51
|
Chen Y, Hua R. Therapeutic Efficacy of Conbercept for Inflammatory Choroidal Neovascularization. J Ocul Pharmacol Ther 2018; 34:235-236. [PMID: 29185839 DOI: 10.1089/jop.2017.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yutong Chen
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Rui Hua
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
52
|
Targeting Intramembrane Protein-Protein Interactions: Novel Therapeutic Strategy of Millions Years Old. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:61-99. [PMID: 29459036 PMCID: PMC7102818 DOI: 10.1016/bs.apcsb.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intramembrane protein-protein interactions (PPIs) are involved in transmembrane signal transduction mediated by cell surface receptors and play an important role in health and disease. Recently, receptor-specific modulatory peptides rationally designed using a general platform of transmembrane signaling, the signaling chain homooligomerization (SCHOOL) model, have been proposed to therapeutically target these interactions in a variety of serious diseases with unmet needs including cancer, sepsis, arthritis, retinopathy, and thrombosis. These peptide drug candidates use ligand-independent mechanisms of action (SCHOOL mechanisms) and demonstrate potent efficacy in vitro and in vivo. Recent studies surprisingly revealed that in order to modify and/or escape the host immune response, human viruses use similar mechanisms and modulate cell surface receptors by targeting intramembrane PPIs in a ligand-independent manner. Here, I review these intriguing mechanistic similarities and discuss how the viral strategies optimized over a billion years of the coevolution of viruses and their hosts can help to revolutionize drug discovery science and develop new, disruptive therapies. Examples are given.
Collapse
|
53
|
Quercetin Mitigates Inflammatory Responses Induced by Vascular Endothelial Growth Factor in Mouse Retinal Photoreceptor Cells through Suppression of Nuclear Factor Kappa B. Int J Mol Sci 2017; 18:ijms18112497. [PMID: 29165402 PMCID: PMC5713462 DOI: 10.3390/ijms18112497] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Retinal vascular endothelial growth factor (VEGF) increased by neovascularization is well known as a pathogenic factor in ocular neovascular diseases. However, it is still unclear how retinal neurons are damaged by VEGF. The aims of this study are to demonstrate the inflammatory protein expression regulated by VEGF using mouse photoreceptor-derived cells and the protective effect of quercetin against VEGF-induced inflammatory response. Expression and phosphorylation of protein and expression of mRNA were detected by immunoblot and reverse transcriptase polymerase chain reaction. VEGF-induced degradation of limiting membrane and translocation of nuclear factor kappa B (NF-κB) were analyzed by immunocytochemistry. VEGF treatment activated angiogenic signaling pathway in photoreceptor cells. In addition, adhesion molecules and matrix metalloproteinases were increased in VEGF-treated photoreceptor cells. All these events were reversed by quercetin. Zona occludins-1 and β-catenin decreased by VEGF were recovered by quercetin. NF-κB signaling pathway regulated by VEGF through phosphorylations of mitogen-activated protein kinases (MAPK) and protein kinase B (Akt) was suppressed by quercetin. These results suggest that quercetin suppressed VEGF-induced excessive inflammatory response in retinal photoreceptor cells by inactivation of NF-κB signals through inhibition of MAPKs and Akt. These data may provide a basic information for development of pharmaceuticals or nutraceuticals for treatment of retinal diseases caused by excessive VEGF.
Collapse
|
54
|
On phagocytes and macular degeneration. Prog Retin Eye Res 2017; 61:98-128. [DOI: 10.1016/j.preteyeres.2017.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022]
|
55
|
Jiang H, Wu M, Liu Y, Song L, Li S, Wang X, Zhang YF, Fang J, Wu S. Serine racemase deficiency attenuates choroidal neovascularization and reduces nitric oxide and VEGF levels by retinal pigment epithelial cells. J Neurochem 2017; 143:375-388. [PMID: 28892569 DOI: 10.1111/jnc.14214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
Abstract
Choroidal neovascularization (CNV) is a leading cause of blindness in age-related macular degeneration. Production of vascular endothelial growth factor (VEGF) and macrophage recruitment by retinal pigment epithelial cells (RPE) significantly contributes to the process of CNV in an experimental CNV model. Serine racemase (SR) is expressed in retinal neurons and glial cells, and its product, d-serine, is an endogenous co-agonist of N-methyl-d-aspartate receptor. Activation of the receptor results in production of nitric oxide (. NO), a molecule that promotes retinal and choroidal neovascularization. These observations suggest possible roles of SR in CNV. With laser-injured CNV mice, we found that inactivation of SR-coding gene (Srrnull ) significantly reduced CNV volume, neovascular density, and invading macrophages. We exploited the underlying mechanism in vivo and ex vivo. RPE from wild-type (WT) mice expressed SR. To explore the possible downstream target of SR inactivation, we showed that choroid/RPE homogenates extracted from laser-injured Srrnull mice contained less inducible nitric oxide synthase and decreased phospho-VEGFR2 compared to amounts in WT mice. In vitro, inflammation-primed WT RPEs expressed more inducible NOS, produced more. NO and VEGF than did inflammation-primed Srrnull RPEs. When co-cultured with inflammation-primed Srrnull RPE, significantly fewer RF/6A-a cell line of choroidal endothelial cell, migrated to the opposite side of the insert membrane than did cells co-cultured with pre-treated WT RPE. Altogether, SR deficiency reduces RPE response to laser-induced inflammatory stimuli, resulting in decreased production of a cascade of pro-angiogenic cytokines, including. NO and VEGF, and reduced macrophage recruitment, which contribute synergistically to attenuated angiogenesis.
Collapse
Affiliation(s)
- Haiyan Jiang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Mengjuan Wu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Yimei Liu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Liping Song
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Shifeng Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xianwei Wang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Yun-Feng Zhang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Junxu Fang
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmolgy and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
56
|
Uddin MI, Jayagopal A, Wong A, McCollum GW, Wright DW, Penn JS. Real-time imaging of VCAM-1 mRNA in TNF-α activated retinal microvascular endothelial cells using antisense hairpin-DNA functionalized gold nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:63-71. [PMID: 28890107 DOI: 10.1016/j.nano.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022]
Abstract
Vascular cell adhesion molecule 1 (VCAM-1) is an important inflammatory biomarker correlating with retinal disease progression. Thus, detection of VCAM-1 mRNA expression levels at an early disease stage could be an important predictive biomarker to assess the risk of disease progression and monitoring treatment response. We have developed VCAM-1 targeted antisense hairpin DNA-functionalized gold nanoparticles (AS-VCAM-1 hAuNP) for the real time detection of VCAM-1 mRNA expression levels in retinal endothelial cells. The AS-VCAM-1 hAuNP fluorescence enhancement clearly visualized the TNF-α induced cellular VCAM-1 mRNA levels with high signal to noise ratios compared to normal serum treated cells. The scrambled hAuNP probes were minimally detectable under same image acquisition conditions. Intracellular hAuNPs were detected using transmission electron microscopy (TEM) analysis of the intact cells. In addition, the AS-VCAM-1 hAuNP probes exhibited no acute toxicity to the retinal microvascular endothelial cells as measured by live-dead assay.
Collapse
Affiliation(s)
- Md Imam Uddin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA..
| | - Ashwath Jayagopal
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Alexis Wong
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David W Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA..
| |
Collapse
|
57
|
Zhu Y, Zhang L, Lu Q, Gao Y, Cai Y, Sui A, Su T, Shen X, Xie B. Identification of different macrophage subpopulations with distinct activities in a mouse model of oxygen-induced retinopathy. Int J Mol Med 2017; 40:281-292. [PMID: 28627621 PMCID: PMC5504985 DOI: 10.3892/ijmm.2017.3022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to characterize the phenotypic shift, quantity and role changes in different subgroups of retinal macrophages in a mouse model of oxygen-induced retinopathy (OIR). The mRNA expression levels of macrophage M1 and M2 subgroup marker genes and polarization-associated genes were analyzed by RT-qPCR. The number of M1 and M2 macrophages in our mouse model of OIR was analyzed by flow cytometry at different time points during the progression of OIR. Immunofluorescence whole mount staining of the retinas of mice with OIR was performed at different time points to examine the influx of macrophages, as well as the morphological characteristics and roles of M1 and M2 macrophages. An increased number of macrophages was recruited during the progression of angiogenesis in the retinas of mice with OIR due to the pro-inflammatory microenvironment containing high levels of cell adhesion and leukocyte transendothelial migration molecules. RT-qPCR and flow cytometric analysis at different time points revealed a decline in the number of M1 cells from a significantly high level at post-natal day (P)13 to a relatively normal level at P21, as well as an increase in the number of M2 cells from P13 to P21 in the mice with OIR, implicating a shift of macrophage polarization towards the M2 subtype. Immunofluorescence staining suggested that the M1 cells interacted with endothelial tip cells at the vascular front, while M2 cells embraced the emerging vessels and bridged the neighboring vessel sprouts. Thus, our data indicate that macrophages play an active role in OIR by contributing to the different steps of neovascularization. Our findings indicate that tissue macrophages may be considered as a potential target for the anti-angiogenic therapy of ocular neovascularization disease.
Collapse
Affiliation(s)
- Yanji Zhu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ling Zhang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-9277, USA
| | - Qing Lu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yushuo Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yujuan Cai
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ailing Sui
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Ting Su
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Bing Xie
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
58
|
Vogel RN, Langlo CS, Scoles D, Carroll J, Weinberg DV, Kim JE. High-Resolution Imaging of Intraretinal Structures in Active and Resolved Central Serous Chorioretinopathy. Invest Ophthalmol Vis Sci 2017; 58:42-49. [PMID: 28055101 PMCID: PMC5225998 DOI: 10.1167/iovs.16-20351] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Purpose To improve our understanding of central serous chorioretinopathy (CSC), we performed an analysis of noninvasive, high-resolution retinal imaging in patients with active and resolved CSC. Methods Adaptive optics scanning light ophthalmoscopy (AOSLO) and spectral-domain optical coherence tomography (SD-OCT) were performed on five subjects with CSC. A custom AOSLO system was used to simultaneously collect confocal and split-detector images. Spectral domain–OCT volume scans were used to create en face views of various retinal layers, which then were compared to montaged AOSLO images after coregistration. Results Three distinct types of intraretinal hyperreflective clusters were seen with AOSLO. These clusters had a well-demarcated, round, and granular appearance. Clusters in active CSC over areas of serous retinal detachment were termed type-1. They were found primarily in the outer nuclear layer (ONL) and were associated with large defects in the photoreceptor mosaic and ellipsoid zone. Clusters in areas where the retina had reattached were termed type-2. They also were located primarily in the ONL but showed stability in location over a period of at least 8 months. Smaller clusters in the inner retina along retinal capillaries were termed type-3. Conclusions Retinal imaging in CSC using en face OCT and AOSLO allows precise localization of intraretinal structures and detection of features that cannot be seen with SD-OCT alone. These findings may provide greater insight into the pathophysiology of the active and resolved phases of the disease, and support the hypothesis that intraretinal hyperreflective foci on OCT in CSC are cellular in nature.
Collapse
Affiliation(s)
- Ryan N Vogel
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Christopher S Langlo
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Drew Scoles
- University of Rochester Medical Center, Rochester, New York, United States
| | - Joseph Carroll
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States 2Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - David V Weinberg
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Judy E Kim
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
59
|
Shah RS, Soetikno BT, Yi J, Liu W, Skondra D, Zhang HF, Fawzi AA. Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice. Invest Ophthalmol Vis Sci 2017; 57:OCT86-95. [PMID: 27409510 PMCID: PMC4968775 DOI: 10.1167/iovs.15-18891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study sought to determine the earliest time-point at which evidence of choroidal neovascularization (CNV) could be detected with visible-light optical coherence tomography angiography (vis-OCTA) in a mouse model of laser-induced CNV. Methods Visible light-OCTA was used to study laser-induced CNV at different time-points after laser injury to monitor CNV development and measure CNV lesion size. Measurements obtained from vis-OCTA angiograms were compared with histopathologic measurements from isolectin-stained choroidal flatmounts. Results Choroidal neovascularization area measurements between the vis-OCTA system and isolectin-stained choroidal flatmounts were significantly different in area for days 2 to 4 postlaser injury, and were not significantly different in area for days 5, 7, and 14. Choroidal neovascularization area measurements taken from the stained flatmounts were larger than their vis-OCTA counterparts for all time-points. Both modalities showed a similar trend of CNV size increasing from the day of laser injury until a peak of day 7 postlaser injury and subsequently decreasing by day 14. Conclusions The earliest vis-OCTA can detect the presence of aberrant vessels in a mouse laser-induced CNV model is 5 days after laser injury. Visible light-OCTA was able to visualize the maximum of the CNV network 7 days postlaser injury, in accordance with choroidal flatmount immunostaining. Visible light-OCTA is a reliable tool in both detecting the presence of CNV development, as well as accurately determining the size of the lesion in a mouse laser-induced CNV model.
Collapse
Affiliation(s)
- Ronil S Shah
- Department of Ophthalmology Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Brian T Soetikno
- Department of Ophthalmology Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States 2Functional Optical Imaging Laboratory, Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States 3Med
| | - Ji Yi
- Functional Optical Imaging Laboratory, Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Wenzhong Liu
- Functional Optical Imaging Laboratory, Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Dimitra Skondra
- Department of Ophthalmology Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Hao F Zhang
- Department of Ophthalmology Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States 2Functional Optical Imaging Laboratory, Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States
| | - Amani A Fawzi
- Department of Ophthalmology Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
60
|
Zhou Y, Yoshida S, Kubo Y, Yoshimura T, Kobayashi Y, Nakama T, Yamaguchi M, Ishikawa K, Oshima Y, Ishibashi T. Different distributions of M1 and M2 macrophages in a mouse model of laser-induced choroidal neovascularization. Mol Med Rep 2017; 15:3949-3956. [PMID: 28440413 PMCID: PMC5436148 DOI: 10.3892/mmr.2017.6491] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/04/2016] [Indexed: 01/24/2023] Open
Abstract
Choroidal neovascularization (CNV) is a serious complication of age‑related macular degeneration. The aim of the present study was to investigate the expression and distribution of M1 and M2 macrophages in a laser‑induced CNV adult mouse model. The mRNA expression levels of M1, M2 and pan macrophage markers, and macrophage‑associated angiogenic cytokines, were determined by reverse transcription‑quantitative polymerase chain reaction. Immunofluorescence studies were performed to determine the location of the macrophages. The expression levels of M1 macrophage markers increased to a greater extent compared with M2 markers in the retinal pigment epithelium (RPE)‑choroid complexes following laser photocoagulation. By contrast, the expression levels of M2 macrophage markers increased primarily in the retinas. Immunofluorescence studies revealed that the increased number of cluster of differentiation (CD)206‑positive cells were located primarily in the retina, whereas the CD80‑positive cells were located around the site of CNVs in the RPE‑choroid. In addition, the M1‑associated cytokines increased to a greater extent in the RPE‑choroid complexes, whereas the M2‑associated cytokines were highly expressed in the retinas. These findings indicate that M1 and M2 macrophage numbers increased following CNV; however, the locations were different in this mouse model of laser‑induced CNV. The results of the present study suggest that M1 macrophages have a more direct role in inhibiting the development of CNV.
Collapse
Affiliation(s)
- Yedi Zhou
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yuki Kubo
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Takeru Yoshimura
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yoshiyuki Kobayashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Muneo Yamaguchi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yuji Oshima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
61
|
Abstract
Major advances in mononuclear phagocyte biology have been made but key questions pertinent to their roles in health and disease remain, including in the visual system. One problem concerns how dendritic cells can trigger immune responses from certain tightly regulated immune- privileged sites of the eye. Another, albeit separate, problem involves whether there are functional specializations for microglia versus monocytes in retinal neurodegeneration. In this Review, we examine novel insights in eye immune privilege and, separately, we discuss recent inroads concerning retinal degeneration. Both themes have been extensively studied in the visual system and show parallels with recent findings concerning mononuclear phagocytes in the central nervous system and in the periphery.
Collapse
|
62
|
Adamus G. Can innate and autoimmune reactivity forecast early and advance stages of age-related macular degeneration? Autoimmun Rev 2017; 16:231-236. [PMID: 28137479 PMCID: PMC5334174 DOI: 10.1016/j.autrev.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/03/2016] [Indexed: 01/17/2023]
Abstract
Age-related macular degeneration (AMD) is a major cause of central vision loss in persons over 55years of age in developed countries. AMD is a complex disease in which genetic, environmental and inflammatory factors influence its onset and progression. Elevation in serum anti-retinal autoantibodies, plasma and local activation of complement proteins of the alternative pathway, and increase in secretion of proinflammatory cytokines have been seen over the course of disease. Genetic studies of AMD patients confirmed that genetic variants affecting the alternative complement pathway have a major influence on AMD risk. Because the heterogeneity of this disease, there is no sufficient strategy to identify the disease onset and progression sole based eye examination, thus identification of reliable serological biomarkers for diagnosis, prognosis and response to treatment by sampling patient's blood is necessary. This review provides an outline of the current knowledge on possible serological (autoantibodies, complement factors, cytokines, chemokines) and related genetic biomarkers relevant to the pathology of AMD, and discusses their application for prediction of disease activity and prognosis in AMD.
Collapse
Affiliation(s)
- Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
63
|
Moon CH, Cho H, Kim YK, Park TK. Nestin Expression in the Adult Mouse Retina with Pharmaceutically Induced Retinal Degeneration. J Korean Med Sci 2017; 32:343-351. [PMID: 28049248 PMCID: PMC5220003 DOI: 10.3346/jkms.2017.32.2.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/09/2016] [Indexed: 11/25/2022] Open
Abstract
The present study investigated the temporal pattern and cellular localization of nestin in the adult mouse retina with pharmaceutically induced retinal degeneration using N-methyl-N-nitrosourea (MNU). After a single intraperitoneal injection of MNU in 8-week-old C57BL/6 mice, the animals were sacrificed at 1, 3, 5, 7, and 21 days (n = 6, in each stage). The eyes were examined by means of immunohistochemical tests using nestin, ionized calcium-binding adaptor molecule (Iba-1), CD11b, F4/80, and glial fibrillary acidic protein (GFAP). Western blot analysis and manual cell counting were performed for quantification. Nestin expression was increased after MNU administration. Nestin+/Iba-1+ cells were migrated into outer nuclear layer (ONL) and peaked at day 3 post injection (PI). Nestin+/CD11b+ cells were also mainly identified in ONL at day 3 PI and peaked at day 5. Nestin+/F4/80+ cells were shown in the subretinal space and peaked at day 3 PI. Nestin+/GFAP+ cells were distinctly increased at day 1 PI and peaked at day 5 PI. The up-regulation of nestin expression after MNU administration in adult mouse retinal microglia, and monocyte/macrophage suggests that when retinal degeneration progresses, these cells may revert to a more developmentally immature state. Müller cells also showed reactive gliosis and differentiational changes.
Collapse
Affiliation(s)
- Chan Hee Moon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Heeyoon Cho
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Korea
| | - Yoon Kyung Kim
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
64
|
Hector SM, Sørensen TL. Circulating monocytes and B-lymphocytes in neovascular age-related macular degeneration. Clin Ophthalmol 2017; 11:179-184. [PMID: 28176950 PMCID: PMC5261845 DOI: 10.2147/opth.s121332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Individuals with neovascular age-related macular degeneration (AMD) have altered number and distribution of retinal macrophages and show changes in circulating antibodies. We wanted to investigate the corresponding precursors, with subpopulations. We therefore measured monocyte and B-lymphocyte populations in individuals with neovascular AMD. DESIGN This was an observational case-control study. PARTICIPANTS OR SAMPLES A total of 31 individuals with neovascular AMD and 30 healthy age-matched controls were included. METHODS Patients and controls were interviewed, and ophthalmological examination included visual acuity assessment using the Early Treatment Diabetic Retinopathy Study (ETDRS) chart, spectral domain optical coherence tomography (SD-OCT), slit-lamp examination and fundus photography. Moreover, venous blood was drawn and prepared for flow cytometry. Cells were gated and measured for surface markers. MAIN OUTCOME MEASURES Relative amounts of monocytes and B-lymphocytes with subsets, as well as selected surface markers, were measured. RESULTS The two groups did not significantly differ in age, smoking history, body mass index, physical activity or C-reactive protein (CRP). Total monocytes (percentage of all leukocytes) were lower in the neovascular AMD group (median 5.5%) compared with the level in the control group (6.5%; P-value: 0.028). The percentage of intermediate monocytes positive for cluster of differentiation 11b (CD11b) was lower for AMD patients (99.4%) compared with 100% for the control group (P-value: 0.032). CONCLUSION We observed lower numbers of monocytes, which show a potentially impaired ability to migrate across the endothelial wall in patients with neovascular AMD. These subtle changes could potentially lead to an imbalance in the recruitment of macrophages into the retina during disease development.
Collapse
Affiliation(s)
| | - Torben Lykke Sørensen
- Clinical Eye Research Unit, Zealand University Hospital, Roskilde; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
65
|
Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 2016; 57:134-185. [PMID: 28028001 DOI: 10.1016/j.preteyeres.2016.12.001] [Citation(s) in RCA: 419] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.
Collapse
Affiliation(s)
- Eva M Del Amo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anna-Kaisa Rimpelä
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Emma Heikkinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Otto K Kari
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Eva Ramsay
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tatu Lajunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mechthild Schmitt
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Laura Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Madhushree Bhattacharya
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Dominique Richardson
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tiina Turunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Itkonen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marco Casteleijn
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolsky
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
66
|
Marneros AG. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med 2016; 8:208-31. [PMID: 26912740 PMCID: PMC4772957 DOI: 10.15252/emmm.201505613] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
While increased VEGF‐A has been associated with neovascular age‐related macular degeneration (AMD), it is not known whether VEGF‐A may also promote other age‐related eye diseases. Here, we show that an increase in VEGF‐A is sufficient to cause multiple distinct common aging diseases of the eye, including cataracts and both neovascular and non‐exudative AMD‐like pathologies. In the lens, increased VEGF‐A induces age‐related opacifications that are associated with ERK hyperactivation, increased oxidative damage, and higher expression of the NLRP3 inflammasome effector cytokine IL‐1β. Similarly, increased VEGF‐A induces oxidative stress and IL‐1β expression also in the retinal pigment epithelium (RPE). Targeting NLRP3 inflammasome components or Il1r1 strongly inhibited not only VEGF‐A‐induced cataract formation, but also both neovascular and non‐exudative AMD‐like pathologies. Moreover, increased VEGF‐A expression specifically in the RPE was sufficient to cause choroidal neovascularization (CNV) as in neovascular AMD, which could be inhibited by RPE‐specific inactivation of Flk1, while Tlr2 inactivation strongly reduced CNV. These findings suggest a shared pathogenic role of VEGF‐A‐induced and NLRP3 inflammasome‐mediated IL‐1β activation for multiple distinct ocular aging diseases.
Collapse
Affiliation(s)
- Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
67
|
Macrophage polarization in experimental and clinical choroidal neovascularization. Sci Rep 2016; 6:30933. [PMID: 27489096 PMCID: PMC4973249 DOI: 10.1038/srep30933] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
Macrophages play an important role in the development of age-related macular degeneration (AMD). In this study, the spatial and temporal changes and the polarization of macrophages in murine laser-induced choroidal neovascularization (CNV) were investigated, and the polarized M1 and M2 biomarkers in the aqueous humors of neovascular AMD (nAMD) patients were studied. Macrophages, the main infiltrating inflammatory cells in CNV lesions, were evidenced by a significant increase in F4/80 mRNA expression and by the infiltration of F4/80+ cells in the lesions and the vicinity of laser-induced CNV. The mRNA expressions of M1-related markers were dramatically upregulated in the early stage, while the M2-related markers were slightly upregulated in the middle stage and sustained until the late stage. The results of immunostaining showed a similar early-but-transient M1 pattern and a delayed-but-sustained M2 pattern in laser-induced CNV. In addition, a higher M2/M1 ratio was found in both the murine models (Arg-1/iNOS and CCL22/CXCL10) and the aqueous humors of nAMD patients (CCL22/CXCL10) than in the controls. Our results suggested that the dynamic patterns of M1 and M2 were different in both the experimental and clinical CNV. The M2 macrophages were predominant and may play a more important role in the development of CNV.
Collapse
|
68
|
Myeloid-Specific Blockade of Notch Signaling Attenuates Choroidal Neovascularization through Compromised Macrophage Infiltration and Polarization in Mice. Sci Rep 2016; 6:28617. [PMID: 27339903 PMCID: PMC4919651 DOI: 10.1038/srep28617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
Macrophages have been recognized as an important inflammatory component in choroidal neovascularization (CNV). However, it is unclear how these cells are activated and polarized, how they affect angiogenesis and what the underlining mechanisms are during CNV. Notch signaling has been implicated in macrophage activation. Previously we have shown that inducible disruption of RBP-J, the critical transcription factor of Notch signaling, in adult mice results in enhanced CNV, but it is unclear what is the role of macrophage-specific Notch signaling in the development of CNV. In the current study, by using the myeloid specific RBP-J knockout mouse model combined with the laser-induced CNV model, we show that disruption of Notch signaling in macrophages displayed attenuated CNV growth, reduced macrophage infiltration and activation, and alleviated angiogenic response after laser induction. The inhibition of CNV occurred with reduced expression of VEGF and TNF-α in infiltrating inflammatory macrophages in myeloid specific RBP-J knockout mice. These changes might result in direct inhibition of EC lumen formation, as shown in an in vitro study. Therefore, clinical intervention of Notch signaling in CNV needs to pinpoint myeloid lineage to avoid the counteractive effects of global inhibition.
Collapse
|
69
|
Friend or Foe? Resident Microglia vs Bone Marrow-Derived Microglia and Their Roles in the Retinal Degeneration. Mol Neurobiol 2016; 54:4094-4112. [PMID: 27318678 DOI: 10.1007/s12035-016-9960-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 01/10/2023]
Abstract
Microglia are immune cells in the central nervous system (CNS) that originate from the yolk sac in an embryo. The renewal of the microglia pool in the adult eye consists of two components. In addition to the self-proliferation of resident cells, microglia in the CNS also derive from the bone marrow (BM). BM-derived cells pass through the blood-brain barrier (BBB) or blood-retina barrier (BRB) and differentiate into microglia under specific conditions which involves a complex mechanism. Recent studies have widely investigated the role of resident microglia and BM-derived microglia in the retinal degenerative disease. Both two cell types play dual roles and share many similar functions. However, resident microglia tend to polarize to the M1 phenotype which is pro-inflammatory and neurotoxic, whereas BM-derived microglia mainly polarize to the neuroprotective M2 phenotype in retinal degeneration. The molecular mechanism that underlines the invasion of peripheral cells has led to extensive discussions. In addition to the BBB and BRB disruption, many signaling pathways are involved in this process. Based on these studies, we discuss the roles of these two types of microglia in retinal degeneration disease and the potential clinical application of BM-derived microglia, which may benefit future therapies.
Collapse
|
70
|
Abstract
The aim of the study was to assess the role of inverted internal limiting membrane flap as a treatment option for large traumatic macular holes.This is a prospective noncomparative study in which 12 eyes with large traumatic macular holes (basal diameter of 1300-2800 μm) since 3 to 6 months were subjected to standard 23-gauge vitrectomy with removal of the posterior hyaloid, brilliant blue G (BBG)-assisted internal limiting membrane peeling in a circular fashion keeping it attached to the edge of the hole to create a flap. At the end of the surgery, air fluid exchange was done with inversion of the internal limiting membrane flap inside the macular hole using the soft tipped cannula and sulfur hexafluoride 20% as tamponade. The main follow-up measures are the best corrected visual acuity and the optical coherence tomography for 6 to 9 months.All the included eyes had a closed hole from the first week postoperative and along the follow-up period (6-9 months). The best corrected visual acuity improved from 20/2000 to 20/200 with a median of 20/400 preoperatively to 20/400 to 20/50 with a median of 20/100 at the end of follow-up period.Inverted internal limiting membrane flap is a good adjuvant to standard vitrectomy in the management of large traumatic macular holes that led to the 100% closure rate and improvement of best corrected visual acuity.
Collapse
|
71
|
Kim SJ, Lee HJ, Yun JH, Ko JH, Choi DY, Oh JY. Intravitreal TSG-6 suppresses laser-induced choroidal neovascularization by inhibiting CCR2+ monocyte recruitment. Sci Rep 2015; 5:11872. [PMID: 26149224 PMCID: PMC4493567 DOI: 10.1038/srep11872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/09/2015] [Indexed: 12/29/2022] Open
Abstract
Choroidal neovascularization (CNV) is the hallmark of wet age-related macular degeneration (AMD), one of the leading causes of blindness in the elderly. Although the pathogenesis of CNV is not clear, a number of studies show that ocular-infiltrating macrophages and inflammation play a critical role in the development of CNV. TNFα-stimulated gene/protein (TSG)-6 is a multifunctional endogenous protein that has anti-inflammatory activities partly by regulating macrophage activation. Therefore, we here investigated the therapeutic potential of TSG-6 in a rat model of CNV induced by laser photocoagulation. Time course analysis showed that the expression of VEGF and pro-inflammatory cytokines in the choroid was up-regulated early after laser injury, and gradually decreased to baseline over 14 days. An intravitreal injection of TSG-6 suppressed the expression of VEGF and pro-inflammatory cytokines including CCL2, and reduced the size of CNV. Also, the number of Iba+ and CCR2+ cells including infiltrating macrophages was markedly lower in the CNV lesion of TSG-6-treated eyes. Further analysis identified CCR2+ CD11b+ CD11c+ cells and CCR2+ CD11b-CD11c+ cells as the cell populations that were increased by laser injury and reduced by TSG-6 treatment. Together, the results demonstrate that TSG-6 inhibits inflammation and CCR2+ monocyte recruitment into the choroid, and suppresses the development of CNV.
Collapse
Affiliation(s)
- Sang Jin Kim
- 1] Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea [2] Samsung Biomedical Research Institute, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea
| | - Hyun Ju Lee
- 1] Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea [2] Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - Ji-Hyun Yun
- Samsung Biomedical Research Institute, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea
| | - Jung Hwa Ko
- 1] Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea [2] Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - Da Ye Choi
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Korea
| | - Joo Youn Oh
- 1] Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea [2] Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| |
Collapse
|
72
|
Abundance of infiltrating CD163+ cells in the retina of postmortem eyes with dry and neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2015; 253:1941-5. [PMID: 26148801 DOI: 10.1007/s00417-015-3094-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/17/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Prior research in animal models has suggested that retinal macrophages play an important role in age-related macular degeneration (AMD), but studies have insufficiently characterized the distribution of retinal macrophages in various stages of human AMD. METHODS In this case series, we analyzed H&E, periodic acid-Schiff, and CD163 and CD68 immunostained slides from 56 formaldehyde-fixed, paraffin-embedded autopsy eyes of patients over age 75: 11 age-matched, normal eyes, and 45 AMD eyes. RESULTS Qualitative analysis of the macula and retinal periphery revealed that all eyes contained a significant number of CD163+ cells but a negligible number of CD68+ cells. In normal eyes and eyes with thin or infrequent basal laminar deposits, CD163+ cells were restricted to the inner retina. In contrast, in AMD eyes with thick basal deposits, choroidal neovascular membranes, and geographic atrophy, qualitatively there was a marked increase in the number and size of the CD163+ cells in the outer retina, sub-retinal, and sub-retinal pigment epithelium space in the macula. CONCLUSIONS The changes in number and localization of retinal CD163+ cells in eyes with intermediate-severe AMD support a key role for macrophages in the pathogenesis and progression of the disease. A larger, quantitative study evaluating the distribution of macrophage subpopulations in postmortem AMD eyes is warranted.
Collapse
|
73
|
|
74
|
Malek G, Lad EM. Emerging roles for nuclear receptors in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2014; 71:4617-36. [PMID: 25156067 DOI: 10.1007/s00018-014-1709-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly in the Western world. Over the last 30 years, our understanding of the pathogenesis of the disease has grown exponentially thanks to the results of countless epidemiology, genetic, histological, and biochemical studies. This information, in turn, has led to the identification of multiple biologic pathways potentially involved in development and progression of AMD, including but not limited to inflammation, lipid and extracellular matrix dysregulation, and angiogenesis. Nuclear receptors are a superfamily of transcription factors that have been shown to regulate many of the pathogenic pathways linked with AMD and as such they are emerging as promising targets for therapeutic intervention. In this review, we will present the fundamental phenotypic features of AMD and discuss our current understanding of the pathobiological disease mechanisms. We will introduce the nuclear receptor superfamily and discuss the current literature on their effects on AMD-related pathophysiology.
Collapse
Affiliation(s)
- Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, AERI Room 4006, Durham, NC, 27710, USA,
| | | |
Collapse
|
75
|
Rojas B, Gallego BI, Ramírez AI, Salazar JJ, de Hoz R, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Triviño A, Ramírez JM. Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers. J Neuroinflammation 2014; 11:133. [PMID: 25064005 PMCID: PMC4128533 DOI: 10.1186/1742-2094-11-133] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/15/2014] [Indexed: 01/02/2023] Open
Abstract
Background Glaucomatous optic neuropathy, a leading cause of blindness, can progress despite control of intraocular pressure - currently the main risk factor and target for treatment. Glaucoma progression shares mechanisms with neurodegenerative disease, including microglia activation. In the present model of ocular hypertension (OHT), we have recently described morphological signs of retinal microglia activation and MHC-II upregulation in both the untreated contralateral eyes and OHT eyes. By using immunostaining, we sought to analyze and quantify additional signs of microglia activation and differences depending on the retinal layer. Methods Two groups of adult Swiss mice were used: age-matched control (naïve, n = 12), and lasered (n = 12). In the lasered animals, both OHT eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against Iba-1, MHC-II, CD68, CD86, and Ym1. The Iba-1+ cell number in the plexiform layers (PL) and the photoreceptor outer segment (OS), Iba-1+ arbor area in the PL, and area of the retina occupied by Iba-1+ cells in the nerve fiber layer-ganglion cell layer (NFL-GCL) were quantified. Results The main findings in contralateral eyes and OHT eyes were: i) ameboid microglia in the NFL-GCL and OS; ii) the retraction of processes in all retinal layers; iii) a higher level of branching in PL and in the OS; iv) soma displacement to the nearest cell layers in the PL and OS; v) the reorientation of processes in the OS; vi) MHC-II upregulation in all retinal layers; vii) increased CD68 immunostaining; and viii) CD86 immunolabeling in ameboid cells. In comparison with the control group, a significant increase in the microglial number in the PL, OS, and in the area occupied by Iba-1+ cells in the NFL-GCL, and significant reduction of the arbor area in the PL. In addition, rounded Iba-1+ CD86+ cells in the NFL-GCL, OS and Ym1+ cells, and rod-like microglia in the NFL-GCL were restricted to OHT eyes. Conclusions Several quantitative and qualitative signs of microglia activation are detected both in the contralateral and OHT eyes. Such activation extended beyond the GCL, involving all retinal layers. Differences between the two eyes could help to elucidate glaucoma pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - José M Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Pab VI, 4a, Avenida Complutense s/n, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
76
|
Lahmar I, Pfaff AW, Marcellin L, Sauer A, Moussa A, Babba H, Candolfi E. Müller cell activation and photoreceptor depletion in a mice model of congenital ocular toxoplasmosis. Exp Parasitol 2014; 144:22-6. [PMID: 24929147 DOI: 10.1016/j.exppara.2014.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/10/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Müller glial cells are critically involved in retinal inflammatory processes. Here, we investigate the activation of Müller cells in a model of congenital ocular toxoplasmosis (OT). Four weeks after infection, retinal sections were studied immunohistochemically using the markers glial fibrillary acidic protein (GFAP) and vimentin. Müller cells showed strong up-regulation of both markers, as well as a deteriorated morphology in all infected retinas. Moreover, cell density and color intensity of the outer nuclear layer (ONL) of photoreceptors were decreased. Our results indicate that the severe retinal damage and loss of vision observed in human OT may be not only directly caused by infection but rather mediated by infection induced reactive gliosis.
Collapse
Affiliation(s)
- Ibtissem Lahmar
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France; Laboratoire de Parasitologie - Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia.
| | - Alexander W Pfaff
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France
| | - Luc Marcellin
- Département de Pathologie, Hôpitaux Universitaires de Strasbourg, France
| | - Arnaud Sauer
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France
| | - Adnane Moussa
- Laboratoire d'Anatomie Pathologique, Hôpital Universitaire Fattouma Bourguiba, Monastir, Tunisia
| | - Hamouda Babba
- Laboratoire de Parasitologie - Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Ermanno Candolfi
- Institut de Parasitologie et de Pathologie Tropicale, EA 7292, Fédération de Médecine Translationelle, Université de Strasbourg, France
| |
Collapse
|
77
|
Imai H, Azumi A. The Expansion of RPE Atrophy after the Inverted ILM Flap Technique for a Chronic Large Macular Hole. Case Rep Ophthalmol 2014; 5:83-6. [PMID: 24707278 PMCID: PMC3975172 DOI: 10.1159/000360693] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To report a case of the expansion of submacular retinal pigment epithelium (RPE) atrophy after using the inverted internal limiting membrane (ILM) flap technique for a persisting, large, stage IV macular hole (MH). Case Report A 79-year-old woman presented with a chronic large MH that remained open despite pars plana vitrectomy (PPV). The surgery was performed twice for the MH closure 14 years earlier. ILM peeling was not performed during the previous surgeries. The best-corrected visual acuity (BCVA) with the Landolt ring chart was 0.08 at her visit. The minimum MH diameter was 1,240 μm. Inverted ILM flap technique with 20% SF6 gas tamponade was performed for the MH closure. For the inverted ILM flap technique, 25-gauge PPV and ILM staining with indocyanine green were used. The ILM was peeled off for 2 disc diameters around the MH, but the ILM was not removed completely. The ILM was then inverted and covered the MH. Results One month after surgery, the MH was closed, accompanied by glial cell proliferation spreading from the inverted ILM flap (as reported before). On the other hand, the area of the submacular RPE atrophy, which was already observed 1 week after surgery, gradually increased in size. BCVA improved to 0.3 six months after the surgery. Conclusions The inverted ILM flap technique may be promising even for persisting large MH which were not closed in previous surgeries, but long-term observation is needed because the detailed behavior of the inverted ILM and the Müller cells after surgery is not yet known.
Collapse
Affiliation(s)
- Hisanori Imai
- Department of Ophthalmology, Kobe Kaisei Hospital, and Division of Ophthalmology, Department of Organ Therapeutics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Azumi
- Department of Ophthalmology, Kobe Kaisei Hospital, and Division of Ophthalmology, Department of Organ Therapeutics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
78
|
Chen M, Glenn JV, Dasari S, McVicar C, Ward M, Colhoun L, Quinn M, Bierhaus A, Xu H, Stitt AW. RAGE regulates immune cell infiltration and angiogenesis in choroidal neovascularization. PLoS One 2014; 9:e89548. [PMID: 24586862 PMCID: PMC3935881 DOI: 10.1371/journal.pone.0089548] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/23/2014] [Indexed: 12/17/2022] Open
Abstract
Purpose RAGE regulates pro-inflammatory responses in diverse cells and tissues. This study has investigated if RAGE plays a role in immune cell mobilization and choroidal neovascular pathology that is associated with the neovascular form of age-related macular degeneration (nvAMD). Methods RAGE null (RAGE−/−) mice and age-matched wild type (WT) control mice underwent laser photocoagulation to generate choroidal neovascularization (CNV) lesions which were then analyzed for morphology, S100B immunoreactivity and inflammatory cell infiltration. The chemotactic ability of bone marrow derived macrophages (BMDMs) towards S100B was investigated. Results RAGE expression was significantly increased in the retina during CNV of WT mice (p<0.001). RAGE−/− mice exhibited significantly reduced CNV lesion size when compared to WT controls (p<0.05). S100B mRNA was upregulated in the lasered WT retina but not RAGE−/− retina and S100B immunoreactivity was present within CNV lesions although levels were less when RAGE−/− mice were compared to WT controls. Activated microglia in lesions were considerably less abundant in RAGE−/− mice when compared to WT counterparts (p<0.001). A dose dependent chemotactic migration was observed in BMDMs from WT mice (p<0.05–0.01) but this was not apparent in cells isolated from RAGE−/− mice. Conclusions RAGE-S100B interactions appear to play an important role in CNV lesion formation by regulating pro-inflammatory and angiogenic responses. This study highlights the role of RAGE in inflammation-mediated outer retinal pathology.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Chemotaxis
- Choroidal Neovascularization/immunology
- Choroidal Neovascularization/metabolism
- Choroidal Neovascularization/pathology
- Disease Models, Animal
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/physiology
- Retina/immunology
- Retina/metabolism
- Retina/pathology
- Reverse Transcriptase Polymerase Chain Reaction
- S100 Calcium Binding Protein beta Subunit/genetics
- S100 Calcium Binding Protein beta Subunit/metabolism
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Josephine V. Glenn
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Shilpa Dasari
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Carmel McVicar
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Michael Ward
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Liza Colhoun
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Michael Quinn
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Angelika Bierhaus
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Heping Xu
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
| | - Alan W. Stitt
- Centre for Experimental Medicine, Queen’s University of Belfast, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
79
|
Grunin M, Hagbi-Levi S, Chowers I. The role of monocytes and macrophages in age-related macular degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:199-205. [PMID: 24664699 DOI: 10.1007/978-1-4614-3209-8_26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
White blood cells, particularly monocytes and their descendants, macrophages, have been implicated in age-related macular degeneration (AMD) pathology. In this minireview, we describe the current knowledge of monocyte and macrophage involvement in AMD. Chemokine receptors present on these cells such as CCR1, CCR2, and CX3CR1, and their roles in monocyte/macrophage recruitment to sites of injury and inflammation in the context of AMD will be reviewed. Mice models for perturbation of chemokine receptors that recapitulate some of the features of AMD are also described. The body of evidence from human and rodent studies at this point in time suggests that monocyte and macrophages may modulate the course of AMD.
Collapse
Affiliation(s)
- Michelle Grunin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel,
| | | | | |
Collapse
|
80
|
Espinosa-Heidmann DG, Malek G, Mettu PS, Caicedo A, Saloupis P, Gach S, Dunnon AK, Hu P, Spiga MG, Cousins SW. Bone marrow transplantation transfers age-related susceptibility to neovascular remodeling in murine laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 2013; 54:7439-49. [PMID: 24135751 DOI: 10.1167/iovs.13-12546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Neovascular remodeling (NVR), the progression of small capillaries into large-caliber arterioles with perivascular fibrosis, represents a major therapeutic challenge in neovascular age-related macular degeneration (AMD). Neovascular remodeling occurs after laser-induced choroidal neovascularization (CNV) in aged but not young mice. Additionally, bone marrow-derived cells, including macrophages, endothelial precursor cells, and mesenchymal precursor cells, contribute to CNV severity. In this study, we investigated the impact of aged bone marrow transplantation (BMT) on the degree of fibrosis, size, and vascular morphology of CNV lesions in a mouse model of laser-induced CNV. METHODS Young (2 months) and old (16 months) mice were transplanted with green fluorescent protein (GFP)-labeled bone marrow isolated from either young or old donors. Laser CNV was induced 1 month following transplant, and eyes were analyzed via choroidal flat mounts and immunohistochemistry 1 month postlaser. The identity of cells infiltrating CNV lesions was determined using specific markers for the labeled transplanted cells (GFP+), macrophages (F4/80+), perivascular mesenchymal-derived cells (smooth muscle actin, SMA+), and endothelial cells (CD31+). RESULTS Bone marrow transplantation from aged mice transferred susceptibility to NVR into young recipients. Inversely, transplantation of young marrow into old mice prevented NVR, preserving small size and minimal fibrosis. Mice with NVR demonstrated a greater relative contribution of marrow-derived SMA+ perivascular mesenchymal cells as compared to other cells. CONCLUSIONS Our findings indicate that the status of bone marrow is an important determining factor of neovascular severity. Furthermore, we find that perivascular mesenchymal cells, rather than endothelial cells, derived from aged bone marrow may contribute to increased CNV severity in this murine model of experimental neovascularization.
Collapse
|
81
|
Huang H, Parlier R, Shen JK, Lutty GA, Vinores SA. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV. PLoS One 2013; 8:e71808. [PMID: 23977149 PMCID: PMC3748119 DOI: 10.1371/journal.pone.0071808] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD), the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR) 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV), a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP). Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+), CD45(+) or Iba1(+) cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF) and VEGF-B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1) delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101) had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1(gfp/gfp) and CX3CR1(gfp/+) mice. Minocycline treatment caused a significant increase in lectin(+) cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia/macrophage appears to be a compelling therapeutic strategy to control CNV and treat wet AMD.
Collapse
Affiliation(s)
- Hu Huang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Rachel Parlier
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ji-kui Shen
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gerard A. Lutty
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stanley A. Vinores
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
82
|
Zhao H, Roychoudhury J, Doggett TA, Apte RS, Ferguson TA. Age-dependent changes in FasL (CD95L) modulate macrophage function in a model of age-related macular degeneration. Invest Ophthalmol Vis Sci 2013; 54:5321-31. [PMID: 23821188 DOI: 10.1167/iovs.13-12122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE We examined the effect of aging on Fas ligand (FasL) function in a mouse model of choroidal neovascularization (CNV). METHODS Young and aged mice were laser treated to induce CNV. Bone marrow chimeras were performed between young and aged mice. FasL protein expression was examined in the eye and soluble FasL (sFasL) was measured in the blood. Young and aged mice were treated with a matrix metalloprotease (MMP) inhibitor and systemic sFasL was neutralized by antibody treatment. Macrophages from young and aged mice were tested for sFasL-mediated cytokine production and migration. RESULTS The elevated CNV response observed with aging was dependent on bone marrow-derived cells. FasL expression in the eye was increased with age, but decreased following laser treatment. Aged mice had higher levels of sFasL in the blood compared to young mice. Systemic treatment with an MMP inhibitor decreased bloodborne sFasL, and reduced CNV in young and aged mice. Systemic neutralization of sFasL reduced CNV only in aged mice. sFasL increased cytokine production in aged macrophages and proangiogenic M2 macrophages. Aged M2 macrophages had elevated Fas (CD95) expression and displayed increased migration in response to sFasL compared to M1 macrophages derived from young animals. CONCLUSIONS Age modulates FasL function where increased MMP cleavage leads to a loss of function in the eye. The released form of FasL (sFasL) preferentially induces the migration of proangiogenic M2 macrophages into the laser lesions and increases proangiogenic cytokines promoting CNV. FasL may be a viable target for therapeutic intervention in aged-related neovascular disease.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
83
|
Wang NK, Lai CC, Liu CH, Yeh LK, Chou CL, Kong J, Nagasaki T, Tsang SH, Chien CL. Origin of fundus hyperautofluorescent spots and their role in retinal degeneration in a mouse model of Goldmann-Favre syndrome. Dis Model Mech 2013; 6:1113-22. [PMID: 23828046 PMCID: PMC3759331 DOI: 10.1242/dmm.012112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Goldmann-Favre syndrome, also known as enhanced S-cone syndrome, is an inherited retinal degeneration disease in which a gain of photoreceptor cell types results in retinal dysplasia and degeneration. Although microglia have been implicated in the pathogenesis of many neurodegenerative diseases, the fundamental role of these cells in this disease is unknown. In the current study, sequential analyses suggest that microglia are recruited and appear after outer nuclear layer folding. By crossing rd7 mice (a model for hereditary retinal degeneration owing to Nr2e3 mutation) with mice carrying the macrophage Fas-induced apoptosis (Mafia) transgene, we generated double-mutant mice and studied the role of the resident retinal microglia. Microglial cells in these double-mutant mice express enhanced green fluorescent protein (EGFP) and a suicide gene that can trigger Fas-mediated apoptosis via systemic treatment with AP20187 (FK506 dimerizer). We demonstrated that more than 80% of the EGFP+ cells in retinas from rd7/rd7;Tg/Tg mice express Iba-1 (a microglial marker), and resident microglia are still present in the retina because AP20187 does not cross the blood-brain barrier. Hence, only circulating bone marrow (BM)-derived microglia are depleted. Depletion of circulating BM-derived microglia accelerates retinal degeneration in rd7 mice. An increased number of autofluorescent (AF) spots is a consequence of resident microglia proliferation, which in turn establishes an inflammatory cytokine milieu via the upregulation of IL-1β, IL-6 and TNFα expression. This inflammation is likely to accelerate retinal degeneration. This study not only identifies inflammation as a crucial step in the pathogenesis of retinal degeneration, but also highlights the involvement of specific cytokine genes that could serve as future treatment targets in retinal degenerations.
Collapse
Affiliation(s)
- Nan-Kai Wang
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Capozzi ME, Gordon AY, Penn JS, Jayagopal A. Molecular imaging of retinal disease. J Ocul Pharmacol Ther 2013; 29:275-86. [PMID: 23421501 DOI: 10.1089/jop.2012.0279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Imaging of the eye plays an important role in ocular therapeutic discovery and evaluation in preclinical models and patients. Advances in ophthalmic imaging instrumentation have enabled visualization of the retina at an unprecedented resolution. These developments have contributed toward early detection of the disease, monitoring of disease progression, and assessment of the therapeutic response. These powerful technologies are being further harnessed for clinical applications by configuring instrumentation to detect disease biomarkers in the retina. These biomarkers can be detected either by measuring the intrinsic imaging contrast in tissue, or by the engineering of targeted injectable contrast agents for imaging of the retina at the cellular and molecular level. Such approaches have promise in providing a window on dynamic disease processes in the retina such as inflammation and apoptosis, enabling translation of biomarkers identified in preclinical and clinical studies into useful diagnostic targets. We discuss recently reported and emerging imaging strategies for visualizing diverse cell types and molecular mediators of the retina in vivo during health and disease, and the potential for clinical translation of these approaches.
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-8808, USA
| | | | | | | |
Collapse
|
85
|
Zinkernagel MS, Chinnery HR, Ong ML, Petitjean C, Voigt V, McLenachan S, McMenamin PG, Hill GR, Forrester JV, Wikstrom ME, Degli-Esposti MA. Interferon γ-dependent migration of microglial cells in the retina after systemic cytomegalovirus infection. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:875-85. [PMID: 23313136 DOI: 10.1016/j.ajpath.2012.11.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 02/06/2023]
Abstract
Microglial cells are the resident macrophages of the central nervous system and participate in both innate and adaptive immune responses but can also lead to exacerbation of neurodegenerative pathologies after viral infections. Microglia in the outer layers of the retina and the subretinal space are thought to be involved in retinal diseases where low-grade chronic inflammation and oxidative stress play a role. This study investigated the effect of systemic infection with murine cytomegalovirus on the distribution and dynamics of retinal microglia cells. Systemic infection with murine cytomegalovirus elicited a significant increase in the number of microglia in the subretinal space and an accumulation of iris macrophages, along with morphological signs of activation. Interferon γ (IFN-γ)-deficient mice failed to induce changes in microglia distribution. Bone marrow chimera experiments confirmed that microglial cells in the subretinal space were not recruited from the circulating monocyte pool, but rather represented an accumulation of resident microglial cells from within the retina. Our results demonstrate that a systemic viral infection can lead to IFN-γ-mediated accumulation of microglia into the outer retinal layers and offer proof of concept that systemic viral infections alter the ocular microenvironment and therefore, may influence the course of diseases such as macular degeneration, diabetic retinopathy, or autoimmune uveitis, where low-grade inflammation is implicated.
Collapse
Affiliation(s)
- Martin S Zinkernagel
- Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Ahn SI, Ohn YH, Park TK. Expression Profiles of F4/80 and Nestin in Ocular Immune Cells Following Pharmaceutically Induced Retinal Degeneration in Adult Mice. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2013. [DOI: 10.3341/jkos.2013.54.6.945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sang Il Ahn
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Young Hoon Ohn
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
87
|
Suppression of experimental choroidal neovascularization by curcumin in mice. PLoS One 2012; 7:e53329. [PMID: 23285282 PMCID: PMC3532428 DOI: 10.1371/journal.pone.0053329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 11/30/2012] [Indexed: 01/28/2023] Open
Abstract
Purpose To investigate the effects of curcumin on the development of experimental choroidal neovascularization (CNV) with underlying cellular and molecular mechanisms. Methods C57BL/6N mice were pretreated with intraperitoneal injections of curcumin daily for 3 days prior to laser-induced CNV, and the drug treatments were continued until the end of the study. The CNV area was analyzed by fluorescein-labeled dextran angiography of retinal pigment epithelium (RPE)-choroid flat mounts on day 7 and 14, and CNV leakage was evaluated by fluorescein angiography (FA) on day 14 after laser photocoagulation. The infiltration of F4/80 positive macrophages and GR-1 positive granulocytes were evaluated by immunohistochemistry on RPE-choroid flat mounts on day 3. Their expression in RPE-choroid complex was quantified by real-time PCR (F4/80) and Western blotting (GR-1) on day 3. RPE-choroid levels of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, and intercellular adhesion molecule (ICAM)-1 were examined by ELISA on day 3. Double immunostaining of F4/80 and VEGF was performed on cryo-sections of CNV lesions on day 3. The expression of nuclear factor (NF)-κB and hypoxia-inducible factor (HIF)−1α in the RPE-choroid was determined by Western blotting. Results Curcumin-treated mice had significantly less CNV area (P<0.05) and CNV leakage (P<0.001) than vehicle-treated mice. Curcumin treatment led to significant inhibition of F4/80 positive macrophages (P<0.05) and GR-1 positive granulocytes infiltration (P<0.05). VEGF mainly expressed in F4/80 positive macrophages in laser injury sites, which was suppressed by curcumin treatment (P<0.01). Curcumin inhibited the RPE-choroid levels of TNF-α (P<0.05), MCP-1 (P<0.05) and ICAM-1 (P<0.05), and suppressed the activation of NF-κB in nuclear extracts (P<0.05) and the activation of HIF−1α (P<0.05). Conclusion Curcumin treatment led to the suppression of CNV development together with inflammatory and angiogenic processes including NF-κB and HIF−1α activation, the up-regulation of inflammatory and angiogenic cytokines, and infiltrating macrophages and granulocytes. This provides molecular and cellular evidence of the validity of curcumin supplementation as a therapeutic strategy for the suppression of age-related macular degeneration (AMD)-associated CNV.
Collapse
|
88
|
Wang S, Sorenson CM, Sheibani N. Lack of thrombospondin 1 and exacerbation of choroidal neovascularization. ACTA ACUST UNITED AC 2012; 130:615-20. [PMID: 22232368 DOI: 10.1001/archopthalmol.2011.1892] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To assess the impact of thrombospondin 1(TSP1) deficiency on choroidal neovascularization (CNV)and to determine whether administration of a TSP1 antiangiogenic mimetic peptide attenuates CNV. METHODS The impact of TSP1 deficiency on laser induced CNV was assessed using wild-type (TSP1 +/+) and TSP1-deficient (TSP1 −/−) mice. Three laser burns were placed in each eye of TSP1 +/+ and TSP1 −/− mice to induce CNV. Intravitreal injection of the TSP1 mimetic peptide was performed on days 1 and 7 postlaser in the mice.For quantitative measurements of neovascularization, intercellular adhesion molecule 2 staining was performed at 14 days postlaser of the choroidal-sclera flat mounts. The recruitment of macrophages to the sites of damage was investigated by immunohistochemistry. The CNV area was measured by intercellular adhesion molecule 2 staining and use of ImageJ software. RESULTS The TSP1 −/− mice exhibited significantly larger areas of neovascularization on choroidal flat mounts compared with TSP1 +/ mice. This was consistent with enhanced recruitment of macrophages in TSP1 −/− mice compared with TSP1 +/+ mice 3 days postlaser. The development of CNV was significantly attenuated in mice receiving the TSP1 antiangiogenic mimetic peptide compared with those receiving vehicle alone. CONCLUSIONS Deficiency of TSP1 contributes to enhanced choroidal neovascularization. This is consistent with the anti-inflammatory and antiangiogenic activity of TSP1. The TSP1 antiangiogenic peptide was effective in attenuation of CNV. CLINICAL RELEVANCE Intravitreal injection of TSP1 antiangiogenic mimetic peptides may provide alternative treatment for CNV.
Collapse
Affiliation(s)
- Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, 600 Highland Ave, K6/456 CSC, Madison, WI 53792, USA
| | | | | |
Collapse
|
89
|
Xie P, Kamei M, Suzuki M, Matsumura N, Nishida K, Sakimoto S, Sakaguchi H, Nishida K. Suppression and regression of choroidal neovascularization in mice by a novel CCR2 antagonist, INCB3344. PLoS One 2011; 6:e28933. [PMID: 22205983 PMCID: PMC3242774 DOI: 10.1371/journal.pone.0028933] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/17/2011] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate the effect of an intravitreally administered CCR2 antagonist, INCB3344, on a mouse model of choroidal neovascularization (CNV). METHODS CNV was induced by laser photocoagulation on Day 0 in wild type mice. INCB3344 or vehicle was administered intravitreally immediately after laser application. On Day 14, CNV areas were measured on retinal pigment epithelium (RPE)-choroid flat mounts and histopathologic examination was performed on 7 µm-thick sections. Macrophage infiltration was evaluated by immunohistochemistry on RPE-choroid flat mounts and quantified by flow cytometry on Day 3. Expression of vascular endothelial growth factor (VEGF) protein in RPE-choroid tissue was examined by immunohistochemistry and ELISA, VEGF mRNA in sorted macrophages in RPE-choroid tissue was examine by real-time PCR and expression of phosphorylated extracellular signal-regulated kinase (p-ERK 1/2) in RPE-choroid tissue was measured by Western blot analysis on Day 3. We also evaluated the efficacy of intravitreal INCB3344 to spontaneous CNV detected in Cu, Zn-superoxide dismutase (SOD1) deficient mice. Changes in CNV size were assessed between pre- and 1week post-INCB3344 or vehicle administration in fundus photography and fluorescence angiography (FA). RESULTS The mean CNV area in INCB3344-treated mice decreased by 42.4% compared with the vehicle-treated control mice (p<0.001). INCB3344 treatment significantly inhibited macrophage infiltration into the laser-irradiated area (p<0.001), and suppressed the expression of VEGF protein (p = 0.012), VEGF mRNA in infiltrating macrophages (p<0.001) and the phosphorylation of ERK1/2 (p<0.001). The area of spontaneous CNV in Sod1⁻/⁻ mice regressed by 70.35% in INCB3344-treated animals while no change was detected in vehicle-treated control mice (p<0.001). CONCLUSIONS INCB3344 both inhibits newly forming CNV and regresses established CNV. Controlling inflammation by suppressing macrophage infiltration and angiogenic ability via the CCR-2/MCP-1 signal may be a useful therapeutic strategy for treating CNV associated with age-related macular degeneration.
Collapse
Affiliation(s)
- Ping Xie
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Motohiro Kamei
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mihoko Suzuki
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Nagakazu Matsumura
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kentaro Nishida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Susumu Sakimoto
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirokazu Sakaguchi
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
90
|
Lauer N, Mihlan M, Hartmann A, Schlötzer-Schrehardt U, Keilhauer C, Scholl HPN, Charbel Issa P, Holz F, Weber BHF, Skerka C, Zipfel PF. Complement Regulation at Necrotic Cell Lesions Is Impaired by the Age-Related Macular Degeneration-Associated Factor-H His402 Risk Variant. THE JOURNAL OF IMMUNOLOGY 2011; 187:4374-83. [DOI: 10.4049/jimmunol.1002488] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
91
|
Neri P, Lettieri M, Fortuna C, Manoni M, Giovannini A. Inflammatory choroidal neovascularization. Middle East Afr J Ophthalmol 2011; 16:245-51. [PMID: 20404991 PMCID: PMC2855665 DOI: 10.4103/0974-9233.58422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose and Methods: Choroidal neovascularization (CNV) can be a severe sight-threatening sequela, which can be secondary to both infectious and noninfectious uveitis. This review summarizes the different diseases associated with CNV, highlighting new treatment modalities and the possible strategies, which could be applied for the therapy of this occurrence. Results: Since CNV can often originate from posterior pole lesions and can be hard to identify, an accurate examination is mandatory in order to identify the correct diagnosis. In the majority of cases, fluorescein angiography (FA), indocyanine green angiography (ICGA) and optical coherence tomography (OCT) enable the determination of the clinical characteristics of the CNV. An infectious disease should be looked for to include a suitable therapy when available. The treatment strategy for CNV secondary to noninfectious uveal inflammations should be directed at controlling the inflammatory process. Systemic corticosteroids with or without immunosuppressive agents are indicated even when the CNV occurs with apparently inactive uveitis: Chronic subclinical inflammation can be the basis for the pathogenesis of CNV. Additional therapies aimed directly at the neovascular process, such as the intravitreal anti-Vascular Endothelial Growth Factor (VEGF) agents, are recommended particularly when the therapy shows an insufficient response. Conclusion: CNV secondary to uveitis is a severe sequela leading to significant visual impairment. ICGA is mandatory in order to obtain relevant information about the choroidal status. Several therapeutic options have been considered, but no guidelines are provided at the moment. Moreover, the current data are still only based on case reports or small series. For such reasons, further trials are mandatory to validate the preliminary available results.
Collapse
Affiliation(s)
- Piergiorgi Neri
- The Eye Clinic-Ospedali Riuniti Umberto I-G.M. Lancisi-G. Salesi-Ancona
| | | | | | | | | |
Collapse
|
92
|
PPAR-gamma, Microglial Cells, and Ocular Inflammation: New Venues for Potential Therapeutic Approaches. PPAR Res 2011; 2008:295784. [PMID: 18382616 PMCID: PMC2276614 DOI: 10.1155/2008/295784] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 01/25/2008] [Indexed: 01/06/2023] Open
Abstract
The last decade has witnessed an increasing interest for the role played by the peroxisome proliferator-activated receptor-γ (PPAR-γ) in controlling inflammation in peripheral organs as well as in the brain. Activation of PPAR-γ has been shown to control the response of microglial cells, the main macrophage population found in brain parenchyma, and limit the inflammation. The anti-inflammatory capacity of PPAR-γ agonists has led to the hypothesis that PPAR-γ might be targeted to modulate degenerative brain diseases in which inflammation has been increasingly recognized as a significant component. Recent experimental evidence suggests that PPAR-γ agonists could be exploited to treat ocular diseases such as diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, and optic neuritis where inflammation has relevant role. Additional PPAR-γ agonist beneficial effects could involve amelioration of retinal microcirculation and inhibition of neovascularization. However, PPAR-γ activation could, in some instances, aggravate the ocular pathology, for example, by increasing the synthesis of vascular endothelial growth factor, a proangiogenic factor that could trigger a vicious circle and further deteriorate retinal perfusion. The development of new in vivo and in vitro models to study ocular inflammation and how to modulate for the eye benefit will be instrumental for the search of effective therapies.
Collapse
|
93
|
Buschini E, Piras A, Nuzzi R, Vercelli A. Age related macular degeneration and drusen: neuroinflammation in the retina. Prog Neurobiol 2011; 95:14-25. [PMID: 21740956 DOI: 10.1016/j.pneurobio.2011.05.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 12/19/2022]
Abstract
Inflammation protects from dangerous stimuli, restoring normal tissue homeostasis. Inflammatory response in the nervous system ("neuroinflammation") has distinct features, which are shared in several diseases. The retina is an immune-privileged site, and the tight balance of immune reaction can be disrupted and lead to age-related macular disease (AMD) and to its peculiar sign, the druse. Excessive activation of inflammatory and immunological cascade with subsequent induction of damage, persistent activation of resident immune cells, accumulation of byproducts that exceeds the normal capacity of clearance giving origin to a chronic local inflammation, alterations in the activation of the complement system, infiltration of macrophages, T-lymphocytes and mast-cells from the bloodstream, participate in the mechanisms which originate the drusen. In addition, aging of the retina and AMD involve also para-inflammation, by which immune cells react to persistent stressful stimuli generating low-grade inflammation, aimed at restoring function and maintaining tissue homeostasis by varying the set point in relation to the new altered conditions. This mechanism is also seen in the normal aging retina, but, in the presence of noxious stimuli as in AMD, it can become chronic and have an adverse outcome. Finally, autophagy may provide new insights to understand AMD pathology, due to its contribution in the removal of defective proteins. Therefore, the AMD retina can represent a valuable model to study neuroinflammation, its mechanisms and therapy in a restricted and controllable environment. Targeting these pathways could represent a new way to treat and prevent both exudative and dry forms of AMD.
Collapse
Affiliation(s)
- Elisa Buschini
- NICO, Neuroscience Institute of the Cavalieri Ottolenghi Foundation, University of Torino, Regione Gonzole 10, Orbassano (TO), Italy.
| | | | | | | |
Collapse
|
94
|
Huang H, Shen J, Vinores SA. Blockade of VEGFR1 and 2 suppresses pathological angiogenesis and vascular leakage in the eye. PLoS One 2011; 6:e21411. [PMID: 21731737 PMCID: PMC3120882 DOI: 10.1371/journal.pone.0021411] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/27/2011] [Indexed: 11/29/2022] Open
Abstract
Objective VEGFR1 and 2 signaling have both been increasingly shown to mediate complications of ischemic retinopathies, including retinopathy of prematurity (ROP), age-related macular degeneration (AMD), and diabetic retinopathy (DR). This study evaluates the effects of blocking VEGFR1 and 2 on pathological angiogenesis and vascular leakage in ischemic retinopathy in a model of ROP and in choroidal neovascularization (CNV) in a model of AMD. Materials and Methods Neutralizing antibodies specific for mouse VEGFR1 (MF1) and VEGFR2 (DC101) were administrated systemically. CNV was induced by laser photocoagulation and assessed 14d after laser treatment. Retinal NV was generated in oxygen-induced ischemic retinopathy (OIR) and assessed at p17. NV quantification was determined by measuring NV tufts and vascular leakage was quantified by measuring [3H]-mannitol leakage from blood vessels into the retina. Gene expression was measured by real-time quantitative (Q)PCR. Results VEGFR1 and VEGFR2 expressions were up-regulated during CNV pathogenesis. Both MF1 and DC101 significantly suppressed CNV at 50 mg/kg: DC101 suppressed CNV by 73±5% (p<0.0001) and MF1 by 64±6% (p = 0.0002) in a dosage-dependent manner. The combination of MF1 and DC101 enhanced the inhibitory efficacy and resulted in an accumulation of retinal microglia at the CNV lesion. Similarly, both MF1 and DC101 significantly suppressed retinal NV in OIR at 50 mg/kg: DC101 suppressed retinal NV by 54±8% (p = 0.013) and MF1 by 50±7% (p<0.0002). MF1 was even more effective at inhibiting ischemia-induced BRB breakdown than DC101: the retina/lung leakage ratio for MF1 was reduced by 73±24%, p = 0.001 and for DC101 by 12±4%, p = 0.003. The retina/renal leakage ratio for MF1 was reduced by 52±28%, p = 0.009 and for DC101 by 13±4%, p = 0.001. Conclusion Our study provides further evidence that both VEGFR1 and 2 mediate pathological angiogenesis and vascular leakage in these models of ocular disease and suggests that antagonist antibodies to these receptor tyrosine kinases (RTKs) are potential therapeutic agents.
Collapse
Affiliation(s)
- Hu Huang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jikui Shen
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stanley A. Vinores
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
95
|
Takahashi H, Kanesaki H, Igarashi T, Kameya S, Yamaki K, Mizota A, Kudo A, Miyagoe-Suzuki Y, Takeda S, Takahashi H. Reactive gliosis of astrocytes and Müller glial cells in retina of POMGnT1-deficient mice. Mol Cell Neurosci 2011; 47:119-30. [PMID: 21447391 DOI: 10.1016/j.mcn.2011.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/05/2011] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
Protein O-linked mannose beta1, 2-N-acetylglucosaminyltransferase 1 (POMGnT1) is an enzyme that catalyzes the transfer of N-acetylglucosamine to O-mannose of glycoproteins. Alpha-dystroglycan, a substrate of POMGnT1, is concentrated around the blood vessels, in the outer plexiform layer (OPL), and in the inner limiting membrane (ILM) of the retina. Mutations of the POMGnT1 gene in humans cause muscle-eye-brain (MEB) disease. Several ocular abnormalities including retinal dysplasia, ERG abnormalities, and retinal detachments have been reported in patients with MEB. We have analyzed the eyes of POMGnT1-deficient mice, generated by standard gene targeting technique, to study the retinal abnormalities. Clinical examination of adult mutant mice revealed a high incidence (81% by 12-months-of-age) of retinal detachments. Sheathing of the retinal vessels and the presence of ectopic fibrous tissues around the optic nerve head were also found. Histological examinations showed focal retinal detachment associated with GFAP immunopositivity. The ILM of the mutant mice was disrupted with ectopic cells near the disruptions. The expression of Dp71, a shorter isoform of dystrophin, was severely reduced in the ILM and around retinal blood vessels of POMGnT1-deficient mice. The expression of Dp427, Dp260, Dp140 were also reduced in the OPL of the mutant mice. Electroretinographic (ERG) analyses showed reduced a- and b-wave amplitudes. Examinations of flat mounts revealed abnormal vascular network associated with highly irregular astrocytic processes. In addition, ER-TR7-positive fibrous tissue was found closely associated with reactive astrocytes especially around the optic nerve head. Our results suggest that altered glycosylation of alpha-DG may be responsible for the reactive gliosis and reticular fibrosis in the retina, and the subsequent developments of retinal dysplasia, abnormal ERGs, and retinal detachment in the mutant mice.
Collapse
Affiliation(s)
- Hisatomo Takahashi
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Zipplies JK, Kirschfink M, Amann B, Hauck SM, Stangassinger M, Deeg CA. Complement factor B expression profile in a spontaneous uveitis model. Immunobiology 2010; 215:949-55. [DOI: 10.1016/j.imbio.2010.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
97
|
Shi X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res 2010; 342:21-30. [PMID: 20838812 DOI: 10.1007/s00441-010-1040-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/16/2010] [Indexed: 12/15/2022]
Abstract
A large population of perivascular cells was found to be present in the area of the blood-labyrinth barrier in the stria vascularis of normal adult cochlea. The cells were identified as perivascular resident macrophages (PVMs), as they were positive for several macrophage surface molecules including F4/80, CD68, and CD11b. The macrophages, which were closely associated with microvessels and structurally intertwined with endothelial cells and pericytes, constitutively expressed scavenger receptor classes A(1) and B(1) and accumulated blood-borne proteins such as horseradish peroxidase and acetylated low-density lipoprotein. The PVMs were demonstrated to proliferate slowly, as evidenced by the absence of 5-bromo-2-deoxyuridine (BrdU)-positive PVMs at 3-14 days in normal mice injected with BrdU. However, in irradiated mice, the majority of the PVMs turned over via bone-marrow-cell migration within a 10-month time-frame. The existence of PVMs in the vascular wall of the blood-labyrinth barrier might therefore serve as a source for progenitor cells for postnatal vasculogenesis and might contribute to the repair of damaged vessels in the context of a local inflammatory response.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, NRC04, Portland, OR 97239, USA.
| |
Collapse
|
98
|
Inverted internal limiting membrane flap technique for large macular holes. Ophthalmology 2010; 117:2018-25. [PMID: 20541263 DOI: 10.1016/j.ophtha.2010.02.011] [Citation(s) in RCA: 567] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 02/07/2010] [Accepted: 02/09/2010] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Large macular holes usually have an increased risk of surgical failure. Up to 44% of large macular holes remain open after 1 surgery. Another 19% to 39% of macular holes are flat-open after surgery. Flat-open macular holes are associated with limited visual acuity. This article presents a modification of the standard macular hole surgery to improve functional and anatomic outcomes in patients with large macular holes. DESIGN A prospective, randomized clinical trial. PARTICIPANTS Patients with macular holes larger than 400 μm were included. In group 1, 51 eyes of 40 patients underwent standard 3-port pars plana vitrectomy with air. In group 2, 50 eyes of 46 patients underwent a modification of the standard technique, called the inverted internal limiting membrane (ILM) flap technique. METHODS In the inverted ILM flap technique, instead of completely removing the ILM after trypan blue staining, a remnant attached to the margins of the macular hole was left in place. This ILM remnant was then inverted upside-down to cover the macular hole. Fluid-air exchange was then performed. Spectral optical coherence tomography and clinical examination were performed before surgery and postoperatively at 1 week and 1, 3, 6, and 12 months. MAIN OUTCOME MEASURES Visual acuity and postoperative macular hole closure. RESULTS Preoperative mean visual acuity was 0.12 in group 1 and 0.078 in group 2. Macular hole closure was observed in 88% of patients in group 1 and in 98% of patients in group 2. A flat-hole roof with bare retinal pigment epithelium (flat-open) was observed in 19% of patients in group 1 and 2% of patients in group 2. Mean (or median) postoperative visual acuity 12 months after surgery was 0.17 (range, 0.1-0.6) in group 1 and 0.28 (range, 0.02-0.8) in group 2 (P = 0.001). CONCLUSIONS The inverted ILM flap technique prevents the postoperative flat-open appearance of a macular hole and improves both the functional and anatomic outcomes of vitrectomy for macular holes with a diameter greater than 400 μm. Spectral optical coherence tomography after vitrectomy with the inverted ILM flap technique suggests improved foveal anatomy compared with the standard surgery.
Collapse
|
99
|
Piña Y, Boutrid H, Murray TG, Jager MJ, Cebulla CM, Schefler A, Ly LV, Alegret A, Celdran M, Feuer W, Jockovich ME. Impact of tumor-associated macrophages in LH(BETA)T(AG) mice on retinal tumor progression: relation to macrophage subtype. Invest Ophthalmol Vis Sci 2010; 51:2671-7. [PMID: 20053982 DOI: 10.1167/iovs.09-4255] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the distribution of tumor-associated macrophages (TAMs) during retinoblastoma tumor development, examine the contribution of bone marrow-derived TAMs in retinoblastoma tumors, and evaluate the supportive role of TAMs in tumor growth in a transgenic retinoblastoma mouse model. METHODS The time course of macrophage infiltration in transgenic retinoblastoma tumors was assessed by immunohistochemistry at different time points in tumorigenesis. The origin of TAMs in transgenic retinoblastoma tumors was determined by transplanting 10(7) bone marrow cells from green fluorescent protein (GFP)-positive 16-week-old mice into age-matched, irradiated LH(BETA)T(AG) mice via tail vein injections. Macrophage depletion was performed by subconjunctival (SC) delivery of liposomal clodronate. RESULTS The density of TAMs increased from 4 to 12 weeks of age in mice with small to medium tumors (P = 0.037) and remained stable in the later stages of disease (i.e., 16 weeks old with large tumors; P = 0.20). In 16-week-old mice, 38% (2.5 +/- 3.2 cells per 400x high-power field) of TAMs were GFP-positive, bone marrow-derived macrophages. Total TAM depletion was associated with a significant decrease in the expression levels of MMP-9 (P = 0.014) and mature vessels (P < 0.001) and a nonsignificant decrease in the density of neovessels (P = 0.94). The density of M2-polarized TAMs did not change significantly after TAM depletion (P = 0.68). After M1-polarized TAM depletion, the tumor burden increased (P = 0.056). CONCLUSIONS This work extends understanding of the complex role that macrophages play in retinoblastoma. Macrophage modulation in the tumor microenvironment is a critical factor in retinoblastoma tumor progression.
Collapse
Affiliation(s)
- Yolanda Piña
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
The strategies for improving control of age-related macular degeneration with combination therapies are evolving. The focus on more effective blockade of choroidal neovascularization has shifted to include control of additional processes implicated in disease progression, such as neural death, inflammation, or fibrosis. Although there is likely to be a strong interrelationship between choroidal neovascularization and inflammation that contributes to advanced stages of disease progression, including fibrosis, combining treatment strategies may enlarge the opportunity to prevent both early and late vision loss.
Collapse
|