk to human health and the ecosystem. This study proposes a greener method to utilize TiO2 as photocatalyst to remove 2,4-D from water. Accordingly, TiO2 nanoparticles (10-45 nm) were synthesized and grafted on lightweight fired clay to generate a TiO2-based floating photocatalyst. Experimental testing revealed that 60.2% of 2,4-D (0.1 mM) can be decomposed in 250 min under UV light with TiO2-grafted lightweight fired clay floating on water. Degradation fits well into the pseudo-first-order kinetic model. The floating photocatalysts can degrade approximately 50% 2,4-D in 250 min under sunlight and the degradation efficiency is stable for cycles. The results revealed that the fabrication of floating photocatalyst could be a promising and greener way to remove herbicide contaminants in water using TiO2.
Collapse
Affiliation(s)
- Hoang Hiep
- Academy for Green Growth, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - Pham Tuan Anh
- Falcuty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Van-Duong Dao
- Falcuty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Dang Viet Quang
- Falcuty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
53
|
Serbent MP, Gonçalves Timm T, Vieira Helm C, Benathar Ballod Tavares L. Growth, laccase activity and role in 2,4-D degradation of Lentinus crinitus (L.) Fr. in a liquid medium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
54
|
Souza MCO, Cruz JC, Cesila CA, Gonzalez N, Rocha BA, Adeyemi JA, Nadal M, Domingo JL, Barbosa F. Recent trends in pesticides in crops: A critical review of the duality of risks-benefits and the Brazilian legislation issue. ENVIRONMENTAL RESEARCH 2023; 228:115811. [PMID: 37030406 DOI: 10.1016/j.envres.2023.115811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023]
Abstract
Due to the increasing population worldwide, in recent years, an exponential increase in agricultural practices has occurred in order to attend to the growing demand for food. Unfortunately, this increase is not associated with the supply of foodstuffs free of environmental pollutants. In Brazil, agriculture is one of the most important economic pillars, making the country one of the largest consumers of pesticides around the world. The intense use of pesticides, mainly glyphosate, 2,4-D, and atrazine, constitutes an essential factor in the viability of this great agricultural productivity. Sugarcane, corn, soybean, and citrus crops consume around 66% of the total pesticides worldwide, representing 76% of the planted area. Pesticide residues have been frequently detected in food and the environment, becoming a significant concern for human health. Monitoring programs for pesticide use are essential to reduce the potential negative impacts on the environment and improve the overall efficiency and sustainability of their use. However, in Brazil, the approval status of pesticide-active ingredients is very discrepant compared to other agricultural countries. Moreover, the duality of benefits and risks of pesticide application creates an economic and toxicological conflict. In this paper, we have critically reviewed the duality of risks-benefits of the use of pesticides in agriculture and the current Brazilian legislation issues. We have also compared this flawed legislation with other countries with high economic potential. Due to the negative environmental impacts on soil and water by the high levels of pesticides, remediation techniques, sustainable agriculture, and the development of new technologies can be considered some viable alternatives to reduce the levels in these compartments. Besides, this paper includes some recommendations that can be included in the coming years.
Collapse
Affiliation(s)
- Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Jonas Carneiro Cruz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Cibele Aparecida Cesila
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Neus Gonzalez
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Bruno Alves Rocha
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil; Department of Biology, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Marti Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
55
|
Wilms W, Woźniak-Karczewska M, Niemczak M, Parus A, Frankowski R, Wolko Ł, Czarny J, Piotrowska-Cyplik A, Zgoła-Grześkowiak A, Heipieper HJ, Chrzanowski Ł. 2,4-D versus 2,4-D based ionic liquids: Effect of cation on herbicide biodegradation, tfdA genes abundance and microbiome changes during soil bioaugmentation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131209. [PMID: 36940526 DOI: 10.1016/j.jhazmat.2023.131209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 05/03/2023]
Abstract
The commercial formulations of herbicides rely on surfactants which increase the efficiency of active substance. Herbicidal ionic liquids (ILs), in which cationic surfactants are combined with herbicidal anions, allow for additives' reduction and ensure very good herbicide performance with lower doses. We aimed to test the impact of synthetic and natural cations on biological degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). Although primary biodegradation was high, the mineralization in agricultural soil indicated incomplete conversion of ILs to CO2. Even the introduction of naturally-derived cations resulted in an increase in the herbicide's half-lives - from 32 days for [Na][2,4-D] to 120 days for [Chol][2,4-D] and 300 days for the synthetic tetramethylammonium derivative [TMA][2,4-D]. Bioaugmentation with 2,4-D-degrading strains improves the herbicides' degradation, which was reflected by higher abundance of tfdA genes. Microbial community analysis confirmed that hydrophobic cationic surfactants, even those based on natural compounds, played a negative role on microbial biodiversity. Our study provides a valuable indication for further research related to the production of a new generation of environmentally friendly compounds. Moreover, the results shed a new light on the ionic liquids as independent mixtures of ions in the environment, as opposed to treating them as new type of environmental pollutants.
Collapse
Affiliation(s)
- Wiktoria Wilms
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | | | - Michał Niemczak
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | - Anna Parus
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | - Robert Frankowski
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Jakub Czarny
- Institute of Forensic Genetics, Al. Mickiewicza 3/4, 85-071 Bydgoszcz, Poland
| | - Agnieszka Piotrowska-Cyplik
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | | | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Łukasz Chrzanowski
- Department of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland; Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
56
|
Zhang L, Yao G, Mao Z, Song M, Zhao R, Zhang X, Chen C, Zhang H, Liu Y, Wang G, Li F, Wu X. Experimental and computational approaches to characterize a novel amidase that initiates the biodegradation of the herbicide propanil in Bosea sp. P5. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131155. [PMID: 36893600 DOI: 10.1016/j.jhazmat.2023.131155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The herbicide propanil and its major metabolite 3,4-dichloroaniline (3,4-DCA) are difficult to biodegrade and pose great health and environmental risks. However, studies on the sole or synergistic mineralization of propanil by pure cultured strains are limited. A two-strain consortium (Comamonas sp. SWP-3 and Alicycliphilus sp. PH-34), obtained from a swep-mineralizing enrichment culture that can synergistically mineralize propanil, has been previously reported. Here, another propanil degradation strain, Bosea sp. P5, was successfully isolated from the same enrichment culture. A novel amidase, PsaA, responsible for initial propanil degradation, was identified from strain P5. PsaA shared low sequence identity (24.0-39.7 %) with other biochemically characterized amidases. PsaA exhibited optimal activity at 30 °C and pH 7.5 and had kcat and Km values of 5.7 s-1 and 125 μM, respectively. PsaA could convert the herbicide propanil to 3,4-DCA but exhibited no activity toward other herbicide structural analogs. This catalytic specificity was explained by using propanil and swep as substrates and then analyzed by molecular docking, molecular dynamics simulation and thermodynamic calculations, which revealed that Tyr138 is the key residue that affects the substrate spectrum of PsaA. This is the first propanil amidase with a narrow substrate spectrum identified, providing new insights into the catalytic mechanism of amidase in propanil hydrolysis.
Collapse
Affiliation(s)
- Long Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China; Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Gui Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Zhenbo Mao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Man Song
- College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Ruiqi Zhao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xiaochun Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Chun Chen
- Institute of Biomedicine, Jinan University, Guangzhou, 510632, PR China
| | - Huijun Zhang
- Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Yuan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Guangli Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xiaomin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
57
|
Samanth A, Vinayagam R, Murugesan G, Varadavenkatesan T, Selvaraj R, Pugazhendhi A. Enhanced adsorption of 2,4-dichlorophenoxyacetic acid using low-temperature carbonized Peltophorum pterocarpum pods and its statistical physics modeling. CHEMOSPHERE 2023:139143. [PMID: 37285973 DOI: 10.1016/j.chemosphere.2023.139143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
The usage of various herbicides in the agricultural field leads to water pollution which is a big threat to the environment. Herein, the pods of the Peltophorum pterocarpum tree were used as a cheap resource to synthesize activated carbon (AC) by low-temperature carbonization to remove 2,4-dichlorophenoxyacetic acid (2,4-D) - an abundantly used herbicide. The exceptional surface area (1078.34 m2/g), mesoporous structure, and the various functional groups of the prepared AC adsorbed 2,4-D effectively. The maximum adsorption capacity was 255.12 mg/g, significantly higher than the existing AC adsorbents. The adsorption data satisfactorily modelled using Langmuir and pseudo-second-order models. Also, the adsorption mechanism was studied using a statistical physics model which substantiated the multi-molecular interaction of 2,4-D with the AC. The adsorption energy (<20 kJ/mol) and thermodynamic studies (ΔH°: -19.50 kJ/mol) revealed the physisorption and exothermicity. The practical application of the AC was successfully tested in various waterbodies by spiking experiments. Hence, this work confirms that the AC prepared from the pods of P. pterocarpum can be applied as a potential adsorbent to remove herbicides from polluted waterbodies.
Collapse
Affiliation(s)
- Adithya Samanth
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
58
|
Wang Y, Tian YS, Gao JJ, Xu J, Li ZJ, Fu XY, Han HJ, Wang LJ, Zhang WH, Deng YD, Qian C, Zuo ZH, Wang B, Peng RH, Yao QH. Complete biodegradation of the oldest organic herbicide 2,4-Dichlorophenoxyacetic acid by engineering Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131099. [PMID: 36868133 DOI: 10.1016/j.jhazmat.2023.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
After nearly 80 years of extensive application, the oldest organic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has caused many problems of environmental pollution and ecological deterioration. Bioremediation is an ideal method for pollutant treatment. However, difficult screening and preparation of efficient degradation bacteria have largely hindered its application in 2,4-D remediation. We have created a novel engineering Escherichia coli with a reconstructed complete degradation pathway of 2,4-D to solve the problem of screening highly efficient degradation bacteria in this study. The results of fluorescence quantitative PCR demonstrated that all nine genes in the degradation pathway were successfully expressed in the engineered strain. The engineered strains can quickly and completely degrade 0.5 mM 2, 4-D within 6 h. Inspiring, the engineered strains grew with 2,4-D as the sole carbon source. By using the isotope tracing method, the metabolites of 2,4-D were found incorporated into the tricarboxylic acid cycle in the engineering strain. Scanning electron microscopy showed that 2,4-D had less damage on the engineered bacteria than the wild-type strain. Engineered strain can also rapidly and completely remedy 2,4-D pollution in natural water and soil. Assembling the metabolic pathways of pollutants through synthetic biology was an effective method to create pollutant-degrading bacteria for bioremediation.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong-Sheng Tian
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jian-Jie Gao
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing Xu
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhen-Jun Li
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiao-Yan Fu
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hong-Juan Han
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li-Juan Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wen-Hui Zhang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong-Dong Deng
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Cen Qian
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhi-Hao Zuo
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bo Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Ri-He Peng
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Quan-Hong Yao
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
59
|
Li X, Chen C, Xu F, Liang Z, Xu G, Wei F, Yang J, Hu Q, Zou J, Cen Y. Novel dual-emission sulfur quantum dot sensing platform for quantitative monitoring of pesticide 2,4-dichlorophenoxyacetic acid. Talanta 2023; 260:124639. [PMID: 37156208 DOI: 10.1016/j.talanta.2023.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
In this work, a novel environment-friendly dual-emission Rhodamine B modified sulfur quantum dots (RhB-SQDs) sensing platform was established to economically monitor organochlorine pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) through regulating the activity of alkaline phosphatase (ALP). This dual emission RhB-SQDs exhibited excellent fluorescence and high photostability with emission wavelengths of 455 nm and 580 nm. ALP catalyzed the hydrolysis of the substrate p-nitrophenyl phosphate to p-nitrophenol, which quenched RhB-SQDs fluorescence at 455 nm due to the internal filtration effect, but had no effect the fluorescence intensity of RhB-SQDs at 580 nm. When 2,4-D was present, the activity of ALP was specifically inhibited and enzymatic reaction was interrupted, leading to the reduction of p-nitrophenol production, so the fluorescence of RhB-SQDs at 455 nm was restored. It demonstrated a good linear relationship between the concentration of 2,4-D and F455/F580 in the range of 0.050-0.500 μg mL-1, with a detection limit of 17.3 ng mL-1. The dual-emission fluorescent probe was successfully realized in the identification of 2,4-D in natural water samples and vegetables with the advantages of exceptional accuracy, immunity to interference, and selectivity. The platform offers a fresh look at pesticide monitoring and has the potential to prevent pesticide-related health issues.
Collapse
Affiliation(s)
- Xinyang Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Chen Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Zhigang Liang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
60
|
Gallo NC, Lopes LFP, Montagner CC, Espíndola ELG, Moreira RA. Toxicity of fipronil and 2,4-D pesticides in Daphnia similis: a multiple endpoint approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63479-63490. [PMID: 37052836 DOI: 10.1007/s11356-023-26847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
In Brazil, among the pesticides widely applied simultaneously in sugarcane monocultures are the Regent® 800 WG insecticide (active ingredient (a.i.) fipronil) and the DMA® 806 BR herbicide (a.i. 2,4-D). Thus, this study aimed to investigate, through different endpoints, the effects of the fipronil and 2,4-D pesticides, isolated and as mixtures, on the cladoceran Daphnia similis. To do this, acute toxicity tests were carried out with the compounds acting in isolation and in mixture, where the survival of the organisms was evaluated, and chronic toxicity tests with the isolated compounds, where reproduction and maternal and neonatal body length were evaluated. In this study, the physiological endpoints of D. similis were also analyzed, through the analysis of feeding rates (filtration and ingestion) in exposure and post-exposure scenarios, in order to verify the cladoceran food recovery capacity. In addition, D. similis data were compared with other species when exposed to the studied pesticides, using species sensitivity distribution curves. Acute toxicity tests of the fipronil and 2,4-D showed an average EC50-48 h of 66.68 μg a.i./L and 327.07 mg a.i./L, respectively. In both cases, D. similis showed lower sensitivity compared to other species. For the mixture test, the evaluation by the IA model (independent action) and deviation DR (dose ratio dependent) indicated the occurrence of mostly antagonistic effects. The chronic test with fipronil showed a decrease in the fecundity of the organism at a concentration of 16 μg a.i./L, a concentration already found in aquatic environments. For 2,4-D, no significant differences were observed for reproduction at the concentrations tested. Regarding the maternal body length, there were no significant changes when D. similis were exposed to both fipronil and 2,4-D, but these differences were observed in the body length of the neonates only for 2,4-D. There were no significant changes in the feeding rates of the organisms when exposed to both pesticides.
Collapse
Affiliation(s)
- Natália C Gallo
- NEEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís F P Lopes
- NEEA/SHS and PPG-SEA, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Cassiana C Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Evaldo L G Espíndola
- NEEA/SHS and PPG-SEA, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Raquel A Moreira
- NEEA/SHS and PPG-SEA, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| |
Collapse
|
61
|
Daramola IO, Ojemaye MO, Okoh AI, Okoh OO. Occurrence of herbicides in the aquatic environment and their removal using advanced oxidation processes: a critical review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1231-1260. [PMID: 35798909 DOI: 10.1007/s10653-022-01326-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Herbicides are chemicals used globally to kill unwanted plants so as to obtain high agricultural yields and good agricultural products. Herbicides are sometimes transported from the farmlands into water bodies mainly through runoffs. These chemicals are recalcitrant, and their accumulation is hazardous to abiotic and biotic components of the ecosystem. At present, the best alternative technology for elimination of herbicides in water is the usage of advanced oxidation processes (AOPs). The AOPs, which are performed homogeneously or heterogeneously, are capable of breaking down complex pollutants in water into carbon dioxide and mineral compounds. In these processes, ·OH is produced and used for degradation process. It is recommended that the total organic carbon (TOC) produced during degradation reaction be monitored because the ‧OH produced or generated can react to form intermediates before complete mineralisation is achieved. Different kinds of AOPs for degradation of herbicides have their specific advantages as well as limitations. This report shows that AOPs are excellent techniques for degradation of herbicides in aqueous solutions, and the mechanisms showed that herbicides were mineralised. The amount and type of photocatalysts, pH of the medium, surface characteristics of the photocatalysts, doping of the photocatalysts, temperature of the medium, concentration of herbicides, presence of competing ions, intensity and irradiation period, and type of oxidants have great influence on the degradation of herbicides in water. Overall, this report showed that most AOPs could not completely degrade herbicides in water and complete degradation can be achieved by developing novel and robust AOPs that will completely mineralise herbicides in water-this will pave way for water and environmental safety.
Collapse
Affiliation(s)
- Ifeoluwa O Daramola
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- Department of Environmental Health Sciences, College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
62
|
Wang M, Lou J, Chen Y, Yang L, Wang H. Preparation and Properties of Photoresponsive Pendimethalin@Silica-cinnamamide/γ-CD Microspheres for Pesticide Controlled Release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2270-2278. [PMID: 36716299 DOI: 10.1021/acs.jafc.2c07203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photocontrolled pesticide delivery systems have broad prospects for application in agriculture. Here, a novel photoresponsive herbicide delivery system was fabricated by functionalizing silica microsphere surfaces with cinnamamide and encapsulating the silica-cinnamamide with γ-cyclodextrin (γ-CD) to form a double-layered microsphere shell loaded with pendimethalin (pendimethalin@silica-cinnamamide/γ-CD). The microspheres showed remarkable loading capacity for pendimethalin (approximately 30.25% w/w) and displayed excellent photoresponsiveness and controlled release. The cumulative drug release rate exceeded 80% over 72 h under UV or sunlight irradiation. The herbicidal activity of the microspheres against Echinochloa crusgalli (L.) Beauv. was almost the same as that of pendimethalin under UV or sunlight. A bioactivity survey confirmed that the pendimethalin@silica-cinnamamide/γ-CD microspheres exhibited longer duration weed control than commercial pendimethalin. Allium cepa chromosomal aberration assays demonstrated that the microspheres showed lower genotoxicity than pendimethalin. These advantages indicate that pendimethalin@silica-cinnamamide/γ-CD microspheres constitute an environmentally friendly herbicidal formulation.
Collapse
Affiliation(s)
- Meiyi Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, China
| | - Jiayu Lou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, China
| | - Yapeng Chen
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, China
| | - Leiyu Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, China
| |
Collapse
|
63
|
Loken LC, Corsi SR, Alvarez DA, Ankley GT, Baldwin AK, Blackwell BR, De Cicco LA, Nott MA, Oliver SK, Villeneuve DL. Prioritizing Pesticides of Potential Concern and Identifying Potential Mixture Effects in Great Lakes Tributaries Using Passive Samplers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:340-366. [PMID: 36165576 PMCID: PMC10107608 DOI: 10.1002/etc.5491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 09/22/2022] [Indexed: 05/24/2023]
Abstract
To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luke C. Loken
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Steven R. Corsi
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - David A. Alvarez
- US Geological SurveyColumbia Environmental Research CenterColombiaMissouriUSA
| | - Gerald T. Ankley
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | | | - Brett R. Blackwell
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | - Laura A. De Cicco
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Michele A. Nott
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Samantha K. Oliver
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| |
Collapse
|
64
|
Girotto L, Freitas IBF, Yoshii MPC, Goulart BV, Montagner CC, Schiesari LC, Espíndola ELG, Freitas JS. Using mesocosms to evaluate the impacts of pasture intensification and pasture-sugarcane conversion on tadpoles in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21010-21024. [PMID: 36264462 DOI: 10.1007/s11356-022-23691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the effects of environmental contamination caused by pasture intensification and pasture-sugarcane conversion on oxidative stress, biotransformation, esterase enzymes, and development of Scinax fuscovarious and Physalaemus nattereri. Tadpoles were exposed in mesocosms allocated in three treatments: (1) untreated extensive pasture (EP); (2) intensive-pasture conversion (IP) (2,4-D herbicide + fertilizers); and (3) pasture-sugarcane conversion (SC) (fipronil + 2,4-D + fertilizers). After 7 days of exposure, IP reduced catalase (CAT) and increased malondialdehyde (MDA) levels in P. nattereri, while this treatment decreased glucose-6-phosphate dehydrogenase (G6PDH) and CAT activities in S. fuscovarious. SC decreased CAT, G6PDH, and glutathione S-transferase (GST) activities in P. nattereri. In S. fuscovarius, SC reduced G6PDH, acetylcholinesterase (AChE), and carboxylesterase (CbE) activities. MDA was raised in both tadpole species exposed to SC, evidencing oxidative stress. Integrated biomarker responses showed higher scores in both species exposed to SC. Our results warn that management practices currently applied to sugarcane cultivation in Brazil can negatively impact the functional responses of amphibians at natural systems.
Collapse
Affiliation(s)
- Lais Girotto
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Isabele Baima Ferreira Freitas
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, , São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, , São Paulo, Brazil
| | - Luis César Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP, 03828-000, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13, São Carlos, 560-970, Brazil
| | - Juliane Silberschmidt Freitas
- Department of Agricultural and Natural Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, S/N - Universitário, Ituiutaba, MG, 38302-192, Brazil.
| |
Collapse
|
65
|
Beladghame O, Bouchikhi N, Lerari D, Charif IE, Soppera O, Maschke U, Bedjaoui-Alachaher L. Elaboration and characterization of molecularly imprinted polymer films based on acrylate for recognition of 2,4-D herbicide analogue. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
66
|
Pinto TJDS, Moreira RA, Freitas JSS, da Silva LCM, Yoshii MPC, de Palma Lopes LF, Ogura AP, de Mello Gabriel GV, Rosa LMT, Schiesari L, do Carmo JB, Montagner CC, Daam MA, Espindola ELG. Responses of Chironomus sancticaroli to the simulation of environmental contamination by sugarcane management practices: Water and sediment toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159643. [PMID: 36306835 DOI: 10.1016/j.scitotenv.2022.159643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane management practices include the application of pesticides, including the herbicide 2,4-D and the insecticide fipronil. In addition, a by-product from the ethanol industry, called vinasse, is commonly applied to fertilize sugarcane areas. The potential risks of these practices to the edge-of-field aquatic ecosystems were assessed in the present study. This was done by contaminating mesocosms with (single and mixtures of) both pesticides and vinasse and evaluating the effects on the midge Chironomus sancticaroli through in-situ and laboratory bioassays. To this end, outdoor mesocosms were treated with fipronil (F), 2,4-D (D), and vinasse (V) alone and with the mixture of fipronil and 2,4-D (M), as well as with both pesticides and vinasse (MV). C. sancticaroli was deployed in mesocosms before contamination in cages, which were taken out 4- and 8-days-post-contamination. Water and sediment samples were also taken for laboratory bioassays on the first day of contamination, as well as 7-, 14-, 21-, 30-, 45-, and 75-days post-contamination. The responses assessed in subchronic assays (8-day) were survival, growth, head capsule width, development, and mentum deformities. Low survival occurred in the in-situ experiments of all treatments due to the low oxygen levels. In the laboratory tests, effects on survival occurred for F, V, and M over time after exposure to both water and sediment. All organisms died post-exposure to water samples from the MV treatment, even 75-days-post-contamination. Impairments in body length and head capsule width occurred for F, V, and M for water and F, V, M, and MV for sediment samples over time. All treatments increased mentum deformities in exposed larvae for any of the sampling periods. The negative effects observed were more significant in the mixture mesocosms (M and MV), thus indicating increased risks from management practices applying these compounds together or with a short time interval in crops.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Juliane Silber Schmidt Freitas
- Department of Biological Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, s/n - Universitário, 38302-192 Ituiutaba, MG, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Gabriele Verônica de Mello Gabriel
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Luana Maria Tavares Rosa
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Luis Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP 03828-000, Brazil
| | - Janaina Braga do Carmo
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| |
Collapse
|
67
|
Vinayagam R, Ganga S, Murugesan G, Rangasamy G, Bhole R, Goveas LC, Varadavenkatesan T, Dave N, Samanth A, Radhika Devi V, Selvaraj R. 2,4-Dichlorophenoxyacetic acid (2,4-D) adsorptive removal by algal magnetic activated carbon nanocomposite. CHEMOSPHERE 2023; 310:136883. [PMID: 36257398 DOI: 10.1016/j.chemosphere.2022.136883] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In the present study, ferric oxide nanoparticles impregnated with activated carbon from Ulva prolifera biomass (UPAC-Fe2O3) were prepared and employed to remove 2,4-Dichlorophenoxyacetic acid (2,4-D) by adsorption. The UPAC-Fe2O3 nanocomposite was characterized for its structural and functional properties by a variety of techniques. The nanocomposite had a jagged, irregular surface with pores due to uneven scattering of Fe2O3 nanoparticles, whereas elemental analysis portrayed the incidence of carbon, oxygen, and iron. XRD analysis established the crystalline and amorphous planes corresponding to the iron oxide and carbon phase respectively. FT-IR analyzed the functional groups that confirmed the integration of Fe2O3 nanoparticles onto nanocomposite surfaces. VSM and XPS studies uncovered the superparamagnetic nature and presence of carbon and Fe2O3, respectively, in the UPAC-Fe2O3 nanocomposite. While the surface area was 292.51 m2/g, the size and volume of the pores were at 2.61 nm and 0.1906 cm3/g, respectively, indicating the mesoporous nature and suitability of the nanocomposites that could be used as adsorbents. Adsorptive removal of 2,4-D by nanocomposite for variations in process parameters like pH, dosage, agitation speed, adsorption time, and 2,4-D concentration was studied. The adsorption of 2,4-D by UPAC-Fe2O3 nanocomposite was monolayer chemisorption owing to Langmuir isotherm behavior along with a pseudo-second-order kinetic model. The maximum adsorption capacity and second order rate constant values were 60.61 mg/g and 0.0405 g/mg min respectively. Thermodynamic analysis revealed the spontaneous and feasible endothermic adsorption process. These findings confirm the suitability of the synthesized UPAC-Fe2O3 nanocomposite to be used as an adsorbent for toxic herbicide waste streams.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saivedh Ganga
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Ruchi Bhole
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Louella Concepta Goveas
- Nitte (Deemed to Be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka, 574110, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niyam Dave
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adithya Samanth
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - V Radhika Devi
- Department of Science and Humanities, MLR Institute of Technology, Hyderabad, Telangana, 500043, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
68
|
A solar photoFenton process with calcium peroxide from eggshell and ferrioxalate complexes for the degradation of the commercial herbicide 2,4-D in water. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
69
|
Gouesbet G. Deciphering Macromolecular Interactions Involved in Abiotic Stress Signaling: A Review of Bioinformatics Analysis. Methods Mol Biol 2023; 2642:257-294. [PMID: 36944884 DOI: 10.1007/978-1-0716-3044-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Plant functioning and responses to abiotic stresses largely involve regulations at the transcriptomic level via complex interactions of signal molecules, signaling cascades, and regulators. Nevertheless, all the signaling networks involved in responses to abiotic stresses have not yet been fully established. The in-depth analysis of transcriptomes in stressed plants has become a relevant state-of-the-art methodology to study these regulations and signaling pathways that allow plants to cope with or attempt to survive abiotic stresses. The plant science and molecular biology community has developed databases about genes, proteins, protein-protein interactions, protein-DNA interactions and ontologies, which are valuable sources of knowledge for deciphering such regulatory and signaling networks. The use of these data and the development of bioinformatics tools help to make sense of transcriptomic data in specific contexts, such as that of abiotic stress signaling, using functional biological approaches. The aim of this chapter is to present and assess some of the essential online tools and resources that will allow novices in bioinformatics to decipher transcriptomic data in order to characterize the cellular processes and functions involved in abiotic stress responses and signaling. The analysis of case studies further describes how these tools can be used to conceive signaling networks on the basis of transcriptomic data. In these case studies, particular attention was paid to the characterization of abiotic stress responses and signaling related to chemical and xenobiotic stressors.
Collapse
Affiliation(s)
- Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)] - UMR 6553, Rennes, France.
| |
Collapse
|
70
|
Jin H, Guo Y, Zhao J, Bei Y, Wu Z, Shang Q. Oxygen vacancy construction and in situ reduction of metal ions to enhance the photocatalytic performance of Bi5Nb3O15. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
71
|
Magnoli K, Carranza CS, Aluffi ME, Benito N, Magnoli CE, Barberis CL. Survey of organochlorine-tolerant culturable mycota from contaminated soils, and 2,4-D removal ability of Penicillium species in synthetic wastewater. Fungal Biol 2023; 127:891-899. [PMID: 36746561 DOI: 10.1016/j.funbio.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Agrochemical wastewater, which is produced by the extensive use of herbicides, has become a serious environmental pollutant. In this study, culturable mycota were isolated from soils contaminated with herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA), and their ability to tolerate and remove 2,4-D was assessed. The mycota were isolated on solid medium supplemented with 10 mmol L-1 of MCPA or 2,4-D. Tolerance and removal assays were performed in synthetic wastewater, and removal was quantified by HPLC-UV and MS/MS. Fusarium spp., Aspergillus spp., and Penicillium spp. were the most frequently isolated genera. Six Penicillium strains were able to tolerate up to 25 mmol L-1 of 2,4-D. Within this group, two P. crustosum strains (RCP4 and RCP13) degraded more than 50% of the 2,4-D in the medium during the first 7 days of incubation. Removal percentages reached 54% for RCP4 and 75% for RCP13 after 14 days. These two strains, therefore, could potentially be considered for the design of bioaugmentation strategies aimed at reducing contamination by 2,4-D in wastewater.
Collapse
Affiliation(s)
- Karen Magnoli
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional Nº 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina; Fellowship of CONICET, Argentina
| | - Cecilia Soledad Carranza
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional Nº 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Melisa Eglé Aluffi
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional Nº 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina; Fellowship of CONICET, Argentina
| | - Nicolás Benito
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional Nº 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina; Fellowship of CONICET, Argentina
| | - Carina Elizabeth Magnoli
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional Nº 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina; Member of the Research Career of CONICET, Argentina
| | - Carla Lorena Barberis
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional Nº 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina; Member of the Research Career of CONICET, Argentina.
| |
Collapse
|
72
|
Ince S, Demirel HH, Zemheri-Navruz F, Arslan-Acaroz D, Kucukkurt I, Acaroz U, Tureyen A, Demirkapi EN. Synergistic toxicity of ethanol and 2,4-dichlorophenoxyacetic acid enhances oxidant status, DNA damage, inflammation, and apoptosis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10710-10723. [PMID: 36085217 DOI: 10.1007/s11356-022-22964-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Clarifying the interactions between substances as a result of exposure to multiple xenobiotics and determining the impacts on health are important from the toxicological point of view. Therefore, the aim of the study was to investigate the synergistic toxic effects of ethanol and 2,4-dichlorophenoxyacetic acid (2,4-D) in male albino rats. A total number of 28 Wistar male rats were divided into 4 groups (7/each), and 2,4-D (5 mg/kg) and ethanol (3 g/kg) were administered orally to rats for 60 days, either alone or in combination. Co-administration of ethanol and 2,4-D increased liver functional enzyme levels and lipid peroxidation in blood and tissues while decreased glutathione and antioxidant enzyme activities when compared to individual applications. Furthermore, co-administration of ethanol and 2,4-D caused DNA damage as well as the increase in apoptotic and proinflammatory cytokine gene expressions. Furthermore, histopathological examination of the tissues especially liver and kidney revealed that these two substances induced more serious damage. In conclusion, co-administration of ethanol and 2,4-D resulted in strong toxic effects on tissues (especially liver) with a synergistic interaction and give rise to serious toxicological drawbacks.
Collapse
Affiliation(s)
- Sinan Ince
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyon Kocatepe University, Afyonkarahisar, Turkey.
| | | | - Fahriye Zemheri-Navruz
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, Bartın, Turkey
| | - Damla Arslan-Acaroz
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ismail Kucukkurt
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ulas Acaroz
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ali Tureyen
- Department of Gastroenterology, Ministry of Health Eskisehir City Hospital, Eskisehir, Turkey
| | - Ezgi Nur Demirkapi
- Faculty of Veterinary Medicine, Department of Physiology, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
73
|
Cai Y, Luo YH, Long X, Roldan MA, Yang S, Zhou C, Zhou D, Rittmann BE. Reductive Dehalogenation of Herbicides Catalyzed by Pd 0NPs in a H 2-Based Membrane Catalyst-Film Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:18030-18040. [PMID: 36383359 DOI: 10.1021/acs.est.2c07317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
More food production required to feed humans will require intensive use of herbicides to protect against weeds. The widespread application and persistence of herbicides pose environmental risks for nontarget species. Elemental-palladium nanoparticles (Pd0NPs) are known to catalyze reductive dehalogenation of halogenated organic pollutants. In this study, the reductive conversion of 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in a H2-based membrane catalyst-film reactor (H2-MCfR), in which Pd0NPs were in situ-synthesized as the catalyst film and used to activate H2 on the surface of H2-delivery membranes. Batch kinetic experiments showed that 99% of 2,4-D was removed and converted to phenoxyacetic acid (POA) within 90 min with a Pd0 surface loading of 20 mg Pd/m2, achieving a catalyst specific activity of 6.6 ± 0.5 L/g-Pd-min. Continuous operation of the H2-MCfR loaded with 20 mg Pd/m2 sustained >99% removal of 50 μM 2,4-D for 20 days. A higher Pd0 surface loading, 1030 mg Pd/m2, also enabled hydrosaturation and hydrolysis of POA to cyclohexanone and glycolic acid. Density functional theory identified the reaction mechanisms and pathways, which involved reductive hydrodechlorination, hydrosaturation, and hydrolysis. Molecular electrostatic potential calculations and Fukui indices suggested that reductive dehalogenation could increase the bioavailability of herbicides. Furthermore, three other halogenated herbicides─atrazine, dicamba, and bromoxynil─were reductively dehalogenated in the H2-MCfR. This study documents a promising method for the removal and detoxification of halogenated herbicides in aqueous environments.
Collapse
Affiliation(s)
- Yuhang Cai
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130117, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona85287-3005, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona85287-3005, United States
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe,Arizona85287-3005, United States
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe,Arizona85287-3005, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun130117, China
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| |
Collapse
|
74
|
Jia P, Wang J, Liang H, Wu ZH, Li F, Li W. Replacement control of Mikania micrantha in orchards and its eco-physiological mechanism. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1095946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mikania micrantha is one of the most notorious invasive weeds in south China, especially in orchard habitats. Based on the principle of niche competition, screening plants with strong competitiveness and managing vacant niches through natural alternative methods (replacement control) were expected to achieve sustainable ecological management of invasive species. To this end, two legumes, Desmodium heterocarpon and Senna tora, were selected to conduct field competition experiments with M. micrantha to investigate the interspecific competitiveness of these two legumes and M. micrantha from the aspects of adaptability to low light and response to drought stress. We found that the relative interaction indexes of D. heterocarpon and S. tora to M. micrantha were both negative and the competitive inhibition of S. tora on M. micrantha was higher than that of D. heterocarpon. Compared with M. micrantha, D. heterocarpon and S. tora have higher photosynthetic efficiency and lower dark respiration efficiency under low-light conditions, thus maintaining positive plant carbon balance capacity in the low-light understory and becoming more shade-tolerant. Besides, the water stress experiment found that M. micrantha had the lowest tolerance to drought stress, followed by S. tora, and D. heterocarpon was the most drought tolerant. These results showed that D. heterocarpon and S. tora can effectively prevent and control M. micrantha, mainly due to their higher competitiveness, shade tolerance, and drought tolerance. The control effect of D. heterocarpon is better than that of S. tora which is an alien species. Therefore, we believed that the replacement control of the invasive weed M. micrantha by D. heterocarpon is expected to be a sustainable ecological management strategy for M. micrantha biocontrol in the dryland orchard habitat. These findings provide a theoretical basis for the selection of species for alternative control in the future and provide new ideas for solving the problem of repeated regeneration in the existing M. micrantha control process.
Collapse
|
75
|
Gaaied S, Oliveira M, Barreto A, Zakhama A, Banni M. 2,4-Dichlorophenoxyacetic acid (2,4-D) affects DNA integrity and retina structure in zebrafish larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85402-85412. [PMID: 35794326 DOI: 10.1007/s11356-022-21793-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Monitoring the potential risk of herbicides in non-target organisms is a crucial issue for environmental safety. 2,4-D is an herbicide of high environmental relevance that has been shown to exert toxic effects to soil and aquatic biota. In the present study, we investigated the possible genotoxic and retinal development effects of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide in early life stages zebrafish (Danio rerio). Genotoxicity was evaluated by measuring DNA damage using the comet assay and also by the mRNA expression of genes implicated in apoptosis and/or DNA repair. Retinal development toxicity was evaluated with histological approach. The results obtained revealed that 2,4-D alters DNA integrity of zebrafish larvae. Moreover, transcriptomic data showed a significant induction of p-53 and casp-3 genes and a significant decrease of lig-4 in larvae exposed to the highest tested concentration of 2,4-D (0.8 mg/L). This suggested that p-53 gene regulates the process of DNA repair and apoptosis with increased levels of 2,4-D. The histopathological analysis revealed that early exposure to 2,4-D damaged the structure of larvae retina. Overall, this study is the first to report the DNA damage, casp-3, lig-4 and p-53 regulation, as well as the ocular developmental toxicity in zebrafish larvae at environmentally relevant concentrations of 2,4-D herbicide.
Collapse
Affiliation(s)
- Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology "LR02AGR21", ISA, Chott-Mariem, 4042, Sousse, Tunisia.
| | - Miguel Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Angela Barreto
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Abdelfattah Zakhama
- Department of Pathology, Fattouma Bourguiba University Hospital, 5000, Monastir, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology "LR02AGR21", ISA, Chott-Mariem, 4042, Sousse, Tunisia
| |
Collapse
|
76
|
Moreira RA, Cordero-de-Castro A, Polo-Castellano C, Pinto TJS, Dias MA, Montagner CC, Espíndola ELG, Araújo CVM, Blasco J. Avoidance responses by Danio rerio reveal interactive effects of warming, pesticides and their mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157525. [PMID: 35872193 DOI: 10.1016/j.scitotenv.2022.157525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Temperature variations and thermal extremes events caused by climate change can have profound implications for the toxicity of pesticides in aquatic organisms. Using an innovative system (Heterogeneous Multi-Habitat Test System - HeMHAS) that allows the simulation of different scenarios within a spatially heterogeneous landscape, the effects on the habitat selection of Danio rerio fish caused by the pesticides fipronil and 2,4-D were studied as single compounds and in mixture and integrated with air temperature variation (20, 24 and 28 °C). As a result, D. rerio detected and avoided both pesticides at air temperatures of 20 and 24 °C; however, at 28 °C no significant difference was observed in habitat choice by fish. Additionally, when pesticides were mixed in a heterogeneously contaminated landscape, it was observed that D. rerio detected contamination and preferred the clean zone at 20 and 24 °C; however, at 28 °C the potential to escape from the most contaminated areas was impaired. Thus, contamination by both pesticides made the habitat selection behavior of fish at 20 and 24 °C more noticeable. In addition, the association between pesticides and temperature showed negative effects on the response of fish to detect and escape from contaminated environments, suggesting the influence of temperature in altering the ability of the organism to provide an efficient response to stress.
Collapse
Affiliation(s)
- Raquel A Moreira
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil.
| | - Andrea Cordero-de-Castro
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Curro Polo-Castellano
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Thandy J S Pinto
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil
| | - Mariana A Dias
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana C Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Evaldo L G Espíndola
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| |
Collapse
|
77
|
Jiao Q, Mu Y, Deng J, Yao X, Zhao X, Liu X, Li X, Jiang X, Zhang F. Direct toxicity of the herbicide florasulam against Chlorella vulgaris: An integrated physiological and metabolomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114135. [PMID: 36201917 DOI: 10.1016/j.ecoenv.2022.114135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Herbicides are the agents of choice for use in weed control; however, they can enter the aquatic environment, with potentially serious consequences for non-target organisms. Despite the possible deleterious effects, little information is available regarding the ecotoxicity of the herbicide florasulam toward aquatic organisms. Accordingly, in this study, we investigated the toxic effect of florasulam on the freshwater microalga Chlorella vulgaris and sought to identify the underlying mechanisms. For this, we employed a growth inhibition toxicity test, and then assessed the changes in physiological and metabolomic parameters, including photosynthetic pigment content, antioxidant system, intracellular structure and complexity, and metabolite levels. The results showed that treatment with florasulam for 96 h at the concentration of 2 mg/L, 2.84 mg/L, and 6 mg/L in medium significantly inhibited algal growth and photosynthetic pigment content. Moreover, the levels of reactive oxygen species were also increased, resulting in oxidative damage and the upregulation of the activities of several antioxidant enzymes. Transmission electron microscopic and flow cytometric analysis further demonstrated that exposure to florasulam (6 mg/L) for 96 h disrupted the cell structure of C. vulgaris, characterized by the loss of cell membrane integrity and alterations in cell morphology. Changes in amino acid metabolism, carbohydrate metabolism, and the antioxidant system were also observed and contributed to the suppressive effect of florasulam on the growth of this microalga. Our findings regarding the potential risks of florasulam in aquatic ecosystems provide a reference for the safe application of this herbicide in the environment.
Collapse
Affiliation(s)
- Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yuelin Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaoyan Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fengwen Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
78
|
Zhou J, Wang H, Jia L, Ma Y, Wang X, Zhu L, Wang K, Zhang P, Yang H. Mechanism of 2,4-Dichlorophenoxyacetic acid-induced damage to rat testis via Fas/FasL pathway and the protective effect of Lycium barbarum polysaccharides. ENVIRONMENTAL TOXICOLOGY 2022; 37:2764-2779. [PMID: 36214342 DOI: 10.1002/tox.23635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/16/2023]
Abstract
The herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) is widely used to control broadleaved weeds and has been associated with male infertility. We studied the molecular mechanisms of 2,4-D induced male reproductive system damage and the protective effects of Lycium barbarum polysaccharides (LBP) using Sprague Dawley rats and TM4 cells. Treatment with 2,4-D caused architectural and functional changes in the testis, including collapsed and atrophied seminiferous tubules with reduced number of spermatozoa, scarce sperm in the epididymal duct, low levels of serum testosterone, decreased superoxide dismutase and glutathione peroxidase activity, high malondialdehyde content, and increased apoptosis in the testis and epididymis. The expression of Fas, FasL, FADD, Pro-caspase-8, Cleaved-Caspase-8, Pro-Caspase-3, and Cleaved-Caspase-3 were significantly increased in the testicular tissue of 2,4-D-treated rats. The proliferative activity of TM4 cells decreased with an increase in dose and time of 2,4-D exposure, along with enhanced Fas/Fas ligand expression and a decreased concentration of inhibin B in TM4 cell culture medium. Depletion of Fas by specific shRNA transfection reversed the effects of 2,4-D in TM4 cells, further confirming the involvement of death receptor pathway in 2,4-D-mediated apoptosis of sertoli cells. Treatment with LBP also reversed the effects of 2,4-D in testicular cells, resulting in improved cell architecture along with enhanced proliferative capacity. Moreover, in response to LBP treatment of Sertoli cells, the content of inhibin B increased, the level of reactive oxygen species and malondialdehyde decreased, the activities of superoxide dismutase and glutathione peroxidase increased, and the rate of apoptosis as well as the expression of Fas/Fas ligand signaling pathway proteins decreased.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Hengquan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Leina Jia
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yu Ma
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiaolan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Lingqin Zhu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Pengju Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
79
|
Moreno-Robles A, Cala Peralta A, Zorrilla JG, Soriano G, Masi M, Vilariño-Rodríguez S, Cimmino A, Fernández-Aparicio M. Identification of Structural Features of Hydrocinnamic Acid Related to Its Allelopathic Activity against the Parasitic Weed Cuscuta campestris. PLANTS (BASEL, SWITZERLAND) 2022; 11:2846. [PMID: 36365299 PMCID: PMC9655845 DOI: 10.3390/plants11212846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Cuscuta campestris is a parasitic weed species that inflicts worldwide noxious effects in many broadleaf crops due to its capacity to withdraw nutrients and water directly from the crop vascular system using haustorial connections. Cuscuta campestris control in the majority of crops affected is non-existent, and thus, research for the development of control methods is needed. Hydrocinnamic acid occurs naturally in the rhizosphere, playing regulatory roles in plant-plant and plant-microbe communities. The toxicity of hydrocinnamic acid against C. campestris was recently identified. In the present work, a structure-activity relationship study of 21 hydrocinnamic acid analogues was performed to identify key structural features needed for its allelopathic action against the seedling growth of this parasitic plant. The findings of this study provide the first step for the design of herbicides with enhanced activity for the control of C. campestris infection.
Collapse
Affiliation(s)
| | - Antonio Cala Peralta
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
| | - Jesús G. Zorrilla
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
| | - Gabriele Soriano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | | | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Mónica Fernández-Aparicio
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
80
|
Dung NTK, Veettil BK, Bao DQ, Tran T. Environmental management in Ramsar designated wetland areas in Vietnam: studies from U Minh Thuong and Tram Chim national parks (Mekong Delta). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:777. [PMID: 36255504 DOI: 10.1007/s10661-022-10178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/08/2021] [Indexed: 06/16/2023]
Abstract
This study investigated the possibility of using remotely sensed data and field surveys for understanding the environmental management practices in two Ramsar sites - U Minh Thong and Tram Chim national parks - in the Vietnamese Mekong Delta. Enhanced agriculture, infrastructure development, changes in hydrological regime, forest fires, and natural resources exploitation are the key variables that caused the depletion of these two wetland areas. Land cover, particularly vegetation coverage, has been changed considerably during the post-war period and agriculture has been intensified in the surrounding areas of U Minh Thuong and Tram Chim wetlands. The current water management strategies in U Minh Thuong and Tram Chim were designated to ensure proper water circulation during the dry and wet seasons in a way helpful to agriculture in the buffer zones and to prevent forest fires during the dry season. It is found that the water management strategies to prevent forest fires in both the parks resulted in the accumulation of toxic agrochemicals within the park during the wet season. Both U Minh Thuong and Tram Chim wetlands are invaded by alien plant species which is threatening the natural biodiversity of the area. Proper monitoring and control of invasive species is necessary for protecting the natural biodiversity of these wetland ecosystems. Proper law enforcement and an interactive and inclusive wetland management should be practiced in order to conserve these valuable wetland ecosystems.
Collapse
Affiliation(s)
- Nguyen Thi Kim Dung
- Department of Ecology and Evolutionary Biology, Faculty of Biology and Biotechnology, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | | | - Duong Quoc Bao
- Department of Ecology and Evolutionary Biology, Faculty of Biology and Biotechnology, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Triet Tran
- Department of Ecology and Evolutionary Biology, Faculty of Biology and Biotechnology, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
- International Crane Foundation, Baraboo, WI, 53913, USA
| |
Collapse
|
81
|
Yang R, Liu S, Yin N, Zhang Y, Faiola F. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14668-14679. [PMID: 36178254 DOI: 10.1021/acs.est.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, U.K
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
82
|
Pesticides and Their Impairing Effects on Epithelial Barrier Integrity, Dysbiosis, Disruption of the AhR Signaling Pathway and Development of Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms232012402. [PMID: 36293259 PMCID: PMC9604036 DOI: 10.3390/ijms232012402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.
Collapse
|
83
|
Wang Y, Wan Y, Cao M, Wang A, Mahai G, He Z, Xu S, Xia W. Urinary 2,4-dichlorophenoxyacetic acid in Chinese pregnant women at three trimesters: Variability, exposure characteristics, and association with oxidative stress biomarkers. CHEMOSPHERE 2022; 304:135266. [PMID: 35688197 DOI: 10.1016/j.chemosphere.2022.135266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/15/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Widespread exposure to herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) could have potential adverse health effects on pregnant women. However, related data are scarce. This study aimed to characterize 2,4-D exposure among three trimesters of pregnancy and to explore the relationship of 2,4-D with oxidative stress biomarkers [i.e., 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-hydroxy guanosine (8-OHG), and 4-hydroxy nonenal mercapturic acid (HNEMA)] in urine. The present study analyzed 3675 urine samples of 1225 women (across the three trimesters of pregnancy) in Wuhan, central China. 2,4-D was detectable in 97.4% of the urine samples. The median unadjusted concentration of 2,4-D was 0.12 ng/mL, and the corresponding concentration adjusted by urinary specific gravity (SG-adjusted) was 0.13 ng/mL. The intraclass correlation coefficient of 2,4-D (SG-adjusted concentrations) was 0.07 across the three trimesters. Significantly higher urinary levels of 2,4-D were found in samples from younger pregnant women/samples collected during winter. In addition, significantly positive association between urinary concentrations of oxidative stress biomarkers and 2,4-D were found in repeated analysis; an interquartile range increase in 2,4-D was significantly (p < 0.001) associated with a 20.8% increase in 8-OHG, a 26.7% increase in 8-OHdG, and a 30.7% increase in HNEMA, respectively. Such associations were also found in trimester-specific analyses. This is the first time to quantify the urinary 2,4-D of pregnant women in China, and this study found significantly positive associations of 2,4-D with oxidative stress biomarkers. Further studies are needed to verify such associations and explore other potential adverse effects of 2,4-D exposure.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Meiling Cao
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
84
|
Geng H, Xu G, Liu L, Wang X, Zhao R. Determination of trace phenoxy carboxylic acid herbicides in environmental water samples by covalent organic frameworks based solid phase extraction coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2022; 1682:463516. [PMID: 36162252 DOI: 10.1016/j.chroma.2022.463516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022]
Abstract
The determination of traces levels of pesticide residue in water is crucial for monitoring water quality. In this study, covalent organic frameworks (COFs), namely TAPA-TFPB-COFs were prepared at room temperature (25 °C) and applied as adsorbents for the solid phase extraction (SPE) of phenoxy carboxylic acid herbicides (PCAs). The extraction was followed by analyzation using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Under the optimal conditions, ultrasensitive and specific analysis of PCAs in water samples was achieved. The method exhibited high sensitivity with low limits of detection (0.08-0.28 ng L-1), good linearity in the range of 1.00 to 200 ng L-1 and satisfactory repeatability (intra-day: 3.72-5.30%; inter-day: 2.02-4.04%). The method was successfully applied to the analyzation of trace PCAs in tap, well, and river water and the spiked recoveries were in the range of 81.1-112%. These results indicate that the SPE-LC-MS/MS technique with TAPA-TFPB-COFs as the SPE adsorbent is a promising technique for the detection of trace levels of PCAs in environmental water samples.
Collapse
Affiliation(s)
- Hongshuai Geng
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Guiju Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Lu Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Xiaoli Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China.
| | - Rusong Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China.
| |
Collapse
|
85
|
Mariotti VCBS, Naufal IZF, Amorim IAR, Parizi JLS, Nai GA. Digestive tract toxicity associated with exposure to 2,4-dichlorophenoxyacetic acid in rats. Braz J Med Biol Res 2022; 55:e12350. [PMID: 36102419 PMCID: PMC9467284 DOI: 10.1590/1414-431x2022e12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide of the chlorophenoxy class and the second most widely used herbicide applied to several different crops worldwide. Environmental factors, especially those related to diet, strongly affect the risk of developing cancer of the gastrointestinal tract. There is currently no evidence to determine whether there is an association between 2,4-D exposure and gastrointestinal disorders. We evaluated the histological effect of chronic oral and inhalation exposure to 2,4-D on the digestive tract of rats. Eighty male adult albino Wistar rats were divided into 8 groups (n=10): two control groups, one for inhalation and one for oral exposure, and 6 groups exposed orally or by inhalation at three different concentrations of 2,4-D [3.71×10-3 grams of active ingredient per hectare (gai/ha), 6.19×10-3 gai/ha, and 9.28×10-3 gai/ha]. The animals were exposed for 6 months. The esophagus, stomach, and intestine were collected for histopathological analysis. Animals exposed to 2,4-D had hyperkeratosis of the esophagus, regardless of the exposure route. All animals exposed to a higher concentration of 2,4-D orally presented mild dysplasia of the large intestine. In the small intestine, most animals exposed to moderate and high concentrations of 2,4-D had mild dysplasia. No gastric changes were observed in any of the groups studied. Chronic exposure to 2,4-D, especially at moderate and high concentrations, regardless of the exposure route, caused reactive damage to the esophagus (hyperkeratosis) and dysplastic changes to the intestine.
Collapse
Affiliation(s)
- V C B S Mariotti
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil.,Departamento de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil.,Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil
| | - I Z F Naufal
- Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil
| | - I A R Amorim
- Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil
| | - J L S Parizi
- Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil.,Departamento de Patologia, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil
| | - G A Nai
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil.,Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil.,Departamento de Patologia, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil
| |
Collapse
|
86
|
Hernández-Del Castillo PC, Oliva J, Rodriguez-Gonzalez V. An eco-friendly and sustainable support of agave-fibers functionalized with graphene/TiO2:SnO2 for the photocatalytic degradation of the 2,4-D herbicide from the drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115514. [PMID: 35751295 DOI: 10.1016/j.jenvman.2022.115514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In this research, we evaluated the photocatalytic performance of biodegradable composites for the removal of the 2,4-Dichlorophenoxyacetic acid (2,4-D) herbicide. The composite was composed by agave fibers (AgF), graphene-microplates (GM) and titanium dioxide TiO2/SnO2 (TSn) nanoparticles (NPs) and was named TSn + AgF/GM. Both, the TSn NPs and the GM were deposited on the AgF using the Dip-coating method. According to the analysis by X-Ray Diffraction (XRD), the crystalline phase for the TiO2 and SnO2 was anatase and tetragonal-rutile, respectively. The Scanning Electron Microscopy (SEM) images demonstrated that the AgF were completely saturated by the GM (which had average dimensions of 15 μm × 22 μm) and by conglomerations of TSn NPs with average size of 642 nm. The TSn NPs and the TSn + AgF/GM composite were evaluated for the photocatalytic degradation of the 2,4-D herbicide under ultraviolet-visible (UV-Vis) light and found a maximum degradation of 98.4 and 93.7% (after 4 h) for the TSn NPs and the TSn + AgF/GM composite, respectively. Reuse cycles were also performed and the degradation percentage decreased by 13.1% and by 7.8% (after 3 cycles of reuse) when the TSn NPs and the TSn + AgF/GM composite are employed, respectively. Scavenger experiments were also carried out and found that the oxidizing agents are mainly produced in the order of: •OH>•O2- > h+; then, the main oxidizing agents generated during the photocatalytic reaction were the hydroxyl radicals. Thus, the photocatalytic system studied in this work for the degradation of 2,4-D could pave the way for the development of new eco-friendly/floatable photocatalysts, which can be applied in wastewater-treatment plants.
Collapse
Affiliation(s)
- P C Hernández-Del Castillo
- CONACyT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico
| | - J Oliva
- CONACyT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico.
| | - V Rodriguez-Gonzalez
- CONACyT-División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
87
|
Lyu Z, Ding S, Tieu P, Fang L, Li X, Li T, Pan X, Engelhard MH, Ruan X, Du D, Li S, Lin Y. Single-Atomic Site Catalyst Enhanced Lateral Flow Immunoassay for Point-of-Care Detection of Herbicide. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9823290. [PMID: 36082212 PMCID: PMC9435159 DOI: 10.34133/2022/9823290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 12/21/2022]
Abstract
Point-of-care (POC) detection of herbicides is of great importance due to their impact on the environment and potential risks to human health. Here, we design a single-atomic site catalyst (SASC) with excellent peroxidase-like (POD-like) catalytic activity, which enhances the detection performance of corresponding lateral flow immunoassay (LFIA). The iron single-atomic site catalyst (Fe-SASC) is synthesized from hemin-doped ZIF-8, creating active sites that mimic the Fe active center coordination environment of natural enzyme and their functions. Due to its atomically dispersed iron active sites that result in maximum utilization of active metal atoms, the Fe-SASC exhibits superior POD-like activity, which has great potential to replace its natural counterparts. Also, the catalytic mechanism of Fe-SASC is systematically investigated. Utilizing its outstanding catalytic activity, the Fe-SASC is used as label to construct LFIA (Fe-SASC-LFIA) for herbicide detection. The 2,4-dichlorophenoxyacetic acid (2,4-D) is selected as a target here, since it is a commonly used herbicide as well as a biomarker for herbicide exposure evaluation. A linear detection range of 1-250 ng/mL with a low limit of detection (LOD) of 0.82 ng/mL has been achieved. Meanwhile, excellent specificity and selectivity towards 2,4-D have been obtained. The outstanding detection performance of the Fe-SASC-LFIA has also been demonstrated in the detection of human urine samples, indicating the practicability of this POC detection platform for analyzing the 2,4-D exposure level of a person. We believe this proposed Fe-SASC-LFIA has potential as a portable, rapid, and high-sensitive POC detection strategy for pesticide exposure evaluation.
Collapse
Affiliation(s)
- Zhaoyuan Lyu
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| | - Shichao Ding
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Xin Li
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xiaoqing Pan
- Irvine Materials Research Institute (IMRI), Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark H. Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xiaofan Ruan
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| | | | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
88
|
Wang Y, Xiong Y, Garcia EAL, Wang Y, Butch CJ. Drug Chemical Space as a Guide for New Herbicide Development: A Cheminformatic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9625-9636. [PMID: 35915870 DOI: 10.1021/acs.jafc.2c01425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Herbicides are critical resources for meeting agricultural demand. While similar in structure and function to pharmaceuticals, the development of new herbicidal mechanisms of action and new scaffolds against known mechanisms of action has been much slower than in pharmaceutical sciences. We hypothesized that this may be due in part to a relative undersampling of possible herbicidal chemistries and set out to test whether this difference in sampling existed and whether increasing the diversity of possible herbicidal chemistries would be likely to result in more efficacious herbicides. To conduct this work, we first identified databases of commercially available herbicides and clinically approved pharmaceuticals. Using these databases, we created a two-dimensional embedding of the chemical, which provides a qualitative visualization of the degree to which each chemotype is distributed within the combined chemical space and shows a moderate degree of overlap between the two sets. Next, we trained several machine learning models to classify herbicides versus drugs based on physicochemical characteristics. The most accurate of these models has an accuracy of 93% with the key differentiating characteristics being the number of polar hydrogens, number of amide bonds, LogP, and polar surface area. We then used several types of scaffold decomposition to quantitatively evaluate the chemical diversity of each molecular family and showed herbicides to have considerably fewer unique structural fragments. Finally, we used molecular docking as an in silico evaluation of further structural diversification in herbicide development. To this end, we identified herbicides with well-characterized binding sites and modified those scaffolds based on similar structural subunits from the drug dataset not present in any commercial herbicide while using the machine-learned model to ensure that required herbicide properties were maintained. Redocking the original and modified scaffolds of several herbicides showed that even this simple design strategy is capable of yielding new molecules with higher predicted affinity for the target enzymes. Overall, we show that herbicides are distinct from drugs based on physicochemical properties but less diverse in their chemistry in a way not governed by these properties. We also demonstrate in silico that increasing the diversity of herbicide scaffolds has the potential to increase potency, potentially reducing the amount needed in agricultural practice.
Collapse
Affiliation(s)
- Yisheng Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Youjin Xiong
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | | | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Blue Marble Space Institute for Science, Seattle, Washington 98104, United States
| |
Collapse
|
89
|
Wang F, Wang S, Xu S, Shen J, Cao L, Sha Z, Chu Q. A non-chemical weed control strategy, introducing duckweed into the paddy field. PEST MANAGEMENT SCIENCE 2022; 78:3654-3663. [PMID: 35613133 DOI: 10.1002/ps.7008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Herbicide resistance in weeds and environmental pollution resulting from excessive application of chemical herbicides keeps increasing. Development of environment-friendly and effective weed management strategies are required for sustainable agricultural production. In this study we investigated the effects of duckweeds (Landoltia punctata (G. Meyer) Les & D. J. Crawford and Spirodela polyrhiza (Linnaeus) Schle iden) introduction on the weed community and rice growth in paddy fields. RESULTS The study was conducted in the two rice-growing seasons (2018 and 2019) with three treatments: rice grown without duckweed introduction (CK), with L. punctata introduction (LP), and with S. polyrhiza introduction (SP). On average, LP and SP significantly reduced total weed density by more than 90% and 97%, respectively. Early in the rice-growing season, both duckweed species completely prevented weed growth. Further, both species significantly promoted rice plant growth in the advanced stages. SP significantly improved grain yield of rice by 23%. Light transmittance, temperature of the floodwater and soil, floodwater pH, and dissolved oxygen content significantly decreased following introduction of the duckweeds, indicating that the duckweeds introduction might inhibit weeds growth by altering environmental factors. CONCLUSION This study provides a possible environment-friendly way to inhibit weed biomass in the paddy field by introducing duckweeds and interpreted the possible reasons of the impacts of duckweed on environmental variables. Weed control is beneficial for rice growth. Duckweed coverage might be limited in open fields and the associated practice requires additional investigation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhan Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianying Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Linkui Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhimin Sha
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Technology and Model for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural, China
| | - Qingnan Chu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
90
|
Flieller G, Riffault-Valois L, Bergaentzlé M, Ennahar S. Fast and Reproducible 96-Well Plate-Based Method for the Evaluation of the Antigerminative Potential of Plant Extracts and Phytotoxic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7842-7850. [PMID: 35709544 DOI: 10.1021/acs.jafc.2c02911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
With the aim of evaluating the antigerminative activity of plant extracts, a miniaturized assay using 96-well plates (WP assay) was developed and compared to the long-established assay using Petri dishes (PD assay). The WP assay yielded results comparable to those of the PD assay using an ethanolic extract of the Himalayan balsam and lawsone as a standard. It also allowed the needed volume of the test solution to be cut by half and the number of required cress seeds to be cut by more than 1.5. The WP assay was then successfully applied to various extracts of Himalayan balsam, molecules (2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate, and 2-methoxy-1,4-naphthoquinone (2-MNQ)) and target seeds (radish, lettuce, and wheat). By being adapted to a 96-well plate format, the antigerminative WP assay is a promising alternative to the PD assay. Besides, its convenience and low resource consumption make it ready for accelerated and high-throughput screening, as well as automation.
Collapse
Affiliation(s)
- G Flieller
- Université de Strasbourg, CNRS, IPHC UMR 7178, Chimie Analytique des Molécules BioActives et Pharmacognosie, F-67000 Strasbourg, France
| | - L Riffault-Valois
- Université de Strasbourg, CNRS, IPHC UMR 7178, Chimie Analytique des Molécules BioActives et Pharmacognosie, F-67000 Strasbourg, France
| | - M Bergaentzlé
- Université de Strasbourg, CNRS, IPHC UMR 7178, Chimie Analytique des Molécules BioActives et Pharmacognosie, F-67000 Strasbourg, France
| | - S Ennahar
- Université de Strasbourg, CNRS, IPHC UMR 7178, Chimie Analytique des Molécules BioActives et Pharmacognosie, F-67000 Strasbourg, France
| |
Collapse
|
91
|
Moya A, Tejedor D, Manetti M, Clavijo A, Pagano E, Munarriz E, Kronberg MF. Reproductive toxicity by exposure to low concentrations of pesticides in Caenorhabditis elegans. Toxicology 2022; 475:153229. [PMID: 35697162 DOI: 10.1016/j.tox.2022.153229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
In view of the recurrent applications of pesticides in agricultural producing countries, the increased presence of these substances in the environment raise a demand for the evaluation of adverse effects on non-target organisms. This study assesses the impact of exposure to five pesticides suspected of being endocrine disruptors (atrazine, 2,4-dichlorophenoxyacetic acid, mancozeb, chlorpyrifos and cypermethrin) on the reproductive development of the nematode Caenorhabditis elegans. To this end, nematodes in the L4 larval stage were exposed to different concentrations of pesticides for 24 h and the consequences on brood size, percentage of gravid nematodes, expression of reproductive-related genes and vitellogenin trafficking and endocytosis were measured. Moreover, 17β-estradiol was used as an estrogenic control for endocrine disrupting compounds throughout the work. The results showed that all the pesticides disturbed to some extent one or more of the evaluated endpoints. Remarkably, we found that atrazine, 2,4-dichlorophenoxyacetic acid and chlorpyrifos produced comparable responses to 17β-estradiol suggesting that these pesticides may have estrogen-like endocrine disrupting activity. Atrazine and 17β-estradiol, as well as 2,4-dichlorophenoxyacetic acid and chlorpyrifos to a lesser extent, decreased the brood size, affected vitellogenin trafficking and endocytosis, and changed the expression of several reproductive-related genes. Conversely, mancozeb and cypermethrin had the least impact on the evaluated endpoint. Cypermethrin affected the brood size at the highest concentration tested and mancozeb altered the distribution of vitellogenin only in approximately 10% of the population. However, both products overexpressed hus-1 and vit-2 genes, indicating that an induction of stress could interfere with the normal development of the nematode. In conclusion, our work proved that C. elegans is a useful biological model to identify the effects of estrogen-like endocrine disruptor compounds, and the sublethal endpoints proposed may serve as an important contribution on evaluating environmental pollutants.
Collapse
Affiliation(s)
- Aldana Moya
- Cátedra de Protección vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Tejedor
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Manetti
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Araceli Clavijo
- Instituto de Investigaciones en Energía no Convencional, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. Bolivia 5150, A4408FVY Ciudad de Salta, Argentina
| | - Eduardo Pagano
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Eliana Munarriz
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Florencia Kronberg
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
92
|
Da Silva AP, Morais ER, Oliveira EC, Ghisi NDC. Does exposure to environmental 2,4-dichlorophenoxyacetic acid concentrations increase mortality rate in animals? A meta-analytic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119179. [PMID: 35314208 DOI: 10.1016/j.envpol.2022.119179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The 2,4-dichlorophenoxyacetic acid (2,4-D) is an auxinic herbicide widely used in agriculture that is effective in controlling weeds. It is directly applied to the soil, to ponds or sprayed onto crops; thus, it can progressively accumulate in environmental compartments and affect non-target organisms. The aim of the present meta-analytic review is to investigate the toxic effects of 2,4-D, based on a compilation of results from different studies, which were synthesized to form a statistically reliable conclusion about the lethal effect of potentially ecological concentrations of 2,4-D in several animal species. The search was carried out in the Web of Science and Scopus databases. After the selection process was over, 87 datasets were generated and analyzed. The overall effect has indicated significant increase in the mortality rate recorded for animals exposed to environmental concentrations of 2,4-D compared to the control in the experiment (unexposed animals). The segregation of animals into taxonomic categories has shown that fish and birds presented higher mortality rates after exposure to the investigated substance. The present meta-analysis indicated larval and adult animals were susceptible among the ontogenetic development stages. Juvenile individuals exposed to different 2,4-D concentrations did not show significant difference in comparison to the control. Organisms exposed to 2,4-D immersion were the most impacted compared to those exposed by oral, spray and contact. Animals subjected to commercial formulation presented higher mortality rate than the analytical standard. Thus, 2,4-D can, in fact, increase mortality rate in animals, but it depends on species sensitivity, life stage and exposure route. This is the first meta-analytical study evaluating the mortality rate after 2,4-D exposure in several animal species.
Collapse
Affiliation(s)
- Ana Paula Da Silva
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| | - Elizete Rodrigues Morais
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| | - Elton Celton Oliveira
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| | - Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, S/n, Km 04, CEP:85660-000, Caixa Postal 157, Dois Vizinhos, PR, Brazil.
| |
Collapse
|
93
|
Marsolla LD, Brito GM, Freitas JCC, Coelho ERC. Removing 2,4-D micropollutant herbicide using powdered activated carbons: the influence of different aqueous systems on adsorption process. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:588-596. [PMID: 35686518 DOI: 10.1080/03601234.2022.2084311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The presence of microcontaminants in the water supply system offers adverse impacts. This study analyzed the performance of two powdered activated carbons (PAC1 and PAC2) in the removal of 2,4-D herbicide in ultrapure water (UW) and natural water (NW) to verify the influence of natural organic matter (NOM) on the adsorptive process. The properties of PAC1 and PAC2 were analyzed by textural analysis, FTIR, TG, pH, XDR, NMR. The specific surface area of PAC2 was lower than PAC1 and PAC2 showed better adsorption capacity in UW (37.04 mg.g-1) and in NW (8.06 mg.g-1). The results of experiments performed in natural water showed that both activated carbons had reduced 2,4-D adsorption capacity in the presence of NOM, since it may compete for the same adsorption sites or block the access of the 2,4-D molecule to the pores of the activated carbon. PAC2 showed a higher mesopores percentage, decreasing the effects caused by NOM in 2,4-D adsorption. The use of activated carbons with varying pore sizes for the removal of microcontaminants is recommended, especially in NW. This result contributes to the choice of the adsorbent type to be applied in water treatment plants.
Collapse
Affiliation(s)
| | | | | | - Edumar R Cabral Coelho
- Departament of Environmental Engineering, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|
94
|
Moharramzadeh M, Ceylan Z, Atıcı Ö. Glutathione S-Transferase Activity in Wild Plants with 2,4-Dichlorophenol (2,4-DCP) Phytoremediation Potential. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2064484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mohammad Moharramzadeh
- Department of Environmental Engineering, Faculty of Engineering, Atatürk University, Erzurum, Turkey
| | - Zeynep Ceylan
- Department of Environmental Engineering, Faculty of Engineering, Atatürk University, Erzurum, Turkey
| | - Ökkeş Atıcı
- Department of Biology, Science Faculty, Atatürk University, Erzurum, Turkey
| |
Collapse
|
95
|
Nanni W, Porto GDS, Pereira JNB, Gonçalves ARN, Marinsek GP, Stabille SR, Favetta PM, Germano RDM, Mari RDB. Evaluation of myenteric neurons in the colon of rats exposed to 2,4 dichlorophenoxyacetic acid herbicide. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:421-429. [PMID: 35440284 DOI: 10.1080/03601234.2022.2064674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The assessment of the enteric nervous system provides a better understanding of the effects that contaminants can have on the health and well-being of organisms. It has been reported that 2,4-dichlorophenoxyacetic acid (2,4-D) is a highly persistent herbicide in the environment that is responsible for neurotoxic changes in different myenteric neuronal subpopulations. The current study aimed to evaluate the effects of 2,4-D on myenteric neurons in the colon of Rattus norvegicus for the first time. A dose of 2,4-D (5 mg/kg/day) was administered to the experimental group (2,4-D) for 15 days. Then, the proximal colon was collected and submitted to Giemsa and NADPH-d histochemical techniques for the disclosure of total and nitrergic neurons. The 2,4-D group presented a higher density of total neurons (p = 0.05, t-test), which together with the maintenance of nitrergic neuronal density, may be related to the increase in the expression of the neurotransmitter acetylcholine by colocalization, responsible for stimulating the intestinal smooth muscle and increasing the chances of the expulsion of the harmful content present in the lumen. Over 15 days, the neurotoxic effects of 2,4-D in the myenteric plexus influenced an increase in the general population of myenteric neurons in the colon.
Collapse
Affiliation(s)
- Wagner Nanni
- Post-graduate Programme in Animal Science, Universidade Paranaense, Umuarama, Paraná, Brazil
| | - Gisele da Silva Porto
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | | | | - Sandra Regina Stabille
- Post-graduate Programme in Animal Science, Universidade Paranaense, Umuarama, Paraná, Brazil
| | | | - Ricardo de Melo Germano
- Post-graduate Programme in Animal Science, Universidade Paranaense, Umuarama, Paraná, Brazil
| | - Renata de Britto Mari
- Department of Biological and Environmental Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
96
|
Tang G, Tian Y, Gao Y, Zhou Z, Chen X, Li Y, Yu X, Wang H, Li X, Cao Y. Supramolecular Self-Assembly of Herbicides with Reduced Risks to the Environment. ACS NANO 2022; 16:4892-4904. [PMID: 35191690 DOI: 10.1021/acsnano.2c00539] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The side effects caused by some pesticides with high off-target movement have brought great risks to the environment and human health. Here, taking 2,4-dichlorophenoxyacetic acid (2,4-D) as a model herbicide to reduce its volatilization and leaching, a supramolecular self-assembly mediated by branched polyethylenimine (B-PEI) was constructed through noncovalent molecular recognition. The results showed that 2,4-D/B-PEI nanoparticles (NPs) with a mean particle size of 168 nm can be formed by electrostatic interaction, hydrophobic effect, and π-π stacking when the mass ratio of 2,4-D to B-PEI with the average molecular weight of 10 000 (B-PEI 10k) was 40:20, and their generation was not susceptible to common inorganic ions such as Ca2+, Na+, Cl-, and SO42-. Compared with 2,4-D, the self-assembled NPs with improved physicochemical properties including strong positive charges (+58.2 mV), reduced volatilization rate (2.50%), low surface tension (56.10 mN m-1), and decreased leaching potential could minimize the adverse impacts of this herbicide on the environment. The biological activity experiments in the greenhouse and field demonstrated that the control efficacy of NPs without using any surfactant against weeds was almost the same as that of the 2,4-D sodium salt form containing Tween 80. The safety tests showed that the self-assembled NPs had the same genotoxicity as 2,4-D to Vicia faba and little effect on the soil enzyme activities. Overall, the development of self-assembled herbicidal nanoformulations with desirable physicochemical properties and low risks to the environment would have potential application in agricultural production.
Collapse
Affiliation(s)
- Gang Tang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuyang Tian
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xi Chen
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xueyang Yu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
97
|
Cocco NM, Pauletto PS, Dotto GL, Salau NPG. Mass transfer models for the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine herbicides from agricultural wastewaters. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2036727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Natália M. Cocco
- Departamento de Engenharia Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Paola S. Pauletto
- Departamento de Engenharia Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Guilherme L. Dotto
- Departamento de Engenharia Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Nina P. G. Salau
- Departamento de Engenharia Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
98
|
Silva FB, Costa AC, Müller C, Almeida GM, Nascimento KJT, Batista PF, Vital RG, Silva DG, Megguer CA, Jakelaitis A, Domingos M. Searching for biomarkers of early detection of 2,4-D effects in a native tree species from the Brazilian Cerrado biome. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:71-80. [PMID: 35114885 DOI: 10.1080/03601234.2022.2028528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biodiversity in the Brazilian Cerrado biome has been declining sharply with the continued expansion of agriculture and the excessive use of herbicides. Thus, the aim of this study was to evaluate the morphophysiological and biochemical responses in Dipteryx alata plants to various doses of the herbicide 2,4-D. Specific biomarkers that characterize the phytoindicator potential of this species were determined. Gas exchange, chlorophyll a fluorescence, photosynthetic pigments, and the activities of antioxidant enzymes and cellulase were performed after 24, 96 and/or 396 hours after 2,4-D application (HAA). The herbicide caused higher antioxidant enzymatic activity 24 HAA and damage to the photosynthetic machinery after 96 HAA. Reduction in gas exchange, chlorophyll content, and photochemical traits were observed. Increased respiratory rates, non-photochemical quenching, and carotenoid concentrations in 2,4-D-treated plants were important mechanisms in the defense against the excess energy absorbed. Furthermore, the absence of leaf symptoms suggested tolerance of D. alata to 2,4-D. Nevertheless, changes in the photosynthetic and biochemical metabolism of D. alata are useful as early indicators of herbicide contamination, especially in the absence of visual symptoms. These results are important for early monitoring of plants in conserved areas and for preventing damage to sensitive species.
Collapse
Affiliation(s)
- Fábia Barbosa Silva
- Ciência e Tecnologia - Campus Rio Verde, Instituto Federal Goiano de Educação, Rio Verde, Goiás, Brazil
- Laboratório de Estudo de Plantas sob Estresse, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo, Brazil
| | - Alan Carlos Costa
- Ciência e Tecnologia - Campus Rio Verde, Instituto Federal Goiano de Educação, Rio Verde, Goiás, Brazil
| | - Caroline Müller
- Ciência e Tecnologia - Campus Rio Verde, Instituto Federal Goiano de Educação, Rio Verde, Goiás, Brazil
| | - Gabriel Martins Almeida
- Ciência e Tecnologia - Campus Rio Verde, Instituto Federal Goiano de Educação, Rio Verde, Goiás, Brazil
| | | | - Priscila Ferreira Batista
- Ciência e Tecnologia - Campus Rio Verde, Instituto Federal Goiano de Educação, Rio Verde, Goiás, Brazil
| | - Roberto Gomes Vital
- Ciência e Tecnologia - Campus Rio Verde, Instituto Federal Goiano de Educação, Rio Verde, Goiás, Brazil
| | - Danilo Guimarães Silva
- Ciência e Tecnologia - Campus Rio Verde, Instituto Federal Goiano de Educação, Rio Verde, Goiás, Brazil
| | - Clarice Aparecida Megguer
- Ciência e Tecnologia Goiano - Campus Morrinhos, Instituto Federal de Educação, Morrinhos, Goiás, Brazil
| | - Adriano Jakelaitis
- Ciência e Tecnologia - Campus Rio Verde, Instituto Federal Goiano de Educação, Rio Verde, Goiás, Brazil
| | - Marisa Domingos
- Núcleo de Pesquisa em Ecologia, Instituto de Botânica, São Paulo, São Paulo, Brazil
| |
Collapse
|
99
|
Peluso J, Furió Lanuza A, Pérez Coll CS, Aronzon CM. Synergistic effects of glyphosate- and 2,4-D-based pesticides mixtures on Rhinella arenarum larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14443-14452. [PMID: 34617223 DOI: 10.1007/s11356-021-16784-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate and 2,4-D are two herbicides commonly used together. Since there is little information about the interactions between these pesticides, the aim of this study was to evaluate the single and joint lethal toxicity of the glyphosate-based herbicide (GBH) ATANOR® (43.8% of glyphosate, isopropylamine salt) and the 2,4-D-based herbicide (2,4-DBH) Así Max 50® (602000 mg/L of 2,4-D) on Rhinella arenarum larvae. Equitoxic and non-equitoxic mixtures were prepared according to the recommendation for their combination and analyzed with a fixed ratio design at different exposure times and levels of lethality (LC10, LC50, and LC90). GBH (504h-LC50=38.67 mg ae/L) was significantly more toxic than 2,4-DBH (504h-LC50=250.31 mg ae/L) and their toxicity was time-dependent. At 48h, the equitoxic mixture toxicity was additive and from the 96h was antagonistic at LC10 and LC50 effect level. The non-equitoxic mixture toxicity was additive at LC10 effect level from the 48h to the 168h, and synergistic from the 240h. At LC50 and LC90 effect level, the mixture interaction resulted synergistic for all exposure times. This is the first study to report the synergistic interactions between GBH and 2,4-DBH on amphibians, alerting about its negative impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Agustina Furió Lanuza
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
| | - Cristina S Pérez Coll
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Carolina M Aronzon
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
100
|
Viana NP, da Silva LCM, Portruneli N, Soares MP, Cardoso IL, Bonansea RI, Goulart BV, Montagner CC, Espíndola ELG, Wunderlin DA, Fernandes MN. Bioconcentration and toxicological impacts of fipronil and 2,4-D commercial formulations (single and in mixture) in the tropical fish, Danio rerio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11685-11698. [PMID: 34546525 DOI: 10.1007/s11356-021-16352-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The insecticide fipronil and the herbicide 2,4-D are the most applied pesticides in sugarcane crops leading to aquatic contamination. The whole-body bioconcentration of fipronil and 2,4-D, single and in mixture, was evaluated in Danio rerio after 96-h exposure. The activities of catalase (CAT) and glutathione S-transferase(GST) in whole body and in the gills and the acetylcholinesterase (AChE) in muscle were determined. The gill histopathology and the morphology of the pavement (PVC) and the mitochondria-rich(MRC) cells at gill surface were analyzed. Bioconcentration occurred after exposure to fipronil (2.69 L kg-1) and 2,4-D (1.73 L kg-1) single and in mixture of fipronil (3.10 L kg-1) and 2,4-D (1.27 L kg-1). Whole-body CAT activity was unchanged, and its activity decreased in the gills after exposure to fipronil and increased after exposure to 2,4-D and mixture. GST and AChE increased after single exposure to each pesticide and mixture of both. Fish exposed to mixture increased the MRC fractional area (MRCFA) which suggested possible ionic regulation disturbance and reduced the microridge of the PVC surface. Synergistic interactions occurred in the CAT activity and MRCFA after exposure to mixture of pesticides. The results indicate that the recommended application dose of fipronil and 2,4-D, single or in mixture, for sugarcane crops affects this fish species altering its homeostasis.
Collapse
Affiliation(s)
- Natália Prudêncio Viana
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Laís Conceição Menezes da Silva
- Programa de Pós-graduação em Ciências da Engenharia Ambiental, Escola de Engenharia de São Carlos (NEEA/CRHEA/SHS), Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Natália Portruneli
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Michelly Pereira Soares
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Programa Interinstitucional de Pós-graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Israel Luz Cardoso
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Programa Interinstitucional de Pós-graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Rocío Inés Bonansea
- Faculdade de Ciências Químicas, Universidade Nacional de Córdoba, Córdoba, Argentina
| | - Bianca Veloso Goulart
- Instituto de Química, Universidade de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Cassiana Carolina Montagner
- Instituto de Química, Universidade de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- Programa de Pós-graduação em Ciências da Engenharia Ambiental, Escola de Engenharia de São Carlos (NEEA/CRHEA/SHS), Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | | | - Marisa Narciso Fernandes
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil.
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|