51
|
Rahman MA, Dash R, Sohag AAM, Alam M, Rhim H, Ha H, Moon IS, Uddin MJ, Hannan MA. Prospects of Marine Sterols against Pathobiology of Alzheimer's Disease: Pharmacological Insights and Technological Advances. Mar Drugs 2021; 19:md19030167. [PMID: 33804766 PMCID: PMC8003995 DOI: 10.3390/md19030167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder characterized by a progressive decline in memory and cognition, mostly affecting the elderly. Numerous functional bioactives have been reported in marine organisms, and anti-Alzheimer's agents derived from marine resources have gained attention as a promising approach to treat AD pathogenesis. Marine sterols have been investigated for several health benefits, including anti-cancer, anti-obesity, anti-diabetes, anti-aging, and anti-Alzheimer's activities, owing to their anti-inflammatory and antioxidant properties. Marine sterols interact with various proteins and enzymes participating via diverse cellular systems such as apoptosis, the antioxidant defense system, immune response, and cholesterol homeostasis. Here, we briefly overview the potential of marine sterols against the pathology of AD and provide an insight into their pharmacological mechanisms. We also highlight technological advances that may lead to the potential application of marine sterols in the prevention and therapy of AD.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (I.S.M.)
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea;
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (I.S.M.)
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (M.J.U.); (M.A.H.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Correspondence: (M.J.U.); (M.A.H.)
| |
Collapse
|
52
|
Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar Drugs 2021; 19:md19030165. [PMID: 33808737 PMCID: PMC8003567 DOI: 10.3390/md19030165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.
Collapse
|
53
|
Exploration in the mechanism of fucosterol for the treatment of non-small cell lung cancer based on network pharmacology and molecular docking. Sci Rep 2021; 11:4901. [PMID: 33649481 PMCID: PMC7921686 DOI: 10.1038/s41598-021-84380-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/15/2021] [Indexed: 12/23/2022] Open
Abstract
Fucosterol, a sterol isolated from brown algae, has been demonstrated to have anti-cancer properties. However, the effects and underlying molecular mechanism of fucosterol on non-small cell lung cancer remain to be elucidated. In this study, the corresponding targets of fucosterol were obtained from PharmMapper, and NSCLC related targets were gathered from the GeneCards database, and the candidate targets of fucosterol-treated NSCLC were predicted. The mechanism of fucosterol against NSCLC was identified in DAVID6.8 by enrichment analysis of GO and KEGG, and protein–protein interaction data were collected from STRING database. The hub gene GRB2 was further screened out and verified by molecular docking. Moreover, the relationship of GRB2 expression and immune infiltrates were analyzed by the TIMER database. The results of network pharmacology suggest that fucosterol acts against candidate targets, such as MAPK1, EGFR, GRB2, IGF2, MAPK8, and SRC, which regulate biological processes including negative regulation of the apoptotic process, peptidyl-tyrosine phosphorylation, positive regulation of cell proliferation. The Raf/MEK/ERK signaling pathway initiated by GRB2 showed to be significant in treating NSCLC. In conclusion, our study indicates that fucosterol may suppress NSCLC progression by targeting GRB2 activated the Raf/MEK/ERK signaling pathway, which laying a theoretical foundation for further research and providing scientific support for the development of new drugs.
Collapse
|
54
|
Cheng W, Lu J, Wang B, Sun L, Zhu B, Zhou F, Ding Z. Inhibition of inflammation-induced injury and cell migration by coelonin and militarine in PM 2.5-exposed human lung alveolar epithelial A549 cells. Eur J Pharmacol 2021; 896:173931. [PMID: 33549578 DOI: 10.1016/j.ejphar.2021.173931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Accumulating studies suggest that fine particulate matter (PM2.5) pollutants in the air are easily enter into alveoli and even the bloodstream, resulting in an inflammatory response that not only triggers respiratory disorders but also causes permanent damage to various organs. Recent findings suggest that coelonin and militarine enriched in orchids can inhibit inflammation-induced injury against respiratory diseases. Here, we evaluated the anti-inflammatory properties of coelonin and militarine and examined their underlying molecular mechanisms in A549 cells exposed to PM2.5. PM2.5 induced significant intracellular reactive oxidative stress accumulation at a concentration of 250 μg/ml, as determined using the dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence assay. Cell viability was assessed via the MTS assay to determine the concentrations of compounds appropriate for use in subsequent experiments. Data from the enzyme-linked immunosorbent assay (ELISA) showed that both coelonin (10 and 20 μg/ml) and militarine (5 and 10 μg/ml) mitigated PM2.5-induced inflammation by reducing the generation of inflammatory factors, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Quantitative real-time PCR (qRT-PCR) analysis revealed a remarkable decrease in IL-6, TNF-α, cyclooxygenase-2 (COX-2) and interleukin-1β (IL-1β) mRNA levels in the coelonin and militarine-pretreated groups. In Western blot analysis, expression of inhibitor of NF-κB (IκBα) protein in the coelonin and militarine pretreatment groups was significantly increased compared with the PM2.5 (only) treatment group (P < 0.05), concomitant with a significant decrease in phospho-IκB kinase β/IκB kinase β (p-IKKβ/IKKβ), phospho-nuclear factor of kappa B p65/nuclear factor of kappa B p65 (p-NF-κBp65/NF-κBp65) and COX-2 proteins (P < 0.05). Both coelonin and militarine inhibited migration and inflammation by suppressing PM2.5-induced IKK phosphorylation, and followed by IκBα protein degradation and NF-κB activation. Our collective data strongly supported the utility of coelonin and militarine as novel sources for development of treatments for PM2.5-induced lung diseases.
Collapse
Affiliation(s)
- Wen Cheng
- College of Life Sciences, Zhejiang Chinese Medical University, No.548, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jingjing Lu
- College of Life Sciences, Zhejiang Chinese Medical University, No.548, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Bixu Wang
- College of Medical Technology, Zhejiang Chinese Medical University, No.548, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Ling Sun
- College of Medical Technology, Zhejiang Chinese Medical University, No.548, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Bingqi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, No.548, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Fangmei Zhou
- College of Medical Technology, Zhejiang Chinese Medical University, No.548, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhishan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, No.548, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
55
|
Lu X, Li R, Yan X. Airway hyperresponsiveness development and the toxicity of PM2.5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6374-6391. [PMID: 33394441 DOI: 10.1007/s11356-020-12051-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/10/2020] [Indexed: 04/16/2023]
Abstract
Airway hyperresponsiveness (AHR) is characterized by excessive bronchoconstriction in response to nonspecific stimuli, thereby leading to airway stenosis and increased airway resistance. AHR is recognized as a key characteristic of asthma and is associated with significant morbidity. At present, many studies on the molecular mechanisms of AHR have mainly focused on the imbalance in Th1/Th2 cell function and the abnormal contraction of airway smooth muscle cells. However, the specific mechanisms of AHR remain unclear and need to be systematically elaborated. In addition, the effect of air pollution on the respiratory system has become a worldwide concern. To date, numerous studies have indicated that certain concentrations of fine particulate matter (PM2.5) can increase airway responsiveness and induce acute exacerbation of asthma. Of note, the concentration of PM2.5 does correlate with the degree of AHR. Numerous studies exploring the toxicity of PM2.5 have mainly focused on the inflammatory response, oxidative stress, genotoxicity, apoptosis, autophagy, and so on. However, there have been few reviews systematically elaborating the molecular mechanisms by which PM2.5 induces AHR. The present review separately sheds light on the underlying molecular mechanisms of AHR and PM2.5-induced AHR.
Collapse
Affiliation(s)
- Xi Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Rongqin Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
56
|
Herath KHINM, Kim HJ, Lee JH, Je JG, Yu HS, Jeon YJ, Kim HJ, Jee Y. Sargassum horneri (Turner) C. Agardh containing polyphenols attenuates particulate matter-induced inflammatory response by blocking TLR-mediated MYD88-dependent MAPK signaling pathway in MLE-12 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113340. [PMID: 32891815 DOI: 10.1016/j.jep.2020.113340] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargassum horneri (Turner) C. Agardh (S. horneri), an edible brown marine algae, is known to have immunomodulatory effects and has been used in oriental medicine to treat inflammatory diseases. It is well known that ambient particulate matter (PM) is closely related to increased respiratory diseases inducing lung inflammation. AIM Considering the use of Sargassum horneri in traditional medicine to treat inflammatory diseases, we hypothesized and investigated the use of Sargassum horneri containing polyphenols against PM-induced inflammatory responses. MATERIALS AND METHODS In this study, we evaluated the impact of PM (majority <2.5 μm in diameter) on deep bronchial penetration ability upon inhalation and a therapeutic approach to mitigate its harmful effects using an ethanol extract of Sargassum horneri, an edible brown algae, containing polyphenols on a type II alveolar epithelial cell line, MLE-12. RESULTS PM triggered mRNA expression of toll-like receptors (TLRs) TLR2/4/7, and those TLRs were significantly attenuated by Sargassum horneri extract (SHE). SHE further attenuated the phosphorylation of mitogen-activated protein kinase (MAPK) p38, extracellular signal-regulated kinase 1/2 (Erk1/2), and c-Jun NH (2)-terminal kinase (JNK), which were also activated in PM-exposed cells. Altogether, SHE subdued the PM-induced mRNA expression of pro-inflammatory cytokines (interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6) and lung epithelial cell derived-chemokines (IL-8, monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-C motif) ligand 5 (CCL5)). SHE also suppressed the mRNA expression of PM-induced pro-allergic cytokines thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33. Furthermore, we showed that SHE suppressed the MAPK-dependent signaling pathway by attenuating receptor-associated factor (TRAF) 6 activation of proteins MyD88 and TNF. CONCLUSION Taking all the data together, we suggest that the anti-inflammatory potential of SHE on PM-exposed MLE-12 cells is mediated by the inhibition of PM-triggered downstream signaling along the TLR2/4/7-MyD88-TRAF6 axis of MAPK signaling.
Collapse
Affiliation(s)
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakro, Jeju, 63243, Republic of Korea.
| | - Ju Hee Lee
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakro, Jeju, 63243, Republic of Korea.
| | - Jun Geon Je
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hak-Sun Yu
- Department of Parasitology, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakro, Jeju, 63243, Republic of Korea.
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea; Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
57
|
Rönkkö TJ, Hirvonen MR, Happo MS, Ihantola T, Hakkarainen H, Martikainen MV, Gu C, Wang Q, Jokiniemi J, Komppula M, Jalava PI. Inflammatory responses of urban air PM modulated by chemical composition and different air quality situations in Nanjing, China. ENVIRONMENTAL RESEARCH 2021; 192:110382. [PMID: 33130172 DOI: 10.1016/j.envres.2020.110382] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The health risks of air pollutants and ambient particulate matter (PM) are widely known. PM composition and toxicity have shown substantial spatiotemporal variability. Yet, the connections between PM composition and toxicological and health effects are vaguely understood. This is a crucial gap in knowledge that needs to be addressed in order to establish air quality guidelines and limit values that consider the chemical composition of PM instead of the current assumption of equal toxicity per inhaled dose. Here, we demonstrate further evidence for varying toxicological effects of urban PM at equal mass concentrations, and estimate how PM composition and emission source characteristics influenced this variation. We exposed a co-culture model mimicking alveolar epithelial cells and macrophages with size-segregated urban ambient PM collected before, during, and after the Nanjing Youth Olympic Games 2014. We measured the release of a set of cytokines, cell cycle alterations, and genotoxicity, and assessed the spatiotemporal variations in these responses by factorial multiple regression analysis. Additionally, we investigated how a previously identified set of emission sources and chemical components affected these variations by mixed model analysis. PM-exposure induced cytokine signaling, most notably by inducing dose-dependent increases of macrophage-regulating GM-CSF and proinflammatory TNFα, IL-6, and IL-1β concentrations, modest dose-dependent increase for cytoprotective VEGF-A, but very low to no responses for anti-inflammatory IL-10 and immunoregulatory IFNγ, respectively. We observed substantial differences in proinflammatory cytokine production depending on PM sampling period, location, and time of day. The proinflammatory response correlated positively with cell cycle arrest in G1/G0 phase and loss of cellular metabolic activity. Furthermore, PM0.2 caused dose-dependent increases in sub-G1/G0 cells, suggesting increased DNA degradation and apoptosis. Variations in traffic and oil/fuel combustion emissions contributed substantially to the observed spatiotemporal variations of toxicological responses.
Collapse
Affiliation(s)
- Teemu J Rönkkö
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Maija-Riitta Hirvonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko S Happo
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland; Ramboll Finland Oy, Itsehallintokuja 3, FI-02601, Espoo, Finland
| | - Tuukka Ihantola
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Henri Hakkarainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Maria-Viola Martikainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Cheng Gu
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023, Nanjing, China
| | - Qin'geng Wang
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023, Nanjing, China
| | - Jorma Jokiniemi
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pasi I Jalava
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
58
|
Jayawardena TU, Sanjeewa KKA, Lee HG, Nagahawatta DP, Yang HW, Kang MC, Jeon YJ. Particulate Matter-Induced Inflammation/Oxidative Stress in Macrophages: Fucosterol from Padina boryana as a Potent Protector, Activated via NF-κB/MAPK Pathways and Nrf2/HO-1 Involvement. Mar Drugs 2020; 18:E628. [PMID: 33317054 PMCID: PMC7763233 DOI: 10.3390/md18120628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023] Open
Abstract
Fucosterol is a phytosterol that is abundant in marine brown algae and is a renowned secondary metabolite. However, its ability to protect macrophages against particulate matter (PM) has not been clarified with regard to inflammation; thus, this study aimed to illustrate the above. Padina boryana, a brown algae that is widespread in Indo-Pacific waters, was applied in the isolation of fucosterol. Isolation was conducted using silica open columns, while identification was assisted with gas chromatography-mass spectroscopy (GC-MS) and NMR. Elevated levels of PM led the research objectives toward the implementation of it as a stimulant. Both inflammation and oxidative stress were caused due the fact of its effect. RAW 264.7 macrophages were used as a model system to evaluate the process. It was apparent that the increased NO production levels, due to the PM, were mediated through the inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and pro-inflammatory cytokines (i.e., interleukin-6 (IL-6), interleukin-1 (IL-1β) and tumor necrosis factor-α (TNF-α), including prostaglandin E2 (PGE2)). Further, investigations provided solid evidence regarding the involvement of NF-κB and mitogen-activated protein kinases (MAPKs) in the process. Oxidative stress/inflammation which are inseparable components of the cellular homeostasis were intersected through the Nrf2/HO-1 pathway. Conclusively, fucosterol is a potent protector against PM-induced inflammation in macrophages and hence be utilized as natural product secondary metabolite in a sustainable manner.
Collapse
Affiliation(s)
- Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
| | - K. K. Asanka Sanjeewa
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
| | - D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
| | - Min-Cheol Kang
- Research Group of Process Engineering, Korea Food Research Institute, Jeollabuk-do 55365, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (H.-G.L.); (D.P.N.); (H.-W.Y.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
59
|
Yu H, Guo Y, Zeng X, Gao M, Yang BY, Hu LW, Yu Y, Dong GH. Modification of caesarean section on the associations between air pollution and childhood asthma in seven Chinese cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115443. [PMID: 32892008 DOI: 10.1016/j.envpol.2020.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
It is unknown whether giving birth via caesarean section (c-section) is a modifier for the association between air pollution and asthma. From 2012 to 2013, 59,754 children between the ages of 2 and 17 were randomly selected from 94 middle schools, elementary schools and kindergartens in seven Chinese cities for a cross-sectional study. The children's parents or guardians completed questionnaires, from which data on asthma as well as asthma-related symptoms were obtained. Participants' exposure to particles with an aerodynamic diameter ≤1.0 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10) and exposure to nitrogen dioxide (NO2) were estimated using random forest models. We used mixed effects logistic regression models and added an interaction term between mode of delivery and ambient air pollution into the model to estimate effect modification from c-sections after appropriate adjustments for potential confounding variables. Among children delivered by c-section, the adjusted ORs for asthma and its symptoms per interquartile range (IQR) increase of PM1, PM2.5, PM10 and NO2 (1.20 95% CI: 1.07-1.34 to 2.04 95% CI: 1.87-2.24) were significantly higher than those of children delivered vaginally (1.05 95% CI: 0.92-1.19 to 1.33 95%CI: 1.21-1.47). The interactions between c-sections and ambient air pollution were statistically significant for all studied respiratory disorders, except current wheeze. Delivery via c-section may increase the risks of air pollution on asthma and its symptoms in Chinese children.
Collapse
Affiliation(s)
- Hongyao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
60
|
Hosseini SF, Rezaei M, McClements DJ. Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Crit Rev Food Sci Nutr 2020; 62:1242-1269. [DOI: 10.1080/10408398.2020.1839855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | | |
Collapse
|
61
|
Wang L, Lee W, Jayawardena TU, Cha SH, Jeon YJ. Dieckol, an algae-derived phenolic compound, suppresses airborne particulate matter-induced skin aging by inhibiting the expressions of pro-inflammatory cytokines and matrix metalloproteinases through regulating NF-κB, AP-1, and MAPKs signaling pathways. Food Chem Toxicol 2020; 146:111823. [PMID: 33164846 DOI: 10.1016/j.fct.2020.111823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Exposure to particulate matter causes skin aging. In the present study, we investigated the effect of an algae-derived phenolic compound, dieckol (DK), against Chinese particulate matter (CPM)-stimulated aging in vitro in human dermal fibroblasts (HDF cells) and in vivo in zebrafish. DK effectively protected HDF cells against CPM-induced oxidative stress by scavenging intracellular reactive oxygen species. Moreover, DK significantly improved collagen synthesis and inhibited intracellular collagenase activity in CPM-stimulated HDF cells. In addition, DK remarkably reduced the expression of pro-inflammatory cytokines and matrix metalloproteinases via regulating the nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinases signaling pathways in CPM-stimulated HDF cells. Furthermore, the in vivo test results demonstrated that DK effectively improved the survival rate of CPM-stimulated zebrafish via suppressing oxidative stress and inflammatory response. In conclusion, this study suggests that DK is a potential anti-aging compound that can be used as a therapeutic agent to improve CPM-induced skin aging, or as an ingredient to develop a cosmetic or medicine in the cosmeceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - WonWoo Lee
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Science, Hanseo University, Chungcheognam-do, 32158, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
62
|
Kang DH, Lee TJ, Kim JW, Shin YS, Kim JD, Ryu SW, Ryu S, Choi YH, Kim CH, You E, Rhee S, Song KS. Down-regulation of diesel particulate matter-induced airway inflammation by the PDZ motif peptide of ZO-1. J Cell Mol Med 2020; 24:12211-12218. [PMID: 32931139 PMCID: PMC7579716 DOI: 10.1111/jcmm.15843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/23/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023] Open
Abstract
Although diesel airborne particulate matter (PM2.5) has been known to play a role in many human diseases, there is no direct evidence that therapeutic drugs or proteins can diminish PM2.5-induced diseases. Nevertheless, studies examining the negative control mechanisms of PM2.5-induced diseases are critical to develop novel therapeutic medications. In this study, the consensus PDZ peptide of ZO-1 inhibited PM2.5-induced inflammatory cell infiltration, pro-inflammatory cytokine gene expression, and TEER in bronchoalveolar lavage (BAL) fluid and AM cells. Our data indicated that the PDZ domain in ZO-1 is critical for regulation of the PM2.5-induced inflammatory microenvironment. Therefore, the PDZ peptide may be a potential therapeutic candidate during PM-induced respiratory diseases.
Collapse
Affiliation(s)
- Dong Hee Kang
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, Korea
| | - Ji Wook Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Yu Som Shin
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Ju Deok Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Sung Won Ryu
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Siejeong Ryu
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan, Korea
| | - Cheol Hong Kim
- Department of Pediatrics, Sungkyunkwan University Samsung Changwon Hospital, Changwon, Korea
| | - EunAe You
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - SangMyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Kyoung Seob Song
- Department of Cell Biology, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
63
|
Hannan MA, Dash R, Haque MN, Mohibbullah M, Sohag AAM, Rahman MA, Uddin MJ, Alam M, Moon IS. Neuroprotective Potentials of Marine Algae and Their Bioactive Metabolites: Pharmacological Insights and Therapeutic Advances. Mar Drugs 2020; 18:E347. [PMID: 32630301 PMCID: PMC7401253 DOI: 10.3390/md18070347] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Beyond their significant contribution to the dietary and industrial supplies, marine algae are considered to be a potential source of some unique metabolites with diverse health benefits. The pharmacological properties, such as antioxidant, anti-inflammatory, cholesterol homeostasis, protein clearance and anti-amyloidogenic potentials of algal metabolites endorse their protective efficacy against oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired proteostasis which are known to be implicated in the pathophysiology of neurodegenerative disorders and the associated complications after cerebral ischemia and brain injuries. As was evident in various preclinical studies, algal compounds conferred neuroprotection against a wide range of neurotoxic stressors, such as oxygen/glucose deprivation, hydrogen peroxide, glutamate, amyloid β, or 1-methyl-4-phenylpyridinium (MPP+) and, therefore, hold therapeutic promise for brain disorders. While a significant number of algal compounds with promising neuroprotective capacity have been identified over the last decades, a few of them have had access to clinical trials. However, the recent approval of an algal oligosaccharide, sodium oligomannate, for the treatment of Alzheimer's disease enlightened the future of marine algae-based drug discovery. In this review, we briefly outline the pathophysiology of neurodegenerative diseases and brain injuries for identifying the targets of pharmacological intervention, and then review the literature on the neuroprotective potentials of algal compounds along with the underlying pharmacological mechanism, and present an appraisal on the recent therapeutic advances. We also propose a rational strategy to facilitate algal metabolites-based drug development.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh;
| | - Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (M.A.)
| |
Collapse
|
64
|
Hannan MA, Sohag AAM, Dash R, Haque MN, Mohibbullah M, Oktaviani DF, Hossain MT, Choi HJ, Moon IS. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153201. [PMID: 32276177 DOI: 10.1016/j.phymed.2020.153201] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Marine algae are rich in some unique biologically active secondary metabolites having diverse pharmacological benefits. Of these, sterols comprise a group of functional lipid compounds that have attracted much attention to natural product scientists. PURPOSE This review was aimed to update information on the health effects of algae-derived phytosterols and their molecular interactions in various aspects of human health and diseases and to address some future perspectives that may open up a new dimension of pharmacological potentials of algal sterols. METHODS A literature-based search was carried out to retrieve published research information on the potential health effects of algal phytosterols with their pharmacological mechanisms from accessible online databases, such as Pubmed, Google Scholar, Web of Science, and Scopus, using the key search terms of 'marine algae sterol' and 'health potentials such as antioxidant or anti-inflammatory or anti-Alzheimer's or anti-obesity or cholesterol homeostasis or hepatoprotective, antiproliferative, etc.' RESULTS Phytosterols of marine algae, particularly fucosterol, have been investigated for a plethora of health benefits, including anti-diabetes, anti-obesity, anti-Alzheimer's, antiaging, anticancer, and hepatoprotection, among many others, which are attributed to their antioxidant, anti-inflammatory, immunomodulatory and cholesterol-lowering properties, indicating their potentiality as therapeutic leads. These sterols interact with enzymes and various other proteins that are actively participating in different cellular pathways, including antioxidant defense system, apoptosis and cell survival, metabolism, and homeostasis. CONCLUSION In this review, we briefly overview the chemistry, pharmacokinetics, and distribution of algal sterols, and provide critical insights into their potential health effects and the underlying pharmacological mechanisms, beyond the well-known cholesterol-lowering paradigm.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh
| | - Md Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
65
|
Isolation of an antioxidant peptide from krill protein hydrolysates as a novel agent with potential hepatoprotective effects. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
66
|
Ardon-Dryer K, Mock C, Reyes J, Lahav G. The effect of dust storm particles on single human lung cancer cells. ENVIRONMENTAL RESEARCH 2020; 181:108891. [PMID: 31740036 PMCID: PMC6982605 DOI: 10.1016/j.envres.2019.108891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 05/10/2023]
Abstract
Exposure to dust particles during dust storms can lead to respiratory problems, diseases, and even death. The effect of dust particles at the cellular level is poorly understood. In this study, we investigated the impact that dust storm particles (Montmorillonite) have on human lung epithelial cells (A549) at the single cell level. Using live-cell imaging, we continuously followed individual cells after exposure to a wide range of concentrations of dust particles. We monitored the growth trajectory of each cell including number and timing of divisions, interaction with the dust particles, as well as time and mechanism of cell death. We found that individual cells show different cellular fates (survival or death) even in response to the same dust concentration. Cells that died interacted with dust particles for longer times, and engulfed more dust particles, compared with surviving cells. While higher dust concentrations reduced viability in a dose-dependent manner, the effect on cell death was non-monotonic, with intermediate dust concentration leading to a larger fraction of dying cells compared to lower and higher concentrations. This non-monotonic relationship was explained by our findings that high dust concentrations inhibit cell proliferation. Using cellular morphological features, supported by immunoblots and proinflammatory cytokines, we determined that apoptosis is the dominant death mechanism at low dust concentrations, while higher dust concentrations activate necrosis. Similar single cell approaches can serve as a baseline for evaluating other aerosol types that will improve our understanding of the health-related consequences of exposure to dust storms.
Collapse
Affiliation(s)
- Karin Ardon-Dryer
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA; Department of Geosciences, Atmospheric Science Group, Texas Tech University, 3003 15th Street Department of Geosciences, Atmospheric Science Group, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Caroline Mock
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA
| | - Jose Reyes
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA
| | - Galit Lahav
- Department of System Biology Harvard Medical School Harvard University, 200 Longwood Avenue Warren Alpert Building, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
67
|
Song C, Liu L, Chen J, Hu Y, Li J, Wang B, Bellusci S, Chen C, Dong N. Evidence for the critical role of the PI3K signaling pathway in particulate matter-induced dysregulation of the inflammatory mediators COX-2/PGE 2 and the associated epithelial barrier protein Filaggrin in the bronchial epithelium. Cell Biol Toxicol 2019; 36:301-313. [PMID: 31884678 PMCID: PMC7363729 DOI: 10.1007/s10565-019-09508-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Particulate matter (PM) is an environmental pollutant closely associated with human airway inflammation. However, the molecular mechanisms of PM-related airway inflammation remains to be fully elucidated. It is known that COX-2/PGE2 play key roles in the pathogenesis of airway inflammation. Filaggrin is a transmembrane protein contributing to tight junction barrier function. As such, Filaggrin prevents leakage of transported solutes and is therefore necessary for the maintenance of epithelial integrity. The objective of the present study was to investigate the regulatory mechanisms of COX-2/PGE2 and Filaggrin upon PM exposure both in vivo and in vitro. C57BL/6 mice received intratracheal instillation of PM for two consecutive days. In parallel, human bronchial epithelial cells (HBECs) were exposed to PM for 24 h. PM exposure resulted in airway inflammation together with upregulation of COX-2/PGE2 and downregulation of Filaggrin in mouse lungs. Corresponding dysregulation of COX-2/PGE2 and Filaggrin was also observed in HBECs subjected to PM. PM exposure led to the phosphorylation of ERK, JNK, and PI3K signaling pathways in a time-dependent manner, while blockade of PI3K with the specific molecular inhibitor LY294002 partially reversed the dysregulation of COX-2/PGE2 and Filaggrin. Moreover, pretreatment of HBECs with NS398, a specific molecular inhibitor of COX-2, and AH6809, a downstream PGE2 receptor inhibitor, reversed the downregulation of Filaggrin upon PM exposure. Taken together, these data demonstrated that the PI3K signaling pathway upregulated COX-2 as well as PGE2 and acted as a pivotal mediator in the downregulation of Filaggrin.
Collapse
Affiliation(s)
- Chenjian Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingjing Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junjie Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiran Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingli Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Beibei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Cardio-Pulmonary Institute, Justus Liebig University, Giessen, Germany
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Nian Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
68
|
In Vivo Hepatoprotective Effects of a Peptide Fraction from Krill Protein Hydrolysates against Alcohol-Induced Oxidative Damage. Mar Drugs 2019; 17:md17120690. [PMID: 31817914 PMCID: PMC6950056 DOI: 10.3390/md17120690] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Krill (Euphausia superba) represent the largest animal biomass on earth, and are a rich source of high-quality protein with essential amino acids. Krill-derived peptides are renowned for their antioxidant activities. Hence, these peptides may have protective effects against oxidative stress. Alcoholic liver disease is a prevalent cause of death worldwide. The present study explores the hepatoprotective effects of krill peptide hydrolysate fractions against ethanol-induced liver damage in BALB/c mice. Methods: Hydrolysis was carried out by mimicking the gastrointestinal digestion environment and the filtrate was fractionated based on molecular weight (<1 kDa, 1–3 kDa, and >3 kDa). The 1–3 kDa fraction (KPF), which indicated the highest antioxidant effect, was further investigated for its effect on weight and survival rate increase in mice and its influence on serum glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and liver cholesterol levels. Moreover, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels were measured, followed by Nrf2 and HO-1 expression. Histopathology studies were conducted to assess hepatic tissue damage. Results: KPF enhanced the weight and survival rate of mice while reducing serum glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and liver cholesterol levels. Moreover, KPF upregulated SOD, CAT, and GPx in liver tissues, while downregulating tumor necrosis factor α and interleukin-6 mRNA expression. KPF further increased Nrf2 and HO-1 expression and suppressed ethanol-induced apoptotic proteins in the liver. Histopathology of KPF-treated mice showed less hepatic tissue damage compared to ethanol-treated mice. Conclusions: Hydrolysates and bioactive peptides prepared from krill can be employed as functional foods to enhance liver function and health. Further investigations of KPF could lead to the development of functional foods.
Collapse
|
69
|
Deciphering Molecular Mechanism of the Neuropharmacological Action of Fucosterol through Integrated System Pharmacology and In Silico Analysis. Mar Drugs 2019; 17:md17110639. [PMID: 31766220 PMCID: PMC6891791 DOI: 10.3390/md17110639] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Fucosterol is an algae-derived unique phytosterol having several medicinal properties, including antioxidant, anti-inflammatory, anticholinesterase, neuroprotective, and so on. Accumulated evidence suggests a therapeutic promise of fucosterol in neurodegeneration; however, the in-depth pharmacological mechanism of its neuroprotection is poorly understood. Here, we employed system pharmacology and in silico analysis to elucidate the underlying mechanism of neuropharmacological action of fucosterol against neurodegenerative disorders (NDD). Network pharmacology revealed that fucosterol targets signaling molecules, receptors, enzymes, transporters, transcription factors, cytoskeletal, and various other proteins of cellular pathways, including tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), neurotrophin, and toll-like receptor (TLR) signaling, which are intimately associated with neuronal survival, immune response, and inflammation. Moreover, the molecular simulation study further verified that fucosterol exhibited a significant binding affinity to some of the vital targets, including liver X-receptor-beta (LXR-β), glucocorticoid receptor (GR), tropomyosin receptor kinase B (TrkB), toll-like receptor 2/4 (TLR2/4), and β-secretase (BACE1), which are the crucial regulators of molecular and cellular processes associated with NDD. Together, the present system pharmacology and in silico findings demonstrate that fucosterol might play a significant role in modulating NDD-pathobiology, supporting its therapeutic application for the prevention and treatment of NDD.
Collapse
|
70
|
Saraswati, Giriwono PE, Iskandriati D, Tan CP, Andarwulan N. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review. Mar Drugs 2019; 17:E590. [PMID: 31627414 PMCID: PMC6835611 DOI: 10.3390/md17100590] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
Sargassum is recognized both empirically and scientifically as a potential anti-inflammatory agent. Inflammation is an important response in the body that helps to overcome various challenges to body homeostasis such as microbial infections, tissue stress, and certain injuries. Excessive and uncontrolled inflammatory conditions can affect the pathogenesis of various diseases. This review aims to explore the potential of Sargassum's anti-inflammatory activity, not only in crude extracts but also in sulfated polysaccharides and purified compounds. The tropical region has a promising availability of Sargassum biomass because its climate allows for the optimal growth of seaweed throughout the year. This is important for its commercial utilization as functional ingredients for both food and non-food applications. To the best of our knowledge, studies related to Sargassum's anti-inflammatory activity are still dominated by subtropical species. Studies on tropical Sargassum are mainly focused on the polysaccharides group, though there are some other potentially bioactive compounds such as polyphenols, terpenoids, fucoxanthin, fatty acids and their derivatives, typical polar lipids, and other groups. Information on the modulation mechanism of Sargassum's bioactive compounds on the inflammatory response is also discussed here, but specific mechanisms related to the interaction between bioactive compounds and targets in cells still need to be further studied.
Collapse
Affiliation(s)
- Saraswati
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
| | - Puspo Edi Giriwono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
- Southeast Asian Food and Agricultural Science Technology (SEAFAST) Center, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Diah Iskandriati
- Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia;
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nuri Andarwulan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia; (S.); (P.E.G.)
- Southeast Asian Food and Agricultural Science Technology (SEAFAST) Center, Bogor Agricultural University, Bogor 16680, Indonesia
| |
Collapse
|
71
|
Le Y, Hu X, Zhu J, Wang C, Yang Z, Lu D. Ambient fine particulate matter induces inflammatory responses of vascular endothelial cells through activating TLR-mediated pathway. Toxicol Ind Health 2019; 35:670-678. [PMID: 31601156 DOI: 10.1177/0748233719871778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims to investigate the role of Toll-like receptors (TLRs) on fine particulate matter (PM2.5)-induced inflammatory responses of vascular endothelial cells. Inflammatory factors and TLRs were examined in the aorta of mice after nonsurgical intratracheal instillation of PM2.5 as well as in the human umbilical vein endothelial cells (HUVECs) treated with PM2.5. In addition, the effects of TLR2 and TLR4 inhibitors in the secretion of interleukin 6 (IL-6) and IL-1β and the expression of TLRs were determined in the HUVECs. The results showed that PM2.5 could increase the expression of IL-1β, IL-6, TLR2, and TLR4 in vitro and in vivo. Anti-TLR2 IgG or TAK242, an inhibitor of TLR4, decreased the secretion of IL-1β and IL-6 by HUVECs and reduced the expression of corresponding TLRs. In conclusion, we demonstrate that both TLR2 and TLR4 are involved in PM2.5-induced inflammatory responses of vascular endothelial cells. Inhibition of TLR2 and TLR4 expression has the potential to prevent PM2.5-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Yifei Le
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Hu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
72
|
Fernando IS, Jayawardena TU, Kim HS, Vaas A, De Silva H, Nanayakkara C, Abeytunga D, Lee W, Ahn G, Lee DS, Yeo IK, Jeon YJ. A keratinocyte and integrated fibroblast culture model for studying particulate matter-induced skin lesions and therapeutic intervention of fucosterol. Life Sci 2019; 233:116714. [DOI: 10.1016/j.lfs.2019.116714] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 01/05/2023]
|
73
|
Luo F, Wei H, Guo H, Li Y, Feng Y, Bian Q, Wang Y. LncRNA MALAT1, an lncRNA acting via the miR-204/ZEB1 pathway, mediates the EMT induced by organic extract of PM2.5 in lung bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 317:L87-L98. [DOI: 10.1152/ajplung.00073.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extensive cohort studies have explored the hazards of particulate matter with aerodynamic diameter 2.5 μm or smaller (PM2.5) to human respiratory health; however, the molecular mechanisms for PM2.5 carcinogenesis are poorly understood. Long non-coding RNAs (lncRNAs) are involved in various pathophysiological processes. In the present study, we investigated the effect of PM2.5 on the epithelial-mesenchymal transition (EMT) in lung bronchial epithelial cells and the underlying mechanisms mediated by an lncRNA. Organic extracts of PM2.5 from Shanghai were used to treat human bronchial epithelial cell lines (HBE and BEAS-2B). The PM2.5 organic extracts induced the EMT and cell transformation. High levels of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), mediated by NF-κB, were involved in the EMT process. For both cell lines, there was a similar response. In addition, MALAT1 interacted with miR-204 and reversed the inhibitory effect of its target gene, ZEB1, thereby contributing to the EMT and malignant transformation. In sum, these findings show that NF-κB transcriptionally regulates MALAT1, which, by binding with miR-204 and releasing ZEB1, promotes the EMT. These results offer an understanding of the regulatory network of the PM2.5-induced EMT that relates to the health risks associated with PM2.5.
Collapse
Affiliation(s)
- Fei Luo
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongying Wei
- The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaqi Guo
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Feng
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yan Wang
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|