51
|
Jacobson KA. Structure-based approaches to ligands for G-protein-coupled adenosine and P2Y receptors, from small molecules to nanoconjugates. J Med Chem 2013; 56:3749-67. [PMID: 23597047 PMCID: PMC3701956 DOI: 10.1021/jm400422s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine receptor (ARs) and P2Y receptors (P2YRs) that respond to extracellular nucleosides/nucleotides are associated with new directions for therapeutics. The X-ray structures of the A2AAR complexes with agonists and antagonists are examined in relationship to the G-protein-coupled receptor (GPCR) superfamily and applied to drug discovery. Much of the data on AR ligand structure from early SAR studies now are explainable from the A2AAR X-ray crystallography. The ligand-receptor interactions in related GPCR complexes can be identified by means of modeling approaches, e.g., molecular docking. Thus, molecular recognition in binding and activation processes has been studied effectively using homology modeling and applied to ligand design. Virtual screening has yielded new nonnucleoside AR antagonists, and existing ligands have been improved with knowledge of the receptor interactions. New agonists are being explored for central nervous system and peripheral therapeutics based on in vivo activity, such as chronic neuropathic pain. Ligands for receptors more distantly related to the X-ray template, i.e., P2YRs, have been introduced and are mainly used as pharmacological tools for elucidating the physiological role of extracellular nucleotides. Other ligand tools for drug discovery include fluorescent probes, radioactive probes, multivalent probes, and functionalized nanoparticles.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, USA.
| |
Collapse
|
52
|
Factor SA, Wolski K, Togasaki DM, Huyck S, Cantillon M, Ho TW, Hauser RA, Pourcher E. Long-term safety and efficacy of preladenant in subjects with fluctuating Parkinson's disease. Mov Disord 2013; 28:817-20. [PMID: 23589371 DOI: 10.1002/mds.25395] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preladenant is a selective adenosine A₂A receptor antagonist under investigation for Parkinson's disease treatment. METHODS A phase 2 36-week open-label follow-up of a double-blind study using preladenant 5 mg twice a day as a levodopa adjunct in 140 subjects with fluctuating Parkinson's disease was conducted. The primary end point was adverse event (AE) assessment. Secondary (efficacy) analyses included hours/day spent in OFF and ON states and dyskinesia prevalence/severity. RESULTS The 36-week open-label phase was completed by 106 of 140 subjects (76%). AE-related treatment discontinuations occurred in 19 subjects (14%). Treatment-emergent AEs, reported by ≥15% of subjects, were dyskinesia (33%) and constipation (19%). Preladenant 5 mg twice a day provided OFF time reductions (1.4-1.9 hours/day) and ON time increases (1.2-1.5 hours/day) throughout the 36-week treatment relative to the baseline of the double-blind study. CONCLUSIONS Long-term preladenant treatment (5 mg twice a day) was generally well tolerated and provided sustained OFF time reductions and ON time increases.
Collapse
Affiliation(s)
- Stewart A Factor
- Emory University School of Medicine, Department of Neurology, Atlanta, Georgia 30329, USA.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
Parkinson's disease (PD) is one of the most frequent neurological diseases. Despite the modern imaging and nuclear techniques which help to diagnose it in a very early stage and lead to a better discrimination of similar diseases, PD has remained a clinical diagnosis. The increasing number of available treatment options makes the disease management often complicated even when the presence of PD seems undoubted. In addition, nonmotor symptoms and side effects of some therapies constitute some pitfalls already in the preclinical state or at the beginnings of the disease, especially with the progressive effect on patients. Therefore, this review aimed to summarize study results and depict recommended medical treatments for the most common motor and nonmotor symptoms in PD. Additionally, emerging new therapeutic options such as continuous pump therapies, eg, with apomorphine or parenteral levodopa, or the implantation of electrodes for deep brain stimulation were also considered.
Collapse
Affiliation(s)
- David J Pedrosa
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
54
|
Zhong W, Hilton B, Martin G, Wang L, Yip SH. Identification of a Unique Cationic Impurity in Preladenant™ Using Accurate MS and NMR. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wendy Zhong
- Department of Global Analytical Chemistry; Merck Research Laboratories; Summit; New Jersey 07901
| | - Bruce Hilton
- Department of Global Analytical Chemistry; Merck Research Laboratories; Summit; New Jersey 07901
| | - Gary Martin
- Department of Global Analytical Chemistry; Merck Research Laboratories; Summit; New Jersey 07901
| | - Lijun Wang
- Department of Process Chemistry; Merck Research Laboratories; Rahway; New Jersey 07065
| | - Shiuhang Henry Yip
- Department of Process Chemistry; Merck Research Laboratories; Rahway; New Jersey 07065
| |
Collapse
|
55
|
Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The Pharmacology of l-DOPA-Induced Dyskinesia in Parkinson’s Disease. Pharmacol Rev 2013; 65:171-222. [DOI: 10.1124/pr.111.005678] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
56
|
Andrews SP, Tehan B. Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A2A receptor. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20164j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first example of structure-based drug design with stabilised GPCRs has enabled the identification of a preclinical candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | - Benjamin Tehan
- Heptares Therapeutics Limited
- BioPark
- Welwyn Garden City
- UK
| |
Collapse
|
57
|
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, affecting up to 10 million people worldwide. Current treatment primarily involves symptom management with dopaminergic replacement therapy. Levodopa remains the most effective oral treatment, although long-term use is associated with complications such as wearing off, dyskinesias, and on-off fluctuations. Non-dopaminergic medications that improve PD symptoms and motor fluctuations are in demand. Adenosine A2A receptors are abundantly expressed within the basal ganglia and offer a unique target to modify abnormal striatal signaling associated with PD. Preclinical animal models have shown the ability of adenosine A2A receptor antagonists to improve PD motor symptoms, reduce motor fluctuations and dyskinesia, as well as protect against toxin-induced neuronal degeneration. Both istradefylline and preladenant have demonstrated moderate efficacy in reducing off time in PD patients with motor fluctuations. The safety and efficacy of this class of compounds continues to be defined and future studies should focus on non-motor symptoms, dyskinesias, and neuroprotection.
Collapse
Affiliation(s)
- Patrick Hickey
- Duke University Medical Center, DUMC Box 3333, Durham, NC 27205, USA.
| | | |
Collapse
|
58
|
Sun XR, Chen L, Chen WF, Yung WH. Electrophysiological and behavioral effects of group I metabotropic glutamate receptors on pallidal neurons in rats. Brain Res 2012; 1477:1-9. [DOI: 10.1016/j.brainres.2012.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/20/2012] [Accepted: 08/15/2012] [Indexed: 11/17/2022]
|
59
|
Bogenpohl JW, Ritter SL, Hall RA, Smith Y. Adenosine A2A receptor in the monkey basal ganglia: ultrastructural localization and colocalization with the metabotropic glutamate receptor 5 in the striatum. J Comp Neurol 2012; 520:570-89. [PMID: 21858817 DOI: 10.1002/cne.22751] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adenosine A(2A) receptor (A(2A) R) is a potential drug target for the treatment of Parkinson's disease and other neurological disorders. In rodents, the therapeutic efficacy of A(2A) R modulation is improved by concomitant modulation of the metabotropic glutamate receptor 5 (mGluR5). To elucidate the anatomical substrate(s) through which these therapeutic benefits could be mediated, pre-embedding electron microscopy immunohistochemistry was used to conduct a detailed, quantitative ultrastructural analysis of A(2A) R localization in the primate basal ganglia and to assess the degree of A(2A) R/mGluR5 colocalization in the striatum. A(2A) R immunoreactivity was found at the highest levels in the striatum and external globus pallidus (GPe). However, the monkey, but not the rat, substantia nigra pars reticulata (SNr) also harbored a significant level of neuropil A(2A) R immunoreactivity. At the electron microscopic level, striatal A(2A) R labeling was most commonly localized in postsynaptic elements (58% ± 3% of labeled elements), whereas, in the GPe and SNr, the labeling was mainly presynaptic (71% ± 5%) or glial (27% ± 6%). In both striatal and pallidal structures, putative inhibitory and excitatory terminals displayed A(2A) R immunoreactivity. Striatal A(2A) R/mGluR5 colocalization was commonly found; 60-70% of A(2A) R-immunoreactive dendrites or spines in the monkey striatum coexpress mGluR5. These findings provide the first detailed account of the ultrastructural localization of A(2A) R in the primate basal ganglia and demonstrate that A(2A) R and mGluR5 are located to interact functionally in dendrites and spines of striatal neurons. Together, these data foster a deeper understanding of the substrates through which A(2A) R could regulate primate basal ganglia function and potentially mediate its therapeutic effects in parkinsonism.
Collapse
Affiliation(s)
- James W Bogenpohl
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
60
|
Abstract
Our current wish list for the treatment of Parkinson's disease (PD) includes therapies that will provide robust and sustained antiparkinsonian benefit through the day, ameliorate or prevent dyskinesia, and slow or prevent the progression of the disease. In this article, I review selected new therapies in clinical development for motor features or treatment complications of PD, and some that may slow disease progression. These include adenosine 2a (A2a) antagonists (istradefylline, preladenant, and SYN115), levodopa/carbidopa intestinal gel (LCIG), IPX066--an extended-release formulation of carbidopa/levodopa, XP21279--a sustained-release levodopa prodrug, ND0611--a carbidopa subcutaneous patch, safinamide--a mixed mechanism of action medication that may provide both MAO-B and glutamate inhibition, PMY50028--an oral neurotrophic factor inducer, antidyskinesia medications (AFQ056 and fipamezole), and gene therapies (AAV2-neurturin and glutamic acid decarboxylase gene transfer). Some of these therapies will never be proven efficacious and will not come to market while others may play a key role in the future treatment of PD.
Collapse
Affiliation(s)
- Robert A Hauser
- Department of Neurology, College of Medicine, University of South Florida, Tampa, Florida 33606, USA.
| |
Collapse
|
61
|
Morelli M, Blandini F, Simola N, Hauser RA. A(2A) Receptor Antagonism and Dyskinesia in Parkinson's Disease. PARKINSON'S DISEASE 2012; 2012:489853. [PMID: 22754707 PMCID: PMC3382949 DOI: 10.1155/2012/489853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/26/2012] [Indexed: 01/13/2023]
Abstract
Dyskinesia, a major complication of treatment of Parkinson's disease (PD), involves two phases: induction, which is responsible for dyskinesia onset, and expression, which underlies its clinical manifestation. The unique cellular and regional distribution of adenosine A(2A) receptors in basal ganglia areas that are richly innervated by dopamine, and their antagonistic role towards dopamine receptor stimulation, have positioned A(2A) receptor antagonists as an attractive nondopaminergic target to improve the motor deficits that characterize PD. In this paper, we describe the biochemical characteristics of A(2A) receptors and the effects of adenosine A(2A) antagonists in rodent and primate models of PD on L-DOPA-induced dyskinesia, together with relevant biomarker studies. We also review clinical trials of A(2A) antagonists as adjuncts to L-DOPA in PD patients with motor fluctuations. These studies have generally demonstrated that the addition of an A(2A) antagonist to a stable L-DOPA regimen reduces OFF time and mildly increases dyskinesia. However, limited clinical data suggest that the addition of an A(2A) antagonist along with a reduction of L-DOPA might maintain anti-Parkinsonian benefit and reduce dyskinesia. Whether A(2A) antagonists might reduce the development of dyskinesia has not yet been tested clinically.
Collapse
Affiliation(s)
- Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
- CNR Institute of Neuroscience, 09042 Cagliari, Italy
| | - Fabio Blandini
- Interdepartmental Research Center for Parkinson's Disease, National Neurological Institute C. Mondino, 27100 Pavia, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Robert A. Hauser
- Department of Neurology, University of South Florida, Tampa, FL 33613, USA
| |
Collapse
|
62
|
Luquin N, Sierra S, Rico AJ, Gómez-Bautista V, Roda E, Conte-Perales L, Franco R, McCormick P, Labandeira-García JL, Lanciego JL. Unmasking adenosine 2A receptors (A2ARs) in monkey basal ganglia output neurons using cholera toxin subunit B (CTB). Neurobiol Dis 2012; 47:347-57. [PMID: 22659306 DOI: 10.1016/j.nbd.2012.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/04/2012] [Accepted: 05/24/2012] [Indexed: 12/20/2022] Open
Abstract
The A(2A)R has become a therapeutic target in Parkinson disease due to its functional role in the striatum, capable of modulating dopaminergic neurotransmission in the basal ganglia. No conclusive evidence, however, has been provided to demonstrate the existence of A(2A)Rs in the output nuclei of the basal ganglia: the internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr). Using immunohistochemistry and in situ hybridization techniques we have confirmed the presence of A(2A)Rs in both the striatum (medium spiny and cholinergic neurons) and the external segment of the globus pallidus (GPe), in the monkey. The antibody routinely used to label A(2A)Rs failed to detect A(2A)R-positive neurons in the GPi and SNr, however, in situ hybridization showed that A(2A)R mRNA transcripts were indeed present in both these nuclei. Surprisingly, by labeling pallidothalamic and nigrothalamic projection neurons originating in the GPi and SNr with the neuronal retrograde tracer cholera toxin subunit B (CTB), the receptor protein was unmasked and detectable using the antibody. This unmasking of the protein was specific to CTB and not an artifact of the tracer. We have shown unequivocally that the A(2A)R is present in the output nuclei of the primate basal ganglia, however, to be able to detect the receptor immunohistochemically, unmasking the protein with CTB was necessary. The presence of A(2A)Rs in the GPi and SNr suggests that these output nuclei could be targeted therapeutically in Parkinson disease to restore abnormal activity in the basal ganglia.
Collapse
Affiliation(s)
- Natasha Luquin
- Neurosciences Division, Center for Applied Medical Research (CIMA), University of Navarra Medical College, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Huh JW, Kim YH, Park SJ, Kim DS, Lee SR, Kim KM, Jeong KJ, Kim JS, Song BS, Sim BW, Kim SU, Kim SH, Chang KT. Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research. BMC Genomics 2012; 13:163. [PMID: 22554259 PMCID: PMC3496626 DOI: 10.1186/1471-2164-13-163] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/13/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a human replacement, the crab-eating macaque (Macaca fascicularis) is an invaluable non-human primate model for biomedical research, but the lack of genetic information on this primate has represented a significant obstacle for its broader use. RESULTS Here, we sequenced the transcriptome of 16 tissues originated from two individuals of crab-eating macaque (male and female), and identified genes to resolve the main obstacles for understanding the biological response of the crab-eating macaque. From 4 million reads with 1.4 billion base sequences, 31,786 isotigs containing genes similar to those of humans, 12,672 novel isotigs, and 348,160 singletons were identified using the GS FLX sequencing method. Approximately 86% of human genes were represented among the genes sequenced in this study. Additionally, 175 tissue-specific transcripts were identified, 81 of which were experimentally validated. In total, 4,314 alternative splicing (AS) events were identified and analyzed. Intriguingly, 10.4% of AS events were associated with transposable element (TE) insertions. Finally, investigation of TE exonization events and evolutionary analysis were conducted, revealing interesting phenomena of human-specific amplified trends in TE exonization events. CONCLUSIONS This report represents the first large-scale transcriptome sequencing and genetic analyses of M. fascicularis and could contribute to its utility for biomedical research and basic biology.
Collapse
Affiliation(s)
- Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Young-Hyun Kim
- University of Science & Technology, National Primate Research Center, KRIBB, Daejeon, 305-806, Republic of Korea
| | - Sang-Je Park
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | - Dae-Soo Kim
- Genome Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Kyoung-Min Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
- University of Science & Technology, National Primate Research Center, KRIBB, Daejeon, 305-806, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Sang-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungbuk, 363-883, Republic of Korea
- University of Science & Technology, National Primate Research Center, KRIBB, Daejeon, 305-806, Republic of Korea
| |
Collapse
|
64
|
Dalpiaz A, Cacciari B, Vicentini CB, Bortolotti F, Spalluto G, Federico S, Pavan B, Vincenzi F, Borea PA, Varani K. A novel conjugated agent between dopamine and an A2A adenosine receptor antagonist as a potential anti-Parkinson multitarget approach. Mol Pharm 2012; 9:591-604. [PMID: 22292533 DOI: 10.1021/mp200489d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We propose a potential antiparkinsonian prodrug DP-L-A(2A)ANT (2) obtained by amidic conjugation of dopamine (1) via a succinic spacer to a new triazolo-triazine A(2A) adenosine receptor (AR) antagonist A(2A)ANT (3). The affinity of 2 and its hydrolysis products-1, 3, dopamine-linker DP-L (4) and A(2A)ANT-linker L-A(2A)ANT (5)-was evaluated for hA(1), hA(2A), hA(2B) and hA(3) ARs and rat striatum A(2A)ARs or D(2) receptors. The hydrolysis patterns of 2, 4 and 5 and the stabilities of 1 and 3 were evaluated by HPLC analysis in human whole blood and rat brain homogenates. High hA(2A) affinity was shown by compounds 2 (K(i) = 7.32 ± 0.65 nM), 3 (K(i) = 35 ± 3 nM) and 5 (K(i) = 72 ± 5 nM), whose affinity values were similar in rat striatum. These compounds were not able to change dopamine affinity for D(2) receptors but counteracted the CGS 21680-induced reduction of dopamine affinity. DP-L (4) was inactive on adenosine and dopaminergic receptors. As for stability studies, compounds 4 and 5 were not degraded in incubation media. In human blood, the prodrug 2 was hydrolyzed (half-life = 2.73 ± 0.23 h) mainly on the amidic bound coupling the A(2A)ANT (3), whereas in rat brain homogenates the prodrug 2 was hydrolyzed (half-life > eight hours) exclusively on the amidic bound coupling dopamine, allowing its controlled release and increasing its poor stability as characterized by half-life = 22.5 ± 1.5 min.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Blandini F, Armentero MT. New pharmacological avenues for the treatment of L-DOPA-induced dyskinesias in Parkinson's disease: targeting glutamate and adenosine receptors. Expert Opin Investig Drugs 2012; 21:153-68. [PMID: 22233485 DOI: 10.1517/13543784.2012.651457] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) therapy is still centered on the use of L-3,4-dihydroxyphenylalanine (L-DOPA), which is hampered by numerous side effects, including abnormal involuntary movements known as L-DOPA-induced dyskinesias (LIDs). LIDs are the result of pre- and postsynaptic changes at the corticostriatal level, induced by chronic and pulsatile stimulation of striatal dopaminergic receptors. These changes impact on synaptic plasticity and involve also selected, nondopaminergic receptors expressed by striatal projection neurons. AREAS COVERED Among nondopaminergic receptors, glutamate receptors - NMDA and mGluR5 subtypes in particular - and adenosine A(2A) receptors are those most likely involved in LIDs. The aim of the present review is to summarize results of studies undertaken with specific antagonists of these receptors, first conducted in animal models of LIDs, which in selected cases have been translated into clinical trials. EXPERT OPINION Selected antagonists of glutamate and adenosine receptors have been proposed as anti-dyskinetic agents. Promising results have been obtained in preclinical investigations and in initial clinical trials, but long-term safety, tolerability and efficacy studies in patients are still required. The current development of novel antagonists, including tools able to act on receptor mosaics, may provide innovative tools for LIDs management in the next future.
Collapse
Affiliation(s)
- Fabio Blandini
- IRCCS National Neurological Institute C. Mondino, Interdepartmental Research Center for Parkinson's Disease, Via Mondino 2, 27100 Pavia, Italy.
| | | |
Collapse
|
66
|
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 88:69-132. [PMID: 22814707 DOI: 10.1016/b978-0-12-398314-5.00004-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | |
Collapse
|
67
|
Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012; 37:213-46. [PMID: 21956442 PMCID: PMC3238085 DOI: 10.1038/npp.2011.212] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The demonstration that dopamine loss is the key pathological feature of Parkinson's disease (PD), and the subsequent introduction of levodopa have revolutionalized the field of PD therapeutics. This review will discuss the significant progress that has been made in the development of new pharmacological and surgical tools to treat PD motor symptoms since this major breakthrough in the 1960s. However, we will also highlight some of the challenges the field of PD therapeutics has been struggling with during the past decades. The lack of neuroprotective therapies and the limited treatment strategies for the nonmotor symptoms of the disease (ie, cognitive impairments, autonomic dysfunctions, psychiatric disorders, etc.) are among the most pressing issues to be addressed in the years to come. It appears that the combination of early PD nonmotor symptoms with imaging of the nigrostriatal dopaminergic system offers a promising path toward the identification of PD biomarkers, which, once characterized, will set the stage for efficient use of neuroprotective agents that could slow down and alter the course of the disease.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
68
|
Abstract
SUMMARY The main treatment strategy for Parkinson’s disease (PD) is focused on dopamine replacement. However, PD is no longer seen purely as a disease of the dopaminergic system, as the pathological processes involve neurodegeneration and altered neurotransmission of several nondopaminergic systems that are involved in both motor and nonmotor features of the disease. This article reviews current and experimental nondopaminergic pharmacological approaches to treatments for PD with a focus on motor symptoms, treatments of L-dopa-induced motor complications and treatments of nonmotor symptoms including mood disorders, cognition, psychosis and autonomic problems.
Collapse
Affiliation(s)
- Philippe Huot
- Movement Disorder Clinic, MCL7.421, Toronto Western Hospital 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | | |
Collapse
|
69
|
Baraldi PG, Saponaro G, Aghazadeh Tabrizi M, Baraldi S, Romagnoli R, Moorman AR, Varani K, Borea PA, Preti D. Pyrrolo- and pyrazolo-[3,4-e][1,2,4]triazolo[1,5-c]pyrimidines as adenosine receptor antagonists. Bioorg Med Chem 2011; 20:1046-59. [PMID: 22204739 DOI: 10.1016/j.bmc.2011.11.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 01/11/2023]
Abstract
The discovery and development of adenosine receptor antagonists have represented for years an attractive field of research from the perspective of identifying new drugs for the treatment of widespread disorders such as inflammation, asthma and Parkinson's disease. The present work can be considered as an extension of our structure-activity relationship studies on the pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (PTP) nucleus, extensively investigated by us as a useful template, in particular, for the identification of A(2A) and A(3) adenosine receptor antagonists. In order to explore the role of the nitrogen at the 7-position, we performed a new synthetic strategy for the preparation of pyrrolo[3,4-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives which can be considered as 7-deaza analogues of the parent PTPs. We also synthesised a novel series of pyrazolo[3,4-e][1,2,4]triazolo[1,5-c]pyrimidines as junction isomers of the reference compounds. In both cases we obtained some examples of potent antagonists (K(i) in the low nanomolar range) with variable selectivity profiles in relation to the nature of substituents introduced at the C(5)-, N(8)- and/or N(9)-positions. The pyrrolo-triazolo-pyrimidine derivative 9b appeared to be a potent A(3) adenosine receptor antagonist (K(i)=10 nM) with good selectivity over hA(1) (74-fold) and hA(2A) (20-fold) adenosine receptors combined with low activity at the hA(2B) subtype (IC(50)=906 nM). Moreover, some examples of high-affinity A(1)/A(2A) dual antagonists have been identified in both series. This work constitutes a new and important contribution for the comprehension of the interaction between PTPs and adenosine receptors.
Collapse
|
70
|
Jones CK, Bubser M, Thompson AD, Dickerson JW, Turle-Lorenzo N, Amalric M, Blobaum AL, Bridges TM, Morrison RD, Jadhav S, Engers DW, Italiano K, Bode J, Daniels JS, Lindsley CW, Hopkins CR, Conn PJ, Niswender CM. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson's disease. J Pharmacol Exp Ther 2011; 340:404-21. [PMID: 22088953 DOI: 10.1124/jpet.111.187443] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu₄), including N-phenyl-7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu₄ PAMsexhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu₄ in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu₄ PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with L-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of L-DOPA, suggesting that mGlu₄ PAMs may provide L-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu₄ PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either L-DOPA or A2A antagonists.
Collapse
Affiliation(s)
- Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Armentero MT, Pinna A, Ferré S, Lanciego JL, Müller CE, Franco R. Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease. Pharmacol Ther 2011; 132:280-99. [PMID: 21810444 DOI: 10.1016/j.pharmthera.2011.07.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
Abstract
Several selective antagonists for adenosine A(2A) receptors (A(2A)R) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D₂ and adenosine A(2A) receptors in the basal ganglia. At present it is believed that A(2A)R antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A(2A)R antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D₂ receptors (D₂Rs) expressed in the striatum are known to form heteromers with A(2A) adenosine receptors. Thus, the development of heteromer-specific A(2A) receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.
Collapse
Affiliation(s)
- Marie Therese Armentero
- Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson's Disease, IRCCS National Institute of Neurology "C. Mondino", Pavia, Italy
| | | | | | | | | | | |
Collapse
|
72
|
Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, Huyck S, Wolski K. Preladenant in patients with Parkinson's disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol 2011; 10:221-9. [PMID: 21315654 DOI: 10.1016/s1474-4422(11)70012-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Preladenant is an adenosine 2A (A₂(A)) receptor antagonist. In animal models of Parkinson's disease, preladenant monotherapy improves motor function without causing dyskinesia and, as an adjunct to levodopa, it improves motor function without worsening dyskinesia. We aimed to assess the efficacy and safety of preladenant in patients with Parkinson's disease and motor fluctuations who were receiving levodopa and other antiparkinsonian drugs. METHODS In this phase 2, dose-finding trial, patients with Parkinson's disease who were receiving levodopa were enrolled and treated at 44 sites in 15 countries between December, 2006, and November, 2008. Assignment to treatment was done centrally with an interactive voice response system, according to a block randomisation schedule that was computer generated by the sponsor. Patients were assigned to receive 1, 2, 5, or 10 mg oral preladenant twice daily, or matching placebo for 12 weeks. Patients, study staff, investigators, and all sponsor personnel were masked to treatment assignment. The primary outcome was change in mean daily off time from baseline to week 12, as assessed by home diaries. Efficacy analysis included all patients who received at least one dose of study drug and had data for assessments after baseline. This trial is registered with ClinicalTrials.gov, number NCT00406029. FINDINGS 253 patients were randomised to receive preladenant (1 mg [n=49], 2 mg [n=49], 5 mg [n=49], 10 mg [n=57]) or placebo (n=49), of whom 234 on preladenant (1 mg [n=47], 2 mg [n=48], 5 mg [n=45], 10 mg [n=49]) and placebo (n=45) were eligible for the efficacy analysis. Mean daily off time from baseline to week 12 was reduced versus placebo in patients on 5 mg preladenant (difference -1·0 h, 95% CI -2·1 to 0·0; p=0·0486) and 10 mg preladenant (-1·2 h, -2·2 to -0·2; p=0·019). Changes in mean daily off time versus placebo were not significant for 1 mg preladenant (0·2 h, -0·9 to 1·2; p=0·753) or 2 mg preladenant (-0·7 h, -1·7 to 0·3; p=0·162). The most common adverse events in the combined preladenant group versus placebo were worsening of Parkinson's disease (22 [11%] vs 4 [9%]), somnolence (20 [10%] vs 3 [6%]), dyskinesia (18 [9%] vs 6 [13%]), nausea (17 [9%] vs 5 [11%]), constipation (15 [8%] vs 1 [2%]), and insomnia (15 [8%] vs 4 [9%]). INTERPRETATION 5 and 10 mg preladenant twice daily might be clinically useful to reduce off time in patients with Parkinson's disease and motor fluctuations. FUNDING Schering-Plough, a subsidiary of Merck.
Collapse
|
73
|
Barkhoudarian MT, Schwarzschild MA. Preclinical jockeying on the translational track of adenosine A2A receptors. Exp Neurol 2011; 228:160-4. [PMID: 21211537 PMCID: PMC3073659 DOI: 10.1016/j.expneurol.2010.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/18/2010] [Accepted: 12/24/2010] [Indexed: 01/28/2023]
|
74
|
Jackson MJ, Jenner P. The MPTP-Treated Primate, with Specific Reference to the Use of the Common Marmoset (Callithrix jacchus). NEUROMETHODS 2011. [DOI: 10.1007/978-1-61779-298-4_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|