Diaz MR, Fell JW. Use of a suspension array for rapid identification of the varieties and genotypes of the Cryptococcus neoformans species complex.
J Clin Microbiol 2005;
43:3662-72. [PMID:
16081894 PMCID:
PMC1233893 DOI:
10.1128/jcm.43.8.3662-3672.2005]
[Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cryptococcus neoformans is an encapsulated fungal pathogen known to cause severe disease in immunocompromised patients. The disease, cryptococcosis, is mostly acquired by inhalation and can result in a chronic meningoencephalitis, which can be fatal. Here, we describe a molecular method to identify the varieties and genotypic groups within the C. neoformans species complex from culture-based assays. The method employs a novel flow cytometer with a dual laser system that allows the simultaneous detection of different target sequences in a multiplex and high-throughput format. The assay uses a liquid suspension hybridization format with specific oligonucleotide probes that are covalently bound to the surface of fluorescent color-coded microspheres. Biotinylated target amplicons, which hybridized to their complementary probe sequences, are quantified by the addition of the conjugate, streptavidin R-phycoerythrin. In this study we developed and validated eight probes derived from sequence analysis of the intergenic spacer region of the rRNA gene region. The assay proved to be specific and sensitive, allowed discrimination of a 1-bp mismatch with no apparent cross-reactivity, and detected 10(1) to 10(3) genome copies. The described protocol, which can be used directly with yeast cells or isolated DNA, can be undertaken in less than 1 h following PCR amplification and permits identification of species in a multiplex format. In addition to a multiplex capability, the assay allows the simultaneous detection of target sequences in a single reaction. The accuracy, speed, flexibility, and sensitivity of this technology are a few of the advantages that will make this assay useful for the diagnosis of human cryptococcal infections and other pathogenic diseases.
Collapse