51
|
Grosheva M, Nohroudi K, Schwarz A, Rink S, Bendella H, Sarikcioglu L, Klimaschewski L, Gordon T, Angelov DN. Comparison of trophic factors' expression between paralyzed and recovering muscles after facial nerve injury. A quantitative analysis in time course. Exp Neurol 2016; 279:137-148. [PMID: 26940083 DOI: 10.1016/j.expneurol.2016.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/07/2016] [Accepted: 02/26/2016] [Indexed: 01/08/2023]
Abstract
After peripheral nerve injury, recovery of motor performance negatively correlates with the poly-innervation of neuromuscular junctions (NMJ) due to excessive sprouting of the terminal Schwann cells. Denervated muscles produce short-range diffusible sprouting stimuli, of which some are neurotrophic factors. Based on recent data that vibrissal whisking is restored perfectly during facial nerve regeneration in blind rats from the Sprague Dawley (SD)/RCS strain, we compared the expression of brain derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), insulin growth factors 1 and 2 (IGF1, IGF2) and nerve growth factor (NGF) between SD/RCS and SD-rats with normal vision but poor recovery of whisking function after facial nerve injury. To establish which trophic factors might be responsible for proper NMJ-reinnervation, the transected facial nerve was surgically repaired (facial-facial anastomosis, FFA) for subsequent analysis of mRNA and proteins expressed in the levator labii superioris muscle. A complicated time course of expression included (1) a late rise in BDNF protein that followed earlier elevated gene expression, (2) an early increase in FGF2 and IGF2 protein after 2 days with sustained gene expression, (3) reduced IGF1 protein at 28 days coincident with decline of raised mRNA levels to baseline, and (4) reduced NGF protein between 2 and 14 days with maintained gene expression found in blind rats but not the rats with normal vision. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of lesion-associated neurotrophic factors and cytokines in denervated muscles. The increase of FGF-2 protein and concomittant decrease of NGF (with no significant changes in BDNF or IGF levels) during the first week following FFA in SD/RCS blind rats possibly prevents the distal branching of regenerating axons resulting in reduced poly-innervation of motor endplates.
Collapse
Affiliation(s)
- Maria Grosheva
- Department of Oto-Rhino-Laryngology, University of Cologne, Germany
| | | | - Alisa Schwarz
- Department of Anatomy I, University of Cologne, Germany
| | - Svenja Rink
- Department of Anatomy I, University of Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, Hospital Merheim, University of Witten-Herdecke, Cologne, Germany
| | | | - Lars Klimaschewski
- Division of Neuroanatomy Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Tessa Gordon
- Department of Surgery,The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
52
|
Stark DA, Coffey NJ, Pancoast HR, Arnold LL, Walker JPD, Vallée J, Robitaille R, Garcia ML, Cornelison DDW. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation. J Cell Biol 2015; 211:1077-91. [PMID: 26644518 PMCID: PMC4674275 DOI: 10.1083/jcb.201502036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022] Open
Abstract
Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type-specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life.
Collapse
Affiliation(s)
- Danny A Stark
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Nathan J Coffey
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Hannah R Pancoast
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Laura L Arnold
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - J Peyton D Walker
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Joanne Vallée
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Richard Robitaille
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Michael L Garcia
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - D D W Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| |
Collapse
|
53
|
Yi S, Zhang H, Gong L, Wu J, Zha G, Zhou S, Gu X, Yu B. Deep Sequencing and Bioinformatic Analysis of Lesioned Sciatic Nerves after Crush Injury. PLoS One 2015; 10:e0143491. [PMID: 26629691 PMCID: PMC4668002 DOI: 10.1371/journal.pone.0143491] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022] Open
Abstract
The peripheral nerve system has an intrinsic regenerative capacity in response to traumatic injury. To better understand the molecular events occurring after peripheral nerve injury, in the current study, a rat model of sciatic nerve crush injury was used. Injured nerves harvested at 0, 1, 4, 7, and 14 days post injury were subjected to deep RNA sequencing for examining global gene expression changes. According to the temporally differential expression patterns of a huge number of genes, 3 distinct phases were defined within the post-injury period of 14 days: the acute, sub-acute, and post-acute stages. Each stage showed its own characteristics of gene expression, which were associated with different categories of diseases and biological functions and canonical pathways. Ingenuity pathway analysis revealed that genes involved in inflammation and immune response were significantly up-regulated in the acute phase, and genes involved in cellular movement, development, and morphology were up-regulated in the sub-acute stage, while the up-regulated genes in the post-acute phase were mainly involved in lipid metabolism, cytoskeleton reorganization, and nerve regeneration. All the data obtained in the current study may help to elucidate the molecular mechanisms underlying peripheral nerve regeneration from the perspective of gene regulation, and to identify potential therapeutic targets for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Honghong Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Leilei Gong
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jiancheng Wu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Guangbin Zha
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- * E-mail:
| |
Collapse
|
54
|
Placheta E, Wood MD, Lafontaine C, Frey M, Gordon T, Borschel GH. Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats. JAMA FACIAL PLAST SU 2015; 17:8-15. [PMID: 25317544 DOI: 10.1001/jamafacial.2014.617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Facial nerve injury leads to severe functional and aesthetic deficits. The transgenic Thy1-GFP rat is a new model for facial nerve injury and reconstruction research that will help improve clinical outcomes through translational facial nerve injury research. OBJECTIVE To determine whether serial in vivo imaging of nerve regeneration in the transgenic rat model is possible, facial nerve regeneration was imaged under the main paradigms of facial nerve injury and reconstruction. DESIGN, SETTING, AND PARTICIPANTS Fifteen male Thy1-GFP rats, which express green fluorescent protein (GFP) in their neural structures, were divided into 3 groups in the laboratory: crush-injury, direct repair, and cross-face nerve grafting (30-mm graft length). The distal nerve stump or nerve graft was predegenerated for 2 weeks. The facial nerve of the transgenic rats was serially imaged at the time of operation and after 2, 4, and 8 weeks of regeneration. The imaging was performed under a GFP-MDS-96/BN excitation stand (BLS Ltd). INTERVENTION OR EXPOSURE Facial nerve injury. MAIN OUTCOME AND MEASURE Optical fluorescence of regenerating facial nerve axons. RESULTS Serial in vivo imaging of the regeneration of GFP-positive axons in the Thy1-GFP rat model is possible. All animals survived the short imaging procedures well, and nerve regeneration was followed over clinically relevant distances. The predegeneration of the distal nerve stump or the cross-face nerve graft was, however, necessary to image the regeneration front at early time points. Crush injury was not suitable to sufficiently predegenerate the nerve (and to allow for degradation of the GFP through Wallerian degeneration). After direct repair, axons regenerated over the coaptation site in between 2 and 4 weeks. The GFP-positive nerve fibers reached the distal end of the 30-mm-long cross-face nervegrafts after 4 to 8 weeks of regeneration. CONCLUSIONS AND RELEVANCE The time course of facial nerve regeneration was studied by serial in vivo imaging in the transgenic rat model. Nerve regeneration was followed over clinically relevant distances in a small number of experimental animals, as they were subsequently imaged at multiple time points. The Thy1-GFP rat model will help improve clinical outcomes of facial reanimation surgery through improving the knowledge of facial nerve regeneration after surgical procedures. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Eva Placheta
- Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christine Lafontaine
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Manfred Frey
- Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Tessa Gordon
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory H Borschel
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada3Department of Surgery, University of Toronto, Toronto, Ontario, Canada4Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada5I
| |
Collapse
|
55
|
Henry FP, Wang Y, Rodriguez CLR, Randolph MA, Rust EAZ, Winograd JM, de Boer JF, Park BH. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:046002. [PMID: 25858593 PMCID: PMC4392067 DOI: 10.1117/1.jbo.20.4.046002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/24/2015] [Indexed: 05/19/2023]
Abstract
Assessing nerve integrity and myelination after injury is necessary to provide insight for treatment strategies aimed at restoring neuromuscular function. Currently, this is largely done with electrical analysis, which lacks direct quantitative information. In vivo optical imaging with sufficient imaging depth and resolution could be used to assess the nerve microarchitecture. In this study, we examine the use of polarization sensitive-optical coherence tomography (PS-OCT) to quantitatively assess the sciatic nerve microenvironment through measurements of birefringence after applying a nerve crush injury in a rat model. Initial loss of function and subsequent recovery were demonstrated by calculating the sciatic function index (SFI). We found that the PS-OCT phase retardation slope, which is proportional to birefringence, increased monotonically with the SFI. Additionally, histomorphometric analysis of the myelin thickness and g-ratio shows that the PS-OCT slope is a good indicator of myelin health and recovery after injury. These results demonstrate that PS-OCT is capable of providing nondestructive and quantitative assessment of nerve health after injury and shows promise for continued use both clinically and experimentally in neuroscience.
Collapse
Affiliation(s)
- Francis P. Henry
- Massachusetts General Hospital Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114, United States
- Massachusetts General Hospital Harvard Medical School, Plastic Surgery Research Laboratory, No. 15 Parkman Street, WACC 435, Boston, Massachusetts 02114, United States
| | - Yan Wang
- Massachusetts General Hospital Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114, United States
- University of California, Department of Bioengineering, Bourns A247, 900 University Avenue, Riverside, California 92521, United States
| | - Carissa L. R. Rodriguez
- University of California, Department of Bioengineering, Bourns A247, 900 University Avenue, Riverside, California 92521, United States
| | - Mark A. Randolph
- Massachusetts General Hospital Harvard Medical School, Plastic Surgery Research Laboratory, No. 15 Parkman Street, WACC 435, Boston, Massachusetts 02114, United States
| | - Esther A. Z. Rust
- Massachusetts General Hospital Harvard Medical School, Plastic Surgery Research Laboratory, No. 15 Parkman Street, WACC 435, Boston, Massachusetts 02114, United States
| | - Jonathan M. Winograd
- Massachusetts General Hospital Harvard Medical School, Plastic Surgery Research Laboratory, No. 15 Parkman Street, WACC 435, Boston, Massachusetts 02114, United States
| | - Johannes F. de Boer
- Massachusetts General Hospital Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114, United States
- VU University Amsterdam, Department of Physics and Astronomy, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - B. Hyle Park
- University of California, Department of Bioengineering, Bourns A247, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
56
|
Update in facial nerve paralysis: tissue engineering and new technologies. Curr Opin Otolaryngol Head Neck Surg 2015; 22:291-9. [PMID: 24979369 DOI: 10.1097/moo.0000000000000062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW To present the recent advances in the treatment of facial paralysis, emphasizing the emerging technologies. This review will summarize the current state of the art in the management of facial paralysis and discuss the advances in nerve regeneration, facial reanimation, and use of novel biomaterials. This review includes surgical innovations in reinnervation and reanimation as well as progress with bioelectrical interfaces. RECENT FINDINGS The last decade has witnessed major advances in the understanding of nerve injury and approaches for management. Key innovations include strategies to accelerate nerve regeneration, provide tissue-engineered constructs that may replace nonfunctional nerves, approaches to influence axonal guidance, limiting of donor-site morbidity, and optimization of functional outcomes. Approaches to muscle transfer continue to evolve, and new technologies allow for electrical nerve stimulation and use of artificial tissues. SUMMARY The fields of biomedical engineering and facial reanimation increasingly intersect, with innovative surgical approaches complementing a growing array of tissue engineering tools. The goal of treatment remains the predictable restoration of natural facial movement, with acceptable morbidity and long-term stability. Advances in bioelectrical interfaces and nanotechnology hold promise for widening the window for successful treatment intervention and for restoring both lost neural inputs and muscle function.
Collapse
|
57
|
Bonetti LV, Schneider APK, Barbosa S, Ilha J, Faccioni-Heuser MC. Balance and coordination training and endurance training after nerve injury. Muscle Nerve 2014; 51:83-91. [PMID: 24752648 DOI: 10.1002/mus.24268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2014] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Different rehabilitation treatments have proven useful in accelerating regeneration. METHODS After sciatic nerve crush in rats, we tested balance and coordination training (BCT) and endurance training (ET) through sensorimotor tests and analyzed nerve and muscle morphology. RESULTS After BCT and ET, rats performed better in sensorimotor tests than did non-trained animals. However, only BCT maintained sensorimotor function during training. Furthermore, BCT and ET produced significantly larger muscle area than in non-trained animals. CONCLUSIONS These findings indicate that BCT and ET, when initiated in the early phase after sciatic nerve injury, improve morphological properties of the soleus muscle and sciatic nerve, but only the task-oriented BCT maintained sensorimotor function. The success of rehabilitative strategies appears to be highly task-specific, and strategies that stimulate sensory pathways are the most effective in improving balance and/or coordination parameters.
Collapse
Affiliation(s)
- Leandro Viçosa Bonetti
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil; Laboratório de Histofisiologia Comparada, Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite 500, CEP: 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
58
|
Frey E, Valakh V, Karney-Grobe S, Shi Y, Milbrandt J, DiAntonio A. An in vitro assay to study induction of the regenerative state in sensory neurons. Exp Neurol 2014; 263:350-63. [PMID: 25447942 DOI: 10.1016/j.expneurol.2014.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 10/24/2022]
Abstract
After injury, peripheral neurons activate a pro-regenerative program that facilitates axon regeneration. While many regeneration-associated genes have been identified, the mechanism by which injury activates this program is less well understood. Furthermore, identifying pharmacological methods to induce a pro-regenerative state could lead to novel treatments to repair the injured nervous system. Therefore, we have developed an in vitro assay to study induction of the pro-regenerative state following injury or pharmacological treatment. First, we took advantage of the observation that dissociating and culturing sensory neurons from dorsal root ganglia activates a pro-regenerative program. We show that cultured neurons activate transcription factors and upregulate regeneration-associated genes common to the pro-regenerative program within the first hours after dissection. In a paradigm similar to pre-conditioning, neurons injured by dissociation display enhanced neurite outgrowth when replated as early as 12h after being removed from the animal. Furthermore, stimulation of the pro-regenerative state improves growth on inhibitory substrates and requires DLK/JNK signaling, both hallmarks of the pro-regeneration response in vivo. Finally, we modified this assay in order to identify new methods to activate the pro-regenerative state in an effort to mimic the pre-conditioning effect. We report that after several days in culture, neurons down-regulate many molecular hallmarks of injury and no longer display enhanced neurite outgrowth after replating. Hence, these neurons are functionally naïve and are a useful tool for identifying methods to induce the pro-regenerative state. We show that both injury and pre-treatment with forskolin reactivate the pro-regenerative state in this paradigm. Hence, this assay is useful for identifying pharmacological agents that induce the pro-regenerative state in the absence of injury.
Collapse
Affiliation(s)
- E Frey
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - V Valakh
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - S Karney-Grobe
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Y Shi
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - J Milbrandt
- Department of Genetics, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - A DiAntonio
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
59
|
Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci 2014; 15:630-1. [DOI: 10.1038/nrn3821] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
60
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014; 6:245. [PMID: 25278877 PMCID: PMC4166895 DOI: 10.3389/fnagi.2014.00245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
61
|
de Ruiter GCW, Spinner RJ, Verhaagen J, Malessy MJA. Misdirection and guidance of regenerating axons after experimental nerve injury and repair. J Neurosurg 2014; 120:493-501. [DOI: 10.3171/2013.8.jns122300] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin, and vice versa—that is, sensory axons projecting toward muscle. In the repair of motor nerves innervating different distal targets, misdirection may result in reinnervation of the wrong target muscle, which might function antagonistically. In sensory nerve repair, misdirection might give an increased perceptual territory. After median nerve repair, for example, this might lead to a dysfunctional hand.
Different factors may be involved in the misdirection of regenerating axons, and there may be various mechanisms that can later correct for misdirection. In this review the authors discuss these different factors and mechanisms that act along the pathway of the regenerating axon. The authors review recently developed evaluation methods that can be used to investigate the accuracy of regeneration after nerve injury and repair (including the use of transgenic fluorescent mice, retrograde tracing techniques, and motion analysis). In addition, the authors discuss new strategies that can improve in vivo guidance of regenerating axons (including physical guidance with multichannel nerve tubes and biological guidance accomplished using gene therapy).
Collapse
Affiliation(s)
| | | | - Joost Verhaagen
- 3Department of Neuroregeneration, Netherlands Institute for Neuroscience, Amsterdam
- 4Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam, The Netherlands; and
| | - Martijn J. A. Malessy
- 1Department of Neurosurgery, Leiden University Medical Center, Leiden
- 3Department of Neuroregeneration, Netherlands Institute for Neuroscience, Amsterdam
| |
Collapse
|
62
|
An S, Zhang P, Peng J, Deng L, Wang Z, Wang Z, Wang Y, Yin X, Kou Y, Ha N, Jiang B. Motor function recovery during peripheral nerve multiple regeneration. J Tissue Eng Regen Med 2013; 9:415-23. [PMID: 24323657 DOI: 10.1002/term.1833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/19/2013] [Accepted: 09/02/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Shuai An
- Peking University People's Hospital Beijing China
| | - Peixun Zhang
- Peking University People's Hospital Beijing China
| | | | - Lei Deng
- Peking University People's Hospital Beijing China
| | - Zhenwei Wang
- Peking University People's Hospital Beijing China
| | - Zhiyong Wang
- Peking University People's Hospital Beijing China
| | - Yanhua Wang
- Peking University People's Hospital Beijing China
| | - Xiaofeng Yin
- Peking University People's Hospital Beijing China
| | - Yuhui Kou
- Peking University People's Hospital Beijing China
| | - Na Ha
- Peking University People's Hospital Beijing China
| | - Baoguo Jiang
- Peking University People's Hospital Beijing China
| |
Collapse
|
63
|
Specialization of mitochondrial and vascular oxidant modulated VEGFR in the denervated skeletal muscle. Cell Signal 2013; 25:2106-14. [DOI: 10.1016/j.cellsig.2013.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/17/2013] [Accepted: 06/25/2013] [Indexed: 01/30/2023]
|
64
|
Ninagawa NT, Isobe E, Hirayama Y, Murakami R, Komatsu K, Nagai M, Kobayashi M, Kawabata Y, Torihashi S. Transplantated mesenchymal stem cells derived from embryonic stem cells promote muscle regeneration and accelerate functional recovery of injured skeletal muscle. Biores Open Access 2013; 2:295-306. [PMID: 23914336 PMCID: PMC3731682 DOI: 10.1089/biores.2013.0012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC–transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation.
Collapse
Affiliation(s)
- Nana Takenaka Ninagawa
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University , Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kilic A, Ojo B, Rajfer RA, Konopka G, Hagg D, Jang E, Akelina Y, Mao JJ, Rosenwasser MP, Tang P. Effect of white adipose tissue flap and insulin-like growth factor-1 on nerve regeneration in rats. Microsurgery 2013; 33:367-75. [DOI: 10.1002/micr.22101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Ayhan Kilic
- Department of Orthopaedic Surgery; Columbia University; New York NY
| | - Bukola Ojo
- Department of Orthopaedic Surgery; Columbia University; New York NY
| | | | - Geoffrey Konopka
- Department of Orthopaedic Surgery; Columbia University; New York NY
| | - Daniel Hagg
- Tissue Engineering and Regenerative Medicine Laboratory; Columbia University College of Dental Medicine; New York NY
| | - Eugene Jang
- Department of Orthopaedic Surgery; Columbia University; New York NY
| | - Yelena Akelina
- Department of Orthopaedic Surgery; Columbia University; New York NY
| | - Jeremy J. Mao
- Tissue Engineering and Regenerative Medicine Laboratory; Columbia University College of Dental Medicine; New York NY
| | | | - Peter Tang
- Department of Orthopaedic Surgery; Columbia University; New York NY
| |
Collapse
|
66
|
Farber SJ, Glaus SW, Moore AM, Hunter DA, Mackinnon SE, Johnson PJ. Supercharge nerve transfer to enhance motor recovery: a laboratory study. J Hand Surg Am 2013; 38:466-77. [PMID: 23391355 PMCID: PMC3583195 DOI: 10.1016/j.jhsa.2012.12.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the ability of a supercharge end-to-side (SETS) nerve transfer to augment the effect of regenerating native axons in an incomplete rodent sciatic nerve injury model. METHODS Fifty-four Lewis rats were randomized to 3 groups. The first group was an incomplete recovery model (IRM) of the tibial nerve complemented with an SETS transfer from the peroneal nerve (SETS-IRM). The IRM consisted of tibial nerve transection and immediate repair using a 10-mm fresh tibial isograft to provide some, but incomplete, nerve recovery. The 2 control groups were IRM alone and SETS alone. Nerve histomorphometry, electron microscopy, retrograde labeling, and muscle force testing were performed. RESULTS Histomorphometry of the distal tibial nerve showed significantly increased myelinated axonal counts in the SETS-IRM group compared with the IRM and SETS groups at 5 and 8 weeks. Retrograde labeling at 8 weeks confirmed increased motoneuron counts in the SETS-IRM group. Functional recovery at 8 weeks showed a significant increase in muscle-specific force in the SETS-IRM group compared with the IRM group. CONCLUSIONS An SETS transfer enhanced recovery from an incomplete nerve injury as determined by histomorphometry, motoneuron labeling within the spinal cord, and muscle force measurements. CLINICAL RELEVANCE An SETS distal nerve transfer may be useful in nerve injuries with incomplete regeneration such as proximal Sunderland II- or III-degree injuries, in which long regeneration distance yields prolonged time to muscle reinnervation and suboptimal functional recovery.
Collapse
Affiliation(s)
- Scott J Farber
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
67
|
Zhang L, Johnson D, Johnson JA. Deletion of Nrf2 impairs functional recovery, reduces clearance of myelin debris and decreases axonal remyelination after peripheral nerve injury. Neurobiol Dis 2013; 54:329-38. [PMID: 23328769 DOI: 10.1016/j.nbd.2013.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress is generated in several peripheral nerve injury models. In response to oxidative stress, the transcription factor Nrf2 is activated to induce expression of antioxidant responsive element (ARE) genes. The role of Nrf2 in peripheral nerve injury has not been studied to date. In this study, we used a sciatic nerve crush model to examine how deletion of Nrf2 affects peripheral nerve degeneration and regeneration. Our study demonstrated that functional recovery in the Nrf2(-/-) mice were impaired compared to the wild type mice after sciatic nerve crush. Larger myelin debris were present in the distal nerve stump of the Nrf2(-/-) mice than in the wild type mice. The presence of larger myelin debris in the Nrf2(-/-) mice coincides with less macrophages accumulation in the distal nerve stump. Less accumulation of macrophages may have contributed to slower clearance of myelin and thus resulted in the presence of larger myelin debris. Meanwhile, axonal regeneration is comparatively lower in the Nrf2(-/-) mice than in the wild type mice. Even after 3months post the injury, more thinly myelinated axon fibers were present in the Nrf2(-/-) mice than in the wild type mice. Taken collectively, these data support the concept of therapeutic intervention with Nrf2 activators following nerve injury.
Collapse
Affiliation(s)
- Linxia Zhang
- School of Pharmacy, University of Wisconsin-Madison, WI 53705, USA
| | | | | |
Collapse
|
68
|
Shin JE, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 2012; 74:1015-22. [PMID: 22726832 DOI: 10.1016/j.neuron.2012.04.028] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2012] [Indexed: 11/18/2022]
Abstract
Here we demonstrate that the dual leucine zipper kinase (DLK) promotes robust regeneration of peripheral axons after nerve injury in mice. Peripheral axon regeneration is accelerated by prior injury; however, DLK KO neurons do not respond to a preconditioning lesion with enhanced regeneration in vivo or in vitro. Assays for activation of transcription factors in injury-induced proregenerative pathways reveal that loss of DLK abolishes upregulation of p-STAT3 and p-cJun in the cell body after axonal injury. DLK is not required for the phosphorylation of STAT3 at the site of nerve injury but is necessary for retrograde transport of p-STAT3 to the cell body. These data demonstrate that DLK enhances regeneration by promoting a retrograde injury signal that is required for the activation of the neuronal proregenerative program.
Collapse
Affiliation(s)
- Jung Eun Shin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
69
|
HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J 2012; 31:3063-78. [PMID: 22692128 DOI: 10.1038/emboj.2012.160] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/03/2012] [Indexed: 11/08/2022] Open
Abstract
Axon regeneration is an essential process to rebuild functional connections between injured neurons and their targets. Regenerative axonal growth requires alterations in axonal microtubule dynamics, but the signalling mechanisms involved remain incompletely understood. Our results reveal that axon injury induces a gradient of tubulin deacetylation, which is required for axon regeneration both in vitro and in vivo. This injury-induced tubulin deacetylation is specific to peripheral neurons and fails to occur in central neurons. We found that tubulin deacetylation is initiated by calcium influx at the site of injury, and requires protein kinase C-mediated activation of the histone deacetylase 5 (HDAC5). Our findings identify HDAC5 as a novel injury-regulated tubulin deacetylase that plays an essential role in growth cone dynamics and axon regeneration. In addition, our results suggest a mechanism for the spatial control of tubulin modifications that is required for axon regeneration.
Collapse
|
70
|
Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS. J Neurosci 2012; 32:4901-12. [PMID: 22492046 DOI: 10.1523/jneurosci.5431-11.2012] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular responses to protein misfolding are thought to play key roles in triggering neurodegeneration. In the mutant superoxide dismutase (mSOD1) model of amyotrophic lateral sclerosis (ALS), subsets of motoneurons are selectively vulnerable to degeneration. Fast fatigable motoneurons selectively activate an endoplasmic reticulum (ER) stress response that drives their early degeneration while a subset of mSOD1 motoneurons show exacerbated sensitivity to activation of the motoneuron-specific Fas/NO pathway. However, the links between the two mechanisms and the molecular basis of their cellular specificity remained unclear. We show that Fas activation leads, specifically in mSOD1 motoneurons, to reductions in levels of calreticulin (CRT), a calcium-binding ER chaperone. Decreased expression of CRT is both necessary and sufficient to trigger SOD1(G93A) motoneuron death through the Fas/NO pathway. In SOD1(G93A) mice in vivo, reductions in CRT precede muscle denervation and are restricted to vulnerable motor pools. In vitro, both reduced CRT and Fas activation trigger an ER stress response that is restricted to, and required for death of, vulnerable SOD1(G93A) motoneurons. Our data reveal CRT as a critical link between a motoneuron-specific death pathway and the ER stress response and point to a role of CRT levels in modulating motoneuron vulnerability to ALS.
Collapse
|
71
|
Renno WM, Al-Maghrebi M, Al-Banaw A. (−)-Epigallocatechin-3-gallate (EGCG) attenuates functional deficits and morphological alterations by diminishing apoptotic gene overexpression in skeletal muscles after sciatic nerve crush injury. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:807-22. [DOI: 10.1007/s00210-012-0758-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/17/2012] [Indexed: 01/09/2023]
|
72
|
Bauder AR, Ferguson TA. Reproducible mouse sciatic nerve crush and subsequent assessment of regeneration by whole mount muscle analysis. J Vis Exp 2012:3606. [PMID: 22395197 DOI: 10.3791/3606] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regeneration in the peripheral nervous system (PNS) is widely studied both for its relevance to human disease and to understand the robust regenerative response mounted by PNS neurons thereby possibly illuminating the failures of CNS regeneration(1). Sciatic nerve crush (axonotmesis) is one of the most common models of peripheral nerve injury in rodents(2). Crushing interrupts all axons but Schwann cell basal laminae are preserved so that regeneration is optimal(3,4). This allows the investigator to study precisely the ability of a growing axon to interact with both the Schwann cell and basal laminae(4). Rats have generally been the preferred animal models for experimental nerve crush. They are widely available and their lesioned sciatic nerve provides a reasonable approximation of human nerve lesions(5,4). Though smaller in size than rat nerve, the mouse nerve has many similar qualities. Most importantly though, mouse models are increasingly valuable because of the wide availability of transgenic lines now allows for a detailed dissection of the individual molecules critical for nerve regeneration(6, 7). Prior investigators have used multiple methods to produce a nerve crush or injury including simple angled forceps, chilled forceps, hemostatic forceps, vascular clamps, and investigator-designed clamps(8,9,10,11,12). Investigators have also used various methods of marking the injury site including suture, carbon particles and fluorescent beads(13,14,1). We describe our method to obtain a reproducibly complete sciatic nerve crush with accurate and persistent marking of the crush-site using a fine hemostatic forceps and subsequent carbon crush-site marking. As part of our description of the sciatic nerve crush procedure we have also included a relatively simple method of muscle whole mount we use to subsequently quantify regeneration.
Collapse
Affiliation(s)
- Andrew R Bauder
- Center for Neural Repair and Rehabilitation, Temple University, PA, USA
| | | |
Collapse
|
73
|
Moore AM, Borschel GH, Santosa KB, Flagg ER, Tong AY, Kasukurthi R, Newton P, Yan Y, Hunter DA, Johnson PJ, Mackinnon SE. A transgenic rat expressing green fluorescent protein (GFP) in peripheral nerves provides a new hindlimb model for the study of nerve injury and regeneration. J Neurosci Methods 2012; 204:19-27. [DOI: 10.1016/j.jneumeth.2011.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/29/2022]
|
74
|
Motor nerve terminal destruction and regeneration following anti-ganglioside antibody and complement-mediated injury: An in and ex vivo imaging study in the mouse. Exp Neurol 2012; 233:836-48. [DOI: 10.1016/j.expneurol.2011.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 10/27/2011] [Accepted: 12/07/2011] [Indexed: 01/10/2023]
|
75
|
Ma CHE, Omura T, Cobos EJ, Latrémolière A, Ghasemlou N, Brenner GJ, van Veen E, Barrett L, Sawada T, Gao F, Coppola G, Gertler F, Costigan M, Geschwind D, Woolf CJ. Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. J Clin Invest 2011; 121:4332-47. [PMID: 21965333 DOI: 10.1172/jci58675] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/16/2011] [Indexed: 11/17/2022] Open
Abstract
Although peripheral nerves can regenerate after injury, proximal nerve injury in humans results in minimal restoration of motor function. One possible explanation for this is that injury-induced axonal growth is too slow. Heat shock protein 27 (Hsp27) is a regeneration-associated protein that accelerates axonal growth in vitro. Here, we have shown that it can also do this in mice after peripheral nerve injury. While rapid motor and sensory recovery occurred in mice after a sciatic nerve crush injury, there was little return of motor function after sciatic nerve transection, because of the delay in motor axons reaching their target. This was not due to a failure of axonal growth, because injured motor axons eventually fully re-extended into muscles and sensory function returned; rather, it resulted from a lack of motor end plate reinnervation. Tg mice expressing high levels of Hsp27 demonstrated enhanced restoration of motor function after nerve transection/resuture by enabling motor synapse reinnervation, but only within 5 weeks of injury. In humans with peripheral nerve injuries, shorter wait times to decompression surgery led to improved functional recovery, and, while a return of sensation occurred in all patients, motor recovery was limited. Thus, absence of motor recovery after nerve damage may result from a failure of synapse reformation after prolonged denervation rather than a failure of axonal growth.
Collapse
Affiliation(s)
- Chi Him Eddie Ma
- Program in Neurobiology and F.M. Kirby Neurobiology Center, Children’s Hospital Boston, and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Jungnickel J, Eckhardt M, Haastert-Talini K, Claus P, Bronzlik P, Lipokatic-Takacs E, Maier H, Gieselmann V, Grothe C. Polysialyltransferase overexpression in Schwann cells mediates different effects during peripheral nerve regeneration. Glycobiology 2011; 22:107-15. [DOI: 10.1093/glycob/cwr113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
77
|
Seitz M, Grosheva M, Skouras E, Angelova SK, Ankerne J, Jungnickel J, Grothe C, Klimaschewski L, Hübbers CU, Dunlop SA, Angelov DN. Poor functional recovery and muscle polyinnervation after facial nerve injury in fibroblast growth factor-2-/- mice can be improved by manual stimulation of denervated vibrissal muscles. Neuroscience 2011; 182:241-7. [PMID: 21440044 DOI: 10.1016/j.neuroscience.2011.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/23/2022]
Abstract
Functional recovery following facial nerve injury is poor. Adjacent neuromuscular junctions (NMJs) are "bridged" by terminal Schwann cells and numerous regenerating axonal sprouts. We have recently shown that manual stimulation (MS) restores whisking function and reduces polyinnervation of NMJs. Furthermore, MS requires both insulin-like growth factor-1 (IGF-1) and brain-derived neurotrophic factor (BDNF). Here, we investigated whether fibroblast growth factor-2 (FGF-2) was also required for the beneficial effects of MS. Following transection and suture of the facial nerve (facial-facial anastomisis, FFA) in homozygous mice lacking FGF-2 (FGF-2(-/-)), vibrissal motor performance and the percentage of poly-innervated NMJ were quantified. In intact FGF-2(-/-) mice and their wildtype (WT) counterparts, there were no differences in amplitude of vibrissal whisking (about 50°) or in the percentage of polyinnervated NMJ (0%). After 2 months FFA and handling alone (i.e. no MS), the amplitude of vibrissal whisking in WT-mice decreased to 22±3°. In the FGF-2(-/-) mice, the amplitude was reduced further to 15±4°, that is, function was significantly poorer. Functional deficits were mirrored by increased polyinnervation of NMJ in WT mice (40.33±2.16%) with polyinnervation being increased further in FGF-2(-/-) mice (50.33±4.33%). However, regardless of the genotype, MS increased vibrissal whisking amplitude (WT: 33.9°±7.7; FGF-2(-/-): 33.4°±8.1) and concomitantly reduced polyinnervation (WT: 33.9%±7.7; FGF-2(-/-): 33.4%±8.1) to a similar extent. We conclude that, whereas lack of FGF-2 leads to poor functional recovery and target reinnervation, MS can nevertheless confer some functional benefit in its absence.
Collapse
Affiliation(s)
- M Seitz
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Age affects reciprocal cellular interactions in neuromuscular synapses following peripheral nerve injury. Ageing Res Rev 2011; 10:43-53. [PMID: 20943206 DOI: 10.1016/j.arr.2010.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 01/09/2023]
Abstract
Studies of the influence of age on regeneration and reinnervation in the peripheral nervous system (PNS) and neuromuscular junction (NMJ) are reviewed, with a particular focus on aged and denervated skeletal muscles. The morphological and functional features of incomplete regeneration and reinnervation are compared between adult and aged animals. In addition, some possible mechanisms of the age-related defects will be discussed. Increased fragmentation or damage in individual components of the NMJ (terminal Schwann cells (TSCs), axon terminals and acetylcholine receptor sites occurs during muscle reinnervation following PNS injury in the aged animals. The capacity to produce ultraterminal sprouting or multiple innervation secondary to PNS injury is maintained, but not the capacity to eliminate such anomalous axonal profiles. The frequency and accuracy of reoccupation of the synaptic sites by TSCs and axon terminals are impaired. Thus, despite the capability of extending neural processes, the rate at which regenerating nerve fibers grow, mature and precisely appose the postsynaptic muscle fiber is impaired, resulting in the failure of re-establishment of the normal single motor innervation in the NMJ. A complex set of cellular interactions in the NMJ are known to participate in the neurotrophism and neurotrophism to support growth of the regenerating and sprouting axons and their pathfinding to direct the target muscle fiber. Besides the capability of α-motoneurons, signaling originating from the TSCs and muscle may be impaired during aging.
Collapse
|
79
|
Bovenberg MSS, Degeling MH, de Ruiter GCW, Feirabend HKP, Lakke EAJF, Vleggeert-Lankamp CLAM. Type grouping in rat skeletal muscle after crush injury. J Neurosurg 2010; 114:1449-56. [PMID: 21110712 DOI: 10.3171/2010.9.jns091656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Accuracy of reinnervation is an important factor that determines outcome after nerve injury and repair. Type grouping--the clustering of muscle fibers of the same type after reinnervation--can be used to investigate the accuracy of reinnervation. In this study, the degree of type grouping after crush injury in rats was compared with the clustering of muscle fibers after autografting or single-lumen nerve grafting. METHODS Twelve weeks after sciatic nerve crush injury in rats, clustering of Type I muscle fibers was analyzed in the target muscle with adenosine 5'-triphosphatase staining. In addition, the number of regenerated axons was determined in the nerve distal to the crush injury. Results were compared with that of the authors' previous study. RESULTS Type grouping was more abundant after crush injury than after autograft or single-lumen nerve graft repair. CONCLUSIONS Crush injury leads to more clustered innervation of muscle fibers, probably because the Schwann cell basal lamina tubes are not interrupted as they are in autograft or artificial nerve graft repair. This finding adds to understanding the processes playing a role in nerve regeneration.
Collapse
Affiliation(s)
- M Sarah S Bovenberg
- Department of Neurosurgery, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
80
|
Botulinum neurotoxin type A counteracts neuropathic pain and facilitates functional recovery after peripheral nerve injury in animal models. Neuroscience 2010; 171:316-28. [PMID: 20826198 DOI: 10.1016/j.neuroscience.2010.08.067] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/26/2010] [Accepted: 08/31/2010] [Indexed: 01/09/2023]
Abstract
A growing interest was recently focused on the use of Botulinum neurotoxin serotype A (BoNT/A) for fighting pain. The aim of this study was to investigate the effects of BoNT/A on neuropathic pain. It was observed that BoNT/A is able to counteract neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve both in mice and in rats. This effect is already present after a single intraplantar (i.pl.) or intrathecal (i.t.) neurotoxin administration that significantly reduces the sciatic nerve ligation-induced mechanical allodynia in mice and rats and thermal hyperalgesia in rats. This effect was evident starting 24 h after the administration of BoNT/A and it was long-lasting, being present 81 or 25 days after i.pl. injection of the higher dose in mice (15 pg/paw) and rats (75 pg/paw), respectively, and 35 days after i.t. injection in rats (75 pg/rat). Moreover, BoNT/A-injected mice showed a quicker recovery of the walking pattern and weight bearing compared to control groups. The behavioral improvement was accompanied by structural modifications, as revealed by the expression of cell division cycle 2 (Cdc2) and growth associated protein 43 (GAP-43) regeneration associated proteins, investigated by immunofluorescence and Western blotting in the sciatic nerve, and by the immunofluorescence expression of S100β and glial fibrillary acidic protein (GFAP) Schwann cells proteins. In conclusion, the present research demonstrate long-lasting anti-allodynic and anti-hyperalgesic effects of BoNT/A in animal models of neuropathic pain together with an acceleration of regenerative processes in the injured nerve, as evidenced by both behavioral and immunohistochemistry/blotting analysis. These results may have important implications in the therapy of neuropathic pain.
Collapse
|
81
|
Magill CK, Moore AM, Borschel GH, Mackinnon SE. A New Model for Facial Nerve Research. ACTA ACUST UNITED AC 2010. [DOI: 10.1001/archfaci.2010.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Christina K. Magill
- Department of Otolaryngology–Head and Neck Surgery (Drs Magill and Mackinnon) and Division of Plastic and Reconstructive Surgery (Drs Moore and Mackinnon), Washington University School of Medicine, St Louis, Missouri; and Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, and University of Toronto, Toronto, Ontario, Canada (Dr Borschel)
| | - Amy M. Moore
- Department of Otolaryngology–Head and Neck Surgery (Drs Magill and Mackinnon) and Division of Plastic and Reconstructive Surgery (Drs Moore and Mackinnon), Washington University School of Medicine, St Louis, Missouri; and Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, and University of Toronto, Toronto, Ontario, Canada (Dr Borschel)
| | - Gregory H. Borschel
- Department of Otolaryngology–Head and Neck Surgery (Drs Magill and Mackinnon) and Division of Plastic and Reconstructive Surgery (Drs Moore and Mackinnon), Washington University School of Medicine, St Louis, Missouri; and Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, and University of Toronto, Toronto, Ontario, Canada (Dr Borschel)
| | - Susan E. Mackinnon
- Department of Otolaryngology–Head and Neck Surgery (Drs Magill and Mackinnon) and Division of Plastic and Reconstructive Surgery (Drs Moore and Mackinnon), Washington University School of Medicine, St Louis, Missouri; and Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, and University of Toronto, Toronto, Ontario, Canada (Dr Borschel)
| |
Collapse
|
82
|
Recovery of whisking function after manual stimulation of denervated vibrissal muscles requires brain-derived neurotrophic factor and its receptor tyrosine kinase B. Neuroscience 2010; 170:372-80. [PMID: 20600640 DOI: 10.1016/j.neuroscience.2010.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/12/2010] [Accepted: 06/22/2010] [Indexed: 01/27/2023]
Abstract
Functional recovery following facial nerve injury is poor. Neuromuscular junctions (NMJs) are "bridged" by terminal Schwann cells and numerous regenerating axonal sprouts. We have shown that this poly-innervation of NMJs can be reduced by manual stimulation (MS) with restoration of whisking function. In addition, we have recently reported that insulin-like growth factor-1 (IGF-1) is required to mediate the beneficial effects of MS. Here we extend our findings to brain derived neurotrophic factor (BDNF). We then examined the effect of MS after facial-facial anastomosis (FFA) in heterozygous mice deficient in BDNF (BDNF(+/-)) or in its receptor TrkB (TrkB(+/-)). We quantified vibrissal motor performance and the percentage of NMJ bridged by S100-positive terminal Schwann cells. In intact BDNF(+/-) or TrkB(+/-) mice and their wild type (WT) littermates, there were no differences in vibrissal whisking nor in the percentage of bridged NMJ (0% in each genotype). After FFA and handling alone (i.e. no MS) in WT animals, vibrissal whisking amplitude was reduced (60% lower than intact) and the percentage of bridged NMJ increased (27% more than intact). MS improved both the amplitude of vibrissal whisking (not significantly different from intact) and the percentage of bridged NMJ (11% more than intact). After FFA and handling in BDNF(+/-) or TrkB(+/-) mice, whisking amplitude was again reduced (53% and 60% lower than intact) and proportion of bridged NMJ increased (24% and 29% more than intact). However, MS failed to improve outcome in both heterozygous strains (whisking amplitude 55% and 58% lower than intact; proportion of bridged NMJ 27% and 18% more than intact). We conclude that BDNF and TRkB are required to mediate the effects of MS on target muscle reinnervation and recovery of whisking function.
Collapse
|
83
|
Chipman PH, Franz CK, Nelson A, Schachner M, Rafuse VF. Neural cell adhesion molecule is required for stability of reinnervated neuromuscular junctions. Eur J Neurosci 2010; 31:238-49. [PMID: 20074227 DOI: 10.1111/j.1460-9568.2009.07049.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies examining the etiology of motoneuron diseases usually focus on motoneuron death as the defining pathophysiology of the disease. However, impaired neuromuscular transmission and synapse withdrawal often precede cell death, raising the possibility that abnormalities in synaptic function contribute to disease onset. Although little is known about the mechanisms maintaining the synaptic integrity of neuromuscular junctions (NMJs), Drosophila studies suggest that Fasciclin II plays an important role. Inspired by these studies we used a reinnervation model of synaptogenesis to analyze neuromuscular function in mice lacking neural cell adhesion molecule (NCAM), the Fasciclin II vertebrate homolog. Our results showed that the recovery of contractile force was the same in wild-type and NCAM-/- mice at 1 month after nerve injury, indicating that endplates were appropriately reformed. This normality was only transient because the contractile force and myofiber number decreased at 3 months after injury in NCAM-/- mice. Both declined further 3 months later. Myofibers degenerated, not because motoneurons died but because synapses were withdrawn. Although neurotransmission was initially normal at reinnervated NCAM-/- NMJs, it was significantly compromised 3 months later. Interestingly, the selective ablation of NCAM from motoneurons, or muscle fibers, did not mimic the deficits observed in reinnervated NCAM-/- mice. Taken together, these results indicate that NCAM is required to maintain normal synaptic function at reinnervated NMJs, although its loss pre-synaptically or post-synaptically is not sufficient to induce synaptic destabilization. Consideration is given to the role of NCAM in terminal Schwann cells for maintaining synaptic integrity and how NCAM dysfunction may contribute to motoneuron disorders.
Collapse
Affiliation(s)
- Peter H Chipman
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
84
|
Kiryakova S, Söhnchen J, Grosheva M, Schuetz U, Marinova T, Dzhupanova R, Sinis N, Hübbers CU, Skouras E, Ankerne J, Fries JWU, Irintchev A, Dunlop SA, Angelov DN. Recovery of whisking function promoted by manual stimulation of the vibrissal muscles after facial nerve injury requires insulin-like growth factor 1 (IGF-1). Exp Neurol 2010; 222:226-34. [PMID: 20067789 DOI: 10.1016/j.expneurol.2009.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 12/30/2009] [Indexed: 01/04/2023]
Abstract
Recently, we showed that manual stimulation (MS) of denervated vibrissal muscles enhanced functional recovery following facial nerve cut and suture (FFA) by reducing poly-innervation at the neuro-muscular junctions (NMJ). Although the cellular correlates of poly-innervation are established, with terminal Schwann cells (TSC) processes attracting axon sprouts to "bridge" adjacent NMJ, molecular correlates are poorly understood. Since quantitative RT-PCR revealed a rapid increase of IGF-1 mRNA in denervated muscles, we examined the effect of daily MS for 2 months after FFA in IGF-1(+/-) heterozygous mice; controls were wild-type (WT) littermates including intact animals. We quantified vibrissal motor performance and the percentage of NMJ bridged by S100-positive TSC. There were no differences between intact WT and IGF-1(+/-) mice for vibrissal whisking amplitude (48 degrees and 49 degrees ) or the percentage of bridged NMJ (0%). After FFA and handling alone (i.e. no MS) in WT animals, vibrissal whisking amplitude was reduced (60% lower than intact) and the percentage of bridged NMJ increased (42% more than intact). MS improved both the amplitude of vibrissal whisking (not significantly different from intact) and the percentage of bridged NMJ (12% more than intact). After FFA and handling in IGF-1(+/-) mice, the pattern was similar (whisking amplitude 57% lower than intact; proportion of bridged NMJ 42% more than intact). However, MS did not improve outcome (whisking amplitude 47% lower than intact; proportion of bridged NMJ 40% more than intact). We conclude that IGF-I is required to mediate the effects of MS on target muscle reinnervation and recovery of whisking function.
Collapse
Affiliation(s)
- S Kiryakova
- Department of Anatomy I, University of Cologne, D-50924 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Classical major histocompatibility complex class I molecules in motoneurons: new actors at the neuromuscular junction. J Neurosci 2009; 29:13503-15. [PMID: 19864563 DOI: 10.1523/jneurosci.0981-09.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Major histocompatibility complex (MHC) class I molecules have fundamental functions in the immune system. Recent studies have suggested that these molecules may also have non-immune functions in the nervous system, in particular related to synaptic function and plasticity. Because adult motoneurons express mRNAs for MHC class I molecules, we have examined their subcellular expression pattern in vivo and their role for the synaptic connectivity of these neurons. We observed immunoreactivity for classical MHC class I (Ia) protein in motoneuron somata, but the predominant expression was found in axons and presynaptically at neuromuscular junctions (NMJs). Peripheral nerve lesion induced a strong increase of motoneuron MHC class Ia (H2-K(b)/D(b)) mRNA, indicating a role for MHC class Ia molecules during regeneration. Accordingly, there was an accumulation of MHC class Ia proteins at the cut ends and in growth cones of motor axons after lesion. In K(b-/-)D(b-/-) mice (lacking MHC class Ia molecules), the time course for recovery of grip ability in reinnervated muscles was significantly delayed. Muscles from K(b-/-)D(b-/-) mice displayed an increased density and a disturbed distribution of NMJs and fewer terminal Schwann cells/NMJ compared with wild-type mice. A population of Schwann cells in sciatic nerves expressed the paired Ig receptor B, which binds to MHC class I molecules. These results provide the first evidence that neuronal MHC class Ia molecules are present in motor axons, that they are important for organization of NMJs and motor recovery after nerve lesion, and that their actions may be mediated via Schwann cells.
Collapse
|
86
|
Magill C, Whitlock E, Solowski N, Myckatyn T. Transgenic models of nerve repair and nerve regeneration. Neurol Res 2009; 30:1023-9. [PMID: 19079976 DOI: 10.1179/174313208x362497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The mainstays of peripheral nerve research have historically involved quantifying nerve regeneration by the staining of fixed specimens at multiple time points and by assessing the function of innervated targets. We review advances in transgenic techniques that significantly improve upon standard nerve imaging. METHODS The emergence of transgenic mice whose axons or Schwann cells constitutively express chromophores and techniques enabling direct visualization of nerve regeneration over time after a nerve injury are evaluated. RESULTS These techniques have enabled investigators to monitor the behaviors of single axons after injury over time. DISCUSSION Transgenic tools that overexpress proteins or desired factors at certain targets are available, thus circumventing methodological difficulties in drug delivery, maintenance of constant neurotrophic factor concentrations and the comorbidities associated with achieving these aims. In this chapter, we will outline the advancements made in peripheral nerve research using transgenic mouse models. We focus on transgenic tools that have fluorescing nervous system components, overexpress factors at desired targets, or knockout mice with hereditable or modifiable deficits.
Collapse
|
87
|
Unezaki S, Yoshii S, Mabuchi T, Saito A, Ito S. Effects of neurotrophic factors on nerve regeneration monitored by in vivo imaging in thy1-YFP transgenic mice. J Neurosci Methods 2009; 178:308-15. [DOI: 10.1016/j.jneumeth.2008.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/16/2008] [Accepted: 12/19/2008] [Indexed: 01/15/2023]
|
88
|
Song JW, Yang LJ, Russell SM. Peripheral nerve: what's new in basic science laboratories. Neurosurg Clin N Am 2009; 20:121-31, viii. [PMID: 19064185 DOI: 10.1016/j.nec.2008.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peripheral nerve regeneration research has unfolded a wealth of basic science knowledge in the last century. Today, that knowledge has become the fundamental groundwork for evolving clinical applications to treat peripheral nerve defects. This article discusses two clinical applications that have been investigated thoroughly in the laboratory setting for decades and recently tested in the clinical setting: nerve allotransplantation to graft nerve defects, and brief electrical stimulation to promote nerve regeneration. It also discusses the generation of Thy-1-XFP transgenic mice, which express fluorescent proteins in the nervous system and provide new avenues for investigating peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jae W Song
- Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
89
|
Abstract
Denervation as a consequence of nerve injury causes profound structural and functional changes within skeletal muscle and can lead to a marked impairment in function of the affected limb. Prompt reinnervation of a muscle with a sufficient number of motion-specific motor axons generally results in good structural and functional recovery, whereas long-term denervation or insufficient or improper axonal recruitment uniformly results in poor functional recovery. Only nerve transfer has been highly efficacious in changing the clinical outcomes of patients with skeletal muscle denervation, especially in the case of proximal limb nerve injuries. Rapid reinnervation with an abundant number of motor axons remains the only clinically effective means to restore function to denervated skeletal muscles.
Collapse
Affiliation(s)
- Samuel C Lien
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, 2130 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0340, USA
| | | | | |
Collapse
|
90
|
Hayashi A, Moradzadeh A, Tong A, Wei C, Tuffaha SH, Hunter DA, Tung TH, Parsadanian A, Mackinnon SE, Myckatyn TM. Treatment modality affects allograft-derived Schwann cell phenotype and myelinating capacity. Exp Neurol 2008; 212:324-36. [PMID: 18514192 PMCID: PMC2806227 DOI: 10.1016/j.expneurol.2008.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/28/2008] [Accepted: 04/04/2008] [Indexed: 01/23/2023]
Abstract
We used peripheral nerve allografts, already employed clinically to reconstruct devastating peripheral nerve injuries, to study Schwann cell (SC) plasticity in adult mice. By modulating the allograft treatment modality we were able to study migratory, denervated, rejecting, and reinnervated phenotypes in transgenic mice whose SCs expressed GFP under regulatory elements of either the S100b (S100-GFP) or nestin (Nestin-GFP) promoters. Well-differentiated SCs strongly expressed S100-GFP, while Nestin-GFP expression was stimulated by denervation, and in some cases, axons were constitutively labeled with CFP to enable in vivo imaging. Serial imaging of these mice demonstrated that untreated allografts were rejected within 20 days. Cold preserved (CP) allografts required an initial phase of SC migration that preceded axonal regeneration thus delaying myelination and maturation of the SC phenotype. Mice immunosuppressed with FK506 demonstrated mild subacute rejection, but the most robust regeneration of myelinated and unmyelinated axons and motor endplate reinnervation. While characterized by fewer regenerating axons, mice treated with the co-stimulatory blockade (CSB) agents anti-CD40L mAb and CTLAIg-4 demonstrated virtually no graft rejection during the 28 day experiment, and had significant increases in myelination, connexin-32 expression, and Akt phosphorylation compared with any other group. These results indicate that even with SC rejection, nerve regeneration can occur to some degree, particularly with FK506 treatment. However, we found that co-stimulatory blockade facilitate optimal myelin formation and maturation of SCs as indicated by protein expression of myelin basic protein (MBP), connexin-32 and phospho-Akt.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexander Parsadanian
- Department of Neurology and Hope Center for Neurological Disorders, Box 8518, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
91
|
Hayashi A, Pannucci C, Moradzadeh A, Kawamura D, Magill C, Hunter DA, Tong AY, Parsadanian A, Mackinnon SE, Myckatyn TM. Axotomy or compression is required for axonal sprouting following end-to-side neurorrhaphy. Exp Neurol 2008; 211:539-50. [PMID: 18433746 DOI: 10.1016/j.expneurol.2008.02.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/25/2008] [Accepted: 02/29/2008] [Indexed: 12/22/2022]
Abstract
End-to-side (ETS) nerve repair remains an area of intense scrutiny for peripheral nerve surgeon-scientists. In this technique, the transected end of an injured nerve, representing the "recipient" is sutured to the side of an uninjured "donor" nerve. Some works suggest that the recipient limb is repopulated with regenerating collateral axonal sprouts from the donor nerve that go on to form functional synapses. Significant, unresolved questions include whether the donor nerve needs to be injured to facilitate regeneration, and whether a single donor neuron is capable of projecting additional axons capable of differentially innervating disparate targets. We serially imaged living transgenic mice (n=66) expressing spectral variants of GFP in various neuronal subsets after undergoing previously described atraumatic, compressive, or epineurotomy forms of ETS repair (n=22 per group). To evaluate the source, and target innervation of these regenerating axons, nerve morphometry and retrograde labeling were further supplemented by confocal microscopy as well as Western blot analysis. Either compression or epineurotomy with inevitable axotomy were required to facilitate axonal regeneration into the recipient limb. Progressively more injurious models were associated with improved recipient nerve reinnervation (epineurotomy: 184+/-57.6 myelinated axons; compression: 78.9+/-13.8; atraumatic: 0), increased Schwann cell proliferation (epineurotomy: 72.2% increase; compression: 39% increase) and cAMP response-element binding protein expression at the expense of a net deficit in donor axon counts distal to the repair. These differences were manifest by 150 days, at which point quantitative evidence for pruning was obtained. We conclude that ETS repair relies upon injury to the donor nerve.
Collapse
Affiliation(s)
- Ayato Hayashi
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Dikranian K, Cohen R, Mac Donald C, Pan Y, Brakefield D, Bayly P, Parsadanian A. Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Exp Neurol 2008; 211:551-60. [PMID: 18440507 DOI: 10.1016/j.expneurol.2008.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/28/2008] [Accepted: 03/01/2008] [Indexed: 10/22/2022]
Abstract
The immature brain in the first several years of childhood is very vulnerable to trauma. Traumatic brain injury (TBI) during this critical period often leads to neuropathological and cognitive impairment. Previous experimental studies in rodent models of infant TBI were mostly concentrated on neuronal degeneration, while axonal injury and its relationship to cell death have attracted much less attention. To address this, we developed a closed controlled head injury model in infant (P7) mice and characterized the temporospatial pattern of axonal degeneration and neuronal cell death in the brain following mild injury. Using amyloid precursor protein (APP) as marker of axonal injury we found that mild head trauma causes robust axonal degeneration in the cingulum/external capsule as early as 30 min post-impact. These levels of axonal injury persisted throughout a 24 h period, but significantly declined by 48 h. During the first 24 h injured axons underwent significant and rapid pathomorphological changes. Initial small axonal swellings evolved into larger spheroids and club-like swellings indicating the early disconnection of axons. Ultrastructural analysis revealed compaction of organelles, axolemmal and cytoskeletal defects. Axonal degeneration was followed by profound apoptotic cell death in the posterior cingulate and retrosplenial cortex and anterior thalamus which peaked between 16 and 24 h post-injury. At early stages post-injury no evidence of excitotoxic neuronal death at the impact site was found. At 48 h apoptotic cell death was reduced and paralleled with the reduction in the number of APP-labeled axonal profiles. Our data suggest that early degenerative response to injury in axons of the cingulum and external capsule may cause disconnection between cortical and thalamic neurons, and lead to their delayed apoptotic death.
Collapse
Affiliation(s)
- K Dikranian
- Department of Anatomy and Neurobiology, Washington University, St. Louis, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Tos P, Ronchi G, Nicolino S, Audisio C, Raimondo S, Fornaro M, Battiston B, Graziani A, Perroteau I, Geuna S. Employment of the mouse median nerve model for the experimental assessment of peripheral nerve regeneration. J Neurosci Methods 2008; 169:119-27. [DOI: 10.1016/j.jneumeth.2007.11.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 01/27/2023]
|