51
|
Trunet C, Mtimet N, Mathot AG, Postollec F, Leguerinel I, Sohier D, Couvert O, Carlin F, Coroller L. Modeling the recovery of heat-treated Bacillus licheniformis Ad978 and Bacillus weihenstephanensis KBAB4 spores at suboptimal temperature and pH using growth limits. Appl Environ Microbiol 2015; 81:562-8. [PMID: 25381235 PMCID: PMC4277591 DOI: 10.1128/aem.02520-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/30/2014] [Indexed: 11/20/2022] Open
Abstract
The apparent heat resistance of spores of Bacillus weihenstephanensis and Bacillus licheniformis was measured and expressed as the time to first decimal reduction (δ value) at a given recovery temperature and pH. Spores of B. weihenstephanensis were produced at 30°C and 12°C, and spores of B. licheniformis were produced at 45°C and 20°C. B. weihenstephanensis spores were then heat treated at 85°C, 90°C, and 95°C, and B. licheniformis spores were heat treated at 95°C, 100°C, and 105°C. Heat-treated spores were grown on nutrient agar at a range of temperatures (4°C to 40°C for B. weihenstephanensis and 15°C to 60°C for B. licheniformis) or a range of pHs (between pH 4.5 and pH 9.5 for both strains). The recovery temperature had a slight effect on the apparent heat resistance, except very near recovery boundaries. In contrast, a decrease in the recovery pH had a progressive impact on apparent heat resistance. A model describing the heat resistance and the ability to recover according to the sporulation temperature, temperature of treatment, and recovery temperature and pH was proposed. This model derived from secondary mathematical models for growth prediction. Previously published cardinal temperature and pH values were used as input parameters. The fitting of the model with apparent heat resistance data obtained for a wide range of spore treatment and recovery conditions was highly satisfactory.
Collapse
Affiliation(s)
- C Trunet
- ADRIA Développement, UMT14.01 SPORE-RISK, Z.A. de Creac'h Gwen, Quimper, France Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France
| | - N Mtimet
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France Bonduelle, Villeneuve d'Ascq, France
| | - A-G Mathot
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France
| | - F Postollec
- ADRIA Développement, UMT14.01 SPORE-RISK, Z.A. de Creac'h Gwen, Quimper, France
| | - I Leguerinel
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France
| | - D Sohier
- ADRIA Développement, UMT14.01 SPORE-RISK, Z.A. de Creac'h Gwen, Quimper, France
| | - O Couvert
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France
| | - F Carlin
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon, France Université d'Avignon, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon, France
| | - L Coroller
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, ScInBioS, Quimper, France
| |
Collapse
|
52
|
Omotade TO, Bernhards RC, Klimko CP, Matthews ME, Hill AJ, Hunter MS, Webster WM, Bozue JA, Welkos SL, Cote CK. The impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies. J Appl Microbiol 2014; 117:1614-33. [PMID: 25196092 DOI: 10.1111/jam.12644] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022]
Abstract
AIMS Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. METHODS AND RESULTS Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination-inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV-A, UV-B and UV-C radiation, employed after a 60-min germination-induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination-induction strategies are better suited for some secondary disinfectants than others. CONCLUSIONS These results provide evidence that the deployment of an optimal combination strategy of germination-induction/secondary disinfection may be a promising aspect of wide-area decontamination following a B. anthracis contamination event. SIGNIFICANCE AND IMPACT OF THE STUDY By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more efficient and safe decontamination measures and may obviate the need for more stringent methods that are currently in place.
Collapse
Affiliation(s)
- T O Omotade
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Alzahrani OM, Moir A. Spore germination and germinant receptor genes in wild strains of Bacillus subtilis. J Appl Microbiol 2014; 117:741-9. [PMID: 24916603 DOI: 10.1111/jam.12566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/25/2022]
Abstract
AIMS To compare the germination of laboratory and wild strains of Bacillus subtilis. METHODS AND RESULTS The spore germination of B. subtilis 168 (subsp. subtilis) was compared with that of the laboratory strain W23 (subsp. spizizenii) and desert-sourced isolates, including one member of subsp. subtilis (RO-NN-1), strains TU-B-10, RO-E-2, N10 and DV1-B-1, (all subsp. spizizenii), the B. mojavensis strain RO-H-1 and a B. subtilis natto strain. All germinated in L-alanine, although some were slower, and some 10-fold less sensitive to germinant. All germinated in calcium dipicolinate (CaDPA). Germination in asparagine, glucose, fructose + KCl was slow and incomplete in many of the strains, and decoating RO-NN-1 and W23 spores did not restore germination rates. Comparing the sequences of B. subtilis strains 168, RO-NN-1, W23, TU-B-10 and DV1-B-1, the operons encoding GerA, B and K germinant receptors were intact, although the two additional operons yndDEF and yfkQRST had suffered deletions or were absent in several spizizenii strains. CONCLUSIONS Wild strains possess an efficient germination machinery for L-alanine germination. AGFK germination is often less efficient, the gerB genes more diverged, and the two germinant receptor operons of unknown function have been lost from the genome in many subsp. spizizenii strains. SIGNIFICANCE AND IMPACT OF THE STUDY The two major subspecies of B. subtilis have conserved GerA receptor function, confirming its importance, at least in the natural environments of these strains.
Collapse
Affiliation(s)
- O M Alzahrani
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK; Department of Biotechnology, Taif University, Taif, Saudi Arabia
| | | |
Collapse
|
54
|
New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates. Food Microbiol 2014; 44:24-33. [PMID: 25084641 DOI: 10.1016/j.fm.2014.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/04/2014] [Accepted: 04/22/2014] [Indexed: 11/22/2022]
Abstract
Clostridium perfringens spore germination plays a critical role in the pathogenesis of C. perfringens-associated food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases. Germination is initiated when bacterial spores sense specific nutrient germinants (such as amino acids) through germinant receptors (GRs). In this study, we aimed to identify and characterize amino acid germinants for spores of enterotoxigenic C. perfringens type A. The polar, uncharged amino acids at pH 6.0 efficiently induced germination of C. perfringens spores; L-asparagine, L-cysteine, L-serine, and L-threonine triggered germination of spores of most FP and NFB isolates; whereas, L-glutamine was a unique germinant for FP spores. For cysteine- or glutamine-induced germination, gerKC spores (spores of a gerKC mutant derivative of FP strain SM101) germinated to a significantly lower extent and released less DPA than wild type spores; however, a less defective germination phenotype was observed in gerAA or gerKB spores. The germination defects in gerKC spores were partially restored by complementing the gerKC mutant with a recombinant plasmid carrying wild-type gerKA-KC, indicating that GerKC is an essential GR protein. The gerKA, gerKC, and gerKB spores germinated significantly slower with L-serine and L-threonine than their parental strain, suggesting the requirement for these GR proteins for normal germination of C. perfringens spores. In summary, these results indicate that the polar, uncharged amino acids at pH 6.0 are effective germinants for spores of C. perfringens type A and that GerKC is the main GR protein for germination of spores of FP strain SM101 with L-cysteine, L-glutamine, and L-asparagine.
Collapse
|
55
|
Madslien EH, Granum PE, Blatny JM, Lindbäck T. L-alanine-induced germination in Bacillus licheniformis -the impact of native gerA sequences. BMC Microbiol 2014; 14:101. [PMID: 24755193 PMCID: PMC4021175 DOI: 10.1186/1471-2180-14-101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND L-alanine, acting through the GerA receptor, was recently found to be an efficient germinant in Bacillus licheniformis ATCC14580/DSM13. RESULTS In this study, we show that several of 46 examined B. licheniformis strains germinate remarkably slower than the type strain when exposed to L-alanine. These strains are not necessarily closely related, as determined by MLST (multi-locus sequence typing). Three of the slow-germinating strains were further examined in order to see whether nucleotide substitutions in the gerA sequences were responsible for the slow L-alanine germination. This was performed by complementing the transformable type strain derivate MW3ΔgerAA with gerA variants from the three slow-germinating strains; NVH1032, NVH1112 and NVH800. CONCLUSIONS A wide selection of B. licheniformis strains was evaluated for L-alanine-induced germination efficiency. Our results show that gerA substitutions could only partially explain why spores of some B. licheniformis strains responded slower than others in the presence of L-alanine.
Collapse
Affiliation(s)
| | | | | | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P, O, Box 8146 Dep, N-0033 Oslo, Norway.
| |
Collapse
|
56
|
van Melis CCJ, den Besten HMW, Nierop Groot MN, Abee T. Quantification of the impact of single and multiple mild stresses on outgrowth heterogeneity of Bacillus cereus spores. Int J Food Microbiol 2014; 177:57-62. [PMID: 24607860 DOI: 10.1016/j.ijfoodmicro.2014.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 11/19/2022]
Abstract
Outgrowth heterogeneity of bacterial spore populations complicates both prediction and efficient control of spore outgrowth. In this study, the impact of mild preservation stresses on outgrowth of Bacillus cereus ATCC 14579 spores was quantified during the first stages of outgrowth. Heterogeneity in outgrowth of heat-treated (90°C for 10 min) and non-heat-treated germinated single spores to the maximum micro-colony stage of 256 cells was assessed by direct imaging on Anopore strips, placed on BHI plates at pH7 and pH5.5, without and with added NaCl or sorbic acid (HSA). At pH7 non-heated and heat-treated germinated spores required 6h to reach the maximum microcolony stage with limited heterogeneity, and these parameters were only slightly affected with both types of spores when incubated at pH7 with added NaCl. Notably, the most pronounced effects were observed during outgrowth of spores at pH5.5 without and with added NaCl or HSA. Non-heat-treated germinated spores showed again efficient outgrowth with limited heterogeneity reaching the maximum microcolony stage after 6h at pH5.5, which increased to 12h and 16 h with added NaCl and HSA, respectively. In contrast, heat-treated spores displayed a strong delay between initial germination and swelling and further outgrowth at pH5.5, resulting in large heterogeneity and low numbers of fastest growers reaching the maximum microcolony stage after 10, 12 and 24h, without and with added NaCl or HSA, respectively. This work shows that Anopore technology provides quantitative information on the impact of combined preservation stresses on outgrowth of single spores, showing that outgrowth of germinated heat-treated spores is significantly affected at pH5.5 with a large fraction of spores arrested in the early outgrowth stage, and with outgrowing cells showing large heterogeneity with only a small fraction committed to relatively fast outgrowth.
Collapse
Affiliation(s)
- C C J van Melis
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands; Food Microbiology Laboratory, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - H M W den Besten
- Food Microbiology Laboratory, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - M N Nierop Groot
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands; Food and Biobased Research, Wageningen University & Research Centre, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - T Abee
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands; Food Microbiology Laboratory, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
57
|
Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium. Arch Microbiol 2013; 196:79-85. [PMID: 24346000 DOI: 10.1007/s00203-013-0946-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
The L-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of D-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting L-alanine to the germination inhibitor D-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of L- to D-alanine. Unlike ATCC 14579 spores, L-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.
Collapse
|
58
|
Ghosh IN, Patil SD, Sharma TK, Srivastava SK, Pathania R, Navani NK. Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications. Int J Nanomedicine 2013; 8:4721-31. [PMID: 24376352 PMCID: PMC3864938 DOI: 10.2147/ijn.s49649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Silver has long been advocated as an effective antimicrobial. However, toxicity issues with silver have led to limited use of silver in nanoform, especially for food preservation. With the aim of exploring combinatorial options that could increase the antibacterial potency of silver nanoparticles and reduce the effective dosage of silver, we evaluated the extent of synergy that a combination of silver nanoparticles and an essential oil representative (cinnamaldehyde) could offer. A battery of gram-positive and gram-negative bacterial strains was utilized for antibacterial assays, and extents of synergism were calculated from fractional inhibitory concentration indices. The activity of nanoparticles was greatly enhanced when utilized in the presence of cinnamaldehyde. We observed combinatorial effects that were strongly additive against all the bacterial strains tested, and genuine synergy was found against spore forming Bacillus cereus and Clostridium perfringens – bacterial strains associated with release of cytotoxins in contaminated food and known for their persistence. Bacterial kill curve analysis revealed a very fast bactericidal action when a combination of two agents was used. The electron and atomic force microscopy also revealed extensive damage to the bacterial cell envelop in the presence of both agents. We also performed hemolysis assays to investigate and approximate the extent of toxicity exhibited by the two agents, and observed no adverse effect at the concentrations required for synergy. This study shows that safe levels of silver in nanoform in combination with essential oil component cinnamaldehyde can be effectively used for controlling the spore-forming bacterial species.
Collapse
Affiliation(s)
- Indro Neil Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Supriya Deepak Patil
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Tarun Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India ; Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Gurgaon Haryana, India
| | - Santosh Kumar Srivastava
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
59
|
Wang J, Mei H, Qian H, Tang Q, Liu X, Yu Z, He J. Expression profile and regulation of spore and parasporal crystal formation-associated genes in Bacillus thuringiensis. J Proteome Res 2013; 12:5487-501. [PMID: 24215520 DOI: 10.1021/pr4003728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacillus thuringiensis, a Gram-positive endospore-forming bacterium, is characterized by the formation of parasporal crystals consisting of insecticidal crystal proteins (ICPs) during sporulation. We reveal gene expression profiles and regulatory mechanisms associated with spore and parasporal crystal formation based on transcriptomics and proteomics data of B. thuringiensis strain CT-43. During sporulation, five ICP genes encoded by CT-43 were specifically transcribed; moreover, most of the spore structure-, assembly-, and maturation-associated genes were specifically expressed or significantly up-regulated, with significant characteristics of temporal regulation. These findings suggest that it is essential for the cell to maintain efficient operation of transcriptional and translational machinery during sporulation. Our results indicate that the RNA polymerase complex δ and ω subunits, cold shock proteins, sigma factors, and transcriptional factors as well as the E2 subunit of the pyruvate dehydrogenase complex could cooperatively participate in transcriptional regulation via different mechanisms. In particular, differences in processing and modification of ribosomal proteins, rRNA, and tRNA combined with derepression of translational inhibition could boost the rate of ribosome recycling and assembly as well as translation initiation, elongation, and termination efficiency, thereby compensating for the reduction in ribosomal levels. The efficient operation of translational machineries and powerful protein-quality controlling systems would thus ensure biosyntheses of a large quantity of proteins with normal biological functions during sporulation.
Collapse
Affiliation(s)
- Jieping Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University , No. 1 Shizishan Street, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | |
Collapse
|
60
|
Pina-Pérez MC, Rodrigo D, Martínez-López A. Antimicrobial potential of flavoring ingredients against Bacillus cereus in a milk-based beverage. Foodborne Pathog Dis 2013; 10:969-76. [PMID: 23909775 DOI: 10.1089/fpd.2013.1560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Natural ingredients--cinnamon, cocoa, vanilla, and anise--were assessed based on Bacillus cereus vegetative cell growth inhibition in a mixed liquid whole egg and skim milk beverage (LWE-SM), under different conditions: ingredient concentration (1, 2.5, and 5% [wt/vol]) and incubation temperature (5, 10, and 22 °C). According to the results obtained, ingredients significantly (p<0.05) reduced bacterial growth when supplementing the LWE-SM beverage. B. cereus behavior was mathematically described for each substrate by means of a modified Gompertz equation. Kinetic parameters, lag time, and maximum specific growth rate were obtained. Cinnamon was the most bacteriostatic ingredient and cocoa the most bactericidal one when they were added at 5% (wt/vol) and beverages were incubated at 5 °C. The bactericidal effect of cocoa 5% (wt/vol) reduced final B. cereus log10 counts (log Nf, log10 (colony-forming units/mL)) by 4.10 ± 0.21 log10 cycles at 5 °C.
Collapse
Affiliation(s)
- Maria C Pina-Pérez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Departamento de Conservación y Calidad de los Alimentos, Valencia, Spain
| | | | | |
Collapse
|
61
|
Live-cell imaging tool optimization to study gene expression levels and dynamics in single cells of Bacillus cereus. Appl Environ Microbiol 2013; 79:5643-51. [PMID: 23851094 DOI: 10.1128/aem.01347-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-cell methods are a powerful application in microbial research to study the molecular mechanism underlying phenotypic heterogeneity and cell-to-cell variability. Here, we describe the optimization and application of single-cell time-lapse fluorescence microscopy for the food spoilage bacterium Bacillus cereus specifically. This technique is useful to study cellular development and adaptation, gene expression, protein localization, protein mobility, and cell-to-cell communication over time at the single-cell level. By adjusting existing protocols, we have enabled the visualization of growth and development of single B. cereus cells within a microcolony over time. Additionally, several different fluorescent reporter proteins were tested in order to select the most suitable green fluorescent protein (GFP) and red fluorescent protein (RFP) candidates for visualization of growth stage- and cell compartment-specific gene expression in B. cereus. With a case study concerning cotD expression during sporulation, we demonstrate the applicability of time-lapse fluorescence microscopy. It enables the assessment of gene expression levels, dynamics, and heterogeneity at the single-cell level. We show that cotD is not heterogeneously expressed among cells of a subpopulation. Furthermore, we discourage using plasmid-based reporter fusions for such studies, due to an introduced heterogeneity through copy number differences. This stresses the importance of using single-copy integrated reporter fusions for single-cell studies.
Collapse
|
62
|
Dunière L, Sindou J, Chaucheyras-Durand F, Chevallier I, Thévenot-Sergentet D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2013.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
63
|
Reineke K, Mathys A, Heinz V, Knorr D. Mechanisms of endospore inactivation under high pressure. Trends Microbiol 2013; 21:296-304. [DOI: 10.1016/j.tim.2013.03.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 01/27/2023]
|
64
|
High-throughput identification of promoters and screening of highly active promoter-5'-UTR DNA region with different characteristics from Bacillus thuringiensis. PLoS One 2013; 8:e62960. [PMID: 23675447 PMCID: PMC3651082 DOI: 10.1371/journal.pone.0062960] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/27/2013] [Indexed: 01/05/2023] Open
Abstract
In bacteria, both promoters and 5'-untranslated regions (5'-UTRs) of mRNAs play vital regulatory roles in gene expression. In this study, we identified 1203 active promoter candidates in Bacillus thuringiensis through analysis of the genome-wide TSSs based on the transcriptome data. There were 11 types of σ-factor and 34 types of transcription factor binding sites found in 723 and 1097 active promoter candidates, respectively. Moreover, within the 1203 transcriptional units (TUs), most (52%) of the 5'-UTRs were 10-50 nucleotides in length, 12.8% of the TUs had a long 5'-UTR greater than 100 nucleotides in length, and 16.3% of the TUs were leaderless. We then selected 20 active promoter candidates combined with the corresponding 5'-UTR DNA regions to screen the highly active promoter-5'-UTR DNA region complexes with different characteristics. Our results demonstrate that among the 20 selected complexes, six were able to exert their functions throughout the life cycle, six were specifically induced during the early-stationary phase, and four were specifically activated during the mid-stationary phase. We found a direct corresponding relationship between σ-factor-recognized consensus sequences and complex activity features: the great majority of complexes acting throughout the life cycle possess σ(A)-like consensus sequences; the maximum activities of the σ(F)-, σ(E)-, σ(G)-, and σ(K)-dependent complexes appeared at 10, 14, 16, and 22 h under our experimental conditions, respectively. In particular, complex Phj3 exhibited the strongest activity. Several lines of evidence showed that complex Phj3 possessed three independent promoter regions located at -251∼-98, -113∼-31, and -54∼+14, and that the 5'-UTR +1∼+118 DNA region might be particularly beneficial to both the stability and translation of its downstream mRNA. Moreover, Phj3 successfully overexpressed the active β-galactosidase and turbo-RFP, indicating that Phj3 could be a proper regulatory element for overexpression of proteins in B. thuringiensis. Therefore, our efforts contribute to molecular biology research and the biotechnological application of B. thuringiensis.
Collapse
|
65
|
Development of a time-to-detect growth model for heat-treated Bacillus cereus spores. Int J Food Microbiol 2013; 165:231-40. [PMID: 23796655 DOI: 10.1016/j.ijfoodmicro.2013.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/15/2013] [Accepted: 04/21/2013] [Indexed: 11/21/2022]
Abstract
The microbiological safety and quality of Refrigerated Processed Foods of Extended Durability (REPFEDs) relies on a combination of mild heat treatment and refrigeration, sometimes in combination with other inhibitory agents that are ineffective when used alone. In this context, a predictive model describing the time-to-detect growth (measured by turbidimetry) of psychrotrophic Bacillus cereus spores submitted to various combinations of pH, water activity (aw), heat treatment and storage temperature was developed. As the inoculum was high, the time-to-detect growth was the sum of two times: for a large part of the spore lag time (time before germination and outgrowth) and to a lesser extent of the time to have subsequent vegetative cells growing up to a detectable level. A dataset of 434 combinations (of pH, aw, heat treatment, storage temperature and B. cereus strain), originally collected at Ghent University to build a growth/no-growth model for two Bacillus cereus strains, was re-interpreted as time-to-detect growth values. In the growth area (223 combinations) the time-to-detect growth was set as the longest time where none, or only one, of the 8 replicated wells showed growth. In the no-growth area (211 combinations) the time-to-detect growth was set as longer than the time where the experiment was stopped (60days or more) and analysed as a censored response. The factors of variation were heat-treatment intensity (85°C, 87°C and 90°C in a time range of 1 to 38min), storage temperature (8-30°C), pH (5.2-6.4) and aw (0.973-0.995). Two different strains were analysed. The model had a Gamma multiplicative structure; it was solved by Bayesian inference with informative prior distributions. To be implemented in a decision tool, for instance to calculate the process and formulation conditions required to achieve a given detection time, each Gamma term had some constraints: they had to be monotonous, continuous and algebraically simple mathematical functions (i.e. having analytical solution). Overall, the cumulative effect of various stressful conditions (pasteurisation process, low temperature, and low pH) enables to extend the time-to-detect growth up to 60days or more, whereas the heat-treatment on its own did not have a similar effect. For example, with the most heat resistant strain (strain 1, FF140), for a product at aw0.99, stored at 10°C, heat-treated at 90°C for 10min, a time-to-detect growth of 2days was expected when the pH equalled 6.5. Under the same conditions, if the pH was reduced to 5.8, the time-to-detect growth was predicted to be 11days (and 33days at pH5.5). After a pasteurisation at 90°C for 10min, for a product kept at 10°C, combinations of pH and aw such as pH6.0-aw0.97, pH5.7-aw0.98 or pH5.5-aw0.99 were predicted to extend the time-to-detect growth up to 30days. The developed model is a useful tool for REPFED producers to guarantee the safety of their products towards psychrotrophic B. cereus.
Collapse
|
66
|
Markland SM, Farkas DF, Kniel KE, Hoover DG. Pathogenic psychrotolerant sporeformers: an emerging challenge for low-temperature storage of minimally processed foods. Foodborne Pathog Dis 2013; 10:413-9. [PMID: 23536982 DOI: 10.1089/fpd.2012.1355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sporeforming bacteria are a significant problem in the food industry as they are ubiquitous in nature and capable of resisting inactivation by heat and chemical treatments designed to inactivate them. Beyond spoilage issues, psychrotolerant sporeformers are becoming increasingly recognized as a potential hazard given the ever-expanding demand for refrigerated processed foods with extended shelf-life. In these products, the sporeforming pathogens of concern are Bacillus cereus, Bacillus weihenstephanensis, and Clostridium botulinum type E. This review article examines the foods, conditions, and organisms responsible for the food safety issue caused by the germination and outgrowth of psychrotolerant sporeforming pathogens in minimally processed refrigerated foods.
Collapse
Affiliation(s)
- Sarah M Markland
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
67
|
van der Voort M, Abee T. Sporulation environment of emetic toxin-producing Bacillus cereus
strains determines spore size, heat resistance and germination capacity. J Appl Microbiol 2013; 114:1201-10. [DOI: 10.1111/jam.12118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/10/2012] [Accepted: 12/19/2012] [Indexed: 11/30/2022]
Affiliation(s)
- M. van der Voort
- Top Institute Food and Nutrition (TIFN); Wageningen The Netherlands
- Laboratory of Food Microbiology; Wageningen University and Research Centre; Wageningen The Netherlands
- Present address: Laboratory of Phytopathology; Wageningen University and Research Centre; PO box 8025 Wageningen 6700 EE The Netherlands
| | - T. Abee
- Top Institute Food and Nutrition (TIFN); Wageningen The Netherlands
- Laboratory of Food Microbiology; Wageningen University and Research Centre; Wageningen The Netherlands
| |
Collapse
|
68
|
Daelman J, Vermeulen A, Willemyns T, Ongenaert R, Jacxsens L, Uyttendaele M, Devlieghere F. Growth/no growth models for heat-treated psychrotrophic Bacillus cereus spores under cold storage. Int J Food Microbiol 2013; 161:7-15. [DOI: 10.1016/j.ijfoodmicro.2012.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 11/16/2022]
|
69
|
Activation of Bacillus spores at moderately elevated temperatures (30–33 °C). Antonie van Leeuwenhoek 2012; 103:693-700. [DOI: 10.1007/s10482-012-9839-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
|
70
|
Abee T, Wels M, de Been M, den Besten H. From transcriptional landscapes to the identification of biomarkers for robustness. Microb Cell Fact 2011; 10 Suppl 1:S9. [PMID: 21995521 PMCID: PMC3231935 DOI: 10.1186/1475-2859-10-s1-s9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability of microorganisms to adapt to changing environments and gain cell robustness, challenges the prediction of their history-dependent behaviour. Using our model organism Bacillus cereus, a notorious Gram-positive food spoilage and pathogenic spore-forming bacterium, a strategy will be described that allows for identification of biomarkers for robustness. First an overview will be presented of its two-component systems that generally include a transmembrane sensor histidine kinase and its cognate response regulator, allowing rapid and robust responses to fluctuations in the environment. The role of the multisensor hybrid kinase RsbK and the PP2C-type phosphatase RsbY system in activation of the general stress sigma factor σB is highlighted. An extensive comparative analysis of transcriptional landscapes derived from B. cereus exposed to mild stress conditions such as heat, acid, salt and oxidative stress, revealed that, amongst others σB regulated genes were induced in most conditions tested. The information derived from the transcriptome data was subsequently implemented in a framework for identifying and selecting cellular biomarkers at their mRNA, protein and/or activity level, for mild stressinduced microbial robustness towards lethal stresses. Exposure of unstressed and mild stress-adapted cells to subsequent lethal stress conditions (heat, acid and oxidative stress) allowed for quantification of the robustness advantage provided by mild stress pretreatment using the plate-count method. The induction levels of the selected candidate-biomarkers, σB protein, catalase activity and transcripts of certain proteases upon mild stress treatment, were significantly correlated to mild stress-induced enhanced robustness towards lethal thermal, oxidative and acid stresses, and were therefore suitable to predict these adaptive traits. Cellular biomarkers that are quantitatively correlated to adaptive behavior will facilitate our ability to predict the impact of adaptive behavior on cell robustness and will allow to control and/or exploit these adaptive traits. Extrapolation to other species and genera is discussed such as avenues towards mechanism-based design of microbial fitness and robustness.
Collapse
Affiliation(s)
- Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| | - Michiel Wels
- TI Food and Nutrition, Wageningen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), NCMLS, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
| | - Mark de Been
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), NCMLS, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Heidy den Besten
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| |
Collapse
|
71
|
Nguyen Thi Minh H, Durand A, Loison P, Perrier-Cornet JM, Gervais P. Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure. Appl Microbiol Biotechnol 2011; 90:1409-17. [DOI: 10.1007/s00253-011-3183-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
72
|
Impact of sorbic acid on germinant receptor-dependent and -independent germination pathways in Bacillus cereus. Appl Environ Microbiol 2011; 77:2552-4. [PMID: 21278268 DOI: 10.1128/aem.02520-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amino acid- and inosine-induced germination of Bacillus cereus ATCC 14579 spores was reversibly inhibited in the presence of 3 mM undissociated sorbic acid. Exposure to high hydrostatic pressure, Ca-dipicolinic acid (DPA), and bryostatin, an activator of PrkC kinase, negated this inhibition, pointing to specific blockage of signal transduction in germinant receptor-mediated germination.
Collapse
|