51
|
Zhao ZQ, Zheng KY, Ou Q, Xu PZ, Qin S, Sun X, Li MW, Wu YC, Wang XY. Identification of optimal reference genes in Bombyx mori (Lepidoptera) for normalization of stress-responsive genes after challenge with pesticides. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21896. [PMID: 35355317 DOI: 10.1002/arch.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Pesticides are frequently used to control pests in agriculture due to their ease of use and effectiveness, but their use causes serious economic losses to sericulture when their production overlaps with agriculture. However, no suitable internal reference genes (RGs) have been reported in the study of silkworms in response to pesticides. In this study, a standard curve was established to detect the expression levels of seven RGs in different tissues of different silkworm strains after feeding with pesticides using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), including BmGAPDH, BmActin3, BmTBP, BmRPL3, Bm28sRNA, Bmα-tubulin, and BmUBC, and the stability of them was evaluated by using NormFinder, geNorm, Delta CT, BestKeeper, and RefFinder. The results showed that BmGAPDH and Bmα-tubulin were relatively stable in the midgut after feeding with fenvalerate, BmGAPDH and Bmactin3 were relatively stable in the fat body, and Bmα-tubulin and Bmactin3 were relatively stable in the hemolymph, indicating that Bmactin3 was the most suitable RG when evaluating fenvalerate, followed by BmGAPDH and Bmα-tubulin. Besides, BmGAPDH and Bmactin3 were relatively stable in the midgut after treatment with DDVP, BmGAPDH and Bmα-tubulin were relatively stable in the fat body, and BmGAPDH and Bmα-tubulin were relatively stable in the hemolymph, indicating that Bmα-tubulin was the most stable RG when evaluating DDVP, followed by BmGAPDH and Bmactin3. Of note, BmGAPDH was shared by the two pesticides. The results will be valuable for RG selection in studying the pesticide response mechanism of silkworms and other lepidopteran insects.
Collapse
Affiliation(s)
- Zi-Qin Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Kai-Yi Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qi Ou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Ping-Zhen Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Yang-Chun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - Xue-Yang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| |
Collapse
|
52
|
Plant-derived tormentic acid alters the gut microbiota of the silkworm (Bombyx mori). Sci Rep 2022; 12:13005. [PMID: 35906393 PMCID: PMC9338012 DOI: 10.1038/s41598-022-17478-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, phytochemicals have started to attract more attention due to their contribution to health and bioactivity. Microorganisms in the intestines of organisms contribute to the processing, function, and biotransformation of these substances. The silkworm (Bombyx mori) is one of the organisms used for the biotransformation of phytochemicals due to its controlled reproduction and liability to microbial manipulation. In this study, a bioactive compound, tormentic acid (TA), extracted from Sarcopoterium spinosum was used in the silkworm diet, and the alterations of intestinal microbiota of the silkworm were assessed. To do this, silkworms were fed on a diet with various tormentic acid content, and 16S metagenomic analysis was performed to determine the alterations in the gut microbiota profile of these organisms. Diet with different TA content did not cause a change in the bacterial diversity of the samples. A more detailed comparison between different feeding groups indicated increased abundance of bacteria associated with health, i.e., Intestinibacter spp., Flavonifractor spp., Senegalimassilia spp., through the utilization of bioactive substances such as flavonoids. In conclusion, it might be said that using TA as a supplementary product might help ameliorate the infected gut, promote the healthy gut, and relieve the undesirable effects of medicines on the gastrointestinal system.
Collapse
|
53
|
Janssens L, Van de Maele M, Delnat V, Theys C, Mukherjee S, De Meester L, Stoks R. Evolution of pesticide tolerance and associated changes in the microbiome in the water flea Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113697. [PMID: 35653979 DOI: 10.1016/j.ecoenv.2022.113697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pesticides can have detrimental effects on aquatic communities of non-target species. Populations can evolve tolerance to pesticides which may rescue them from extinction. However, the evolution of tolerance does not always occur and insights in the underlying mechanisms are scarce. One understudied mechanism to obtain pesticide tolerance in hosts are shifts toward pesticide-degrading bacteria in their microbiome. We carried out experimental evolution trials where replicated experimental populations of the water flea Daphnia magna were exposed to the pesticide chlorpyrifos or a solvent control, after which we performed acute toxicity assays to evaluate the evolution of chlorpyrifos tolerance. Additionally, we quantified changes in the microbiota community composition of whole body and gut samples to assess which sample type best reflected the pesticide tolerance of the Daphnia host. As expected, chlorpyrifos-selected clones became more tolerant to chlorpyrifos as shown by the higher EC5048 h (36% higher) compared with the control clones. This was associated with shifts in the microbiome composition whereby the abundance of known organophosphate-degrading bacterial genera increased on average ~4 times in the chlorpyrifos-selected clones. Moreover, the abundances of several genera, including the organophosphate-degrading bacteria Pseudomonas, Flavobacterium and Bacillus, were positively correlated with the EC5048 h of the host populations. These shifts in bacterial genera were similar in magnitude in whole body and gut samples, yet the total abundance of organophosphate-degrading bacteria was ~6 times higher in the whole body samples, suggesting that the gut is not the only body part where pesticide degradation by the microbiome occurs. Our results indicate that the microbiome is an important mediator of the development of tolerance to pesticides in Daphnia.
Collapse
Affiliation(s)
- Lizanne Janssens
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Marlies Van de Maele
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Vienna Delnat
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Charlotte Theys
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Shinjini Mukherjee
- Laboratory of Reproductive Genomics, University of Leuven, ON I Herestraat 49, 3000 Leuven, Belgium
| | - Luc De Meester
- Freshwater Ecology, Evolution and Biodiversity Conservation, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium.
| |
Collapse
|
54
|
Abstract
Gut microbiota can have diverse impacts on hosts, the nature of which often depend on the circumstances. For insect gut microbes, the quality and nature of host diets can be a significant force in swinging the pendulum from inconsequential to functionally important. In our study, we addressed whether beneficial microbes in one species impart similar functions to related species under identical conditions. Using fall armyworm (Spodoptera frugiperda), beet armyworm (Spodoptera exigua), and other noctuid hosts, we implemented an axenic rearing strategy and manipulated gut bacterial populations and dietary conditions. Our results revealed that some gut Enterococcus and Enterobacter isolates can facilitate utilization of a poor diet substrate by fall armyworm, but this was not the case for other more optimized diets. While Enterococcus provided benefits to fall armyworm, it was decidedly antagonistic to beet armyworm (Spodoptera exigua) under identical conditions. Unique isolates and bacterial introductions at early growth stages were critical to how both larval hosts performed. Our results provide robust evidence of the roles in which bacteria support lepidopteran larval growth, but also indicate that the directionality of these relationships can differ among congener hosts. IMPORTANCE Insects have intimate relationships with gut microbiota, where bacteria can contribute important functions to their invertebrate hosts. Lepidopterans are important insect pests, but how they engage with their gut bacteria and how that translates to impacts on the host are lacking. Here we demonstrate the facultative nature of gut microbiota in lepidopteran larvae and the importance of diet in driving mutualistic or antagonistic relationships. Using multiple lepidopteran species, we uncover that the same bacteria that can facilitate exploitation of a challenging diet in one host severely diminishes larval performance of another larval species. Additionally, we demonstrate the beneficial functions of gut microbiota on the hosts are not limited to one lineage, but rather multiple isolates can facilitate the exploitation of a suboptimal diet. Our results illuminate the context-dependent nature of the gut microbiomes in invertebrates, and how host-specific microbial engagement can produce dramatically different interactions.
Collapse
|
55
|
Zhao M, Lin X, Guo X. The Role of Insect Symbiotic Bacteria in Metabolizing Phytochemicals and Agrochemicals. INSECTS 2022; 13:insects13070583. [PMID: 35886759 PMCID: PMC9319143 DOI: 10.3390/insects13070583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary To counter plant chemical defenses and exposure to agrochemicals, herbivorous insects have developed several adaptive strategies to guard against the ingested detrimental substances, including enhancing detoxifying enzyme activities, avoidance behavior, amino acid mutation of target sites, and lower penetration through a thicker cuticle. Insect microbiota play important roles in many aspects of insect biology and physiology. To better understand the role of insect symbiotic bacteria in metabolizing these detrimental substances, we summarize the research progress on the function of insect bacteria in metabolizing phytochemicals and agrochemicals, and describe their future potential application in pest management and protection of beneficial insects. Abstract The diversity and high adaptability of insects are heavily associated with their symbiotic microbes, which include bacteria, fungi, viruses, protozoa, and archaea. These microbes play important roles in many aspects of the biology and physiology of insects, such as helping the host insects with food digestion, nutrition absorption, strengthening immunity and confronting plant defenses. To maintain normal development and population reproduction, herbivorous insects have developed strategies to detoxify the substances to which they may be exposed in the living habitat, such as the detoxifying enzymes carboxylesterase, glutathione-S-transferases (GSTs), and cytochrome P450 monooxygenases (CYP450s). Additionally, insect symbiotic bacteria can act as an important factor to modulate the adaptability of insects to the exposed detrimental substances. This review summarizes the current research progress on the role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals (insecticides and herbicides). Given the importance of insect microbiota, more functional symbiotic bacteria that modulate the adaptability of insects to the detrimental substances to which they are exposed should be identified, and the underlying mechanisms should also be further studied, facilitating the development of microbial-resource-based pest control approaches or protective methods for beneficial insects.
Collapse
Affiliation(s)
| | | | - Xianru Guo
- Correspondence: ; Tel.: +86-0371-63558170
| |
Collapse
|
56
|
Zhang X, Feng H, He J, Muhammad A, Zhang F, Lu X. Features and Colonization Strategies of Enterococcus faecalis in the Gut of Bombyx mori. Front Microbiol 2022; 13:921330. [PMID: 35814682 PMCID: PMC9263704 DOI: 10.3389/fmicb.2022.921330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The complex gut microbiome is a malleable microbial community that can undergo remodeling in response to many factors, including the gut environment and microbial properties. Enterococcus has emerged as one of the predominant gut commensal bacterial and plays a fundamental role in the host physiology and health of the major economic agricultural insect, Bombyx mori. Although extensive research on gut structure and microbiome diversity has been carried out, how these microbial consortia are established in multifarious niches within the gut has not been well characterized to date. Here, an Enterococcus species that was stably associated with its host, the model organism B. mori, was identified in the larval gut. GFP–tagged E. faecalis LX10 was constructed as a model bacterium to track the colonization mechanism in the intestine of B. mori. The results revealed that the minimum and optimum colonization results were obtained by feeding at doses of 105 CFU/silkworm and 107 CFU/silkworm, respectively, as confirmed by bioassays and fluorescence-activated cell sorting analyses (FACS). Furthermore, a comprehensive genome-wide exploration of signal sequences provided insight into the relevant colonization properties of E. faecalis LX10. E. faecalis LX10 grew well under alkaline conditions and stably reduced the intestinal pH through lactic acid production. Additionally, the genomic features responsible for lactic acid fermentation were characterized. We further expressed and purified E. faecalis bacteriocin and found that it was particularly effective against other gut bacteria, including Enterococcus casselifavus, Enterococcus mundtii, Serratia marcescens, Bacillus amyloliquefaciens, and Escherichia coli. In addition, the successful colonization of E. faecalis LX10 led to drastically increased expression of all adhesion genes (znuA, lepB, hssA, adhE, EbpA, and Lap), defense genes (cspp, tagF, and esp), regulation gene (BfmRS), secretion gene (prkC) and immune evasion genes (patA and patB), while the expression of iron acquisition genes (ddpD and metN) was largely unchanged or decreased. This work establishes an unprecedented conceptual model for understanding B. mori–gut microbiota interactions in an ecological context. Moreover, these results shed light on the molecular mechanisms of gut microbiota proliferation and colonization in the intestinal tract of this insect.
Collapse
Affiliation(s)
- Xiancui Zhang
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Huihui Feng
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Jintao He
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
- *Correspondence: Fan Zhang,
| | - Xingmeng Lu
- College of Animal Sciences, Institute of Sericulture and Apiculture, Zhejiang University, Hangzhou, China
- Xingmeng Lu,
| |
Collapse
|
57
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
58
|
Zhang X, Feng H, He J, Liang X, Zhang N, Shao Y, Zhang F, Lu X. The gut commensal bacterium Enterococcus faecalis LX10 contributes to defending against Nosema bombycis infection in Bombyx mori. PEST MANAGEMENT SCIENCE 2022; 78:2215-2227. [PMID: 35192238 PMCID: PMC9314687 DOI: 10.1002/ps.6846] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Microsporidia, a group of obligate intracellular fungal-related parasites, have been used as efficient biocontrol agents for agriculture and forestry pests due to their host specificity and transovarial transmission. They mainly infect insect pests through the intestinal tract, but the interactions between microsporidia and the gut microbiota of the host have not been well demonstrated. RESULTS Based on the microsporidia-Bombyx mori model, we report that the susceptibility of silkworms to exposure to the microsporidium Nosema bombycis was both dose and time dependent. Comparative analyses of the silkworm gut microbiome revealed substantially increased abundance of Enterococcus belonging to Firmicutes after N. bombycis infection. Furthermore, a bacterial strain (LX10) was obtained from the gut of B. mori and identified as Enterococcus faecalis based on 16S rRNA sequence analysis. E. faecalis LX10 reduced the N. bombycis spore germination rate and the infection efficiency in vitro and in vivo, as confirmed by bioassay tests and histopathological analyses. In addition, after simultaneous oral feeding with E. faecalis LX10 and N. bombycis, gene (Akirin, Cecropin A, Mesh, Ssk, DUOX and NOS) expression, hydrogen peroxide and nitric oxide levels, and glutathione S-transferase (GST) activity showed different degrees of recovery and correction compared with those under N. bombycis infection alone. Finally, the enterococcin LX protein was identified from sterile LX10 fermentation liquid based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. CONCLUSION Altogether, the results revealed that E. faecalis LX10 with anti-N. bombycis activity might play an important role in protecting silkworms from microsporidia. Removal of these specific commensal bacteria with antibiotics and utilization of transgenic symbiotic systems may effectively improve the biocontrol value of microsporidia. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Huihui Feng
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Jintao He
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xili Liang
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Nan Zhang
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life ScienceShandong Normal UniversityJinanChina
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
59
|
Li S, Tang R, Yi H, Cao Z, Sun S, Liu TX, Zhang S, Jing X. Neutral Processes Provide an Insight Into the Structure and Function of Gut Microbiota in the Cotton Bollworm. Front Microbiol 2022; 13:849637. [PMID: 35591990 PMCID: PMC9113526 DOI: 10.3389/fmicb.2022.849637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Gut-associated microbes can influence insect health and fitness. Understanding the structure of bacterial communities provides valuable insights on how different species may be selected and their functional characteristics in their hosts. The neutral model is powerful in predicting the structure of microbial communities, but its application in insects remains rare. Here, we examined the contribution of neutral processes to the gut-associated bacterial communities in Helicoverpa armigera caterpillars collected from different maize varieties at four locations. The gut-associated bacteria can be assigned to 37 Phyla, 119 orders, and 515 genera, with each individual gut containing 17–75% of the OTUs and 19–79% of the genera in the pooled samples of each population. The distribution patterns of most (75.59–83.74%) bacterial taxa were in good agreement with the neutral expectations. Of the remaining OTUs, some were detected in more individual hosts than would be predicted by the neutral model (i.e., above-partition), and others were detected in fewer individual hosts than predicted by the neutral model (i.e., below-partition). The bacterial taxa in the above-partitions were potentially selected by the caterpillar hosts, while the bacteria in the below-partitions may be preferentially eliminated by the hosts. Moreover, the gut-associated microbiota seemed to vary between maize varieties and locations, so ecological parameters outside hosts can affect the bacterial communities. Therefore, the structure of gut microbiota in the H. armigera caterpillar was mainly determined by stochastic processes, and the bacteria in the above-partition warrant further investigation for their potential roles in the caterpillar host.
Collapse
Affiliation(s)
- Sali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Rui Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Hao Yi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Zhichao Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Shaolei Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Sicong Zhang
- Shandong Academy of Pesticide Sciences, Jinan, China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
60
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
61
|
Chen B, Mason CJ, Peiffer M, Zhang D, Shao Y, Felton GW. Enterococcal symbionts of caterpillars facilitate the utilization of a suboptimal diet. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104369. [PMID: 35157920 DOI: 10.1016/j.jinsphys.2022.104369] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Bacterial gut symbionts of insect herbivores can impact their host through different mechanisms. However, in most lepidopteran systems we lack experimental examples to explain how specific members of the gut bacterial community influence their host. We used fall armyworm (Spodoptera frugiperda) as a model system to address this objective. We implemented axenic and gnotobiotic techniques using two semi-artificial diets with pinto bean and wheat germ-based components. Following an initial screen of bacterial isolates representing different genera, larvae inoculated with Enterococcus FAW 2-1 exhibited increased body mass on the pinto bean diet, but not on the wheat germ diet. We conducted a systematic bioassay screening of Enterococcus isolated from fall armyworm, revealing they had divergent effects on the hosts' usage pinto bean diet, even among phylogenetically similar isolates. Dilution of the pinto bean diet revealed that larvae performed better on less-concentrated diets, suggesting the presence of a potential toxin. Collectively, these results demonstrate that some gut microorganisms of lepidopterans can benefit the host, but the dietary context is key towards understanding the direction of the response and magnitude of the effect. We provide evidence that gut microorganisms may play a wider role in mediating feeding breadth in lepidopteran pests, but overall impacts could be related to the environmental stress and the metabolic potentials of the microorganisms inhabiting the gut.
Collapse
Affiliation(s)
- Bosheng Chen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA; College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Michelle Peiffer
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dayu Zhang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
62
|
Soh LS, Veera Singham G. Bacterial symbionts influence host susceptibility to fenitrothion and imidacloprid in the obligate hematophagous bed bug, Cimex hemipterus. Sci Rep 2022; 12:4919. [PMID: 35318403 PMCID: PMC8941108 DOI: 10.1038/s41598-022-09015-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/14/2022] [Indexed: 01/04/2023] Open
Abstract
The use of insecticides remains important in managing pest insects. Over the years, many insects manifested physiological and behavioral modifications resulting in reduced efficacy of insecticides targeted against them. Emerging evidence suggests that bacterial symbionts could modulate susceptibility of host insects against insecticides. Here, we explore the influence of host microbiota in affecting the susceptibility of insect host against different insecticides in the blood-sucking bed bug, Cimex hemipterus. Rifampicin antibiotic treatment resulted in increased susceptibility to fenitrothion and imidacloprid, but not against deltamethrin. Meanwhile, the host fitness parameters measured in the present study were not significantly affected by rifampicin treatment, suggesting the role of bacterial symbionts influencing susceptibility against the insecticides. 16S metagenomics sequencing revealed a drastic shift in the composition of several bacterial taxa following rifampicin treatment. The highly abundant Alphaproteobacteria (Wolbachia > 90%) and Gammaproteobacteria (Yersinia > 6%) in control bed bugs were significantly suppressed and replaced by Actinobacteria, Bacilli, and Betaproteobacteria in the rifampicin treated F1 bed bugs, suggesting possibilities of Wolbachia mediating insecticide susceptibility in C. hemipterus. However, no significant changes in the total esterase, GST, and P450 activities were observed following rifampicin treatment, indicating yet unknown bacterial mechanisms explaining the observed phenomena. Re-inoculation of microbial content from control individuals regained the tolerance of rifampicin treated bed bugs to imidacloprid and fenitrothion. This study provides a foundation for a symbiont-mediated mechanism in influencing insecticide susceptibility that was previously unknown to bed bugs.
Collapse
Affiliation(s)
- Li-Shen Soh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
63
|
Muhammad A, He J, Yu T, Sun C, Shi D, Jiang Y, Xianyu Y, Shao Y. Dietary exposure of copper and zinc oxides nanoparticles affect the fitness, enzyme activity, and microbial community of the model insect, silkworm Bombyx mori. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152608. [PMID: 34973320 DOI: 10.1016/j.scitotenv.2021.152608] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 05/24/2023]
Abstract
Copper and Zinc oxides nanoparticles (CuO and ZnO NPs, respectively) are among the most produced and commonly used engineered nanomaterials. They can be released into the environment, thereby causing health concerns and risks to biodiversity that indicate a need to evaluate their toxicological effects in a complex situation. Here, we used the insect model organism silkworm Bombyx mori to address the concerns about the biological effects associated with dietary exposure of CuO and ZnO NPs. ICP-MS analysis revealed significant accumulation of Cu and Zn (the latter being more accumulated) in silkworms' tissues (gut, fat body, silk gland, and malpighian tubule), and some elimination through feces in the respective NPs-exposed groups. NPs-exposures led to a decrease in larval body mass, survivorship, and cocoon production, where the effects of ZnO NPs were more pronounced. We also found that NPs-exposure induced gene expression changes (Attacin, lysozyme, SOD, and Dronc) and altered the activities of antioxidant enzymes (SOD, GST, and CAT), as well as impaired nutrient metabolism (alpha-amylase). Given their antibacterial property, CuO and ZnO NPs decreased species richness and diversity of the gut bacterial community and shifted their configuration to overt microbiome i.e., decreased abundance of probiotics (e.g., Acetobacter) and increased pathobionts (e.g., Pseudomonas, Bacillus, Escherichia, Enterococcus, Ralstonia, etc.) proportions. Overall, this integrated study revealed the unintended negative effects of CuO and ZnO NPs on silkworms and highlighted the potential to inevitably affect all living things due to intensive and possible mishandling of nanomaterials.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Dier Shi
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yan Jiang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China.
| |
Collapse
|
64
|
Aziz Z, Nabil R, Said E, Houria N, Khadija T, Abderrahim L, Lahsen EG. Preliminary Study of the Intestinal Microbial Diversity of Three Acridoidae: Oedipoda fuscocincta, Dociostaurus moroccanus, and Calliptamus barbarus (Acrididae: Orthoptera), in the Moroccan Middle Atlas. Indian J Microbiol 2022; 62:123-129. [PMID: 35068611 PMCID: PMC8758880 DOI: 10.1007/s12088-021-00984-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022] Open
Abstract
Locusts are known for their herbivorous diet that constitutes a nuisance to agriculture worldwide, in Morocco these insects are considered a real threat and are widely distributed in the country. These insects are equipped with a digestive system that allows them to digest huge amounts of plant tissue. To understand the mechanisms allowing this voracity, the current study has focused on the diversity of gut microbiome using biochemical and molecular analysis tools, different bacterial isolates were identified and studied. The present study results showed the presence of four important bacterial families that are present in the intestine of these insects, namely Micrococcaceae, Dermabacteraceae, Bacillaceae, and Pseudomonadaceae. The results of Gram staining showed that 2 of 11 isolates were Gram-negative bacteria, however, only 9 bacterial strains were catalase positive. While, 3 strains (Pseudomonas stutzeri S12, Kocuria rhizophila, and Bacillus thuringiensis S4 and S8) had pectinase activity, while only one strain (Pseudomonas stutzeri S12) had cellulase activity.
Collapse
Affiliation(s)
- Zahri Aziz
- grid.20715.310000 0001 2337 1523Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, 2202, Route d’Imouzzer, Fez, Morocco
| | - Radouane Nabil
- grid.20715.310000 0001 2337 1523Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, 2202, Route d’Imouzzer, Fez, Morocco
| | - Ezrari Said
- grid.20715.310000 0001 2337 1523Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, 2202, Route d’Imouzzer, Fez, Morocco
| | - Nekhla Houria
- grid.20715.310000 0001 2337 1523Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, 2202, Route d’Imouzzer, Fez, Morocco
| | - Tarmoun Khadija
- grid.20715.310000 0001 2337 1523Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, 2202, Route d’Imouzzer, Fez, Morocco
| | - Lazraq Abderrahim
- grid.20715.310000 0001 2337 1523Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, 2202, Route d’Imouzzer, Fez, Morocco
| | - El Ghadraoui Lahsen
- grid.20715.310000 0001 2337 1523Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, 2202, Route d’Imouzzer, Fez, Morocco
| |
Collapse
|
65
|
Hu L, Sun Z, Xu C, Wang J, Mallik AU, Gu C, Chen D, Lu L, Zeng R, Song Y. High nitrogen in maize enriches gut microbiota conferring insecticide tolerance in lepidopteran pest Spodoptera litura. iScience 2022; 25:103726. [PMID: 35072013 PMCID: PMC8762471 DOI: 10.1016/j.isci.2021.103726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/28/2021] [Accepted: 12/30/2021] [Indexed: 12/30/2022] Open
Abstract
Abuse of chemical fertilizers and insecticides has created many environmental and human health hazards. We hypothesized that high nitrogen (N) in crops changes insect gut microbiota leading to enhanced insecticide tolerance. We investigated the effect of high N in maize on gut microbiota and insecticide tolerance of the polyphagous pest Spodoptera litura. Bioassays showed that high N applied in both maize plants and artificial diets significantly enhanced larval growth but reduced larval sensitivity to the insecticide methomyl. High N promoted the gut bacterial abundance in the genus Enterococcus. Inoculation with two strains (E. mundtii and E. casseliflavus) isolated from the larval guts increased larval tolerance to methomyl. Incorporation of antibiotics in a high-N diet increased the larval sensitivity to methomyl. These findings suggest that excessive application of N fertilizer to crops can increase insecticide tolerance of insect pests via changing gut microbiota, leading to increased use of insecticides worldwide. High N applied in maize plants enhances insect tolerance to the insecticide methomyl High N promotes the gut bacterial proliferation in the genus Enterococcus Two gut bacterial strains (E. mundtii and E. casseliflavus) degrade methomyl Depleting the gut microbiota in S. litura increased larval sensitivity to methomyl
Collapse
Affiliation(s)
- Lin Hu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuicui Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Azim U. Mallik
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Chengzhen Gu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Corresponding author
| |
Collapse
|
66
|
Genetic Code Expansion System for Tight Control of Gene Expression in Bombyx mori Cell Lines. INSECTS 2021; 12:insects12121081. [PMID: 34940169 PMCID: PMC8709394 DOI: 10.3390/insects12121081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Bombyx mori is a lepidopteran insect with economic value. Its genetic background is clear, and genome sequence is relatively complete, but the function of many genes has not been determined. The genetic code expansion system has become an important means of gene function research. In this study, a genetic code expansion system suitable for B. mori cells was established. This system included a modified tRNAPyl/Pyrrolysyl-tRNA synthetase (PylRS) pair from Methanosarcina mazei, the reporter gene D[TAG]G formed by DsRed and EGFP through amber stop codon TAG connection and the unnatural amino acid H-Lys(Boc)-OH. In silkworm BmE and BmNs cell lines, the reporter gene expression was strictly controlled by H-Lys(Boc)-OH in the presence of both PylRS and tRNAPyl. The silkworm genetic code expansion system established here is another useful controllable gene expression system besides tetracycline induced expression system. Abstract Inducible gene expression systems are important tools for studying gene function and to control protein synthesis. With the completion of the detailed map of the silkworm (Bombyx mori) genome, the study of Bombyx mori has entered the post-genome era. While the functions of many genes have been described in detail, many coding genes remain unidentified. Except for the available tetracycline induction system, there is currently a dearth of other effective induction systems for B. mori. A genetic code expansion system can be used for protein labeling and to regulate gene expression. Here, we have established a genetic code expansion system for B. mori based on the well-researched tRNAPyl/PylRS pair from Methanosarcina mazei. We used H-Lys(Boc)-OH, which is a lysine derivative to efficiently and tightly control the expression of the reporter gene DsRed[TAG]EGFP (D[TAG]G), which encoded a H-Lys(Boc)-OH-bearing protein fused with DsRed and EGFP (here regarded as D[Boc]G) in B. mori cell lines BmE and BmNs. In D[TAG]G, the amber stop codon is recognized as the orthogonal tRNAPyl. Successful application of genetic code expansion system in silkworm cell lines will support the research into the function of silkworm genes and paves the way for the identification of new genes and protein markers in silkworm.
Collapse
|
67
|
Mason CJ, Peiffer M, St Clair A, Hoover K, Felton GW. Concerted impacts of antiherbivore defenses and opportunistic Serratia pathogens on the fall armyworm (Spodoptera frugiperda). Oecologia 2021; 198:167-178. [PMID: 34741665 DOI: 10.1007/s00442-021-05072-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Insects frequently confront different microbial assemblages. Bacteria inhabiting an insect gut are often commensal, but some can become pathogenic when the insect is compromised from different stressors. Herbivores are often confronted by various forms of plant resistance, but how defenses generate opportunistic microbial infections from residents in the gut are not well understood. In this study, we evaluated the pathogenic tendencies of Serratia isolated from the digestive system of healthy fall armyworm larvae (Spodoptera frugiperda) and how it interfaces with plant defenses. We initially selected Serratia strains that varied in their direct expression of virulence factors. Inoculation of the different isolates into the fall armyworm body cavity indicated differing levels of pathogenicity, with some strains exhibiting no effects while others causing mortality 24 h after injection. Oral inoculations of pathogens on larvae provided artificial diets caused marginal (< 7%) mortality. However, when insects were provided different maize genotypes, mortality from Serratia increased and was higher on plants exhibiting elevated levels of herbivore resistance (< 50% mortality). Maize defenses facilitated an initial invasion of pathogenic Serratia into the larval hemocoel¸ which was capable of overcoming insect antimicrobial defenses. Tomato and soybean further indicated elevated mortality due to Serratia compared to artificial diets and differences between plant genotypes. Our results indicate plants can facilitate the incipient emergence of pathobionts within gut of fall armyworm. The ability of resident gut bacteria to switch from a commensal to pathogenic lifestyle has significant ramifications for the host and is likely a broader phenomenon in multitrophic interactions facilitated by plant defenses.
Collapse
Affiliation(s)
- Charles J Mason
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA. .,Tropical Crop and Commodity Protection Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA.
| | - Michelle Peiffer
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Abbi St Clair
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Kelli Hoover
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Gary W Felton
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| |
Collapse
|
68
|
Muhammad A, Zhou X, He J, Zhang N, Shen X, Sun C, Yan B, Shao Y. Toxic effects of acute exposure to polystyrene microplastics and nanoplastics on the model insect, silkworm Bombyx mori. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117255. [PMID: 33964560 DOI: 10.1016/j.envpol.2021.117255] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 05/06/2023]
Abstract
Microplastics and nanoplastics (MPs and NPs, respectively) are major contaminants of environmental concern due to their potentially detrimental effects on aquatic and terrestrial ecosystems. However, little is known about their potential toxicity in terrestrial organisms. Here, we used the model insect silkworm (Bombyx mori) to evaluate the potential hazardous effects of acute exposure (72 h) to polystyrene (PS) MPs and NPs at physiological, molecular, and biochemical levels as well as their impact on pathogen infection. Our results revealed no significant changes in larval body mass or survival. Nevertheless, exposure led to significant alterations in the expression of immunity-related genes (Cecropin A, Lysozyme, SOD, and GST) and antioxidant-mediated protective response (SOD, GST, and CAT enzymes) which differed in the PS-MP and PS-NP groups. Interestingly, PS-MPs induced a stronger immune response (higher expressions of Lysozyme, SOD, and GST genes along with increased activities of SOD, GST, and CAT enzymes) while the PS-NP response was more that of an inhibitory nature (decreased SOD activity and expression). As a result, upon infection with the natural pathogen Serratia marcescens Bm1, the PS-MP-exposed individuals survived the infection better whereas, PS-NP-exposed individuals exhibited significantly higher mortality. Thus, we infer that PS-MPs/NPs present ecological toxicity, which is closely related to their size, and that their exposure may render the organisms vulnerable or confer resistance to pathogen infections and ecotoxicants. Given the suitability of silkworm as a model organism, this study may promote its application for further investigation of the mechanism of adverse outcome pathways and in studies on bio-nano interactions.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
69
|
Zhang N, He J, Shen X, Sun C, Muhammad A, Shao Y. Contribution of sample processing to gut microbiome analysis in the model Lepidoptera, silkworm Bombyx mori. Comput Struct Biotechnol J 2021; 19:4658-4668. [PMID: 34504661 PMCID: PMC8390955 DOI: 10.1016/j.csbj.2021.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Microbes that live inside insects play various roles in host biology, ranging from nutrient supplementation to host defense. Although Lepidoptera (butterflies and moths) are one of the most diverse insect taxa and important in natural ecosystems, their microbiotas are little-studied, and to understand their structure and function, it is necessary to identify potential factors that affect microbiome analysis. Using a model organism, the silkworm Bombyx mori, we investigated the effects of different sample types (whole gut, gut content, gut tissue, starvation, or frass) and metagenomic DNA extraction methodologies (small-scale versus large-scale) on the composition and diversity of the caterpillar gut microbial communities. High-throughput 16S rRNA gene sequencing and computational analysis of the resulting data unraveled that DNA extraction has a large effect on the outcome of metagenomic analysis: significant biases were observed in estimates of community diversity and in the ratio between Gram-positive and Gram-negative bacteria. Furthermore, bacterial communities differed significantly among sample types. The gut content and whole gut samples differed least, both had a higher percentage of Enterococcus and Acinetobacter species; whereas the frass and starvation samples differed substantially from the whole gut and were poor representatives of the gut microbiome. Thus, we recommend a small-scale DNA extraction methodology for sampling the whole gut under normal insect rearing conditions whenever possible, as this approach provides the most accurate assessment of the gut microbiome. Our study highlights that evaluation of the optimal sample-processing approach should be the first step taken to confidently assess the contributions of microbiota to Lepidoptera.
Collapse
Affiliation(s)
- Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China
| |
Collapse
|
70
|
Zhang Y, Liu S, Jiang R, Zhang C, Gao T, Wang Y, Liu C, Long Y, Zhang Y, Yang Y. Wolbachia Strain wGri From the Tea Geometrid Moth Ectropis grisescens Contributes to Its Host's Fecundity. Front Microbiol 2021; 12:694466. [PMID: 34349742 PMCID: PMC8326765 DOI: 10.3389/fmicb.2021.694466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Members of the Wolbachia genus manipulate insect-host reproduction and are the most abundant bacterial endosymbionts of insects. The tea Geometrid moth Ectropis grisescens (Warren) (Lepidoptera: Geometridae) is the most devastating insect pest of tea plants [Camellia sinensis (L.) O. Kuntze] in China. However, limited data on the diversity, typing, or phenotypes of Wolbachia in E. grisescens are available. Here, we used a culture-independent method to compare the gut bacteria of E. grisescens and other tea Geometridae moths. The results showed that the composition of core gut bacteria in larvae of the three Geometridae moth species was similar, except for the presence of Wolbachia. Moreover, Wolbachia was also present in adult female E. grisescens samples. A Wolbachia strain was isolated from E. grisescens and designated as wGri. Comparative analyses showed that this strain shared multilocus sequence types and Wolbachia surface protein hypervariable region profiles with cytoplasmic incompatibility (CI)-inducing strains in supergroup B; however, the wGri-associated phenotypes were undetermined. A reciprocal cross analysis showed that Wolbachia-uninfected females mated with infected males resulted in 100% embryo mortality (0% eggs hatched per female). Eggs produced by mating between uninfected males and infected females hatched normally. These findings indicated that wGri induces strong unidirectional CI in E. grisescens. Additionally, compared with uninfected females, Wolbachia-infected females produced approximately 30-40% more eggs. Together, these results show that this Wolbachia strain induces reproductive CI in E. grisescens and enhances the fecundity of its female host. We also demonstrated that wGri potential influences reproductive communication between E. grisescens and Ectropis obliqua through CI.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Song Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Rui Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tian Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yun Wang
- Lu'an Academy of Agricultural Sciences, Lu'an, China
| | - Cui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yanhua Long
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yinglao Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
71
|
Jackson D, Maltz MR, Freund HL, Borneman J, Aronson E. Environment and Diet Influence the Bacterial Microbiome of Ambigolimax valentianus, an Invasive Slug in California. INSECTS 2021; 12:575. [PMID: 34201881 PMCID: PMC8307491 DOI: 10.3390/insects12070575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022]
Abstract
Ambigolimax valentianus is an invasive European terrestrial gastropod distributed throughout California. It is a serious pest of gardens, plant nurseries, and greenhouses. We evaluated the bacterial microbiome of whole slugs to capture a more detailed picture of bacterial diversity and composition in this host. We concentrated on the influences of diet and environment on the Ambigolimax valentianus core bacterial microbiome as a starting point for obtaining valuable information to aid in future slug microbiome studies. Ambigolimax valentianus were collected from two environments (gardens or reared from eggs in a laboratory). DNA from whole slugs were extracted and next-generation 16S rRNA gene sequencing was performed. Slug microbiomes differed between environmental sources (garden- vs. lab-reared) and were influenced by a sterile diet. Lab-reared slugs fed an unsterile diet harbored greater bacterial species than garden-reared slugs. A small core microbiome was present that was shared across all slug treatments. This is consistent with our hypothesis that a core microbiome is present and will not change due to these treatments. Findings from this study will help elucidate the impacts of slug-assisted bacterial dispersal on soils and plants, while providing valuable information about the slug microbiome for potential integrated pest research applications.
Collapse
Affiliation(s)
- Denise Jackson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
- Natural Science Division, Porterville College, Porterville, CA 93257, USA
| | - Mia R. Maltz
- Center for Conservation Biology, University of California, Riverside, CA 92521, USA;
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Hannah L. Freund
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
| | - Emma Aronson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
- Center for Conservation Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
72
|
Giambò F, Teodoro M, Costa C, Fenga C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115510. [PMID: 34063879 PMCID: PMC8196593 DOI: 10.3390/ijerph18115510] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
In recent years, new targets have been included between the health outcomes induced by pesticide exposure. The gastrointestinal tract is a key physical and biological barrier and it represents a primary site of exposure to toxic agents. Recently, the intestinal microbiota has emerged as a notable factor regulating pesticides’ toxicity. However, the specific mechanisms related to this interaction are not well known. In this review, we discuss the influence of pesticide exposure on the gut microbiota, discussing the factors influencing gut microbial diversity, and we summarize the updated literature. In conclusion, more studies are needed to clarify the host–microbial relationship concerning pesticide exposure and to define new prevention interventions, such as the identification of biomarkers of mucosal barrier function.
Collapse
Affiliation(s)
- Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-2212052
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| |
Collapse
|
73
|
The gut microbiota composition of Trichoplusia ni is altered by diet and may influence its polyphagous behavior. Sci Rep 2021; 11:5786. [PMID: 33707556 PMCID: PMC7970945 DOI: 10.1038/s41598-021-85057-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Insects are known plant pests, and some of them such as Trichoplusia ni feed on a variety of crops. In this study, Trichoplusia ni was fed distinct diets of leaves of Arabidopsis thaliana or Solanum lycopersicum as well as an artificial diet. After four generations, the microbial composition of the insect gut was evaluated to determine if the diet influenced the structure and function of the microbial communities. The population fed with A. thaliana had higher proportions of Shinella, Terribacillus and Propionibacterium, and these genera are known to have tolerance to glucosinolate activity, which is produced by A. thaliana to deter insects. The population fed with S. lycopersicum expressed increased relative abundances of the Agrobacterium and Rhizobium genera. These microbial members can degrade alkaloids, which are produced by S. lycopersicum. All five of these genera were also present in the respective leaves of either A. thaliana or S. lycopersicum, suggesting that these microbes are acquired by the insects from the diet itself. This study describes a potential mechanism used by generalist insects to become habituated to their available diet based on acquisition of phytochemical degrading gut bacteria.
Collapse
|
74
|
Sangannavar PA, Kumar JS, Subrahmanyam G, Kutala S. Genomics and omics tools to assess complex microbial communities in silkworms: A paradigm shift towards translational research. J Microbiol Methods 2021. [DOI: 10.1016/bs.mim.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|