51
|
Scott GA, Terstege DJ, Vu AP, Law S, Evans A, Epp JR. Disrupted Neurogenesis in Germ-Free Mice: Effects of Age and Sex. Front Cell Dev Biol 2020; 8:407. [PMID: 32548122 PMCID: PMC7272680 DOI: 10.3389/fcell.2020.00407] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
The gut microbiome has profound effects on development and function of the nervous system. Recent evidence indicates that disruption of the gut microbiome leads to altered hippocampal neurogenesis. Here, we examined whether the effects of gut microbiome disruption on neurogenesis are age-dependent, given that both neurogenesis and the microbiome show age-related changes. Additionally, we examined memory induced functional connectivity of hippocampal networks. Control and germ-free mice at three different ages (4, 8, and 12 weeks) were trained in contextual fear-conditioning, then subsequently tested the following day. Hippocampal neurogenesis, quantified via BrdU and doublecortin, exhibited age-dependent changes relative to controls, with the established age-dependent decrease in neurogenesis being delayed in germ-free mice. Moreover, we found sex-dependent effects of germ-free status on neurogenesis, with 4 week old male germ-free mice having decreased neurogenesis and 8 week old female germ-free mice having increased neurogenesis. To assess systems-level consequences of disrupted neurogenesis, we assessed functional connectivity of hippocampal networks by inducing c-Fos expression with contextual memory retrieval and applying a previously described network analysis. Our results indicate impaired connectivity of the dentate gyrus in germ-free mice in a pattern highly correlated with adult neurogenesis. In control but not germ-free mice, functional connectivity became more refined with age, indicating that age dependent network refinement is disrupted in germ-free mice. Overall, the results show that disruption of the gut microbiome affects hippocampal neurogenesis in an age- and sex-dependent manner and that these changes are also related to changes in the dentate gyrus functional network.
Collapse
Affiliation(s)
- Gavin A Scott
- Cumming School of Medicine, Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Dylan J Terstege
- Cumming School of Medicine, Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Alex P Vu
- Cumming School of Medicine, Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Sampson Law
- Cumming School of Medicine, Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Alexandria Evans
- Cumming School of Medicine, Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Jonathan R Epp
- Cumming School of Medicine, Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
52
|
Paiva IHR, Duarte-Silva E, Peixoto CA. The role of prebiotics in cognition, anxiety, and depression. Eur Neuropsychopharmacol 2020; 34:1-18. [PMID: 32241688 DOI: 10.1016/j.euroneuro.2020.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
The disruption of the gut microbial composition, defined as dysbiosis, has been associated with many neurological disorders with inflammatory components. The alteration of the gut microbiota leads to an increase in pro-inflammatory cytokines that are associated with metabolic diseases (such as obesity and type 2 diabetes), autoimmune arthritis, and neuropsychiatric diseases. Prebiotics are defined as non-digestible carbohydrates and promote the growth of beneficial bacteria such as bifidobacteria and lactobacillus, exert beneficial effects on improving dysbiosis and its associated inflammatory state. Preclinical and clinical data indicated that some prebiotics also have positive impacts on the central nervous system (CNS) due to the modulation of neuroinflammation and thus may have a key role in the modulation of cognitive impairment, anxiety, and depression. The present manuscript reviews the state-of-art of the effects of prebiotics in cognitive impairment, anxiety, and depressive disorders. Data from clinical studies are still scarce, and further clinical trials are needed to corroborate the potential therapeutic cognitive, antidepressant, and anxiolytic of prebiotics. Prebiotics may provide patients suffering from cognitive deficits, depression, and anxiety with a new tool to minimize disease symptoms and increase the quality of life.
Collapse
Affiliation(s)
- Igor Henrique R Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50.670-420 Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Brazil
| | - Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50.670-420 Recife, PE, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50.670-420 Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
53
|
Evans LW, Stratton MS, Ferguson BS. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat Prod Rep 2020; 37:653-676. [PMID: 31993614 PMCID: PMC7577396 DOI: 10.1039/c9np00057g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
54
|
Rodriguez-Gonzalez A, Orio L. Microbiota and Alcohol Use Disorder: Are Psychobiotics a Novel Therapeutic Strategy? Curr Pharm Des 2020; 26:2426-2437. [PMID: 31969090 DOI: 10.2174/1381612826666200122153541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an exciting focus of research attempting to understand neuropsychiatric disorders from a holistic perspective in order to determine the role of gut microbiota in the aetiology and pathogenesis of such disorders. Thus, the possible therapeutic benefits of targeting gut microbiota are being explored for conditions such as stress, depression or schizophrenia. Growing evidence indicates that there is bidirectional communication between gut microbiota and the brain that has an effect on normal CNS functioning and behavioural responses. Alcohol abuse damages the gastrointestinal tract, alters gut microbiota and induces neuroinflammation and cognitive decline. The relationship between alcohol abuse and hypothalamic-pituitary-adrenal axis activation, inflammation and immune regulation has been well documented. In this review, we explore the connection between microbiota, brain function and behaviour, as well as the mechanisms through which alcohol induces microbiota dysbiosis and intestinal barrier dysfunction. Finally, we propose the study of psychobiotics as a novel pharmaceutical strategy to treat alcohol use disorders.
Collapse
Affiliation(s)
- Alicia Rodriguez-Gonzalez
- Department of Psychobiology and Methods in Behavioural Sciences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioural Sciences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
55
|
Capitão LP, Baião R, Baek HK, Kappelmann N, Sharman R, Harvey CJ, Montgomery P, Burnet PW. Prebiotic supplementation does not affect reading and cognitive performance in children: A randomised placebo-controlled study. J Psychopharmacol 2020; 34:148-152. [PMID: 31342840 DOI: 10.1177/0269881119862534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Based on the emerging interest in the effects of gut microbiota on cognition, this proof-of-concept study assessed how children aged 7 to 9 with low reading scores responded to the ingestion of a 3-month prebiotic supplement versus a placebo. As a secondary aim, the effects of the prebiotic on cognition, sleep, behaviour, mood, anxiety, and cortisol were assessed. In this sample, the prebiotic did not affect any of the outcome measures.
Collapse
Affiliation(s)
- Liliana P Capitão
- Department of Psychiatry, University of Oxford, Oxford, UK.,Oxford Health NHS Foundation Trust, Oxford, UK
| | - Rita Baião
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Hee K Baek
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Rachel Sharman
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christopher-James Harvey
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul Montgomery
- Department of Social Policy, Sociology and Criminology, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
56
|
Szeligowski T, Yun AL, Lennox BR, Burnet PWJ. The Gut Microbiome and Schizophrenia: The Current State of the Field and Clinical Applications. Front Psychiatry 2020; 11:156. [PMID: 32226399 PMCID: PMC7080964 DOI: 10.3389/fpsyt.2020.00156] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a debilitating psychiatric disorder, leading to both physical and social morbidity. Despite its importance, the etiology of schizophrenia remains poorly understood. Furthermore, its mainstream treatments fail to address all aspects of the disorder and are associated with significant side-effects. Recently, there has been growing interest in the relationship between the gut microbiome and mental health, including in schizophrenia. In this article, we review the existing evidence implicating dysbiosis in schizophrenia and discuss how the presumed dysbiosis could fit within known hypotheses of its pathogenesis, focusing on inflammation, tryptophan metabolites, and BDNF levels. We also evaluate the clinical potential of manipulating the gut microbiome with probiotics and prebiotics as adjunctive treatments in schizophrenia, based on existing clinical and pre-clinical studies. Overall, the current data showing microbiome alterations in schizophrenia are highly discrepant and insufficient to conclude whether microbiome changes are associated with increased risk of the disorder, or are simply the result of external factors or treatment. Despite some encouraging results of pro/prebiotic supplementation, there is also inconclusive evidence for their efficacy in schizophrenia. Thus, further research and more clinical trials are needed to test the validity of manipulating the gut microbiome to improve the treatment of this disorder.
Collapse
Affiliation(s)
| | - Alexandra Lim Yun
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Belinda R Lennox
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
57
|
De Caro C, Iannone LF, Citraro R, Striano P, De Sarro G, Constanti A, Cryan JF, Russo E. Can we 'seize' the gut microbiota to treat epilepsy? Neurosci Biobehav Rev 2019; 107:750-764. [PMID: 31626816 DOI: 10.1016/j.neubiorev.2019.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
The gut-microbiota, the complex intestinal microbial ecosystem essential to health, is an emerging concept in medicine. Several studies demonstrate a microbiota-gut-brain bidirectional connection via neural, endocrine, metabolic and immune pathways. Accordingly, the gut microbiota has a crucial role in modulating intestinal permeability, to alter local/peripheral immune responses and in production of essential metabolites and neurotransmitters. Its alterations may consequently influence all these pathways that contribute to neuronal hyper-excitability and mirrored neuroinflammation in epilepsy and similarly other neurological conditions. Indeed, pre- and clinical studies support the role of the microbiome in pathogenesis, seizure modulation and responses to treatment in epilepsy. Up to now, researchers have focussed attention above all on the brain to develop antiepileptic treatments, but considering the microbiome, could extend our possibilities for developing novel therapies in the future. We provide here a comprehensive overview of the available data on the potential role of gut microbiota in the physiopathology and therapy of epilepsy and the supposed underlying mechanisms.
Collapse
Affiliation(s)
- Carmen De Caro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Luigi Francesco Iannone
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, DINOGMI-Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, IRCCS "G. Gaslini" Institute, Genova, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, 29/39 Brunswick Square, London, United Kingdom
| | - John F Cryan
- UK.APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Emilio Russo
- Science of Health Department, School of Medicine, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
58
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2700] [Impact Index Per Article: 450.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
59
|
Abstract
Short-chain fatty acids (SCFAs), the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract, are speculated to have a key role in microbiota-gut-brain crosstalk. However, the pathways through which SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, research directly exploring the role of SCFAs as potential mediators of the effects of microbiota-targeted interventions on affective and cognitive functioning is sparse, especially in humans. This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota-gut-brain interactions. The effects of SCFAs on cellular systems and their interaction with gut-brain signalling pathways including immune, endocrine, neural and humoral routes are described. The effects of microbiota-targeted interventions such as prebiotics, probiotics and diet on psychological functioning and the putative mediating role of SCFA signalling will also be discussed, as well as the relationship between SCFAs and psychobiological processes. Finally, future directions to facilitate direct investigation of the effect of SCFAs on psychological functioning are outlined.
Collapse
|
60
|
Nourishing the gut microbiota: The potential of prebiotics in microbiota-gut-brain axis research. Behav Brain Sci 2019. [DOI: 10.1017/s0140525x18002856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Dietary fiber and prebiotics consistently modulate microbiota composition and function and hence may constitute a powerful tool in microbiota-gut-brain axis research. However, this is largely ignored in Hooks et al.’s analysis, which highlights the limitations of probiotics in establishing microbiome-mediated effects on neurobehavioral functioning and neglects discussing the potential of prebiotics in warranting the microbiota's role in such effects.
Collapse
|
61
|
Kao ACC, Safarikova J, Marquardt T, Mullins B, Lennox BR, Burnet PWJ. Pro-cognitive effect of a prebiotic in psychosis: A double blind placebo controlled cross-over study. Schizophr Res 2019; 208:460-461. [PMID: 30876680 DOI: 10.1016/j.schres.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Amy Chia-Ching Kao
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Jana Safarikova
- Research & Development Department, Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Tahnee Marquardt
- Research & Development Department, Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Bradley Mullins
- Research & Development Department, Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Belinda R Lennox
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom.
| |
Collapse
|
62
|
Kao ACC, Chan KW, Anthony DC, Lennox BR, Burnet PWJ. Prebiotic reduction of brain histone deacetylase (HDAC) activity and olanzapine-mediated weight gain in rats, are acetate independent. Neuropharmacology 2019; 150:184-191. [DOI: 10.1016/j.neuropharm.2019.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
|
63
|
Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. Int J Mol Sci 2019; 20:ijms20061482. [PMID: 30934533 PMCID: PMC6471396 DOI: 10.3390/ijms20061482] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
A complex bidirectional communication system exists between the gastrointestinal tract and the brain. Initially termed the “gut-brain axis” it is now renamed the “microbiota-gut-brain axis” considering the pivotal role of gut microbiota in maintaining local and systemic homeostasis. Different cellular and molecular pathways act along this axis and strong attention is paid to neuroactive molecules (neurotransmitters, i.e., noradrenaline, dopamine, serotonin, gamma aminobutyric acid and glutamate and metabolites, i.e., tryptophan metabolites), sustaining a possible interkingdom communication system between eukaryota and prokaryota. This review provides a description of the most up-to-date evidence on glutamate as a neurotransmitter/neuromodulator in this bidirectional communication axis. Modulation of glutamatergic receptor activity along the microbiota-gut-brain axis may influence gut (i.e., taste, visceral sensitivity and motility) and brain functions (stress response, mood and behavior) and alterations of glutamatergic transmission may participate to the pathogenesis of local and brain disorders. In this latter context, we will focus on two major gut disorders, such as irritable bowel syndrome and inflammatory bowel disease, both characterized by psychiatric co-morbidity. Research in this area opens the possibility to target glutamatergic neurotransmission, either pharmacologically or by the use of probiotics producing neuroactive molecules, as a therapeutic approach for the treatment of gastrointestinal and related psychiatric disorders.
Collapse
|
64
|
|
65
|
Yang XD, Wang LK, Wu HY, Jiao L. Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis. BMC Anesthesiol 2018; 18:177. [PMID: 30497394 PMCID: PMC6267821 DOI: 10.1186/s12871-018-0642-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/16/2018] [Indexed: 01/10/2023] Open
Abstract
Background Surgery-induced neuroinflammation plays an important role in postoperative cognitive dysfunction (POCD). Gut microbiota is a key regulator of neurological inflammation. Nurturing with prebiotics is an effective microbiota manipulation that can regulate host immunity and cognition. The aim of the present study was to test whether administration of the prebiotic Bimuno® (galactooligosaccharide (B-GOS) mixture) could ameliorate POCD and attenuate surgery-induced neuroinflammation through the microbiota-brain-axis. Methods Adult rats undergoing abdominal surgery under isoflurane anesthesia were fed with water or prebiotic B-GOS supplementation (15 g/L) for 3 weeks. Novel objective recognition task was employed for testing cognitive changes on postoperative day three. Expression of microglial marker Iba-1 in the hippocampus was assessed by immunohistochemical staining. Expression levels of phenotypic gene markers of activated microglia (M1: iNOS, CD68, CD32; M2: Ym1, CD206, and SOCS3) in hippocampus were determined by quantitative polymerase chain reaction (qPCR). Inflammatory cytokines in the hippocampus were assessed using enzyme-linked immunosorbent assay (ELISA). Feces were collected for microbial community analysis. Results Rats exhibited an impairment in novel objective recognition 3 days after surgery compared with control rats (P < .01). In the hippocampus, expressions of Iba-1 and M1 markers of surgical rats were significantly upregulated. Similarly, expressions of SOCS3 and CD206 in the hippocampus were upregulated. Additionally, increasing levels of IL-6 and IL-4 were evident in the hippocampus. Administration of B-GOS significantly alleviated cognitive decline induced by surgery (P < .01). B-GOS-fed rats showed a significantly downregulated activation of microglia and expressions of M1-related genes and SOCS3 and IL-6. While there was no significant difference in expressions of CD206 and Ym1 and IL-4 between the surgical and B-GOS groups. Analysis of gut microbiome found that administration of B-GOS induced a significant change beta diversity of the gut microbiome and proliferation of Bifidobacterium and other potentially anti-inflammatory microbes. Conclusions Administration of B-GOS has a beneficial effect on regulating neuroinflammatory and cognitive impairment in a rat model of abdominal surgery and was associated with the manipulation of gut microbiota.
Collapse
Affiliation(s)
- Xu-Dong Yang
- Department of Anesthesiology, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Li-Kuan Wang
- Department of Anesthesiology, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China.
| | - Hai-Yin Wu
- Department of Anesthesiology, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Liang Jiao
- Department of Anesthesiology, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081, China
| |
Collapse
|
66
|
Kao ACC, Burnet PWJ, Lennox BR. Can prebiotics assist in the management of cognition and weight gain in schizophrenia? Psychoneuroendocrinology 2018; 95:179-185. [PMID: 29883788 DOI: 10.1016/j.psyneuen.2018.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023]
Abstract
Schizophrenia is among the top half of the 25 leading causes of disabilities worldwide with a 10-20 year decrease in life expectancy. Ineffective pharmacotherapy in the management of cognitive deficits and weight gain are known to be significant contributors; therefore interventions that may mitigate one, or both, of these parameters would be highly beneficial. Manipulation of the gut microbiome using dietary supplements such as prebiotics may be one such intervention. Preclinical studies have shown that a 2-4 week dietary supplementation with a prebiotic has beneficial effects on learning and memory, and prevents pro-inflammatory signals that are detrimental to cognitive processes. Furthermore, prebiotics influence metabolism, and in obesity they increase the expression of anorexigenic gut hormones such as peptide tyrosine tyrosine, glucagon-like peptide 1 and leptin, as well as decrease levels of orexigenic hormones such as ghrelin. Despite compelling evidence for the pro-cognitive and neuroprotective effects of prebiotics in rodents, their ability to alleviate cognitive deficits or enhance cognition needs to be evaluated in humans. Here we suggest that important symptoms associated with schizophrenia, such as cognitive impairment and weight gain, may benefit from concurrent prebiotic therapy.
Collapse
Affiliation(s)
- Amy Chia-Ching Kao
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Belinda R Lennox
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom.
| |
Collapse
|
67
|
van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O'Sullivan O, Clarke G, Stanton C, Dinan TG, Cryan JF. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol 2018; 596:4923-4944. [PMID: 30066368 DOI: 10.1113/jp276431] [Citation(s) in RCA: 499] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Chronic (psychosocial) stress changes gut microbiota composition, as well as inducing behavioural and physiological deficits. The microbial metabolites short-chain fatty acids (SCFAs) have been implicated in gastrointestinal functional, (neuro)immune regulation and host metabolism, but their role in stress-induced behavioural and physiological alterations is poorly understood. Administration of SCFAs to mice undergoing psychosocial stress alleviates enduring alterations in anhedonia and heightened stress-responsiveness, as well as stress-induced increases in intestinal permeability. In contrast, chronic stress-induced alterations in body weight gain, faecal SCFAs and the gene expression of the SCFA receptors FFAR2 and FFAR3 remained unaffected by SCFA supplementation. These results present novel insights into mechanisms underpinning the influence of the gut microbiota on brain homeostasis, behaviour and host metabolism, informing the development of microbiota-targeted therapies for stress-related disorders. ABSTRACT There is a growing recognition of the involvement of the gastrointestinal microbiota in the regulation of physiology and behaviour. Microbiota-derived metabolites play a central role in the communication between microbes and their host, with short-chain fatty acids (SCFAs) being perhaps the most studied. SCFAs are primarily derived from fermentation of dietary fibres and play a pivotal role in host gut, metabolic and immune function. All these factors have previously been demonstrated to be adversely affected by stress. Therefore, we sought to assess whether SCFA supplementation could counteract the enduring effects of chronic psychosocial stress. C57BL/6J male mice received oral supplementation of a mixture of the three principle SCFAs (acetate, propionate and butyrate). One week later, mice underwent 3 weeks of repeated psychosocial stress, followed by a comprehensive behavioural analysis. Finally, plasma corticosterone, faecal SCFAs and caecal microbiota composition were assessed. SCFA treatment alleviated psychosocial stress-induced alterations in reward-seeking behaviour, and increased responsiveness to an acute stressor and in vivo intestinal permeability. In addition, SCFAs exhibited behavioural test-specific antidepressant and anxiolytic effects, which were not present when mice had also undergone psychosocial stress. Stress-induced increases in body weight gain, faecal SCFAs and the colonic gene expression of the SCFA receptors free fatty acid receptors 2 and 3 remained unaffected by SCFA supplementation. Moreover, there were no collateral effects on caecal microbiota composition. Taken together, these data show that SCFA supplementation alleviates selective and enduring alterations induced by repeated psychosocial stress and these data may inform future research into microbiota-targeted therapies for stress-related disorders.
Collapse
Affiliation(s)
- Marcel van de Wouw
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Niamh Wiley
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Orla O'Sullivan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| |
Collapse
|
68
|
Sarkar A, Harty S, Lehto SM, Moeller AH, Dinan TG, Dunbar RIM, Cryan JF, Burnet PWJ. The Microbiome in Psychology and Cognitive Neuroscience. Trends Cogn Sci 2018; 22:611-636. [PMID: 29907531 DOI: 10.1016/j.tics.2018.04.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Psychology and microbiology make unlikely friends, but the past decade has witnessed striking bidirectional associations between intrinsic gut microbes and the brain, relationships with largely untested psychological implications. Although microbe-brain relationships are receiving a great deal of attention in biomedicine and neuroscience, psychologists have yet to join this journey. Here, we illustrate microbial associations with emotion, cognition, and social behavior. However, despite considerable enthusiasm and potential, technical and conceptual limitations including low statistical power and lack of mechanistic descriptions prevent a nuanced understanding of microbiome-brain-behavior relationships. Our goal is to describe microbial effects in domains of cognitive significance and the associated challenges to stimulate interdisciplinary research on the contribution of this hidden kingdom to psychological processes.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK; Trinity College, University of Cambridge, Cambridge, UK.
| | - Siobhán Harty
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland
| | - Soili M Lehto
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland; Institute of Clinical Medicine / Psychiatry, University of Eastern Finland, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Andrew H Moeller
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - John F Cryan
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | | |
Collapse
|
69
|
Prebiotic attenuation of olanzapine-induced weight gain in rats: analysis of central and peripheral biomarkers and gut microbiota. Transl Psychiatry 2018; 8:66. [PMID: 29540664 PMCID: PMC5852210 DOI: 10.1038/s41398-018-0116-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Olanzapine is an effective antipsychotic drug but since it causes significant weight gain, it is not well tolerated by psychosis patients. The prebiotic, B-GOS®, attenuates metabolic dysfunction in obese subjects, and in rodents, alters central NMDA receptors and may affect serotonin receptors that are relevant in psychosis. We have determined whether B-GOS® influenced olanzapine-associated weight gain and central NMDA and serotonin receptors. Circulating acetate, IL-1β, IL-8 and TNFα, liver acetyl-CoA carboxylase (ACC), white adipose tissue (WAT) acetate receptor GPR43, and specific faecal bacteria genera were also measured to provide mechanistic information. Adult female Sprague-Dawley rats were administered a B-GOS® (0.5 g/kg/day) solution or water for 21 days, and received a single, daily, intraperitoneal injection of olanzapine or saline on days 8-21. The intake of B-GOS® significantly attenuated olanzapine-induced weight gain without altering frontal cortex 5-HT2AR blockade. Cortical GluN1 levels were elevated by olanzapine in the presence of B-GOS®. Plasma acetate concentrations increased following B-GOS® or olanzapine administration alone, but reduced when prebiotic and drug were administered in combination. This pattern was paralleled by hepatic ACC mRNA expression. The abundance of WAT GPR43 mRNA was reduced by olanzapine, only in the absence of B-GOS®. Co-administration of B-GOS® and olanzapine also elevated plasma TNFα, which is reported to influence lipid metabolism. Finally, B-GOS® elevated faecal Bifidobacterium spp. and reduced some bacteria in the Firmicutes phylum, whilst olanzapine treatment either alone or with B-GOS®, was without effect. These data suggest that inclusion of B-GOS® as an adjunct to olanzapine treatment in schizophrenia may prevent weight gain and have benefits on cognitive function in psychosis. The role of acetate in these effects requires further investigation.
Collapse
|