51
|
Debroas D, Humbert JF, Enault F, Bronner G, Faubladier M, Cornillot E. Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget--France). Environ Microbiol 2009; 11:2412-24. [PMID: 19558513 DOI: 10.1111/j.1462-2920.2009.01969.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The main goals of this work were to identify the metabolic pathways of the bacterial community in a lacustrine ecosystem and to establish links between taxonomic composition and the relative abundances of these metabolic pathways. For this purpose, we analysed a 16S rRNA gene library obtained by gene amplification together with a sequence library of both insert ends on c. 7700 fosmids. Whatever the library used, Actinobacteria was the most abundant bacterial group, followed by Proteobacteria and Bacteroidetes. Specific aquatic clades such as acI and acIV (Actinobacteria) or LD12 and GOBB-C201 (Alphaproteobacteria) were found in both libraries. From comparative analysis of metagenomic libraries, the metagenome of this lake was characterized by overrepresentation of genes involved in the degradation of xenobiotics mainly associated with Alphaproteobacteria. Actinobacteria were mainly related to metabolic pathways involved in nucleotide metabolism, cofactors, vitamins, energy, replication and repair. Betaproteobacteria appeared to be characterized by the presence of numerous genes implicated in environmental information processing (membrane transport and signal transduction) whereas glycan and carbohydrate metabolism pathways were overrepresented in Bacteroidetes. These results prompted us to propose hypotheses on the ecological role of these bacterial classes in lacustrine ecosystems.
Collapse
Affiliation(s)
- Didier Debroas
- Université Blaise Pascal--Laboratoire Microorganismes: génome et environnement, UMR/CNRS 6023, Aubiere cedex, France.
| | | | | | | | | | | |
Collapse
|
52
|
Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Appl Environ Microbiol 2009; 75:4720-6. [PMID: 19502450 DOI: 10.1128/aem.00251-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We compared the influences of grazing by the bacterivorous nanoflagellate Poterioochromonas sp. strain DS on ultramicrobacterial Actinobacteria affiliated with the Luna-2 cluster and ultramicrobacterial Betaproteobacteria of the species Polynucleobacter cosmopolitanus. These bacteria were almost identical in size (<0.1 microm(3)) and shape. Predation on a Polynucleobacter strain resulted in a reduction of >86% relative to the initial bacterial cell numbers within 20 days, while in comparable predation experiments with nine actinobacterial strains, no significant decrease of cell numbers by predation was observed over the period of >or=39 days. The differences in predation mortality between the actinobacterial strains and the Polynucleobacter strain clearly demonstrated size-independent grazing resistance for the investigated Actinobacteria. Importantly, this size-independent grazing resistance is shared by all nine investigated Luna-2 strains and thus represents a group-specific trait. We investigated if an S-layer, previously observed in an ultrastructure study, was responsible for the grazing resistance of these strains. Experiments aiming for removal of the S-layer or modification of cell surface proteins of one of the grazing-resistant strains by treatment with lithium chloride, EDTA, or formaldehyde resulted in 4.2- to 5.2-fold higher grazing rates in comparison to the levels for untreated cells. These results indicate the protective role of a proteinaceous cell surface structure in the size-independent grazing resistance of the actinobacterial Luna-2 strains, which can be regarded as a group-specific trait.
Collapse
|
53
|
Hahn MW. Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int J Syst Evol Microbiol 2009; 59:112-7. [PMID: 19126733 DOI: 10.1099/ijs.0.001743-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actinobacteria comprise a substantial fraction of the bacterioplankton in freshwater lakes and streams. Numerous cultivation-independent investigations have retrieved actinobacterial 16S rRNA gene sequences from such habitats. The taxa detected in freshwater habitats are usually absent from terrestrial and marine systems. So far, none of the indigenous freshwater lineages is represented by a taxon with a validly published name. The seven organisms for which Candidatus status is described here were isolated from freshwater lakes and ponds located in tropical, subtropical and temperate climatic zones. Phylogenetic analyses demonstrated that they are affiliated with one of the actinobacterial lineages indigenous to freshwater bacterioplankton. The seven novel taxa could only be cultivated to date as mixed cultures that also contain non-actinobacterial strains. Due to the lack of pure cultures, I propose to establish the candidate species 'Candidatus Planktoluna difficilis', 'Candidatus Aquiluna rubra', 'Candidatus Flaviluna lacus', 'Candidatus Rhodoluna limnophila', 'Candidatus Rhodoluna planktonica', 'Candidatus Rhodoluna lacicola' and 'Candidatus Limnoluna rubra' for these taxa.
Collapse
Affiliation(s)
- Martin W Hahn
- Institute for Limnology, Austrian Academy of Sciences, Mondseestrasse 9, A-5310 Mondsee, Austria.
| |
Collapse
|
54
|
Massana R, Unrein F, Rodríguez-Martínez R, Forn I, Lefort T, Pinhassi J, Not F. Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME JOURNAL 2009; 3:588-96. [PMID: 19129862 DOI: 10.1038/ismej.2008.130] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aquatic assemblages of heterotrophic protists are very diverse and formed primarily by organisms that remain uncultured. Thus, a critical issue is assigning a functional role to this unknown biota. Here we measured grazing rates of uncultured protists in natural assemblages (detected by fluorescent in situ hybridization (FISH)), and investigated their prey preference over several bacterial tracers in short-term ingestion experiments. These included fluorescently labeled bacteria (FLB) and two strains of the Roseobacter lineage and the family Flavobacteriaceae, of various cell sizes, which were offered alive and detected by catalyzed reporter deposition-FISH after the ingestion. We obtained grazing rates of the globally distributed and uncultured marine stramenopiles groups 4 and 1 (MAST-4 and MAST-1C) flagellates. Using FLB, the grazing rate of MAST-4 was somewhat lower than whole community rates, consistent with its small size. MAST-4 preferred live bacteria, and clearance rates with these tracers were up to 2 nl per predator per h. On the other hand, grazing rates of MAST-1C differed strongly depending on the tracer prey used, and these differences could not be explained by cell viability. Highest rates were obtained using FLB whereas the flavobacteria strain was hardly ingested. Possible explanations would be that the small flavobacteria cells were outside the effective size range of edible prey, or that MAST-1C selects against this particular strain. Our original dual FISH protocol applied to grazing experiments reveals important functional differences between distinct uncultured protists and offers the possibility to disentangle the complexity of microbial food webs.
Collapse
Affiliation(s)
- Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | |
Collapse
|
55
|
Jackson AP, Quail MA, Berriman M. Insights into the genome sequence of a free-living Kinetoplastid: Bodo saltans (Kinetoplastida: Euglenozoa). BMC Genomics 2008; 9:594. [PMID: 19068121 PMCID: PMC2621209 DOI: 10.1186/1471-2164-9-594] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 12/09/2008] [Indexed: 12/02/2022] Open
Abstract
Background Bodo saltans is a free-living kinetoplastid and among the closest relatives of the trypanosomatid parasites, which cause such human diseases as African sleeping sickness, leishmaniasis and Chagas disease. A B. saltans genome sequence will provide a free-living comparison with parasitic genomes necessary for comparative analyses of existing and future trypanosomatid genomic resources. Various coding regions were sequenced to provide a preliminary insight into the bodonid genome sequence, relative to trypanosomatid sequences. Results 0.4 Mbp of B. saltans genome was sequenced from 12 distinct regions and contained 178 coding sequences. As in trypanosomatids, introns were absent and %GC was elevated in coding regions, greatly assisting in gene finding. In the regions studied, roughly 60% of all genes had homologs in trypanosomatids, while 28% were Bodo-specific. Intergenic sequences were typically short, resulting in higher gene density than in trypanosomatids. Although synteny was typically conserved for those genes with trypanosomatid homologs, strict colinearity was rarely observed because gene order was regularly disrupted by Bodo-specific genes. Conclusion The B. saltans genome contains both sequences homologous to trypanosomatids and sequences never seen before. Structural similarities suggest that its assembly should be solvable, and, although de novo assembly will be necessary, existing trypanosomatid projects will provide some guide to annotation. A complete genome sequence will provide an effective ancestral model for understanding the shared and derived features of known trypanosomatid genomes, but it will also identify those kinetoplastid genome features lost during the evolution of parasitism.
Collapse
Affiliation(s)
- Andrew P Jackson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK.
| | | | | |
Collapse
|
56
|
Thelaus J, Forsman M, Andersson A. Role of productivity and protozoan abundance for the occurrence of predation-resistant bacteria in aquatic systems. MICROBIAL ECOLOGY 2008; 56:18-28. [PMID: 17874304 DOI: 10.1007/s00248-007-9320-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 08/22/2007] [Accepted: 08/26/2007] [Indexed: 05/17/2023]
Abstract
Top-down control of lower trophic levels, e.g., bacteria, has been suggested to increase along aquatic productivity gradients. The response by the bacterial community may be to become more predation resistant in highly productive environments. To test this hypothesis, samples were taken from 20 aquatic systems along a productivity gradient (dissolved organic carbon from 7 to 71 mg/L), during late summer. The results showed that the biomass of bacteria, phytoplankton, and ciliates increased along the gradient (r2 = 0.532, 0.426, and 0.758, P < 0.01, respectively). However, the organisms did not increase equally, and the ratio of protozoan to bacterial biomass showed a 100-fold increase along the gradient. Ciliates dominated the protozoan biomass in the more nutrient-rich waters. The edibility of colony-forming bacteria was tested using a ciliate predator, Tetrahymena pyriformis. Bacterial edibility was found to decrease with increases in nutrient richness and ciliate biomass in the aquatic systems (r2 = 0.358, P < 0.01; r2 = 0.242, P < 0.05, respectively). Quantile regression analysis indicated that the selection pressures on edible bacteria were increasing along the productivity gradient. Thus, inedible forms of bacteria were selected for in the transition from oligotrophic to eutrophic conditions. Isolated bacteria were distributed among the alpha-, beta-, and gamma- Proteobacteria and the Actinobacteria and Firmicutes taxa. We conclude that bacterial predation resistance increases in nutrient-rich waters with high protozoan predation.
Collapse
Affiliation(s)
- Johanna Thelaus
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|
57
|
Allgaier M, Brückner S, Jaspers E, Grossart HP. Intra- and inter-lake variability of free-living and particle-associated Actinobacteria communities. Environ Microbiol 2008; 9:2728-41. [PMID: 17922757 DOI: 10.1111/j.1462-2920.2007.01385.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have analysed the inter- and intra-lake variability of free-living and particle-associated freshwater Actinobacteria communities in four limnological different lakes of the Mecklenburg Lake District, Northeastern Germany. Denaturing gradient gel electrophoresis (DGGE) specific for Actinobacteria was used to investigate phylogenetic diversity and seasonal dynamics of actinobacterial communities in the epilimnion of all lakes (inter-lake variability) and to assess differences between Actinobacteria communities of the epi-, meta- and hypolimnion of a single lake (intra-lake variability) respectively. DGGE analyses showed significant inter- and intra-lake differences between Actinobacteria communities of all lakes and water layers as well as between free-living and particle-associated Actinobacteria. Phylogenetic inferences of 16S rRNA gene sequences suggest that particular members of particle-associated Actinobacteria were exclusively affiliated to certain actinobacterial lineages. The phylogenetic comparison of 16S rRNA gene sequences of all lakes and water layer, however, indicated the occurrence of almost similar phylogenetic lineages in all studied habitats and suggest high intracluster diversity within already known actinobacterial lineages. Non-metric multidimensional scaling (NMS) ordination analyses and Pearson's product moment correlations revealed several strong correlations between the investigated Actinobacteria communities and various limnological parameters, such as conductivity, total phosphorous, alkalinity or primary production. However, no uniform correlation patterns were found between lakes, water layers and bacterial fractions. These heterogeneous correlation patterns together with the phylogenetic similarities of Actinobacteria communities from different lakes indicate that particular Actinobacteria represent various ecotypes or exhibit a pronounced ecophysiological plasticity.
Collapse
Affiliation(s)
- Martin Allgaier
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department Limnology of Stratified Lakes, Alte Fischerhütte 2, D-16775 Stechlin-Neuglobsow, Germany
| | | | | | | |
Collapse
|
58
|
Liu J, Yang M, Qi R, An W, Zhou J. Comparative study of protozoan communities in full-scale MWTPs in Beijing related to treatment processes. WATER RESEARCH 2008; 42:1907-1918. [PMID: 18155267 DOI: 10.1016/j.watres.2007.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/16/2007] [Accepted: 11/18/2007] [Indexed: 05/25/2023]
Abstract
The potential influence of process principles and system conditions on shaping protozoan community structures in eight full-scale municipal wastewater treatment systems in Beijing, including four process types, i.e., anaerobic/anoxic/aerobic or anoxic/anaerobic/aerobic process (A2O), anoxic/aerobic or anaerobic/aerobic process (AO), oxidation ditch (OD) and sequencing batch reactor (SBR), was evaluated with the aid of cluster analysis and principal components analysis (PCA). The species richness and abundance distribution of protozoa varied significantly with the process types: the A2O ecosystems harbored more diverse protozoan communities with higher relative abundance of crawling and sessile ciliates than the other systems. Cluster analysis revealed that the protozoan community structures were in high coordination with the process types, i.e., different systems with the same process principles exhibited similar community structures. The A2O processes displayed a distinctively higher similarity of protozoan community structures than the AO processes, suggesting that the A2O ecosystems were more stable than those of AO. The PCA analyses demonstrated that swimming and carnivorous ciliates were correlated with poor settleability of sludge, and that amoebae were sensitive to DO level. We therefore concluded that protozoan community structures were primarily shaped by treatment process principles, whilst they were also modified by system conditions in terms of operational properties and water quality.
Collapse
Affiliation(s)
- Juan Liu
- State Key Lab of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | |
Collapse
|
59
|
Grossart HP, Jezbera J, Horňák K, Hutalle KML, Buck U, Šimek K. Top-down and bottom-up induced shifts in bacterial abundance, production and community composition in an experimentally divided humic lake. Environ Microbiol 2008; 10:635-52. [DOI: 10.1111/j.1462-2920.2007.01487.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
60
|
Newton RJ, Jones SE, Helmus MR, McMahon KD. Phylogenetic ecology of the freshwater Actinobacteria acI lineage. Appl Environ Microbiol 2007; 73:7169-76. [PMID: 17827330 PMCID: PMC2168227 DOI: 10.1128/aem.00794-07] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 08/27/2007] [Indexed: 11/20/2022] Open
Abstract
The acI lineage of freshwater Actinobacteria is a cosmopolitan and often numerically dominant member of lake bacterial communities. We conducted a survey of acI 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions from 18 Wisconsin lakes and used standard nonphylogenetic and phylogenetic statistical approaches to investigate the factors that determine acI community composition at the local scale (within lakes) and at the regional scale (across lakes). Phylogenetic reconstruction of 434 acI 16S rRNA genes revealed a well-defined and highly resolved phylogeny. Eleven previously unrecognized monophyletic clades, each with > or =97.9% within-clade 16S rRNA gene sequence identity, were identified. Clade community similarity positively correlated with lake environmental similarity but not with geographic distance, implying that the lakes represent a single biotic region containing environmental filters for communities that have similar compositions. Phylogenetically disparate clades within the acI lineage were most abundant at the regional scale, and local communities were comprised of more closely related clades. Lake pH was a strong predictor of the community composition, but only when lakes with a pH below 6 were included in the data set. In the remaining lakes (pH above 6) biogeographic patterns in the landscape were instead a predictor of the observed acI community structure. The nonrandom distribution of the newly defined acI clades suggests potential ecophysiological differences between the clades, with acI clades AI, BII, and BIII preferring acidic lakes and acI clades AII, AVI, and BI preferring more alkaline lakes.
Collapse
Affiliation(s)
- Ryan J Newton
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
61
|
Rubin MA, Leff LG. Nutrients and other abiotic factors affecting bacterial communities in an Ohio River (USA). MICROBIAL ECOLOGY 2007; 54:374-83. [PMID: 17308951 DOI: 10.1007/s00248-007-9209-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 12/20/2006] [Accepted: 01/07/2007] [Indexed: 05/14/2023]
Abstract
Nitrogen and phosphorus additions from anthropogenic sources can alter the nutrient pool of aquatic systems, both through increased nutrient concentrations and changes in stoichiometry. Because bacteria are important in nutrient cycling and aquatic food webs, information about how nutrients affect bacterial communities enhances our understanding of how changes in nutrient concentrations and stoichiometry potentially affect aquatic ecosystems as a whole. In this study, bacterial communities were examined in biofilms from cobbles collected across seasons at three sites along the Mahoning River (Ohio) with differing levels of inorganic nutrient inputs. Members of the alpha-, beta-, and gamma-proteobacteria, the Cytophaga-Flavobacteria cluster, and the Domain Bacteria were enumerated using fluorescent in situ hybridization. Detrended canonical correspondence analysis (DCCA) revealed that stoichiometric ratios, especially the dissolved inorganic nitrogen (DIN):soluble reactive phosphorus (SRP) molar ratio (NO(2)/NO(3) + NH(4):soluble reactive phosphorus), were correlated with abundance of the various bacterial taxa. However, the patterns were complicated by correlations with single nutrient concentrations and seasonal changes in temperature. Seasonal cycles appeared to play an important role in structuring the community, as there were distinct winter communities and temperature was negatively correlated with abundance of both alpha-proteobacteria and Cytophaga-Flavobacteria. However, nutrients and stoichiometry also appeared to affect the community. Numbers of cells hybridizing the Domain Bacteria probe were correlated with the DOC:DIN ratio, the beta-proteobacteria had a negative correlation with soluble reactive phosphorus concentrations and a positive correlation with the DIN:SRP ratio, and the Cytophaga-Flavobacteria had a significant negative partial correlation with the DIN:SRP ratio. Abundances of the alpha- or gamma-proteobacteria were not directly correlated to nutrient concentrations or stoichiometry. It appears that nutrient stoichiometry may be an important factor structuring bacterial communities; however, it is one of many factors, such as temperature, that are interlinked and must be considered together when studying environmental bacteria.
Collapse
Affiliation(s)
- Melissa A Rubin
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | | |
Collapse
|
62
|
Simek K, Weinbauer MG, Hornák K, Jezbera J, Nedoma J, Dolan JR. Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ Microbiol 2007; 9:789-800. [PMID: 17298377 DOI: 10.1111/j.1462-2920.2006.01201.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a detailed analysis of the effects of distinct bacterial mortality factors, viral lysis and heterotrophic nanoflagellates (HNF) bacterivory, associated with the development of filamentous Flectobacillus populations. Reservoir bacterioplankton communities were subjected to additions of both HNF and viruses together, or HNF alone, and then incubated in situ in dialyses bags. For distinct bacterial groups, mortality or growth stimulation was analysed by examining bacterial prey ingested in HNF food vacuoles with fluorescence in situ hybridization (FISH) and via FISH with microautoradiography (MAR-FISH). We also developed a semi-quantitative MAR-FISH-based estimation of relative activities of Flectobacillus populations (targeted by the R-FL615 probe). Bacterial groups vulnerable to HNF predation (mainly clusters of Betaproteobacteria), or discriminated against (Actinobacteria), were detected. Bacterial lineages most vulnerable to virus-lysis (mainly the Betaproteobacteria not targeted by the R-BT065 probe, of the Polynucleobacter cluster) were identified by comparing treatments with HNF alone to HNF and viruses together. Filaments affiliated with the Flectobacillus cluster appeared in both treatments, but were about twice as abundant, long and active as in incubations with viruses and HNF as compared with HNF alone. Viruses appeared to selectively suppress several bacterial groups, perhaps enhancing substrate availability thus stimulating growth and activity of filamentous Flectobacillus.
Collapse
Affiliation(s)
- Karel Simek
- Biological Centre of the Academy of Sciences of the Czech Republic, Hydrobiological Institute, Na Sádkách 7, CZ-37005 Céské Budéjovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
63
|
Salcher MM, Hofer J, Hornák K, Jezbera J, Sonntag B, Vrba J, Simek K, Posch T. Modulation of microbial predatorâprey dynamics by phosphorus availability: Growth patterns and survival strategies of bacterial phylogenetic clades. FEMS Microbiol Ecol 2007; 60:40-50. [PMID: 17250752 DOI: 10.1111/j.1574-6941.2006.00274.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We simultaneously studied the impact of top-down (protistan grazing) and bottom-up (phosphorus availability) factors on the numbers and biomasses of bacteria from various phylogenetic lineages, and on their growth and activity parameters in the oligo-mesotrophic Piburger See, Austria. Enhanced grazing resulted in decreased proportions of bacteria with high nucleic acid content (high-NA bacteria) and lower detection rates by FISH. There was a change in the composition of the bacterial assemblage, whereby Betaproteobacteria were heavily grazed while Alphaproteobacteria and Cytophaga-Flavobacterium-Bacteroides were less affected by predators. Changes in bacterial assemblage composition were also apparent in the treatments enriched with phosphorus, and even more pronounced in the incubations in dialysis tubes (allowing relatively free nutrient exchange). Here, Betaproteobacteria became dominant and appeared to act as successful opportunistic competitors for nutrients. In contrast, Actinobacteria did not respond to surplus phosphorus by population growth, and, moreover, maintained their small size, which resulted in a very low biomass contribution. In addition, significant relationships between high-NA bacteria and several bacterial phylogenetic clades were found, indicating an enhanced activity status. By combining several single-cell methods, new insight is gained into the competitive abilities of freshwater bacteria from a variety of phylogenetic lineages under contrasting sets of bottom-up and top-down constraints.
Collapse
Affiliation(s)
- Michaela M Salcher
- Department of Limnology, Institute of Plant Biology, University of Zurich, Kilchberg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Weinbauer MG, Hornák K, Jezbera J, Nedoma J, Dolan JR, Simek K. Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environ Microbiol 2007; 9:777-88. [PMID: 17298376 DOI: 10.1111/j.1462-2920.2006.01200.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In a mesotrophic reservoir, we examined the effects on the bacterioplankton of distinct consumers of bacteria, viruses and heterotrophic nanoflagellates, both alone and combined in an experiment using natural populations and in situ incubations in dialysis bags. Ribosomal RNA-targeted probes were employed as well as 16S RNA gene based PCR denaturing gradient gel electrophoresis (DGGE) to enumerate bacterial groups and assess bacterial community composition. We employed probes for Actinobacteria (HGC69a probe), Cytophaga-Flavobacterium-Bacteroidetes bacteria (CF319a probe), BET42a probe (Betaproteobacteria) and a subgroup-Betaproteobacteria (R-BT065 probe). We found consumer-specific effects on bacterial activity and diversity (against a background of CF and BET dominating all treatments) suggesting distinct vulnerabilities to the two sources of mortality. For example, growth rate of Actinobacteria was only positive in the presence of flagellates, while towards the end of the experiment (T(72-96 h)) growth rate of R-BT was only positive in the viruses only treatment. More specific data on how viruses and flagellates influenced Flectobacillus are shown in the companion paper. Highest richness (number of DGGE bands) was found in the virus only treatment and lowest when both consumers were present. In addition, we found suggestions of both antagonistic and synergistic interactions between the two sources of bacterial mortality. Notably, bactivory by flagellates was associated with reductions in bacterial diversity and increases in viral production.
Collapse
Affiliation(s)
- Markus G Weinbauer
- Microbial Ecology and Biogeochemistry Group, Université Pierre et Marie Curie-Paris 6, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France.
| | | | | | | | | | | |
Collapse
|
65
|
Simek K, Hornák K, Jezbera J, Nedoma J, Vrba J, Straskrábová V, Macek M, Dolan JR, Hahn MW. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 2007; 8:1613-24. [PMID: 16913921 DOI: 10.1111/j.1462-2920.2006.01053.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated net growth rates of distinct bacterioplankton groups and heterotrophic nanoflagellate (HNF) communities in relation to phosphorus availability by analysing eight in situ manipulation experiments, conducted between 1997 and 2003, in the canyon-shaped Rímov reservoir (Czech Republic). Water samples were size-fractionated and incubated in dialysis bags at the sampling site or transplanted into an area of the reservoir, which differed in phosphorus limitation (range of soluble reactive phosphorus concentrations--SRP, 0.7-96 microg l-1). Using five different rRNA-targeted oligonucleotide probes, net growth rates of the probe-defined bacterial groups and HNF assemblages were estimated and related to SRP using Monod kinetics, yielding growth rate constants specific for each bacterial group. We found highly significant differences among their maximum growth rates while insignificant differences were detected in the saturation constants. However, the latter constants represent only tentative estimates mainly due to insufficient sensitivity of the method used at low in situ SRP concentrations. Interestingly, in these same experiments HNF assemblages grew significantly faster than any bacterial group studied except for a small, but abundant cluster of Betaproteobacteria (targeted by the R-BT065 probe). Potential ecological implications of different growth capabilities for possible life strategies of different bacterial phylogenetic lineages are discussed.
Collapse
Affiliation(s)
- Karel Simek
- Biological Centre of the Academy of Sciences of the Czech Republic, Hydrobiological Institute, Na Sádkách 7, CZ-37005 Ceské Budejovice, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Shannon SP, Chrzanowski TH, Grover JP. Prey food quality affects flagellate ingestion rates. MICROBIAL ECOLOGY 2007; 53:66-73. [PMID: 17186152 DOI: 10.1007/s00248-006-9140-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 06/21/2006] [Accepted: 07/10/2006] [Indexed: 05/13/2023]
Abstract
Flagellate feeding efficiency appears to depend on morphological characteristics of prey such as cell size and motility, as well as on other characteristics such as digestibility and cell surface characteristics. Bacteria of varying morphological characteristics (cell size) and mineral nutrient characteristics or food quality (as determined by the C:N:P ratio) were obtained by growing Pseudomonas fluorescens in chemostats at four dilution rates (0.03, 0.06, 0.10, and 0.13 h-1) and three temperatures (14 degrees C, 20 degrees C, and 28 degrees C). Cells of a given food quality were heat-killed and used to grow the flagellate Ochromonas danica. Ingestion and digestion rates were determined by using fluorescently labeled bacteria of the same food quality as the bacteria supporting growth. Ingestion rates were affected by both food quality and cell size. Cells of high food quality (low carbon:element ratio) were ingested at higher rates than cells of low food quality. Multiple regression analysis indicated that cell size also influenced ingestion rate but to a much lesser extent than did food quality. Digestion rates were not correlated with either food quality or cell size. Results suggest that flagellates may adjust feeding efficiency based on the quality of food items available.
Collapse
Affiliation(s)
- S Paul Shannon
- Department of Biology, The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | |
Collapse
|
67
|
Jousset A, Lara E, Wall LG, Valverde C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 2006; 72:7083-90. [PMID: 17088380 PMCID: PMC1636139 DOI: 10.1128/aem.00557-06] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 08/06/2006] [Indexed: 11/20/2022] Open
Abstract
In soil ecosystems, bacteria must cope with predation activity, which is attributed mainly to protists. The development of antipredation strategies may help bacteria maintain higher populations and persist longer in the soil. We analyzed the interaction between the root-colonizing and biocontrol strain Pseudomonas fluorescens CHA0 and three different protist isolates (an amoeba, a flagellate, and a ciliate). CHA0 produces a set of antibiotics, HCN, and an exoprotease. We observed that protists cannot grow on CHA0 but can multiply on isogenic regulatory mutants that do not produce the extracellular metabolites. The in vitro responses to CHA0 cells and its exoproducts included growth inhibition, encystation, paralysis, and cell lysis. By analyzing the responses of protists to bacterial supernatants obtained from different isogenic mutants whose production of one or more exometabolites was affected and also to culture extracts with antibiotic enrichment, we observed different contributions of the phenolic antifungal compound 2,4-diacetylphloroglucinol (DAPG) and the extracellular protease AprA to CHA0 toxicity for protists and to the encystation-reactivation cycle. The grazing pressure artificially produced by a mixture of the three protists in a microcosm system resulted in reduced colonization of cucumber roots by a regulatory isogenic CHA0 mutant unable to produce toxins. These results suggest that exometabolite production in biocontrol strain CHA0 may contribute to avoidance of protist grazing and help sustain higher populations in the rhizosphere, which may be a desirable and advantageous trait for competition with other bacteria for available resources.
Collapse
Affiliation(s)
- Alexandre Jousset
- Programa Prioritario sobre Interacciones Biológicas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
68
|
Jezbera J, Hornák K, Simek K. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 2006; 8:1330-9. [PMID: 16872397 DOI: 10.1111/j.1462-2920.2006.01026.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An experiment designed to examine food preferences of heterotrophic nanoflagellates (HNF) grazing on bacterioplankton was performed in the freshwater Rímov reservoir (Czech Republic). Water samples were size-fractionated to obtain < 5 microm filtrate containing bacteria and HNF. To manipulate resource availability, < 5 microm treatments were incubated in dialysis bags submerged in the barrels filled with the unfiltered reservoir water amended with either orthophosphate or glucose or combination of both. We employed rRNA-targeted probes to assess HNF prey preferences by analysing bacterial prey in HNF food vacuoles compared with available bacteria. Actinobacteria (the HGC69a probe) were avoided by HNF in all treatments. Cytophaga-Flavobacterium-Bacteroidetes bacteria (the CF319a probe) were positively selected mainly in treatments in which bacteria were heavily grazed, the < 5 microm treatments, but this trend was less pronounced towards the end of the study. The members of a small subcluster of Betaproteobacteria (the R-BT065 probe) were mostly positively selected. The nutrient amendments differentially affected bacterioplankton dynamics in almost all treatments, and together with the size fractionation, altered HNF overall bacterivory as well as prey selection. Analyses of bacterivores in unfiltered treatments allowed to detect the effect of different protists on shifts in HNF selectivity observed in < 5 microm compared with unfiltered treatments.
Collapse
Affiliation(s)
- Jan Jezbera
- Hydrobiological Institute of the Academy of Sciences of the Czech Republic, Na Sádkách 7, CZ-37005, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
69
|
Hahn MW. The microbial diversity of inland waters. Curr Opin Biotechnol 2006; 17:256-61. [PMID: 16704930 DOI: 10.1016/j.copbio.2006.05.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 03/25/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
The conservation and sustainable use of freshwater resources is of global importance. Microorganisms are not only the most abundant organisms in natural freshwater systems, but are also key players in ecological processes controlling water quality. Detailed knowledge of the diversity and function of microorganisms dwelling in freshwater habitats is an essential prerequisite for the sustainable management of freshwater resources. Freshwater systems are inhabited by microbial communities that are indigenous to this habitat type and usually do not occur in marine systems, saline inland waters and terrestrial habitats. Despite recent advances in the characterization of the diversity of freshwater microorganisms, knowledge essential for a holistic understanding of their ecological roles is still lacking.
Collapse
Affiliation(s)
- Martin W Hahn
- Institute for Limnology, Austrian Academy of Sciences, Mondsee.
| |
Collapse
|
70
|
Allgaier M, Grossart HP. Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol 2006; 72:3489-97. [PMID: 16672495 PMCID: PMC1472390 DOI: 10.1128/aem.72.5.3489-3497.2006] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 02/28/2006] [Indexed: 11/20/2022] Open
Abstract
The phylogenetic diversity and seasonal dynamics of freshwater Actinobacteria populations in four limnologically different lakes of the Mecklenburg-Brandenburg Lake District (northeastern Germany) were investigated. Fluorescence in situ hybridization was used to determine the seasonal abundances and dynamics of total Actinobacteria (probe HGC69a) and the three actinobacterial subclusters acI, acI-A, and acI-B (probes AcI-852, AcI-840-1, and AcI-840-2). Seasonal means of total Actinobacteria abundances in the epilimnia of the lakes varied from 13 to 36%, with maximum values of 30 to 58%, of all DAPI (4',6'-diamidino-2-phenylindole)-stained cells. Around 80% of total Actinobacteria belonged to the acI cluster. The two subclusters acI-A and acI-B accounted for 60 to 91% of the acI cluster and showed seasonal means of 49% (acI-B) and 23% (acI-A) in relation to the acI cluster. Total Actinobacteria and members of the clusters acI and acI-B showed distinct seasonal changes in their absolute abundances, with maxima in late spring and fall/winter. In eight clone libraries constructed from the lakes, a total of 76 actinobacterial 16S rRNA gene sequences were identified from a total of 177 clones. The majority of the Actinobacteria sequences belonged to the acI and acIV cluster. Several new clusters and subclusters were found (acSTL, scB1-4, and acIVA-D). The majority of all obtained 16S rRNA gene sequences are distinct from those of already-cultured freshwater Actinobacteria.
Collapse
Affiliation(s)
- Martin Allgaier
- Leibniz-Institut für Gewässerökologie und Binnenfischerei, Abteilung Limnologie geschichteter Seen, Alte Fischerhütte 2, D-16775 Stechlin-Neuglobsow, Germany
| | | |
Collapse
|
71
|
Medina-Sánchez JM, Felip M, Casamayor EO. Catalyzed reported deposition-fluorescence in situ hybridization protocol to evaluate phagotrophy in mixotrophic protists. Appl Environ Microbiol 2005; 71:7321-6. [PMID: 16269774 PMCID: PMC1287680 DOI: 10.1128/aem.71.11.7321-7326.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a catalyzed reported deposition-fluorescence in situ hybridization (CARD-FISH) protocol particularly suited to assess the phagotrophy of mixotrophic protists on prokaryotes, since it maintains cell and plastid integrity, avoids cell loss and egestion of prey, and allows visualization of labeled prey against plastid autofluorescence. This protocol, which includes steps such as Lugol's-formaldehyde-thiosulfate fixation, agarose cell attachment, cell wall permeabilization with lysozyme plus achromopeptidase, and signal amplification with Alexa-Fluor 488, allowed us to detect almost 100% of planktonic prokaryotes (Bacteria and Archaea) and, for the first time, to show archaeal cells ingested by mixotrophic protists.
Collapse
Affiliation(s)
- Juan M Medina-Sánchez
- Unitat de Limnologia, Departament de Biogeoquimica Aquàtica, Centre d'Estudis Avançats de Blanes-CSIC, C/Accés a la Cala St. Francesc, 14, E-17300 Blanes (Girona), Spain.
| | | | | |
Collapse
|