51
|
Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA. Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 2022; 50:104. [PMID: 35713211 PMCID: PMC9304817 DOI: 10.3892/ijmm.2022.5160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the critical organelles involved in various cellular functions. Mitochondrial biogenesis is activated by multiple cellular mechanisms which require a synchronous regulation between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial DNA copy number (mtDNA-CN) is a proxy indicator for mitochondrial activity, and its alteration reflects mitochondrial biogenesis and function. Despite the precise mechanisms that modulate the amount and composition of mtDNA, which have not been fully elucidated, mtDNA-CN is known to influence numerous cellular pathways that are associated with cancer and as well as multiple other diseases. In addition, the utility of current technology in measuring mtDNA-CN contributes to its extensive assessment of diverse traits and tumorigenesis. The present review provides an overview of mtDNA-CN variations across human cancers and an extensive summary of the existing knowledge on the regulation and machinery of mtDNA-CN. The current information on the advanced methods used for mtDNA-CN assessment is also presented.
Collapse
Affiliation(s)
- Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
52
|
Hangas A, Kekäläinen NJ, Potter A, Michell C, Aho KJ, Rutanen C, Spelbrink JN, Pohjoismäki JL, Goffart S. Top3α is the replicative topoisomerase in mitochondrial DNA replication. Nucleic Acids Res 2022; 50:8733-8748. [PMID: 35904803 PMCID: PMC9410902 DOI: 10.1093/nar/gkac660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA has been investigated for nearly fifty years, but many aspects of the maintenance of this essential small genome remain unknown. Like any genome, mammalian mitochondrial DNA requires the function of topoisomerases to counter and regulate the topological tension arising during replication, transcription, segregation, and repair. However, the functions of the different mitochondrial topoisomerases are poorly understood. Here, we investigate the role of Topoisomerase 3α (Top3α) in mtDNA replication and transcription, providing evidence that this enzyme, previously reported to act in mtDNA segregation, also participates in mtDNA replication fork progression. Top3α knockdown caused replication fork stalling, increased mtDNA catenation and decreased mtDNA levels. Overexpression in contrast induced abundant double-strand breaks around the replication origin OH and abortion of early replication, while at the same time improving the resolution of mtDNA replication termination intermediates. Both Top3α knockdown and overexpression affected mitochondrial RNA transcription, leading to a decrease in steady-state levels of mitochondrial transcripts. Together, our results indicate that the mitochondrial isoform of Top3α is not only involved in mtDNA segregation, as reported previously, but also supports the progression of the replication fork. Mitochondrial Top3α is also influencing the progression of transcription, with its absence affecting downstream transcript levels.
Collapse
Affiliation(s)
- Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Nina J Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Alisa Potter
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland.,Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Craig Michell
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Kauko J Aho
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Chiara Rutanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Johannes N Spelbrink
- Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Jaakko L Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
53
|
Chatterjee D, Das P, Chakrabarti O. Mitochondrial Epigenetics Regulating Inflammation in Cancer and Aging. Front Cell Dev Biol 2022; 10:929708. [PMID: 35903542 PMCID: PMC9314556 DOI: 10.3389/fcell.2022.929708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a defining factor in disease progression; epigenetic modifications of this first line of defence pathway can affect many physiological and pathological conditions, like aging and tumorigenesis. Inflammageing, one of the hallmarks of aging, represents a chronic, low key but a persistent inflammatory state. Oxidative stress, alterations in mitochondrial DNA (mtDNA) copy number and mis-localized extra-mitochondrial mtDNA are suggested to directly induce various immune response pathways. This could ultimately perturb cellular homeostasis and lead to pathological consequences. Epigenetic remodelling of mtDNA by DNA methylation, post-translational modifications of mtDNA binding proteins and regulation of mitochondrial gene expression by nuclear DNA or mtDNA encoded non-coding RNAs, are suggested to directly correlate with the onset and progression of various types of cancer. Mitochondria are also capable of regulating immune response to various infections and tissue damage by producing pro- or anti-inflammatory signals. This occurs by altering the levels of mitochondrial metabolites and reactive oxygen species (ROS) levels. Since mitochondria are known as the guardians of the inflammatory response, it is plausible that mitochondrial epigenetics might play a pivotal role in inflammation. Hence, this review focuses on the intricate dynamics of epigenetic alterations of inflammation, with emphasis on mitochondria in cancer and aging.
Collapse
Affiliation(s)
- Debmita Chatterjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| | - Palamou Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute, Mumbai, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute, Mumbai, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| |
Collapse
|
54
|
Hou Y, Xie J, Wang S, Li D, Wang L, Wang H, Ni X, Leng S, Li G, Hou M, Peng J. Glucocorticoid receptor modulates myeloid-derived suppressor cell function via mitochondrial metabolism in immune thrombocytopenia. Cell Mol Immunol 2022; 19:764-776. [PMID: 35414712 PMCID: PMC9243139 DOI: 10.1038/s41423-022-00859-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells and natural inhibitors of adaptive immunity. Intracellular metabolic changes in MDSCs exert a direct immunological influence on their suppressive activity. Our previous study demonstrated that high-dose dexamethasone (HD-DXM) corrected the functional impairment of MDSCs in immune thrombocytopenia (ITP); however, the MDSC population was not restored in nonresponders, and the mechanism remained unclear. In this study, altered mitochondrial physiology and reduced mitochondrial gene transcription were detected in MDSCs from HD-DXM nonresponders, accompanied by decreased levels of carnitine palmitoyltransferase-1 (CPT-1), a rate-limiting enzyme in fatty acid oxidation (FAO). Blockade of FAO with a CPT-1 inhibitor abolished the immunosuppressive function of MDSCs in HD-DXM responders. We also report that MDSCs from ITP patients had lower expression of the glucocorticoid receptor (GR), which can translocate into mitochondria to regulate the transcription of mitochondrial DNA (mtDNA) as well as the level of oxidative phosphorylation. It was confirmed that the expression of CPT-1 and mtDNA-encoded genes was downregulated in GR-siRNA-treated murine MDSCs. Finally, by establishing murine models of active and passive ITP via adoptive transfer of DXM-modulated MDSCs, we confirmed that GR-silenced MDSCs failed to alleviate thrombocytopenia in mice with ITP. In conclusion, our study indicated that impaired aerobic metabolism in MDSCs participates in the pathogenesis of glucocorticoid resistance in ITP and that intact control of MDSC metabolism by GR contributes to the homeostatic regulation of immunosuppressive cell function.
Collapse
Affiliation(s)
- Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jie Xie
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daqi Li
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingjun Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haoyi Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaofei Ni
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guosheng Li
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| |
Collapse
|
55
|
Thapa J, Yoshiiri G, Ito K, Okubo T, Nakamura S, Furuta Y, Higashi H, Yamaguchi H. Chlamydia trachomatis Requires Functional Host-Cell Mitochondria and NADPH Oxidase 4/p38MAPK Signaling for Growth in Normoxia. Front Cell Infect Microbiol 2022; 12:902492. [PMID: 35719337 PMCID: PMC9199516 DOI: 10.3389/fcimb.2022.902492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) is an intracellular energy-parasitic bacterium that requires ATP derived from infected cells for its growth. Meanwhile, depending on the O2 concentration, the host cells change their mode of ATP production between oxidative phosphorylation in mitochondria (Mt) and glycolysis; this change depends on signaling via reactive oxygen species (ROS) produced by NADPH oxidases (NOXs) as well as Mt. It has been proposed that Ct correspondingly switches its source of acquisition of ATP between host-cell Mt and glycolysis, but this has not been verified experimentally. In the present study, we assessed the roles of host-cell NOXs and Mt in the intracellular growth of CtL2 (L2 434/Bu) under normoxia (21% O2) and hypoxia (2% O2) by using several inhibitors of NOXs (or the downstream molecule) and Mt-dysfunctional (Mtd) HEp-2 cells. Under normoxia, diphenyleneiodonium, an inhibitor of ROS diffusion, abolished the growth of CtL2 and other Chlamydiae (CtD and C. pneumoniae). Both ML171 (a pan-NOX inhibitor) and GLX351322 (a NOX4-specific inhibitor) impaired the growth of CtL2 under normoxia, but not hypoxia. NOX4-knockdown cells diminished the bacterial growth. SB203580, an inhibitor of the NOX4-downstream molecule p38MAPK, also inhibited the growth of CtL2 under normoxia but not hypoxia. Furthermore, CtL2 failed to grow in Mtd cells under normoxia, but no effect was observed under hypoxia. We conclude that under normoxia, Ct requires functional Mt in its host cells as an ATP source, and that this process requires NOX4/p38MAPK signaling in the host cells. In contrast to hypoxia, crosstalk between NOX4 and Mt via p38MAPK may be crucial for the growth of Ct under normoxia.
Collapse
Affiliation(s)
- Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Gen Yoshiiri
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Koki Ito
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shinji Nakamura
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
56
|
Tschesche C, Bekaert M, Bassett DI, Boyd S, Bron JE, Sturm A. Key role of mitochondrial mutation Leu107Ser (COX1) in deltamethrin resistance in salmon lice (Lepeophtheirus salmonis). Sci Rep 2022; 12:10356. [PMID: 35725748 PMCID: PMC9209418 DOI: 10.1038/s41598-022-14023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
The pyrethroid deltamethrin (DTM) is used to treat Atlantic salmon (Salmo salar) against salmon louse (Lepeophtheirus salmonis) infestations. However, DTM resistance has evolved in L. salmonis and is currently common in the North Atlantic. This study aimed to re-assess the association between DTM resistance and mitochondrial (mtDNA) mutations demonstrated in previous reports. Among 218 L. salmonis collected in Scotland in 2018–2019, 89.4% showed DTM resistance in bioassays, while 93.6% expressed at least one of four mtDNA single nucleotide polymorphisms (SNPs) previously shown to be resistance associated. Genotyping at further 14 SNP loci allowed to define three resistance-associated mtDNA haplotypes, named 2, 3 and 4, occurring in 72.0%, 14.2% and 7.3% of samples, respectively. L. salmonis strains IoA-02 (haplotype 2) and IoA-10 (haplotype 3) both showed high levels (~ 100-fold) of DTM resistance, which was inherited maternally in crossing experiments. MtDNA haplotypes 2 and 3 differed in genotype for 17 of 18 studied SNPs, but shared one mutation that causes an amino acid change (Leu107Ser) in the cytochrome c oxidase subunit 1 (COX1) and was present in all DTM resistant while lacking in all susceptible parasites. We conclude that Leu107Ser (COX1) is a main genetic determinant of DTM resistance in L. salmonis.
Collapse
Affiliation(s)
- Claudia Tschesche
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David I Bassett
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Sally Boyd
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - James E Bron
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Armin Sturm
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
57
|
Mehmedović M, Martucci M, Spåhr H, Ishak L, Mishra A, Sanchez-Sandoval ME, Pardo-Hernández C, Peter B, van den Wildenberg SM, Falkenberg M, Farge G. Disease causing mutation (P178L) in mitochondrial transcription factor A results in impaired mitochondrial transcription initiation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166467. [PMID: 35716868 DOI: 10.1016/j.bbadis.2022.166467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Mitochondrial transcription factor A (TFAM) is essential for the maintenance, expression, and packaging of mitochondrial DNA (mtDNA). Recently, a pathogenic homozygous variant in TFAM (P178L) has been associated with a severe mtDNA depletion syndrome leading to neonatal liver failure and early death. We have performed a biochemical characterization of the TFAM variant P178L in order to understand the molecular basis for the pathogenicity of this mutation. We observe no effects on DNA binding, and compaction of DNA is only mildly affected by the P178L amino acid change. Instead, the mutation severely impairs mtDNA transcription initiation at the mitochondrial heavy and light strand promoters. Molecular modeling suggests that the P178L mutation affects promoter sequence recognition and the interaction between TFAM and the tether helix of POLRMT, thus explaining transcription initiation deficiency.
Collapse
Affiliation(s)
- Majda Mehmedović
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Martial Martucci
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Layal Ishak
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Anup Mishra
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Maria Eugenia Sanchez-Sandoval
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Carlos Pardo-Hernández
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Siet M van den Wildenberg
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, IRD, Université Jean Monnet Saint Etienne, LMV, F-63000 Clermont-Ferrand, France
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden.
| | - Geraldine Farge
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
58
|
Almannai M, Salah A, El-Hattab AW. Mitochondrial Membranes and Mitochondrial Genome: Interactions and Clinical Syndromes. MEMBRANES 2022; 12:membranes12060625. [PMID: 35736332 PMCID: PMC9229594 DOI: 10.3390/membranes12060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Mitochondria are surrounded by two membranes; the outer mitochondrial membrane and the inner mitochondrial membrane. They are unique organelles since they have their own DNA, the mitochondrial DNA (mtDNA), which is replicated continuously. Mitochondrial membranes have direct interaction with mtDNA and are therefore involved in organization of the mitochondrial genome. They also play essential roles in mitochondrial dynamics and the supply of nucleotides for mtDNA synthesis. In this review, we will discuss how the mitochondrial membranes interact with mtDNA and how this interaction is essential for mtDNA maintenance. We will review different mtDNA maintenance disorders that result from defects in this crucial interaction. Finally, we will review therapeutic approaches relevant to defects in mitochondrial membranes.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, Riyadh P.O. Box 22490, Saudi Arabia
- Correspondence:
| | - Azza Salah
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
| | - Ayman W. El-Hattab
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi P.O. Box 505193, United Arab Emirates
| |
Collapse
|
59
|
Ji X, Guo W, Gu X, Guo S, Zhou K, Su L, Yuan Q, Liu Y, Guo X, Huang Q, Xing J. Mutational profiling of mtDNA control region reveals tumor-specific evolutionary selection involved in mitochondrial dysfunction. EBioMedicine 2022; 80:104058. [PMID: 35594659 PMCID: PMC9121266 DOI: 10.1016/j.ebiom.2022.104058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations alter mitochondrial function in oxidative metabolism and play an important role in tumorigenesis. A series of studies have demonstrated that the mtDNA control region (mtCTR), which is essential for mtDNA replication and transcription, represents a mutational hotspot in human tumors. However, a comprehensive pan-cancer evolutionary pattern analysis of mtCTR mutations is urgently needed. Methods We generated a comprehensive combined dataset containing 10026 mtDNA somatic mutations from 4664 patients, covering 20 tumor types based on public and private next-generation sequencing data. Findings Our results demonstrated a significantly higher and much more variable mutation rate in mtCTR than in the coding region across different tumor types. Moreover, our data showed a remarkable distributional bias of tumor somatic mutations between the hypervariable segment (HVS) and non-HVS, with a significantly higher mutation density and average mutation sites in HVS. Importantly, the tumor-specific mutational pattern between mtCTR HVS and non-HVS was identified, which was classified into three evolutionary selection types (relaxed, moderate, and strict constraint types). Analysis of substitution patterns revealed that the prevalence of CH > TH in non-HVS greatly contributed to the mutational selection pattern of mtCTR across different tumor types. Furthermore, we found that the mutational pattern of mtCTR in the four tumor types was clearly associated with mitochondrial biogenesis, mitochondrial oxidative metabolism, and the overall survival of patients. Interpretation Our results suggest that somatic mutations in mtCTR may be shaped by tumor-specific selective pressure and are involved in tumorigenesis. Fundings National Natural Science Foundation of China [grants 82020108023, 81830070, 81872302], and Autonomous Project of State Key Laboratory of Cancer Biology, China [grants CBSKL2019ZZ06, CBSKL2019ZZ27].
Collapse
|
60
|
Robin M, Ferrari G, Akgül G, Münger X, von Seth J, Schuenemann VJ, Dalén L, Grossen C. Ancient mitochondrial and modern whole genomes unravel massive genetic diversity loss during near extinction of Alpine ibex. Mol Ecol 2022; 31:3548-3565. [PMID: 35560856 PMCID: PMC9328357 DOI: 10.1111/mec.16503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022]
Abstract
Population bottlenecks can have dramatic consequences for the health and long-term survival of a species. Understanding of historic population size and standing genetic variation prior to a contraction allows estimating the impact of a bottleneck on the species genetic diversity. Although historic population sizes can be modelled based on extant genomics, uncertainty is high for the last 10-20 millenia. Hence, integrating ancient genomes provides a powerful complement to retrace the evolution of genetic diversity through population fluctuations. Here, we recover 15 high-quality mitogenomes of the once nearly extinct Alpine ibex spanning 8601 BP to 1919 CE and combine these with 60 published modern whole genomes. Coalescent demography simulations based on modern whole genomes indicate population fluctuations coinciding with the last major glaciation period. Using our ancient and historic mitogenomes, we investigate the more recent demographic history of the species and show that mitochondrial haplotype diversity was reduced to a fifth of the pre-bottleneck diversity with several highly differentiated mitochondrial lineages having co-existed historically. The main collapse of mitochondrial diversity coincides with elevated human population growth during the last 1-2 kya. After recovery, one lineage was spread and nearly fixed across the Alps due to recolonization efforts. Our study highlights that a combined approach integrating genomic data of ancient, historic and extant populations unravels major long-term population fluctuations from the emergence of a species through its near extinction up to the recent past.
Collapse
Affiliation(s)
- Mathieu Robin
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Institute of Evolutionary Medicine, University of Zurich, Zürich, Switzerland
| | - Giada Ferrari
- Institute of Evolutionary Medicine, University of Zurich, Zürich, Switzerland
| | - Gülfirde Akgül
- Institute of Evolutionary Medicine, University of Zurich, Zürich, Switzerland
| | - Xenia Münger
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Johanna von Seth
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | | | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Christine Grossen
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
61
|
Young MJ, Sachidanandam R, Hales DB, Brard L, Robinson K, Rahman MM, Khadka P, Groesch K, Young CKJ. Identification of Somatic Mitochondrial DNA Mutations, Heteroplasmy, and Increased Levels of Catenanes in Tumor Specimens Obtained from Three Endometrial Cancer Patients. Life (Basel) 2022; 12:life12040562. [PMID: 35455053 PMCID: PMC9030153 DOI: 10.3390/life12040562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022] Open
Abstract
Endometrial carcinoma (EC) is the most common type of gynecologic malignant epithelial tumor, with the death rate from this disease doubling over the past 20 years. Mitochondria provide cancer cells with necessary anabolic building blocks such as amino acids, lipids, and nucleotides, and EC samples have been shown to increase mitochondrial biogenesis. In cancer, mitochondrial DNA (mtDNA) heteroplasmy studies suggest that heteroplasmic variants encode predicted pathogenic proteins. We investigated the mtDNA genotypes within peri-normal and tumor specimens obtained from three individuals diagnosed with EC. DNA extracts from peri-normal and tumor tissues were used for mtDNA-specific next-generation sequencing and analyses of mtDNA content and topoisomers. The three tumors harbor heteroplasmic somatic mutations, and at least one mutation in each carcinoma is predicted to deleteriously alter a mtDNA-encoded protein. Somatic heteroplasmy linked to two mtDNA tRNA genes was found in separate tumors, and two heteroplasmic non-coding variants were identified in a single EC tumor. While two tumors had altered mtDNA content, all three displayed increased mtDNA catenanes. Our findings support that EC cells require wild-type mtDNA, but heteroplasmic mutations may alter mitochondrial metabolism to help promote cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Matthew J. Young
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Correspondence: ; Tel.: +1-618-453-6437
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Dale B. Hales
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Laurent Brard
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Kathy Robinson
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (L.B.); (K.R.)
- Division of Hematology/Oncology, Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | - Md. Mostafijur Rahman
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
| | - Pabitra Khadka
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
| | - Kathleen Groesch
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Carolyn K. J. Young
- Department of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (D.B.H.); (M.M.R.); (P.K.); (C.K.J.Y.)
| |
Collapse
|
62
|
Manini A, Abati E, Comi GP, Corti S, Ronchi D. Mitochondrial DNA homeostasis impairment and dopaminergic dysfunction: A trembling balance. Ageing Res Rev 2022; 76:101578. [PMID: 35114397 DOI: 10.1016/j.arr.2022.101578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/26/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of mitochondrial DNA (mtDNA) homeostasis includes a variety of processes, such as mtDNA replication, repair, and nucleotides synthesis, aimed at preserving the structural and functional integrity of mtDNA molecules. Mutations in several nuclear genes (i.e., POLG, POLG2, TWNK, OPA1, DGUOK, MPV17, TYMP) impair mtDNA maintenance, leading to clinical syndromes characterized by mtDNA depletion and/or deletions in affected tissues. In the past decades, studies have demonstrated a progressive accumulation of multiple mtDNA deletions in dopaminergic neurons of the substantia nigra in elderly population and, to a greater extent, in Parkinson's disease patients. Moreover, parkinsonism has been frequently described as a prominent clinical feature in mtDNA instability syndromes. Among Parkinson's disease-related genes with a significant role in mitochondrial biology, PARK2 and LRRK2 specifically take part in mtDNA maintenance. Moreover, a variety of murine models (i.e., "Mutator", "MitoPark", "PD-mitoPstI", "Deletor", "Twinkle-dup" and "TwinkPark") provided in vivo evidence that mtDNA stability is required to preserve nigrostriatal integrity. Here, we review and discuss the clinical, genetic, and pathological background underlining the link between impaired mtDNA homeostasis and dopaminergic degeneration.
Collapse
|
63
|
Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering. Nat Rev Genet 2022; 23:199-214. [PMID: 34857922 DOI: 10.1038/s41576-021-00432-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria are subject to unique genetic control by both nuclear DNA and their own genome, mitochondrial DNA (mtDNA), of which each mitochondrion contains multiple copies. In humans, mutations in mtDNA can lead to devastating, heritable, multi-system diseases that display different tissue-specific presentation at any stage of life. Despite rapid advances in nuclear genome engineering, for years, mammalian mtDNA has remained resistant to genetic manipulation, hampering our ability to understand the mechanisms that underpin mitochondrial disease. Recent developments in the genetic modification of mammalian mtDNA raise the possibility of using genome editing technologies, such as programmable nucleases and base editors, for the treatment of hereditary mitochondrial disease.
Collapse
Affiliation(s)
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
64
|
Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022; 403:779-805. [PMID: 35355496 DOI: 10.1515/hsz-2021-0416] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.
Collapse
Affiliation(s)
- Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, D-50931, Germany
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
65
|
Cavalcante GC, Ribeiro-Dos-Santos Â, de Araújo GS. Mitochondria in tumour progression: a network of mtDNA variants in different types of cancer. BMC Genom Data 2022; 23:16. [PMID: 35183124 PMCID: PMC8857862 DOI: 10.1186/s12863-022-01032-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Background Mitochondrial participation in tumorigenesis and metastasis has been studied for many years, but several aspects of this mechanism remain unclear, such as the association of mitochondrial DNA (mtDNA) with different cancers. Here, based on two independent datasets, we modelled an mtDNA mutation-cancer network by systematic integrative analysis including 37 cancer types to identify the mitochondrial variants found in common among them. Results Our network showed mtDNA associations between gastric cancer and other cancer types, particularly kidney, liver, and prostate cancers, which is suggestive of a potential role of such variants in the metastatic processes among these cancer types. A graph-based interactive web tool was made available at www2.lghm.ufpa.br/mtdna. We also highlighted that most shared variants were in the MT-ND4, MT-ND5 and D-loop, and that some of these variants were nonsynonymous, indicating a special importance of these variants and regions regarding cancer progression, involving genomic and epigenomic alterations. Conclusions This study reinforces the importance of studying mtDNA in cancer and offers new perspectives on the potential involvement of different mitochondrial variants in cancer development and metastasis.
Collapse
Affiliation(s)
- Giovanna C Cavalcante
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA, 66075-110, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA, 66075-110, Brazil.,Graduate Program in Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Rua dos Mundurucus, Belém, PA, 4487, 66073-005, Brazil
| | - Gilderlanio S de Araújo
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
66
|
Mposhi A, Liang L, Mennega KP, Yildiz D, Kampert C, Hof IH, Jellema PG, de Koning TJ, Faber KN, Ruiters MHJ, Niezen-Koning KE, Rots MG. The Mitochondrial Epigenome: An Unexplored Avenue to Explain Unexplained Myopathies? Int J Mol Sci 2022; 23:ijms23042197. [PMID: 35216315 PMCID: PMC8879787 DOI: 10.3390/ijms23042197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Mutations in either mitochondrial DNA (mtDNA) or nuclear genes that encode mitochondrial proteins may lead to dysfunctional mitochondria, giving rise to mitochondrial diseases. Some mitochondrial myopathies, however, present without a known underlying cause. Interestingly, methylation of mtDNA has been associated with various clinical pathologies. The present study set out to assess whether mtDNA methylation could explain impaired mitochondrial function in patients diagnosed with myopathy without known underlying genetic mutations. Enhanced mtDNA methylation was indicated by pyrosequencing for muscle biopsies of 14 myopathy patients compared to four healthy controls, at selected cytosines in the Cytochrome B (CYTB) gene, but not within the displacement loop (D-loop) region. The mtDNA methylation patterns of the four healthy muscle biopsies were highly consistent and showed intriguing tissue-specific differences at particular cytosines with control skin fibroblasts cultured in vitro. Within individual myopathy patients, the overall mtDNA methylation pattern correlated well between muscle and skin fibroblasts. Despite this correlation, a pilot analysis of four myopathy and five healthy fibroblast samples did not reveal a disease-associated difference in mtDNA methylation. We did, however, detect increased expression of solute carrier family 25A26 (SLC25A26), encoding the importer of S-adenosylmethionine, together with enhanced mtDNA copy numbers in myopathy fibroblasts compared to healthy controls. To confirm that pyrosequencing indeed reflected DNA methylation and not bisulfite accessibility, mass spectrometry was employed. Although no myopathy-related differences in total amount of methylated cytosines were detected at this stage, a significant contribution of contaminating nuclear DNA (nDNA) was revealed, and steps to improve enrichment for mtDNA are reported. In conclusion, in this explorative study we show that analyzing the mitochondrial genome beyond its sequence opens novel avenues to identify potential molecular biomarkers assisting in the diagnosis of unexplained myopathies.
Collapse
Affiliation(s)
- Archibold Mposhi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Lin Liang
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
| | - Kevin P. Mennega
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Dilemin Yildiz
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Crista Kampert
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Ingrid H. Hof
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Pytrick G. Jellema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
| | - Tom J. de Koning
- Department of Genetics, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Department of Clinical Sciences, Lund University, Lasarettgatan 40, 221 85 Lund, Sweden
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Marcel H. J. Ruiters
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
| | - Klary E. Niezen-Koning
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.Y.); (C.K.); (I.H.H.); (K.E.N.-K.)
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.M.); (L.L.); (K.P.M.); (P.G.J.); (M.H.J.R.)
- Correspondence:
| |
Collapse
|
67
|
Picca A, Guerra F, Calvani R, Romano R, Coelho-Junior HJ, Damiano FP, Bucci C, Marzetti E. Circulating Mitochondrial DNA and Inter-Organelle Contact Sites in Aging and Associated Conditions. Cells 2022; 11:cells11040675. [PMID: 35203322 PMCID: PMC8870554 DOI: 10.3390/cells11040675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are primarily involved in cell bioenergetics, regulation of redox homeostasis, and cell death/survival signaling. An immunostimulatory property of mitochondria has also been recognized which is deployed through the extracellular release of entire or portioned organelle and/or mitochondrial DNA (mtDNA) unloading. Dynamic homo- and heterotypic interactions involving mitochondria have been described. Each type of connection has functional implications that eventually optimize mitochondrial activity according to the bioenergetic demands of a specific cell/tissue. Inter-organelle communications may also serve as molecular platforms for the extracellular release of mitochondrial components and subsequent ignition of systemic inflammation. Age-related chronic inflammation (inflamm-aging) has been associated with mitochondrial dysfunction and increased extracellular release of mitochondrial components—in particular, cell-free mtDNA. The close relationship between mitochondrial dysfunction and cellular senescence further supports the central role of mitochondria in the aging process and its related conditions. Here, we provide an overview of (1) the mitochondrial genetic system and the potential routes for generating and releasing mtDNA intermediates; (2) the pro-inflammatory pathways elicited by circulating mtDNA; (3) the participation of inter-organelle contacts to mtDNA homeostasis; and (4) the link of these processes with senescence and age-associated conditions.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Correspondence: ; Tel.: +39-06-3015-5559; Fax: +39-06-3051-911
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco P. Damiano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, 73100 Lecce, Italy; (F.G.); (R.R.); (C.B.)
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (F.P.D.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
68
|
Bicci I, Calabrese C, Golder ZJ, Gomez-Duran A, Chinnery PF. Single-molecule mitochondrial DNA sequencing shows no evidence of CpG methylation in human cells and tissues. Nucleic Acids Res 2021; 49:12757-12768. [PMID: 34850165 PMCID: PMC8682748 DOI: 10.1093/nar/gkab1179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 01/11/2023] Open
Abstract
Methylation on CpG residues is one of the most important epigenetic modifications of nuclear DNA, regulating gene expression. Methylation of mitochondrial DNA (mtDNA) has been studied using whole genome bisulfite sequencing (WGBS), but recent evidence has uncovered technical issues which introduce a potential bias during methylation quantification. Here, we validate the technical concerns of WGBS, and develop and assess the accuracy of a new protocol for mtDNA nucleotide variant-specific methylation using single-molecule Oxford Nanopore Sequencing (ONS). Our approach circumvents confounders by enriching for full-length molecules over nuclear DNA. Variant calling analysis against showed that 99.5% of homoplasmic mtDNA variants can be reliably identified providing there is adequate sequencing depth. We show that some of the mtDNA methylation signal detected by ONS is due to sequence-specific false positives introduced by the technique. The residual signal was observed across several human primary and cancer cell lines and multiple human tissues, but was always below the error threshold modelled using negative controls. We conclude that there is no evidence for CpG methylation in human mtDNA, thus resolving previous controversies. Additionally, we developed a reliable protocol to study epigenetic modifications of mtDNA at single-molecule and single-base resolution, with potential applications beyond CpG methylation.
Collapse
Affiliation(s)
- Iacopo Bicci
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, Cambridge CB2 0XY, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Claudia Calabrese
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, Cambridge CB2 0XY, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Zoe J Golder
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, Cambridge CB2 0XY, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aurora Gomez-Duran
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, Cambridge CB2 0XY, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.,Centro de Investigaciones Biológicas Margarita Salas. Spanish National Research Council, Madrid, Spain
| | - Patrick F Chinnery
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, Cambridge CB2 0XY, UK.,Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
69
|
Kosar M, Piccini D, Foiani M, Giannattasio M. A rapid method to visualize human mitochondrial DNA replication through rotary shadowing and transmission electron microscopy. Nucleic Acids Res 2021; 49:e121. [PMID: 34500456 PMCID: PMC8643652 DOI: 10.1093/nar/gkab770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/15/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
We report a rapid experimental procedure based on high-density in vivo psoralen inter-strand DNA cross-linking coupled to spreading of naked purified DNA, positive staining, low-angle rotary shadowing, and transmission electron microscopy (TEM) that allows quick visualization of the dynamic of heavy strand (HS) and light strand (LS) human mitochondrial DNA replication. Replication maps built on linearized mitochondrial genomes and optimized rotary shadowing conditions enable clear visualization of the progression of the mitochondrial DNA synthesis and visualization of replication intermediates carrying long single-strand DNA stretches. One variant of this technique, called denaturing spreading, allowed the inspection of the fine chromatin structure of the mitochondrial genome and was applied to visualize the in vivo three-strand DNA structure of the human mitochondrial D-loop intermediate with unprecedented clarity.
Collapse
Affiliation(s)
- Martin Kosar
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Daniele Piccini
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Marco Foiani
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Dipartimento di Oncologia & Emato-Oncologia, Università degli Studi di Milano, Milano, Italy
| | - Michele Giannattasio
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.,Dipartimento di Oncologia & Emato-Oncologia, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
70
|
Cao K, Feng Z, Gao F, Zang W, Liu J. Mitoepigenetics: An intriguing regulatory layer in aging and metabolic-related diseases. Free Radic Biol Med 2021; 177:337-346. [PMID: 34715295 DOI: 10.1016/j.freeradbiomed.2021.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
As a key organelle in eukaryotic cells, mitochondria play a central role in maintaining normal cellular functions. Mitochondrial dysfunction is reported to be closely related with aging and various diseases. Epigenetic modifications in nuclear genome provide a substantial layer for the modulation of nuclear-encoded gene expression. However, whether mitochondria could also be subjected to such similar epigenetic alterations and the involved mechanisms remain largely obscure and controversial. Recently, accumulating evidence has suggested that mitochondrial epigenetics, also known as mitoepigenetics may serve as an intriguing regulatory layer in mitochondrial DNA (mtDNA)-encoded gene expression. Given the potential regulatory role of mitoepigenetics, mitochondrial dysfunction derived from mitoepigenetics-induced abnormal gene expression could also be closely associated with aging and disease development. In this review, we summarized the recent advances in mitoepigenetics, with a special focus on mtDNA methylation in aging and metabolic-related diseases as well as the new methods and technologies for the study of mitoepigenetics. Uncovering the regulatory role of mitoepigenetics will help to understand the underlying mechanisms of mitochondrial dysfunction and provide novel strategies for delaying aging and preventing metabolic-related diseases.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
71
|
Brüser C, Keller-Findeisen J, Jakobs S. The TFAM-to-mtDNA ratio defines inner-cellular nucleoid populations with distinct activity levels. Cell Rep 2021; 37:110000. [PMID: 34818548 DOI: 10.1016/j.celrep.2021.110000] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load.
Collapse
Affiliation(s)
- Christian Brüser
- Department of NanoBiophotonics, Research Group Mitochondrial Structure and Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Clinic of Neurology, High Resolution Microscopy of the Cell, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Research Group Mitochondrial Structure and Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Clinic of Neurology, High Resolution Microscopy of the Cell, University Medical Center Göttingen, 37075 Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
72
|
Ohkubo A, Van Haute L, Rudler DL, Stentenbach M, Steiner FA, Rackham O, Minczuk M, Filipovska A, Martinou JC. The FASTK family proteins fine-tune mitochondrial RNA processing. PLoS Genet 2021; 17:e1009873. [PMID: 34748562 PMCID: PMC8601606 DOI: 10.1371/journal.pgen.1009873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/18/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Transcription of the human mitochondrial genome and correct processing of the two long polycistronic transcripts are crucial for oxidative phosphorylation. According to the tRNA punctuation model, nucleolytic processing of these large precursor transcripts occurs mainly through the excision of the tRNAs that flank most rRNAs and mRNAs. However, some mRNAs are not punctuated by tRNAs, and it remains largely unknown how these non-canonical junctions are resolved. The FASTK family proteins are emerging as key players in non-canonical RNA processing. Here, we have generated human cell lines carrying single or combined knockouts of several FASTK family members to investigate their roles in non-canonical RNA processing. The most striking phenotypes were obtained with loss of FASTKD4 and FASTKD5 and with their combined double knockout. Comprehensive mitochondrial transcriptome analyses of these cell lines revealed a defect in processing at several canonical and non-canonical RNA junctions, accompanied by an increase in specific antisense transcripts. Loss of FASTKD5 led to the most severe phenotype with marked defects in mitochondrial translation of key components of the electron transport chain complexes and in oxidative phosphorylation. We reveal that the FASTK protein family members are crucial regulators of non-canonical junction and non-coding mitochondrial RNA processing. As a legacy of their bacterial origin, mitochondria have retained their own genome with a unique gene expression system. All mitochondrially encoded proteins are essential components of the respiratory chain. Therefore, the mitochondrial gene expression is crucial for their iconic role as the ‘powerhouse of the cell’–ATP synthesis through oxidative phosphorylation. Consistently, defects in enzymes involved in this gene expression system are a common source of incurable inherited metabolic disorders, called mitochondrial diseases. The human mitochondrial transcription generates long polycistronic transcripts that carry information for multiple genes, so that the expression level of each gene is mainly regulated through post-transcriptional events. The polycistronic transcript first undergoes RNA processing, where individual mRNA, rRNA, and tRNA are cleaved off. However, its entire molecular mechanism remains unclear, and in particular, ‘non-canonical’ RNA processing has been poorly understood. To address this question, we studied the FASTK family proteins, emerging key mitochondrial post-transcriptional regulators. We generated different human cell lines carrying single or combined disruption of FASTKD3, FASTKD4, and FASTKD5 genes, and analyzed them using biochemical and genetic approaches. We show that the FASTK family members fine-tune the processing of both ‘canonical’ and ‘non-canonical’ mitochondrial RNA junctions.
Collapse
Affiliation(s)
- Akira Ohkubo
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Lindsey Van Haute
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Danielle L. Rudler
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
| | - Maike Stentenbach
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
| | - Florian A. Steiner
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- * E-mail: (AF); (J-CM)
| | - Jean-Claude Martinou
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (AF); (J-CM)
| |
Collapse
|
73
|
Following the Trace of HVS II Mitochondrial Region Within the Nine Iranian Ethnic Groups Based on Genetic Population Analysis. Biochem Genet 2021; 60:987-1006. [PMID: 34661819 DOI: 10.1007/s10528-021-10141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
The Iranian gene pool is seen as an important human genetic resource for investigating the region connecting Mesopotamia and the Iranian plateau. The main objective of this study was to explore gene flow in nine Iranian ethnic/subpopulation groups (402 samples) by examining mtDNA HVS2 sequence variations. This then allowed us to detect mtDNA HVS2 sequence mutations in two independent thalassemia and cystic fibrosis patient sample groups. The patient groups did not explicitly belong to any of the aforementioned nine subpopulations. Across all subpopulations, the haplogroups B4a1c3a, H2a2a1, N10b, H2a2a2, and J1 were seen to be predominant. High haplogroup diversities along with admixture of the exotic groups were observed in this study. The Arab subpopulation was shown to be independent from the others. It was revealed that there is a far distant relationship between Arab and Azeri groups. The thalassemia patient group, represented an almost random sample of most Iranian ethnic groups, and revealed few significant differences (P < 0.05) in their HVS2 sequence. It turned out that the IVS II-I (G → A) mutation in the thalassemia β-globin gene was highly significant. Since the thalassemia patients in the present study represent many unique haplotypes, we can begin to comprehend the importance of mtDNA with this disease and the necessity for more studies in this context.
Collapse
|
74
|
Kitada S, Kishino H. Population structure of chum salmon and selection on the markers collected for stock identification. Ecol Evol 2021; 11:13972-13985. [PMID: 34707832 PMCID: PMC8525185 DOI: 10.1002/ece3.8102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Genetic stock identification (GSI) is a major management tool of Pacific salmon (Oncorhynchus Spp.) that has provided rich genetic baseline data of allozymes, microsatellites, and single-nucleotide polymorphisms (SNPs) across the Pacific Rim. Here, we analyzed published data sets for adult chum salmon (Oncorhynchus keta), namely 10 microsatellites, 53 SNPs, and a mitochondrial DNA locus (mtDNA3, control region, and NADH-3 combined) in samples from 495 locations in the same distribution range (n = 61,813). TreeMix analysis of the microsatellite loci identified the greatest convergence toward Japanese/Korean populations and suggested two admixture events from Japan/Korea to Russia and the Alaskan Peninsula. The SNPs had been purposively collected from rapidly evolving genes to increase the power of GSI. The largest expected heterozygosity was observed in Japanese/Korean populations for microsatellites, whereas it was largest in Western Alaskan populations for SNPs, reflecting the SNP discovery process. A regression of SNP population structures on those of microsatellites indicated the selection of the SNP loci according to deviations from the predicted structures. Specifically, we matched the sampling locations of the SNPs with those of the microsatellites and performed regression analyses of SNP allele frequencies on a 2-dimensional scaling (MDS) of matched locations obtained from microsatellite pairwise F ST values. The MDS first axis indicated a latitudinal cline in American and Russian populations, whereas the second axis showed differentiation of Japanese/Korean populations. The top five outlier SNPs included mtDNA3, U502241 (unknown), GnRH373, ras1362, and TCP178, which were identified by principal component analysis. We summarized the functions of 53 nuclear genes surrounding SNPs and the mtDNA3 locus by referring to a gene database system and propose how they may influence the fitness of chum salmon.
Collapse
Affiliation(s)
- Shuichi Kitada
- Tokyo University of Marine Science and TechnologyTokyoJapan
| | - Hirohisa Kishino
- Graduate School of Agriculture and Life SciencesThe University of TokyoTokyoJapan
- Present address:
The Research Institute of Evolutionary BiologyTokyoJapan
| |
Collapse
|
75
|
Sarfallah A, Zamudio-Ochoa A, Anikin M, Temiakov D. Mechanism of transcription initiation and primer generation at the mitochondrial replication origin OriL. EMBO J 2021; 40:e107988. [PMID: 34423452 DOI: 10.15252/embj.2021107988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 11/09/2022] Open
Abstract
The intricate process of human mtDNA replication requires the coordinated action of both transcription and replication machineries. Transcription and replication events at the lagging strand of mtDNA prompt the formation of a stem-loop structure (OriL) and the synthesis of a ∼25 nt RNA primer by mitochondrial RNA polymerase (mtRNAP). The mechanisms by which mtRNAP recognizes OriL, initiates transcription, and transfers the primer to the replisome are poorly understood. We found that transcription initiation at OriL involves slippage of the nascent transcript. The transcript slippage is essential for initiation complex stability and its ability to translocate the mitochondrial DNA polymerase gamma, PolG, which pre-binds to OriL, downstream of the replication origin thus allowing for the primer synthesis. Our data suggest the primosome assembly at OriL-a complex of mtRNAP and PolG-can efficiently generate the primer, transfer it to the replisome, and protect it from degradation by mitochondrial endonucleases.
Collapse
Affiliation(s)
- Azadeh Sarfallah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Angelica Zamudio-Ochoa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Anikin
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
76
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
77
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Mohammadi M. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Cancer 2021; 53:770-781. [PMID: 34486088 DOI: 10.1007/s12029-021-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr Roux cedex 15, 75724, Paris, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
78
|
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol 2021; 11:210168. [PMID: 34547213 PMCID: PMC8455175 DOI: 10.1098/rsob.210168] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
Collapse
Affiliation(s)
- Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
79
|
mTRIP, an Imaging Tool to Investigate Mitochondrial DNA Dynamics in Physiology and Disease at the Single-Cell Resolution. Methods Mol Biol 2021. [PMID: 34118042 DOI: 10.1007/978-1-0716-1262-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Mitochondrial physiology and metabolism are closely linked to replication and transcription of mitochondrial DNA (mtDNA). However, the characterization of mtDNA processing is poorly defined at the single-cell level. We developed mTRIP (mitochondrial Transcription and Replication Imaging Protocol), an imaging approach based on modified fluorescence in situ hybridization (FISH), which simultaneously reveals mitochondrial structures committed to mtDNA initiation of replication as well as the mitochondrial RNA (mtRNA) content at the single-cell level in human cells. Also specific RNA regions, rather than global RNA, can be tracked with mTRIP. In addition, mTRIP can be coupled to immunofluorescence for in situ protein tracking, or to MitoTracker, thereby allowing for simultaneous labeling of mtDNA, mtRNA, and proteins or mitochondria, respectively. Altogether, qualitative and quantitative alterations of the dynamics of mtDNA processing are detected by mTRIP in human cells undergoing physiological changes, as well as stress and dysfunction. mTRIP helped elucidating mtDNA processing alterations in cancer cells, and has a potential for diagnostic of mitochondrial diseases.
Collapse
|
80
|
Summerhill VI, Sukhorukov VN, Eid AH, Nedosugova LV, Sobenin IA, Orekhov AN. Pathophysiological Aspects of the Development of Abdominal Aortic Aneurysm with a Special Focus on Mitochondrial Dysfunction and Genetic Associations. Biomol Concepts 2021; 12:55-67. [PMID: 34115932 DOI: 10.1515/bmc-2021-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a complex degenerative vascular disease, with considerable morbidity and mortality rates among the elderly population. The mortality of AAA is related to aneurysm expansion (the enlargement of the aortic diameter up to 30 mm and above) and the subsequent rupture. The pathogenesis of AAA involves several biological processes, including aortic mural inflammation, oxidative stress, vascular smooth muscle cell apoptosis, elastin depletion, and degradation of the extracellular matrix. Mitochondrial dysfunction was also found to be associated with AAA formation. The evidence accumulated to date supports a close relationship between environmental and genetic factors in AAA initiation and progression. However, a comprehensive pathophysiological understanding of AAA formation remains incomplete. The open surgical repair of AAA is the only therapeutic option currently available, while a specific pharmacotherapy is still awaited. Therefore, there is a great need to clarify pathophysiological cellular and molecular mechanisms underlying AAA formation that would help to develop effective pharmacological therapies. In this review, pathophysiological aspects of AAA development with a special focus on mitochondrial dysfunction and genetic associations were discussed.
Collapse
Affiliation(s)
- Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut-Lebanon
| | - Ludmila V Nedosugova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, Moscow 119991, Russia
| | - Igor A Sobenin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia.,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, Moscow 121552, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| |
Collapse
|
81
|
Cowell W, Brunst K, Colicino E, Zhang L, Zhang X, Bloomquist TR, Baccarelli AA, Wright RJ. Placental mitochondrial DNA mutational load and perinatal outcomes: Findings from a multi-ethnic pregnancy cohort. Mitochondrion 2021; 59:267-275. [PMID: 34102325 DOI: 10.1016/j.mito.2021.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Mitochondria fuel placental activity, with mitochondrial dysfunction implicated in several perinatal complications. We investigated placental mtDNA mutational load using NextGen sequencing in relation to birthweight and gestational length among 358 mother-newborn pairs. We found that higher heteroplasmy, especially in the hypervariable displacement loop region, was associated with shorter gestational length. Results were similar among male and female pregnancies, but stronger in magnitude among females. With regard to growth, we observed that higher mutational load was associated with lower birthweight-for-gestational age (BWGA) among females, but higher BWGA among males. These findings support potential sex-differential fetal biological strategies for coping with increased heteroplasmies.
Collapse
Affiliation(s)
- Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kelly Brunst
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
82
|
Ma H, Van Dyken C, Darby H, Mikhalchenko A, Marti-Gutierrez N, Koski A, Liang D, Li Y, Tippner-Hedges R, Kang E, Lee Y, Sidener H, Ramsey C, Hodge T, Amato P, Mitalipov S. Germline transmission of donor, maternal and paternal mtDNA in primates. Hum Reprod 2021; 36:493-505. [PMID: 33289786 DOI: 10.1093/humrep/deaa308] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION What are the long-term developmental, reproductive and genetic consequences of mitochondrial replacement therapy (MRT) in primates? SUMMARY ANSWER Longitudinal investigation of MRT rhesus macaques (Macaca mulatta) generated with donor mtDNA that is exceedingly distant from the original maternal counterpart suggest that their growth, general health and fertility is unremarkable and similar to controls. WHAT IS KNOWN ALREADY Mitochondrial gene mutations contribute to a diverse range of incurable human disorders. MRT via spindle transfer in oocytes was developed and proposed to prevent transmission of pathogenic mtDNA mutations from mothers to children. STUDY DESIGN, SIZE, DURATION The study provides longitudinal studies on general health, fertility as well as transmission and segregation of parental mtDNA haplotypes to various tissues and organs in five adult MRT rhesus macaques and their offspring. PARTICIPANTS/MATERIALS, SETTING, METHODS MRT was achieved by spindle transfer between metaphase II oocytes from genetically divergent rhesus macaque populations. After fertilization of oocytes with sperm, heteroplasmic zygotes contained an unequal mixture of three parental genomes, i.e. donor (≥97%), maternal (≤3%), and paternal (≤0.1%) mitochondrial (mt)DNA. MRT monkeys were grown to adulthood and their development and general health was regularly monitored. Reproductive fitness of male and female MRT macaques was evaluated by time-mated breeding and production of live offspring. The relative contribution of donor, maternal, and paternal mtDNA was measured by whole mitochondrial genome sequencing in all organs and tissues of MRT animals and their offspring. MAIN RESULTS AND THE ROLE OF CHANCE Both male and female MRT rhesus macaques containing unequal mixture of three parental genomes, i.e. donor (≥97%), maternal (≤3%), and paternal (≤0.1%) mtDNA reached healthy adulthood, were fertile and most animals stably maintained the initial ratio of parental mtDNA heteroplasmy and donor mtDNA was transmitted from females to offspring. However, in one monkey out of four analyzed, initially negligible maternal mtDNA heteroplasmy levels increased substantially up to 17% in selected internal tissues and organs. In addition, two monkeys showed paternal mtDNA contribution up to 33% in selected internal tissues and organs. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Conclusions in this study were made on a relatively low number of MRT monkeys, and on only one F1 (first generation) female. In addition, monkey MRT involved two wildtype mtDNA haplotypes, but not disease-relevant variants. Clinical trials on children born after MRT will be required to fully determine safety and efficacy of MRT for humans. WIDER IMPLICATIONS OF THE FINDINGS Our data show that MRT is compatible with normal postnatal development including overall health and reproductive fitness in nonhuman primates without any detected adverse effects. 'Mismatched' donor mtDNA in MRT animals even from the genetically distant mtDNA haplotypes did not cause secondary mitochondrial dysfunction. However, carry-over maternal or paternal mtDNA contributions increased substantially in selected internal tissues / organs of some MRT animals implying the possibility of mtDNA mutation recurrence. STUDY FUNDING/COMPETING INTEREST(S) This work has been funded by the grants from the Burroughs Wellcome Fund, the National Institutes of Health (RO1AG062459 and P51 OD011092), National Research Foundation of Korea (2018R1D1A1B07043216) and Oregon Health & Science University institutional funds. The authors declare no competing interests.
Collapse
Affiliation(s)
- Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Nuria Marti-Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Rebecca Tippner-Hedges
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Eunju Kang
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeonmi Lee
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Heather Sidener
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Cathy Ramsey
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Travis Hodge
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
83
|
Silva-Pinheiro P, Pardo-Hernández C, Reyes A, Tilokani L, Mishra A, Cerutti R, Li S, Rozsivalova DH, Valenzuela S, Dogan SA, Peter B, Fernández-Silva P, Trifunovic A, Prudent J, Minczuk M, Bindoff L, Macao B, Zeviani M, Falkenberg M, Viscomi C. DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion. Nucleic Acids Res 2021; 49:5230-5248. [PMID: 33956154 PMCID: PMC8136776 DOI: 10.1093/nar/gkab282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 01/31/2023] Open
Abstract
Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.
Collapse
Affiliation(s)
- Pedro Silva-Pinheiro
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, CB2 0XY Cambridge, UK
| | - Carlos Pardo-Hernández
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Aurelio Reyes
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, CB2 0XY Cambridge, UK
| | - Lisa Tilokani
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, CB2 0XY Cambridge, UK
| | - Anup Mishra
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Raffaele Cerutti
- Department of Neurosciences, University of Padova, via Giustiniani, 2-35128 Padova, Italy
| | - Shuaifeng Li
- Center for Cancer Biology, Life Science of Institution, Zhejiang University, Hangzhou 310058, China
| | - Dieu-Hien Rozsivalova
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Sebastian Valenzuela
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Sukru A Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Patricio Fernández-Silva
- Biochemistry and Molecular and Cell Biology Department, University of Zaragoza, C/ Pedro Cerbuna s/n 50.009-Zaragoza, and Biocomputation and Complex Systems Physics Institute (BIFI), C/ Mariano Esquillor, 50.018-Zaragoza, Spain
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Julien Prudent
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, CB2 0XY Cambridge, UK
| | - Michal Minczuk
- MRC/University of Cambridge Mitochondrial Biology Unit, Hills Road, CB2 0XY Cambridge, UK
| | - Laurence Bindoff
- Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Bertil Macao
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, via Giustiniani, 2-35128 Padova, Italy
- Venetian Institute of Molecular Medicine, via Orus 2-35128 Padova, Italy
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A P.O. Box 440, SE405 30 Gothenburg, Sweden
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B-35131 Padova, Italy
| |
Collapse
|
84
|
Sebastian W, Sukumaran S, Gopalakrishnan A. The signals of selective constraints on the mitochondrial non-coding control region: insights from comparative mitogenomics of Clupeoid fishes. Genetica 2021; 149:191-201. [PMID: 33914198 DOI: 10.1007/s10709-021-00121-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
The vertebrate mitochondrial genome is characterized by an exceptional organization evolving towards a reduced size. However, the persistence of a non-coding and highly variable control region is against this evolutionary trend that is explained by the presence of conserved sequence motifs or binding sites for nuclear-organized proteins that regulate mtDNA maintenance and expression. We performed a comparative mitogenomic investigation of the non-coding control region to understand its evolutionary patterns in Clupeoid fishes which are widely distributed across oceans of the world, exhibiting exemplary evolutionary potential. We confirmed the ability of sequence flanking the conserved sequence motifs in the control region to form stable secondary structures. The existence of evolutionarily conserved secondary structures without primary structure conservation suggested the action of selective constraints towards maintaining the secondary structure. The functional secondary structure is maintained by retaining the frequency of discontinuous AT and TG repeats along with compensatory base substitutions in the stem forming regions which can be considered as a selective constraint. The nucleotide polymorphism along the flanking regions of conserved sequence motifs can be explained as errors during the enzymatic replication of secondary structure-forming repeat elements. The evidence for selective constraints on secondary structures emphasizes the role of the control region in mitogenome function. Maintenance of high frequency of discontinuous repeats can be proposed as a model of adaptive evolution against the mutations that break the secondary structure involved in the efficient regulation of mtDNA functions substantiating the efficient functioning of the control region even in a high nucleotide polymorphism environment.
Collapse
Affiliation(s)
- Wilson Sebastian
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O, Kochi, 682018, Kerala, India
| | - Sandhya Sukumaran
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O, Kochi, 682018, Kerala, India.
| | - A Gopalakrishnan
- ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O, Kochi, 682018, Kerala, India
| |
Collapse
|
85
|
Orekhov AN, Gerasimova EV, Sukhorukov VN, Poznyak AV, Nikiforov NG. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Curr Pharm Des 2021; 27:276-292. [PMID: 33045961 DOI: 10.2174/1381612826666201012164330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of the elucidation of mechanisms implicated in the chronification of inflammation is to shed light on the pathogenesis of disorders that are responsible for the majority of the incidences of diseases and deaths, and also causes of ageing. Atherosclerosis is an example of the most significant inflammatory pathology. The inflammatory response of innate immunity is implicated in the development of atherosclerosis arising locally or focally. Modified low-density lipoprotein (LDL) was regarded as the trigger for this response. No atherosclerotic changes in the arterial wall occur due to the quick decrease in inflammation rate. Nonetheless, the atherosclerotic lesion formation can be a result of the chronification of local inflammation, which, in turn, is caused by alteration of the response of innate immunity. OBJECTIVE In this review, we discussed potential mechanisms of the altered response of the immunity in atherosclerosis with a particular emphasis on mitochondrial dysfunctions. CONCLUSION A few mitochondrial dysfunctions can be caused by the mitochondrial DNA (mtDNA) mutations. Moreover, mtDNA mutations were found to affect the development of defective mitophagy. Modern investigations have demonstrated the controlling mitophagy function in response to the immune system. Therefore, we hypothesized that impaired mitophagy, as a consequence of mutations in mtDNA, can raise a disturbed innate immunity response, resulting in the chronification of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Elena V Gerasimova
- V. A. Nasonova Institute of Rheumatology, 115522 Moscow, Russian Federation
| | | | | | - Nikita G Nikiforov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| |
Collapse
|
86
|
Pérez-Muñoz AA, de Lourdes Muñoz M, García-Hernández N, Santander-Lucio H. A New Approach to Identify the Methylation Sites in the Control Region of Mitochondrial DNA. Curr Mol Med 2021; 21:151-164. [PMID: 32484108 DOI: 10.2174/1566524020666200528154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
Mitochondrial DNA (mtDNA) methylation has the potential to be used as a biomarker of human development or disease. However, mtDNA methylation procedures are costly and time-consuming. Therefore, we developed a new approach based on an RT-PCR assay for the base site identification of methylated cytosine in the control region of mtDNA through a simple, fast, specific, and low-cost strategy. Total DNA was purified, and methylation was determined by RT-PCR bisulfite sequencing. This procedure included the DNA purification, bisulfite treatment and RT-PCR amplification of the control region divided into three subregions with specific primers. Sequences obtained with and without the bisulfite treatment were compared to identify the methylated cytosine dinucleotides. Furthermore, the efficiency of C to U conversion of cytosines was assessed by including a negative control. Interestingly, mtDNA methylation was observed mainly within non-Cphosphate- G (non-CpG) dinucleotides and mostly in the regions containing regulatory elements, such as OH or CSBI, CSBII, and CSBIII. This new approach will promote the generation of new information regarding mtDNA methylation patterns in samples from patients with different pathologies or that are exposed to a toxic environment in diverse human populations.
Collapse
Affiliation(s)
- Ashael Alfredo Pérez-Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - María de Lourdes Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - Normand García-Hernández
- Unidad de Investigacion Medica en Genetica Humana, Unidad Medica de Alta Especialidad Hospital de Pediatria "Dr. Silvestre Frenk Freund", Centro Medico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Heriberto Santander-Lucio
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| |
Collapse
|
87
|
Makasheva KA, Endutkin AV, Zharkov DO. Requirements for DNA bubble structure for efficient cleavage by helix-two-turn-helix DNA glycosylases. Mutagenesis 2021; 35:119-128. [PMID: 31784740 DOI: 10.1093/mutage/gez047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Oxidative DNA lesions, constantly generated by both endogenous and environmentally induced reactive oxygen species, are removed via the base excision repair pathway. In bacteria, Fpg and Nei DNA glycosylases, belonging to the helix-two-turn-helix (H2TH) structural superfamily, remove oxidised purines and pyrimidines, respectively. Interestingly, the human H2TH family glycosylases, NEIL1, NEIL2 and NEIL3, have been reported to prefer oxidative lesions in DNA bubbles or single-stranded DNA. It had been hypothesised that NEIL2 might be involved in the repair of lesions in transcription bubbles; however, bubble-like structures may appear in other cellular contexts such as displacement loops (D-loops) associated with transcription, recombination or telomere maintenance. The activities of bacterial Fpg and Nei on bubble substrates were not addressed. Also, it is not known whether H2TH enzymes process bubbles containing the third DNA or RNA strand, and how the bubble length and position of the lesion within a bubble affect the excision. We have investigated the removal of 8-oxoguanine (8-oxoG) and 5,6-dihydrouracil (DHU) by Escherichia coli Fpg and Nei and human NEIL1 and NEIL2 from single-strand oligonucleotides, perfect duplexes, bubbles with different numbers of unpaired bases (6-30), bubbles containing the lesion in different positions and D-loops with the third strand made of DNA or RNA. Fpg, NEIL1 and NEIL2 efficiently excised lesions located within bubbles, with NEIL1 and NEIL2 being specific for DHU, and Fpg removing both 8-oxoG and DHU. Nei, in contrast, was significantly active only on DHU located in double-stranded DNA. Fpg and NEIL1 also tolerated the presence of the third strand of either DNA or RNA in D-loops if the lesion was in the single-stranded part, and Fpg, Nei and NEIL1 excised lesions from the double-stranded DNA part of D-loops. The presence of an additional unpaired 5'-tail of DNA or RNA did not affect the activity. No significant position preference for lesions in a 12-mer bubble was found. Overall, the activities of Fpg, NEIL1 and NEIL2 on these non-canonical substrates are consistent with the possibility that these enzymes may participate in the repair in structures arising during transcription or homologous recombination.
Collapse
Affiliation(s)
| | - Anton V Endutkin
- Novosibirsk State University, Novosibirsk, Russia.,SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Novosibirsk State University, Novosibirsk, Russia.,SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
88
|
Müller‐Nedebock AC, Westhuizen FH, Kõks S, Bardien S. Nuclear Genes Associated with Mitochondrial
DNA
Processes as Contributors to Parkinson's Disease Risk. Mov Disord 2021; 36:815-831. [DOI: 10.1002/mds.28475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amica C. Müller‐Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | | | - Sulev Kõks
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch Western Australia Australia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| |
Collapse
|
89
|
Zakirova EG, Muzyka VV, Mazunin IO, Orishchenko KE. Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life (Basel) 2021; 11:life11020076. [PMID: 33498399 PMCID: PMC7909434 DOI: 10.3390/life11020076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
The generally accepted theory of the genetic drift of mitochondrial alleles during mammalian ontogenesis is based on the presence of a selective bottleneck in the female germline. However, there is a variety of different theories on the pathways of genetic regulation of mitochondrial DNA (mtDNA) dynamics in oogenesis and adult somatic cells. The current review summarizes present knowledge on the natural mechanisms of mitochondrial genome elimination during mammalian development. We also discuss the variety of existing and developing methodologies for artificial manipulation of the mtDNA heteroplasmy level. Understanding of the basics of mtDNA dynamics will shed the light on the pathogenesis and potential therapies of human diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elvira G. Zakirova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
| | - Vladimir V. Muzyka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilya O. Mazunin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia;
| | - Konstantin E. Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
90
|
Modernizing the Toolkit for Arthropod Bloodmeal Identification. INSECTS 2021; 12:insects12010037. [PMID: 33418885 PMCID: PMC7825046 DOI: 10.3390/insects12010037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary The ability to identify the source of vertebrate blood in mosquitoes, ticks, and other blood-feeding arthropod vectors greatly enhances our knowledge of how vector-borne pathogens are spread. The source of the bloodmeal is identified by analyzing the remnants of blood remaining in the arthropod at the time of capture, though this is often fraught with challenges. This review provides a roadmap and guide for those considering modern techniques for arthropod bloodmeal identification with a focus on progress made in the field over the past decade. We highlight genome regions that can be used to identify the vertebrate source of arthropod bloodmeals as well as technological advances made in other fields that have introduced innovative new ways to identify vertebrate meal source based on unique properties of the DNA sequence, protein signatures, or residual molecules present in the blood. Additionally, engineering progress in miniaturization has led to a number of field-deployable technologies that bring the laboratory directly to the arthropods at the site of collection. Although many of these advancements have helped to address the technical challenges of the past, the challenge of successfully analyzing degraded DNA in bloodmeals remains to be solved. Abstract Understanding vertebrate–vector interactions is vitally important for understanding the transmission dynamics of arthropod-vectored pathogens and depends on the ability to accurately identify the vertebrate source of blood-engorged arthropods in field collections using molecular methods. A decade ago, molecular techniques being applied to arthropod blood meal identification were thoroughly reviewed, but there have been significant advancements in the techniques and technologies available since that time. This review highlights the available diagnostic markers in mitochondrial and nuclear DNA and discusses their benefits and shortcomings for use in molecular identification assays. Advances in real-time PCR, high resolution melting analysis, digital PCR, next generation sequencing, microsphere assays, mass spectrometry, and stable isotope analysis each offer novel approaches and advantages to bloodmeal analysis that have gained traction in the field. New, field-forward technologies and platforms have also come into use that offer promising solutions for point-of-care and remote field deployment for rapid bloodmeal source identification. Some of the lessons learned over the last decade, particularly in the fields of DNA barcoding and sequence analysis, are discussed. Though many advancements have been made, technical challenges remain concerning the prevention of sample degradation both by the arthropod before the sample has been obtained and during storage. This review provides a roadmap and guide for those considering modern techniques for arthropod bloodmeal identification and reviews how advances in molecular technology over the past decade have been applied in this unique biomedical context.
Collapse
|
91
|
Mitochondria: The Retina's Achilles' Heel in AMD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:237-264. [PMID: 33848005 DOI: 10.1007/978-3-030-66014-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Strong experimental evidence from studies in human donor retinas and animal models supports the idea that the retinal pathology associated with age-related macular degeneration (AMD) involves mitochondrial dysfunction and consequent altered retinal metabolism. This chapter provides a brief overview of mitochondrial structure and function, summarizes evidence for mitochondrial defects in AMD, and highlights the potential ramifications of these defects on retinal health and function. Discussion of mitochondrial haplogroups and their association with AMD brings to light how mitochondrial genetics can influence disease outcome. As one of the most metabolically active tissues in the human body, there is strong evidence that disruption in key metabolic pathways contributes to AMD pathology. The section on retinal metabolism reviews cell-specific metabolic differences and how the metabolic interdependence of each retinal cell type creates a unique ecosystem that is disrupted in the diseased retina. The final discussion includes strategies for therapeutic interventions that target key mitochondrial pathways as a treatment for AMD.
Collapse
|
92
|
Polymorphisms and haplotype of mitochondrial DNA D-loop region are associated with polycystic ovary syndrome in a Chinese population. Mitochondrion 2020; 57:173-181. [PMID: 33385542 DOI: 10.1016/j.mito.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/16/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Polymorphisms in mitochondrial DNA (mtDNA) have been linked to a range of diseases. Here we investigate the relationship between mtDNA D-loop region polymorphisms, mtDNA haplotype and polycystic ovary syndrome (PCOS), as well as the correlation of D-loop variants and clinical characteristics of PCOS, in a Chinese population. The mtDNA D-loop of whole blood samples from 421 PCOS patients and 409 controls underwent next generation sequencing. The variants G207A (PBH<0.05), 16036GGins (PBH<0.05) and 16049Gins (PBH<0.001) were associated with decreased risk of PCOS. No variants were associated with PCOS, and within the PCOS group, no statistical significance was found between D-loop polymorphisms and clinical characteristics. Patient haplotype was identified from D-loop single nucleotide polymorphisms and analysis suggested that haplotype A15 (P adjusted <0.01) was significantly associated with decreased risk of PCOS. In conclusion, mtDNA D-loop alterations and haplotype appear to confer resistance to PCOS in Chinese women.
Collapse
|
93
|
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295:18406-18425. [PMID: 33127643 PMCID: PMC7939475 DOI: 10.1074/jbc.rev120.011202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| |
Collapse
|
94
|
Mitochondrial Dysfunction in Parkinson's Disease: Focus on Mitochondrial DNA. Biomedicines 2020; 8:biomedicines8120591. [PMID: 33321831 PMCID: PMC7763033 DOI: 10.3390/biomedicines8120591] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery. The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial dysfunction playing a key role in the pathogenesis of various diseases. Good evidence exists that some mtDNA mutations are associated with increased risk of Parkinson’s disease (PD), the movement disorder resulted from the degenerative loss of dopaminergic neurons of substantia nigra. Although their direct impact on mitochondrial function/dysfunction needs further investigation, results of various studies performed using cells isolated from PD patients or their mitochondria (cybrids) suggest their functional importance. Studies involving mtDNA mutator mice also demonstrated the importance of mtDNA deletions, which could also originate from abnormalities induced by mutations in nuclear encoded proteins needed for mtDNA replication (e.g., polymerase γ). However, proteomic studies revealed only a few mitochondrial proteins encoded by mtDNA which were downregulated in various PD models. This suggests nuclear suppression of the mitochondrial defects, which obviously involve cross-talk between nuclear and mitochondrial genomes for maintenance of mitochondrial functioning.
Collapse
|
95
|
Shoshan-Barmatz V, Shteinfer-Kuzmine A, Verma A. VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules 2020; 10:E1485. [PMID: 33114780 PMCID: PMC7693975 DOI: 10.3390/biom10111485] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate. In addition to control over energy sources and metabolism, the protein also regulates epigenomic elements and apoptosis via mediating the release of apoptotic proteins from the mitochondria. Apoptotic and pathological conditions, as well as certain viruses, induce cell death by inducing VDAC1 overexpression leading to oligomerization, and the formation of a large channel within the VDAC1 homo-oligomer. This then permits the release of pro-apoptotic proteins from the mitochondria and subsequent apoptosis. Mitochondrial DNA can also be released through this channel, which triggers type-Ι interferon responses. VDAC1 also participates in endoplasmic reticulum (ER)-mitochondria cross-talk, and in the regulation of autophagy, and inflammation. Its location in the outer mitochondrial membrane, makes VDAC1 ideally placed to interact with over 100 proteins, and to orchestrate the interaction of mitochondrial and cellular activities through a number of signaling pathways. Here, we provide insights into the multiple functions of VDAC1 and describe its involvement in several diseases, which demonstrate the potential of this protein as a druggable target in a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (A.V.)
| | | | | |
Collapse
|
96
|
Schneider K, Chwa M, Atilano SR, Shao Z, Park J, Karageozian H, Karageozian V, Kenney MC. Differential effects of risuteganib and bevacizumab on AMD cybrid cells. Exp Eye Res 2020; 203:108287. [PMID: 33075294 DOI: 10.1016/j.exer.2020.108287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Intravitreal injections of anti-vascular endothelial growth factor (VEGF) treatments are currently used to treat wet age-related macular degeneration (AMD), diabetic retinopathy, and macular edema. Chronic, repetitive treatments with anti-VEGF may have unintended consequences beyond the inhibition of angiogenesis. Most recently, clinical trials have been conducted with risuteganib (RSG, Luminate®), which is anti-angiogenic and has neuroprotective and anti-inflammatory properties. Mitochondrial damage and dysfunction play a major role in development of AMD. Transmitochondrial cybrids are cell lines established by fusing human retinal pigment epithelial (RPE) cells that are Rho0 (lacking mtDNA) with platelets isolated from AMD subjects or age-matched normal subjects. Cybrid cell lines have identical nuclei but mitochondria from different subjects, enabling investigation of the functional consequences of damaged AMD mitochondria. The present study compares the responses of AMD cybrids treated with bevacizumab (Bmab, Avastin®) versus risuteganib (RSG, Luminate®). METHODS Cybrids were created by fusing mtDNA depleted ARPE-19 cells with platelets from AMD or age-matched normal patients. AMD (n = 5) and normal (n = 3) cybrids were treated for 48 h with or without 1x clinical dose of 1.25 mg/50 μl (25,000 μg/ml) of Bmab or 1.0 mg/50 μl (20,000 μg/ml) of RSG. Cultures were analyzed for levels of cleaved caspase 3/7 and NucLight Rapid Red staining (IncuCyte® Live Cell Imager), mitochondrial membrane potential (ΔΨm, JC1 assay) or reactive oxygen species (ROS, H2DCFDA assay). Expression levels of genes related to the following pathways were analyzed with qRT-PCR: Apoptosis (BAX, BCL2L13, CASP-3, -7, -9); angiogenesis (VEGFA, HIF1α, PDGF); integrins (ITGB-1, -3, -5, ITGA-3, -5, -V); mitochondrial biogenesis (PGC1α, POLG); oxidative stress (SOD2, GPX3, NOX4); inflammation (IL-6, -18, -1β, IFN-β1); and signaling (P3KCA, PI3KR1). Statistical analyses were performed using GraphPad Prism software. RESULTS The untreated AMD cybrids had significantly higher levels of cleaved caspase 3/7 compared to the untreated normal cybrids. The Bmab-treated AMD cybrids showed elevated levels of cleaved caspase 3/7 compared to untreated AMD or RSG-treated AMD cybrids. The Bmab-treated cybrids had lower ΔΨm compared to untreated AMD or RSG-treated AMD cybrids. The ROS levels were not changed with Bmab or RSG treatment. Results showed that Bmab-treated cybrids had higher expression levels of inflammatory (IL-6, IL1-β), oxidative stress (NOX4) and angiogenesis (VEGFA) genes compared to untreated AMD, while RSG-treated cybrids had lower expression levels of apoptosis (BAX), angiogenesis (VEGFA) and integrin (ITGB1) genes. CONCLUSIONS These data suggest that the mechanism(s) of action of RSG, an integrin regulator, and Bmab, a recombinant monoclonal antibody, affect the AMD RPE cybrid cells differently, with the former having more anti-apoptosis properties, which may be desirable in treating degenerative ocular diseases.
Collapse
Affiliation(s)
- Kevin Schneider
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Shari R Atilano
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Zixuan Shao
- Allegro Ophthalmics, LLC, San Juan Capistrano, CA, USA
| | - John Park
- Allegro Ophthalmics, LLC, San Juan Capistrano, CA, USA
| | | | | | - M Cristina Kenney
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
97
|
Haploinsufficiency due to a novel ACO2 deletion causes mitochondrial dysfunction in fibroblasts from a patient with dominant optic nerve atrophy. Sci Rep 2020; 10:16736. [PMID: 33028849 PMCID: PMC7541502 DOI: 10.1038/s41598-020-73557-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
Abstract
ACO2 is a mitochondrial protein, which is critically involved in the function of the tricarboxylic acid cycle (TCA), the maintenance of iron homeostasis, oxidative stress defense and the integrity of mitochondrial DNA (mtDNA). Mutations in the ACO2 gene were identified in patients suffering from a broad range of symptoms, including optic nerve atrophy, cortical atrophy, cerebellar atrophy, hypotonia, seizures and intellectual disabilities. In the present study, we identified a heterozygous 51 bp deletion (c.1699_1749del51) in ACO2 in a family with autosomal dominant inherited isolated optic atrophy. A complementation assay using aco1-deficient yeast revealed a growth defect for the mutant ACO2 variant substantiating a pathogenic effect of the deletion. We used patient-derived fibroblasts to characterize cellular phenotypes and found a decrease of ACO2 protein levels, while ACO2 enzyme activity was not affected compared to two age- and gender-matched control lines. Several parameters of mitochondrial function, including mitochondrial morphology, mitochondrial membrane potential or mitochondrial superoxide production, were not changed under baseline conditions. However, basal respiration, maximal respiration, and spare respiratory capacity were reduced in mutant cells. Furthermore, we observed a reduction of mtDNA copy number and reduced mtDNA transcription levels in ACO2-mutant fibroblasts. Inducing oxidative stress led to an increased susceptibility for cell death in ACO2-mutant fibroblasts compared to controls. Our study reveals that a monoallelic mutation in ACO2 is sufficient to promote mitochondrial dysfunction and increased vulnerability to oxidative stress as main drivers of cell death related to optic nerve atrophy.
Collapse
|
98
|
Falkenberg M, Gustafsson CM. Mammalian mitochondrial DNA replication and mechanisms of deletion formation. Crit Rev Biochem Mol Biol 2020; 55:509-524. [DOI: 10.1080/10409238.2020.1818684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Claes M. Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
99
|
Placental mitochondrial DNA mutations and copy numbers in intrauterine growth restricted (IUGR) pregnancy. Mitochondrion 2020; 55:85-94. [PMID: 32861875 DOI: 10.1016/j.mito.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
Intrauterine Growth Restriction (IUGR) is a common and significant complication that arises during pregnancy wherein the fetus fails to attain its full growth potential. Mitochondria being one of the primary sources of energy, plays an important role in placentation and fetal development. In IUGR pregnancy, increased oxidative stress due to inadequate oxygen and nutrient supply could possibly alter mitochondrial functions and homeostasis. In this study, we evaluated the biochemical and molecular changes in mitochondria as biosignature for early and better characterization of IUGR pregnancies. We identified significant increase in mtDNA copy number in both IUGR (p = 0.0001) and Small for Gestational Age (SGA) but healthy (p = 0.0005) placental samples when compared to control. Whole mitochondrial genome sequencing identified novel mutations in both coding and non-coding regions of mtDNA in multiple IUGR placental samples. Sirtuin-3 (Sirt3) protein expression was significantly downregulated (p = 0.027) in IUGR placenta but there was no significant difference in Nrf1 expression in IUGR when compared to control group. Our study provides an evidence for altered mitochondrial homeostasis and paves a way towards interrogating mitochondrial abnormalities in IUGR pregnancies.
Collapse
|
100
|
Delcambre S, Ghelfi J, Ouzren N, Grandmougin L, Delbrouck C, Seibler P, Wasner K, Aasly JO, Klein C, Trinh J, Pereira SL, Grünewald A. Mitochondrial Mechanisms of LRRK2 G2019S Penetrance. Front Neurol 2020; 11:881. [PMID: 32982917 PMCID: PMC7477385 DOI: 10.3389/fneur.2020.00881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Several mutations in leucine-rich repeat kinase-2 (LRRK2) have been associated with Parkinson's disease (PD). The most common substitution, G2019S, interferes with LRRK2 kinase activity, which is regulated by autophosphorylation. Yet, the penetrance of this gain-of-function mutation is incomplete, and thus far, few factors have been correlated with disease status in carriers. This includes (i) LRRK2 autophosphorylation in urinary exosomes, (ii) serum levels of the antioxidant urate, and (iii) abundance of mitochondrial DNA (mtDNA) transcription-associated 7S DNA. In light of a mechanistic link between LRRK2 kinase activity and mtDNA lesion formation, we previously investigated mtDNA integrity in fibroblasts from manifesting (LRRK2+/PD+) and non-manifesting carriers (LRRK2+/PD−) of the G2019S mutation as well as from aged-matched controls. In our published study, mtDNA major arc deletions correlated with PD status, with manifesting carriers presenting the highest levels. In keeping with these findings, we now further explored mitochondrial features in fibroblasts derived from LRRK2+/PD+ (n = 10), LRRK2+/PD− (n = 21), and control (n = 10) individuals. In agreement with an accumulation of mtDNA major arc deletions, we also detected reduced NADH dehydrogenase activity in the LRRK2+/PD+ group. Moreover, in affected G2019S carriers, we observed elevated mitochondrial mass and mtDNA copy numbers as well as increased expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates antioxidant signaling. Taken together, these results implicate mtDNA dyshomeostasis—possibly as a consequence of impaired mitophagy—in the penetrance of LRRK2-associated PD. Our findings are a step forward in the pursuit of unveiling markers that will allow monitoring of disease progression of LRRK2 mutation carriers.
Collapse
Affiliation(s)
- Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nassima Ouzren
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Léa Grandmougin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catherine Delbrouck
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jan O Aasly
- Department of Neuromedicine and Movement Science, Department of Neurology, St. Olav's Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|