51
|
Su R, Guo P, Zhang Z, Wang J, Guo X, Guo D, Wang Y, Lü X, Shi C. Antibacterial Activity and Mechanism of Linalool against Shigella sonnei and Its Application in Lettuce. Foods 2022. [PMCID: PMC9602298 DOI: 10.3390/foods11203160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Shigella sonnei (S. sonnei) infection accounted for approximately 75% of annual outbreaks of shigellosis, with the vast majority of outbreaks due to the consumption of contaminated foods (e.g., fresh vegetables, potato salad, fish, beef, etc.). Thus, we investigated the antibacterial effect and mechanism of linalool on S. sonnei and evaluated the effect of linalool on the sensory quality of lettuce. The minimum inhibitory concentration (MIC) of linalool against S. sonnei ATCC 25931 was 1.5 mg/mL. S. sonnei was treated with linalool at 1× MIC for 30 min and the amount of bacteria was decreased below the detection limit (1 CFU/mL) in phosphate-buffered saline (PBS) and Luria-Bertani (LB) medium. The bacterial content of the lettuce surface was reduced by 4.33 log CFU/cm2 after soaking with linalool at 2× MIC. Treatment with linalool led to increased intracellular reactive oxygen species (ROS) levels, decreased intracellular adenosine-triphosphate (ATP) content, increased membrane lipid oxidation, damaged cell membrane integrity, and hyperpolarized cell membrane potential in S. sonnei. The application of linalool to lettuce had no effect on the color of lettuce compared to the control. The sensory evaluation results showed that linalool had an acceptable effect on the sensory quality of lettuce. These findings indicate that linalool played an antibacterial effect against S. sonnei and had potential as a natural antimicrobial for the inhibition of this foodborne pathogen.
Collapse
Affiliation(s)
- Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ziruo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jingzi Wang
- School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xinyi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Correspondence: ; Tel.: +86-29-8709-2486; Fax: +86-29-8709-1391
| |
Collapse
|
52
|
Wu H, Zhao F, Li Q, Huang J, Ju J. Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit Rev Food Sci Nutr 2022; 64:2695-2707. [PMID: 36129051 DOI: 10.1080/10408398.2022.2124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Baked food is one of the most important staple foods in people's life, but its shelf life is limited. In addition, the spoilage of baked food caused by microbial deterioration will not only cause huge economic losses, but also pose a serious threat to human health. At present, due to the improvement of consumers' health awareness, the use of chemical preservatives has been gradually restricted. Compared with other types of synthetic preservatives, essential oils are becoming more and more popular because they are in line with the current development trend of "green," "safety" and "health" of food additives. Therefore, in this paper, we first summarized the main factors affecting the fungal contamination of baked food. Then analyzed the antifungal activity and mechanism of essential oil. Finally, we comprehensively summarized the application strategy of essential oil in the preservation of baked food. This review is of great significance for fully understanding the antifungal mechanism of essential oils and promoting the application of essential oils in the preservation of baked food.
Collapse
Affiliation(s)
- Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Qianyu Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jinglin Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jian Ju
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| |
Collapse
|
53
|
Cortés LA, Herrera AO, Castellanos DA. Natural plant‐based compounds applied in antimicrobial active packaging and storage of berries. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lesley A. Cortés
- Post‐Harvest Lab. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Carrera 30 Número 45 ‐ 03 Bogotá Colombia
| | - Aníbal O. Herrera
- Post‐Harvest Lab. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Carrera 30 Número 45 ‐ 03 Bogotá Colombia
| | - Diego A. Castellanos
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Carrera 30 Número 45 ‐ 03 Bogotá Colombia
| |
Collapse
|
54
|
Kerosenewala J, Vaidya P, Ozarkar V, Shirapure Y, More AP. Eugenol: extraction, properties and its applications on incorporation with polymers and resins—a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
55
|
Fabrication, characterization and application of novel nanoemulsion polyvinyl alcohol/chitosan hybrid incorporated with citral for healing of infected full-thickness wound. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
56
|
Antimicrobial mechanism of linalool against Brochothrix thermosphacta and its application on chilled beef. Food Res Int 2022; 157:111407. [PMID: 35761661 DOI: 10.1016/j.foodres.2022.111407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
This work aimed to explore the antibacterial ability and potential mechanism of linalool against Brochothrix thermosphacta (B. thermosphacta), providing knowledge of the preservation of chilled beef with linalool. The results found that linalool had an encouraging inhibitory effect on B. thermosphacta with a minimum inhibitory concentration (MIC) of 1.5 mL/L. Results of FESEM and zeta potential combined with probe labeling confirmed that linalool destroyed the cell structure thereby causing the leakage of intracellular components (AKP, protein, nucleic acid and ion). In addition, linalool caused respiratory disturbance by measuring the key enzyme activities including PK, SDH, MDH and ATPase. Energy limitation also appeared under linalool stress as seen from changes in ATP content (decreased by 56.06% and 69.24% in MIC and 2MIC groups, respectively). The respiratory inhibition rate of linalool to B. thermosphacta was 23.58% and the superposing rate with malonic acid was minimal (35.52%), suggesting that respiratory depression was mainly caused by the TCA cycle. Furthermore, accumulation of ROS and increase in MDA content (increased by 71.17% and 78.03% in MIC and 2MIC groups, respectively) accompanied by decreased activities of detoxification enzymes CAT and POD suggested that oxidative stress contributed to the bactericidal mechanism. Finally, linalool has been shown to effectively inhibit quality deterioration of chilled beef during storage by measuring pH, TVB-N and TVC without affecting sensory acceptability. All these highlight the great promise of using linalool as natural preservative for food industry.
Collapse
|
57
|
Trans-cinnamaldehyde inhibits Penicillium italicum by damaging mitochondria and inducing apoptosis mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
58
|
Li X, Xu L, Lv Z, Li F, Xue J, Peng Y, Wei X, Li L. Antifungal Mechanism of MTE-1, a Novel Oligosaccharide Ester, against Ustilaginoidea virens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7441-7446. [PMID: 35671376 DOI: 10.1021/acs.jafc.2c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ustilaginoidea virens is a pathogenic fungus that causes false smut disease in rice during the flowering stage through stamen filaments. Currently, there is a need to develop safe and effective antifungal agents for the control of this disease. In our preliminary experiments, we found that MTE-1, a new trisaccharide ester, exhibits significant inhibitory activity against U. virens. Hence, the effects and inhibitory mechanism of MTE-1 in U. virens were investigated. Results showed that the MTE-1 inhibited the hyphae growth of U. virens with an IC50 of 5.67 μg/mL. Similarly, MTE-1 disrupted the endomembrane system in U. virens, especially the plasma membrane, mitochondria, and lipidosome. Moreover, transcriptome and proteome analysis indicated that MTE-1 inhibited the growth of U. virens by inhibiting the synthesis of lipids, altering the primary metabolic pathways including carbohydrates and amino acid metabolism, and affecting the intracellular redox dyshomeostasis, thus leading to the disorder of active oxygen metabolism. These findings lay the foundation for the future application of MTE-1-derived agents in the management of antifungal diseases.
Collapse
Affiliation(s)
- Xiaojie Li
- School of Life Sciences, Huizhou University, Huizhou 510607, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, China
| | - Liangxiong Xu
- School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Zhencheng Lv
- School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Fengming Li
- School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Jinghua Xue
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yonghong Peng
- School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
59
|
Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents: A sustainable path. Food Res Int 2022; 155:111096. [DOI: 10.1016/j.foodres.2022.111096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
60
|
Jiang N, Wang L, Jiang D, Wang M, Liu H, Yu H, Yao W. Transcriptomic analysis of inhibition by eugenol of ochratoxin A biosynthesis and growth of Aspergillus carbonarius. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
61
|
Guo L, Li Y, Mao X, Tao R, Tao B, Zhou Z. Antifungal Activity of Polymethoxylated Flavonoids (PMFs)-Loaded Citral Nanoemulsion against Penicillium italicum by Causing Cell Membrane Damage. J Fungi (Basel) 2022; 8:jof8040388. [PMID: 35448619 PMCID: PMC9029654 DOI: 10.3390/jof8040388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023] Open
Abstract
A major citrus postharvest pathogen, Penicillium italicum (P. italicum), causes substantial economic losses in citrus. In this study, a citral nanoemulsion containing polymethoxylated flavonoids (PMFs), the antimicrobial compounds from citrus, was prepared. The antifungal activity and potential antifungal mechanisms of the nanoemulsion against P. italicum were evaluated. The results showed that the growth of P. italicum was effectively inhibited by the nanoemulsion, with a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 62.5 and 250 mg L−1, respectively. The nanoemulsion significantly inhibited spore germination and mycelial growth, and it altered the morphology of P. italicum. In addition, the permeability of the cell membrane increased with increasing nanoemulsion concentrations, as evidenced by a rapid rise in extracellular electric conductivity and stronger red fluorescence from mycelia (propidium iodide staining). Compared with the control, the nanoemulsion treatment induced a decrease in total lipid and ergosterol contents in P. italicum cells by 64.61% and 60.58%, respectively, demonstrating that membrane integrity had been disrupted. The results indicated that the PMFs-loaded nanoemulsion exerted antifungal activity against P. italicum by disrupting cell membrane integrity and permeability; such a nanoemulsion may be used as a potential fungicide substitute for preservation in citrus fruits.
Collapse
Affiliation(s)
- Long Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Yi Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Xiaoxue Mao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Rui Tao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Boyun Tao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
- Correspondence: ; Tel.: +86-023-6825-1047
| |
Collapse
|
62
|
Zhang L, Zhang M, Devahastin S, Liu K. Fabrication of curcumin encapsulated in casein-ethyl cellulose complexes and its antibacterial activity when applied in combination with blue LED irradiation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
63
|
Souza VVMA, Almeida JM, Barbosa LN, Silva NCC. Citral, carvacrol, eugenol and thymol: antimicrobial activity and its application in food. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2032422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
64
|
Kalhoro MT, Zhang H, Kalhoro GM, Wang F, Chen T, Faqir Y, Nabi F. Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae. Sci Rep 2022; 12:2191. [PMID: 35140298 PMCID: PMC8828847 DOI: 10.1038/s41598-022-06321-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/20/2022] [Indexed: 11/08/2022] Open
Abstract
Recently, plant essential oils (EOs) have attracted special attention in plant disease control and food preservation. Since ancient times, essential oils extracted from plants have exhibited many biological characteristics, especially antimicrobial properties. Recent studies have described the potentials of EOs and derivatives to inhibit the growth and reproduction of microorganisms, mainly in response of overwhelming concerns of consumers about food safety. In the context of returning to nature, with the advancement of science and technology and improved living standards, people have begun to seek solutions for food hygiene without chemical additives. Therefore, biological pesticides and plant-oriented chemicals have received special attention from scientists because they are environmentally friendly and nonhazardous, sustainable, and effective alternatives against many noxious phytopathogens. Present study is intended to appraise the fungicidal properties of ginger EOs to combat leaf blight disease of taro, which threatens global taro production. Farmers often hinge on extremely toxic synthetic fungicides to manage diseases, but the residual effects and resistance of chemicals are unavoidable. The microwave-assisted hydrodistillation method was used for ginger EOs extraction and an FTIR (ATR) spectrometer was used to evaluate their chemical composition and citral was identified as most abundant compound (89.05%) in oil. The pathogen isolated from lesions of diseased taro plants was identified as Phytophthora colocasiae and used as test fungus in the present study. Ginger EO was evaluated in-vitro for antifungal properties against mycelium growth, sporangium production, zoospore germination, leaf, and corm necrosis inhibition. Repeated experiments have shown that the concentration of ginger essential oil (1250 ppm) proved to be the lowest dose to obtain 100% inhibition of fungal growth and spore germination, sporangia formation and leaf necrosis assessment. These results are derived from this fungal species and a hypothesis that involves further research on other plant pathogens to demonstrate the overall potency of essential oils. This study references the easy, economic, and environmental management and control of plant diseases using essential oils and byproducts.
Collapse
Affiliation(s)
- Muhammad Talib Kalhoro
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Hong Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China.
| | - Ghulam Mujtaba Kalhoro
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Fukai Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Tianhong Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Yahya Faqir
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| | - Farhan Nabi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, Sichuan, China
| |
Collapse
|
65
|
A Comprehensive Review on Bio-Preservation of Bread: An Approach to Adopt Wholesome Strategies. Foods 2022; 11:foods11030319. [PMID: 35159469 PMCID: PMC8834264 DOI: 10.3390/foods11030319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Bread is a food that is commonly recognized as a very convenient type of food, but it is also easily prone to microbial attack. As a result of bread spoilage, a significant economic loss occurs to both consumers and producers. For years, the bakery industry has sought to identify treatments that make bread safe and with an extended shelf-life to address this economic and safety concern, including replacing harmful chemical preservatives. New frontiers, on the other hand, have recently been explored. Alternative methods of bread preservation, such as microbial fermentation, utilization of plant and animal derivatives, nanofibers, and other innovative technologies, have yielded promising results. This review summarizes numerous research findings regarding the bio-preservation of bread and suggests potential applications of these techniques. Among these techniques, microbial fermentation using lactic acid bacteria strains and yeast has drawn significant interest nowadays because of their outstanding antifungal activity and shelf-life extending capacity. For example, bread slices with Lactobacillus plantarum LB1 and Lactobacillus rossiae LB5 inhibited fungal development for up to 21 days with the lowest contamination score. Moreover, various essential oils and plant extracts, such as lemongrass oil and garlic extracts, demonstrated promising results in reducing fungal growth on bread and other bakery products. In addition, different emerging bio-preservation strategies such as the utilization of whey, nanofibers, active packaging, and modified atmospheric packaging have gained considerable interest in recent days.
Collapse
|
66
|
Fu X, Gao Y, Yan W, Zhang Z, Sarker S, Yin Y, Liu Q, Feng J, Chen J. Preparation of eugenol nanoemulsions for antibacterial activities. RSC Adv 2022; 12:3180-3190. [PMID: 35425353 PMCID: PMC8979276 DOI: 10.1039/d1ra08184e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Eugenol is a versatile plant essential oil, but its high volatility and low water solubility greatly limit its application. Accordingly, this study prepared eugenol nanoemulsions by a high-speed shearing technique. Through visual inspection and a series of characterizations, including dynamic light scattering, and confocal laser scanning microscopy, the optimized formula was determined to be 5% (w/w) oil phase (eugenol) and 8% (w/w) surfactant (Tween-80), and the optimized shearing time was 5 min. The optimized nanoemulsion had good stability, small droplets (85 nm), and uniform distribution. At a concentration of 0.02 mg μL-1, the nanoemulsion showed strong inhibition against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Scanning electron microscopy (SEM) images showed severe deformation and membrane rupture of both bacteria treated by the nanoemulsion. This result was further confirmed by the leakage of proteins in both bacteria after treatment. The results of reactive oxygen species (ROS) and malondialdehyde (MDA) measurements indicated that the increased levels of ROS in both bacteria treated by the nanoemulsion triggered lipid peroxidation, thus increasing the MDA levels, ultimately causing changes in cell membrane permeability and disruption of the membrane structure. In addition, the nanoemulsion had a small effect on the proliferation and apoptosis of hepatocytes (L02) and lung cells (BEAS-2B), indicating its good biocompatibility. In this study, we developed a novel eugenol nanoemulsion with high stability and good biological activity, which may provide a promising and effective method for wound treatment in the healthcare area.
Collapse
Affiliation(s)
- Xuan Fu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Yuan Gao
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Weiyao Yan
- College of Horticulture and Plant Protection, Yangzhou University Yangzhou 225009 China +86-514-87979395
| | - Ziluo Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Shovra Sarker
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Yinyan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University Yangzhou 225009 China +86-514-87979395
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| |
Collapse
|
67
|
Li Q, Yu S, Han J, Wu J, You L, Shi X, Wang S. Synergistic antibacterial activity and mechanism of action of nisin/carvacrol combination against Staphylococcus aureus and their application in the infecting pasteurized milk. Food Chem 2022; 380:132009. [PMID: 35077986 DOI: 10.1016/j.foodchem.2021.132009] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 11/04/2022]
Abstract
Synergistic antibacterial effect is a promising way to overcome the challenge of microbial contamination in food. In this study, we detected the synergistic interactions of nisin and carvacrol. The MIC of nisin and carvacrol against S. aureus were 60 and 125 μg/mL, respectively. The FICI and FBCI were 0.28125 and 0.09375, which suggested that the nisin/carvacrol combination presented synergistic antibacterial effect against S. aureus. The antibacterial activity of nisin/carvacrol combination was much higher than their individuals and the dose of antibacterials was obviously reduced. The combination could completely kill S. aureus within 8 h, accelerate the destruction of cell membrane, and inhibit formation of biofilm. Under the intervention of nisin, more CAR could enter cell to hunt intracellular targets, leading to an increase in intracellular antibacterial level. Besides, in the storage of pasteurized milk, the combinational treatment successfully inhibited microbial reproduction at 25 °C and 4 °C. Thus, the combination of nisin and carvacrol was a potential synergistic strategy for food preservation.
Collapse
Affiliation(s)
- Qingxiang Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Shuna Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Jinzhi Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Jiulin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| | - Lijun You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Xiaodan Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
68
|
Ke Y, Ding B, Zhang M, Dong T, Fu Y, Lv Q, Ding W, Wang X. Study on inhibitory activity and mechanism of chitosan oligosaccharides on Aspergillus Flavus and Aspergillus Fumigatus. Carbohydr Polym 2022; 275:118673. [PMID: 34742409 DOI: 10.1016/j.carbpol.2021.118673] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Chitosan oligosaccharides (COS) are a derivative of low molecular weight chitosan and are potent natural antimicrobial agents. The antimicrobial activity of COS against Aspergillus flavus and Aspergillus fumigatus was evaluated by minimum inhibitory concentration (MIC) and inhibition of mycelial growth. The MICs of COS against these two fungi were 31.2 and 15.6 mg/mL, respectively. COS treatment rendered fungal mycelia wrinkled and deformed with a fractured appearance. COS also increased cellular permeability leading to a significant leakage of cellular components indicating membrane damage. This compound also dose-dependently reduced chitin production and enhanced chitinase activity while enhancing the accumulation of reactive oxygen species (ROS). These characteristics suggested that COS has inhibitory effects against food spoilage fungi and acts on the cell wall and membrane and alters cellular metabolism. COS shows promise for food industry applications since it is non-toxic to higher organisms.
Collapse
Affiliation(s)
- Yuan Ke
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Beibei Ding
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Miaomiao Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tongjun Dong
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingyun Lv
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, Wuhan 430023, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
69
|
Rezende DADCS, Cardoso MDG, Alves E, Brandão RM, Ferreira VRF, Caetano ARS, Lunguinho ADS, Campolina GA, Nelson DL, Batista LR. Effect of the essential oils of Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. on mycotoxin-producing Aspergillus flavus and Aspergillus ochraceus antifungal properties of essential oils. FEMS Microbiol Lett 2021; 368:6414530. [PMID: 34718530 DOI: 10.1093/femsle/fnab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 11/14/2022] Open
Abstract
Essential oils can be a useful alternative to the use of synthetic fungicides because they have biological potential and are relatively safe for food and agricultural products. The objectives of the present study were to evaluate the antifungal and antimycotoxigenic activities of the essential oils from Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. against Aspergillus flavus and Aspergillus ochraceus, as well as their effects on ergosterol synthesis and membrane morphology. The antifungal potential was evaluated by mycelial growth analysis and scanning electron microscopy. Fungicidal effects against A. flavus, with MFC of 0.98, 15.62 and 0.98 µL/mL, respectively, were observed for the essential oils from S. montana, M. fragrans and C. flexuosus. Aspergillus ochraceus did not grow in the presence of concentrations of 3.91, 15.62 and 0.98 µL/mL of the essential oils from S. montana, M. fragrans and C. flexuosus, respectively. The essential oils significantly inhibited the production of ochratoxin A by the fungus A. ochraceus. The essential oils also inhibited the production of aflatoxin B1 and aflatoxin B2. The biosynthesis of ergosterol was inhibited by the applied treatments. Biological activity in the fungal cell membrane was observed in the presence of essential oils, given that deleterious effects on the morphologies of the fungi were detected. The essential oils under study are promising as food preservatives because they significantly inhibit toxigenic fungi that contaminate food. In addition, the essential oils hindered the biosynthesis of mycotoxins.
Collapse
Affiliation(s)
| | | | - Eduardo Alves
- Phytopathology Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | | | | | | | | | | | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, 39100-000 MG, Brazil
| | - Luís Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| |
Collapse
|
70
|
Avalos M, Garbeva P, Vader L, van Wezel GP, Dickschat JS, Ulanova D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 2021; 39:249-272. [PMID: 34612321 DOI: 10.1039/d1np00047k] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but during the past years significant insights have been obtained for the role of terpenoids in microbial chemical ecology. Their functions include stress alleviation, maintenance of cell membrane integrity, photoprotection, attraction or repulsion of organisms, host growth promotion and defense. In this review we discuss the current knowledge of the biosynthesis and evolution of microbial terpenoids, and their ecological and biological roles in aquatic and terrestrial environments. Perspectives on their biotechnological applications, knowledge gaps and questions for future studies are discussed.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Lisa Vader
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
71
|
Yuan X, Peng X, Zhong L, Zhao C, Lin H. Analysis of the characteristic flavor substances of boneless cold‐eating rabbit under different preprocessing treatments. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xianling Yuan
- College of Bioengineering Sichuan University of Science and Engineering Zigong China
- Zigong Meat Products Industry Association Zigong China
| | - Xianjie Peng
- College of Bioengineering Sichuan University of Science and Engineering Zigong China
- Sichuan “DingDianEr” Food Development Co., Ltd Chengdu China
| | - Liming Zhong
- College of Bioengineering Sichuan University of Science and Engineering Zigong China
| | - Changqing Zhao
- College of Bioengineering Sichuan University of Science and Engineering Zigong China
| | - Hongbin Lin
- School of Food and Bioengineering Xihua University Chengdu China
| |
Collapse
|
72
|
Shi C, Knøchel S. Inhibitory effects of binary combinations of microbial metabolites on the growth of tolerant Penicillium roqueforti and Mucor circinelloides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
73
|
Wang Y, Lin W, Yan H, Neng J, Zheng Y, Yang K, Xing F, Sun P. iTRAQ proteome analysis of the antifungal mechanism of citral on mycelial growth and OTA production in Aspergillus ochraceus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4969-4979. [PMID: 33543481 DOI: 10.1002/jsfa.11140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/28/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aspergillus ochraceus causes food spoilage and produces mycotoxin ochratoxin A (OTA) during storage of agricultural commodities. In this study, citral was used to inhibit A. ochraceus growth and OTA accumulation, proteomic analysis was employed to verify the mechanism of citral. RESULTS Citral was found to significantly inhibit fungal growth and mycotoxin production in A. ochraceus. Specifically, 75, 125, 150 and 200 μL L-1 citral suppressed mycelial growth by 33%, 46%, 50% and 100%, respectively. Additionally, 75 μL L-1 citral inhibited OTA accumulation by 25%. Proteomic analysis was performed to elucidate the inhibitory mechanism of citral on mycelial growth and OTA production at subinhibitory concentrations (75 μL L-1 ). Proteomics analysis identified 2646 proteins in A. ochraceus fc-1, of which 218 were differentially expressed between control and 75 μL L-1 citral treatment samples. Differentially expressed proteins were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of biological process, cellular component and molecular function terms. Potential factors affecting mycelial growth and OTA production were analysed, and OTA production was revealed to be a complex process involving many associated factors related to various processes including nutrient intake, sterol biosynthesis, ribosome biogenesis, energy metabolism, oxidative stress and amino acid metabolism. In addition, citral at 75 μL L-1 down-regulated OTA biosynthetic genes including pks and nrps, but slightly up-regulated the global regulatory factors veA, velB and laeA. CONCLUSION The findings further demonstrate the potential of citral for the preservation of grains and other agricultural products, and provide new insight into its antifungal mechanisms at subinhibitory concentrations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Wei Lin
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Hao Yan
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Jing Neng
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Yong Zheng
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, China
| |
Collapse
|
74
|
|
75
|
Valková V, Ďúranová H, Galovičová L, Vukovic NL, Vukic M, Kačániová M. In Vitro Antimicrobial Activity of Lavender, Mint, and Rosemary Essential Oils and the Effect of Their Vapours on Growth of Penicillium spp. in a Bread Model System. Molecules 2021; 26:molecules26133859. [PMID: 34202776 PMCID: PMC8270289 DOI: 10.3390/molecules26133859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 01/12/2023] Open
Abstract
The chemical composition, antioxidant activity, and antimicrobial properties of three commercially available essential oils: rosemary (REO), lavender (LEO), and mint (MEO), were determined in the current study. Our data revealed that the major components of REO, MEO, and LEO were 1,8-cineole (40.4%), menthol (40.1%), and linalool acetate (35.0%), respectively. The highest DPPH radical-scavenging activity was identified in MEO (36.85 ± 0.49%) among the investigated EOs. Regarding antimicrobial activities, we found that LEO had the strongest inhibitory efficiencies against the growth of Pseudomonas aeruginosa and Candida (C.) tropicalis, MEO against Salmonella (S.) enterica, and REO against Staphylococcus (S.) aureus. The strongest antifungal activity was displayed by mint EO, which totally inhibited the growth of Penicillium (P.) expansum and P. crustosum in all concentrations; the growth of P. citrinum was completely suppressed only by the lowest MEO concentration. The lowest minimal inhibitory concentrations (MICs) against S. enterica, S. aureus, and C. krusei were assessed for MEO. In situ analysis on the bread model showed that 125 µL/L of REO exhibited the lowest mycelial growth inhibition (MGI) of P. citrinum, and 500 µL/L of MEO caused the highest MGI of P. crustosum. Our results allow us to make conclusion that the analysed EOs have promising potential for use as innovative agents in the storage of bakery products in order to extend their shelf-life.
Collapse
Affiliation(s)
- Veronika Valková
- AgroBioTech Research Centre, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Fruit Sciences, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- Correspondence: (V.V.); (M.K.); Tel.: +421-37-641-4928 (V.V.); +421-37-641-4715 (M.K.)
| | - Hana Ďúranová
- AgroBioTech Research Centre, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Lucia Galovičová
- Department of Fruit Sciences, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, P.O. Box 12, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, P.O. Box 12, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Miroslava Kačániová
- Department of Fruit Sciences, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza St. 4, 35601 Rzeszow, Poland
- Correspondence: (V.V.); (M.K.); Tel.: +421-37-641-4928 (V.V.); +421-37-641-4715 (M.K.)
| |
Collapse
|
76
|
Dan W, Gao J, Li L, Xu Y, Wang J, Dai J. Cellular and non-target metabolomics approaches to understand the antifungal activity of methylaervine against Fusarium solani. Bioorg Med Chem Lett 2021; 43:128068. [PMID: 33915256 DOI: 10.1016/j.bmcl.2021.128068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/15/2022]
Abstract
Botanical fungicides are promising replacements for pure chemical synthetic pesticides in agriculture and organic food production. Methylaervine with good physicochemical properties exhibited effective activity against F. solani (EC50 = 10.56 µM) better than the positive control thiophanate-methyl (EC50 = 27.94 µM). The activity changes of malondialdehyde (MDA), catalase (CAT) and superoxide dismutase (SOD) showed that methylaervine could significantly induce lipid peroxidation and activate the antioxidant enzymes. According to the metabolomics analysis, fifty-one differential metabolites and two major antifungal-related pathways covering tricarboxylic acid (TCA) cycle and steroid biosynthesis were identified. Moreover, the disturbance for TCA cycle was validated by the activity changes of dehydrogenase (MDH) and succinate dehydrogenase (SDH) as well as docking simulation. Homology modeling and docking study revealed that hydrogen bonds and hydrophobic interactions played a vital role in methylaervine-protein stability. This study provided new insight into the antifungal activity of methylaervine, which is important for the development of novel botanical fungicides based on methylaervine.
Collapse
Affiliation(s)
- Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Shaanxi, China
| | - Yingmeng Xu
- Shandong Changyi Zaohu Salt Chemical Co, Ltd, Shandong, China
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Shandong, China; College of Veterinary Medicine, Northwest A&F University, Shaanxi, China.
| |
Collapse
|
77
|
Zhang J, Du C, Li Q, Hu A, Peng R, Sun F, Zhang W. Inhibition mechanism and antibacterial activity of natural antibacterial agent citral on bamboo mould and its anti-mildew effect on bamboo. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202244. [PMID: 33996126 PMCID: PMC8059595 DOI: 10.1098/rsos.202244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/29/2021] [Indexed: 05/14/2023]
Abstract
Bamboo, a natural material, has been widely used in the fields of decoration, architecture and furniture. However, bamboo is easy to mildew and lose its use value. In this paper, the inhibition mechanism and antibacterial activity of a natural antibacterial agent citral on bamboo mould and its anti-mildew effect on bamboo were studied. The results showed that citral could change the shape of mycelium, destroy the integrity of mycelium structure, cell wall and cell membrane structure, thereby causing leakage of nucleic acids, proteins and other substances in the cell, as well as destroy the pH balance of the inside and outside of the cell, to inhibit or kill mould. When the concentration of citral is 100 mg ml-1, the antibacterial rates of citral against Penicillium citrinum (PC), Trichoderma viride (TV), Aspergillus niger (AN) and a hybrid fungi group comprising PC, TV and AN (Hun) were more than 100%. However, compared with the direct effect of citral on mould, the antibacterial property of bamboo treated with citral was significantly reduced, the mildew proof effect can be achieved only if the concentration of citral to treat bamboo is increased to more than twice the concentration of citral directly acting on mould.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chungui Du
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Qi Li
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Ailian Hu
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Rui Peng
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Fangli Sun
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Weigang Zhang
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| |
Collapse
|
78
|
Elsherbiny EA, Taher MA, Abd El-Aziz MH, Mohamed SY. Action mechanisms and biocontrol of Purpureocillium lilacinum against green mould caused by Penicillium digitatum in orange fruit. J Appl Microbiol 2021; 131:1378-1390. [PMID: 33484589 DOI: 10.1111/jam.15016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
AIMS The present study evaluated, for the first time, the inhibitory effects of the filtrate of Purpureocillium lilacinum against Penicillium digitatum. METHODS AND RESULTS No direct contact between P. lilacinum and P. digitatum was observed during the dual culture test and the inhibition zone was 6·1 mm. The filtrate of P. lilacinum completely inhibited P. digitatum growth and spore germination at the concentration of 64%. The filtrate increased the permeability of the cell membrane and the content of MDA in P. digitatum. The ergosterol content in P. digitatum was strongly inhibited at 32% by 81·1%. The green mould incidence and severity in filtrate-treated fruit at 64% were 71·7 and 80·7% lower than in the control, respectively. The filtrate enhanced the activity of PAL, PPO and POD enzymes in orange fruit. The POD and PAL gene expression levels were significantly upregulated in the fruit treated with the filtrate. CONCLUSIONS This study indicated that the antifungal mechanism of P. lilacinum filtrate against P. digitatum is mainly by the damage of the fungal cell membrane and its components. SIGNIFICANCE AND IMPACT OF THE STUDY This work provides the pioneer evidence on the application of P. lilacinum filtrate as a novel biocontrol agent for orange green mould.
Collapse
Affiliation(s)
- E A Elsherbiny
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - M A Taher
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - M H Abd El-Aziz
- Department of Genetics, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - S Y Mohamed
- Horticulture Research Institute, Agricultural Research Center, Cairo, Egypt
| |
Collapse
|
79
|
Xie J, Liao B, Zhu H, Yu Y, Tang RY. Synthesis of novel 2-methyl-3-furyl sulfide flavor derivatives as efficient preservatives. RSC Adv 2021; 11:25639-25645. [PMID: 35478926 PMCID: PMC9037019 DOI: 10.1039/d1ra04207f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
Foodborne microbial infestation seriously threatens food security, and the development of low-risk food preservatives is highly needed in food production. For discovering novel flavor molecules with antiseptic function, novel 2-methyl-3-furyl sulfide flavor derivatives were synthesized and evaluated. A wide range of 2-methyl-3-furyl sulfide derivatives were synthesized by reactions of 2-methyl-3-furyl disulfide with cyclic ethers, amides, ketones, and epoxides. All of these compounds have special aroma characteristics and low aroma thresholds. The antimicrobial activity of these compounds against test foodborne bacterial or fungal strains (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Salmonella paratyphi, Listeria monocytogenes, Vibrio parahemolyticus, Penicillium italicum, Aspergillus niger, Mucor racemosus, Rhizopus oryzae) was examined. It was found that fifteen compounds (3a, 3b, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 5a, 5b, 5f) have antimicrobial activity against different foodborne bacterial or fungal strains. Significantly, the antimicrobial activity of the flavor compounds (3b, 3d, 3e, 3i, 3j, 3l, 3m) is better than that of the control group (penicillin, amphotericin B and thiram), and they are promising preservatives for food production. Foodborne microbial infestation seriously threatens food security, and the development of low-risk food preservatives is highly needed in food production.![]()
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Benjian Liao
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Hui Zhu
- Boton Flavors & Fragrances Co. Ltd
- Dongguan 523000
- China
| | - Yongfei Yu
- Boton Flavors & Fragrances Co. Ltd
- Dongguan 523000
- China
| | - Ri-Yuan Tang
- Department of Applied Chemistry
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
80
|
Lin SH, Luo P, Yuan E, Zhu X, Zhang B, Wu X. Physiological and Proteomic Analysis of Penicillium digitatum in Response to X33 Antifungal Extract Treatment. Front Microbiol 2020; 11:584331. [PMID: 33240238 PMCID: PMC7677231 DOI: 10.3389/fmicb.2020.584331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Penicillium digitatum is a widespread pathogen among Rutaceae species that causes severe fruit decay symptoms on infected citrus fruit (known as citrus green mold). The employment of fungicides can effectively control the citrus green mold, significantly reducing agricultural economic loss. In this study, we found that the X33 antifungal extract produced by Streptomyces lavendulae strain X33 inhibited the hyphae polarization of P. digitatum. Additionally, physiological and proteomic analysis strategies were applied to explore the inhibitory mechanism of the X33 antifungal extract of the S. lavendulae strain X33 on the mycelial growth of P. digitatum. A total of 277 differentially expressed proteins, consisting of 207 upregulated and 70 downregulated, were identified from the comparative proteomics analysis. The results indicated that the X33 antifungal extract induced mitochondrial membrane dysfunction and cellular integrity impairment, which can affect energy metabolism, oxidative stress, and transmembrane transport. The improved alkaline phosphatase activity and extracellular conductivity, increased H2O2 and malondialdehyde contents, and inhibition of energy, amino acid, and sugar metabolism indicated that the oxidative stress of P. digitatum is induced by the X33 antifungal extract. These findings provided insight into the antifungal mechanism of the X33 antifungal extract against P. digitatum by suggesting that it may be an effective fungicide for controlling citrus postharvest green mold.
Collapse
Affiliation(s)
- Shu-Hua Lin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Pan Luo
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - En Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiangdong Zhu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| |
Collapse
|
81
|
Zhou J, Zhang C, Du B, Cui H, Fan X, Zhou D, Zhou J. Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low- and high-Cd wheat cultivars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115045. [PMID: 32593926 DOI: 10.1016/j.envpol.2020.115045] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contamination is a big challenge for managing food supply and safety around the world. Reduction of the bioaccumulation of cadmium (Cd) in wheat is an important way to minimize Cd hazards to human health. This study compared and highlighted the effects of soil and foliar applications of Zn on Cd accumulation and toxicity in cultivars with high Cd accumulation (high-Cd wheat) and low Cd accumulation (low-Cd wheat). Both foliar and soil Zn applications provided effective strategies for reducing wheat grain Cd concentrations in the high-Cd wheat by 26-49% and 25-52%, respectively, and these also significantly reduced the concentrations in wheat stems and leaves. Foliar and soil Zn applications significantly reduced Cd in leaves and stems of the low-Cd wheat but had no effects on grain Cd. Both soil and foliar Zn applications significantly alleviated Cd toxicity by regulation of Cd transport genes, as reflected by the increased grain yield and antioxidant enzyme activity in the wheat tissues. Gene expression in response to zinc application differed in the two wheat cultivars. Down-regulation of the influx transporter (TaNramp5) and upregulation of the efflux transporters (TaTM20 and TaHMA3) in the high-Cd wheat may have contributed to the Zn-dependent Cd alleviation and enhanced its tolerance to Cd toxicity. Additionally, foliar Zn applications down-regulated the leaf TaHMA2 expression that reduced root Cd translocation to shoots, while soil Zn applications down-regulated the root TaLCT1 expression, which contributed to the reduction of root Cd concentrations. Soil (99 kg ZnSO4·7H2O ha-1) and foliar (0.36 kg ZnSO4·7H2O ha-1) Zn applications can effectively decrease the Cd in grains and guarantee food safety and yield, simultaneously. The presented results provide a new insight into the mechanisms of, and strategies for, using Zn for the Cd reduction in wheat.
Collapse
Affiliation(s)
- Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Chen Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Buyun Du
- Nanjing Institute of Environmental Sciences, Ministry of Ecological Environment, Nanjing, 210042, China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Dongmei Zhou
- School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
82
|
Ju J, Xie Y, Yu H, Guo Y, Cheng Y, Qian H, Yao W. A novel method to prolong bread shelf life: Sachets containing essential oils components. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
83
|
Entrapment of Citrus limon var. pompia Essential Oil or Pure Citral in Liposomes Tailored as Mouthwash for the Treatment of Oral Cavity Diseases. Pharmaceuticals (Basel) 2020; 13:ph13090216. [PMID: 32872140 PMCID: PMC7557837 DOI: 10.3390/ph13090216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
This work aimed at developing a mouthwash based on liposomes loading Citrus limon var. pompia essential oil or citral to treat oropharyngeal diseases. Vesicles were prepared by dispersing phosphatidylcholine and pompia essential oil or citral at increasing amounts (12, 25 and 50 mg/mL) in water. Transparent vesicle dispersions were obtained by direct sonication avoiding the use of organic solvents. Cryogenic transmission electron microscopy (cryo-TEM) confirmed the formation of unilamellar, spherical and regularly shaped vesicles. Essential oil and citral loaded liposomes were small in size (~110 and ~100 nm, respectively) and negatively charged. Liposomes, especially those loading citral, were highly stable as their physico-chemical properties did not change during storage. The formulations were highly biocompatible against keratinocytes, were able to counteract the damages induced in cells by using hydrogen peroxide, and able to increase the rate of skin repair. In addition, liposomes loading citral at higher concentrations inhibited the proliferation of cariogenic bacterium.
Collapse
|
84
|
Yang Y, Lin M, Feng S, Gu Q, Chen Y, Wang Y, Song D, Gao M. Chemical composition, antibacterial activity, and mechanism of action of essential oil from
Litsea cubeba
against foodborne bacteria. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yu‐Jing Yang
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Meng‐Yi Lin
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Shu‐Yi Feng
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Yi‐Cun Chen
- State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry Beijing PR China
- Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou PR China
| | - Yang‐Dong Wang
- State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry Beijing PR China
- Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou PR China
| | - Da‐feng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province Zhejiang Gongshang University Hangzhou PR China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry Beijing PR China
- Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou PR China
| |
Collapse
|
85
|
Kumar A, Singh PP, Gupta V, Prakash B. Assessing the antifungal and aflatoxin B 1 inhibitory efficacy of nanoencapsulated antifungal formulation based on combination of Ocimum spp. essential oils. Int J Food Microbiol 2020; 330:108766. [PMID: 32659522 DOI: 10.1016/j.ijfoodmicro.2020.108766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/14/2023]
Abstract
The aim of the study was to explore the antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated antifungal formulation. Mixture design response surface methodology (RSM) was utilized to design the antifungal formulation (SBC 4:1:1) based on the combination of chemically characterized Ocimum sanctum (S), O. basilicum (B), and O. canum (C) against Aspergillus flavus. The SBC was incorporated inside the chitosan nanomatrix (Ne-SBC) using an ultrasonic probe (40 kHz) and interactions were confirmed by SEM, FTIR and XRD analysis. The results showed that the Ne-SBC possessed enhanced antifungal and aflatoxin B1 inhibitory effect over the free form of SBC. The biochemical and in silico results indicate that the antifungal and aflatoxin B1 inhibitory effect was related to perturbance in the plasma membrane function (ergosterol biosynthesis and membrane cation) mitochondrial membrane potential, C-sources utilization, antioxidant defense system, and the targeted gene products Erg 28, cytochrome c oxidase subunit Va, and Nor-1. In-situ observation revealed that Ne-SBC effectively protects the Avena sativa seeds from A. flavus and AFB1 contamination and preserves its sensory profile. The findings suggest that the fabrication of SBC inside the chitosan nano-matrix has promising use in the food industries as an antifungal agent.
Collapse
Affiliation(s)
- Akshay Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vishal Gupta
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
86
|
Orthogonal Optimization and Physicochemical Characterization of Water-Soluble Gelatin-Chitosan Nanoparticles with Encapsulated Alcohol-Soluble Eugenol. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
87
|
Nissen L, Bordoni A, Gianotti A. Shift of Volatile Organic Compounds (VOCs) in Gluten-Free Hemp-Enriched Sourdough Bread: A Metabolomic Approach. Nutrients 2020; 12:nu12041050. [PMID: 32290149 PMCID: PMC7230689 DOI: 10.3390/nu12041050] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
Hemp seed flour represents a potential ingredient for protein enrichment of gluten-free bakery products, the nutritional value of which could be further increased by fermentation with sourdough or with beneficial lactic acid bacteria strains. In this study, a metabolomic approach was used to evaluate the effect of hemp seed flour addition and sourdough fermentation on the production of flavoring and health-related volatile organic compounds (VOCs) in a gluten-free bread. Multivariate analysis of VOCs provided an in-depth description of the effects of hemp seed flour addition and sourdough fermentation on flavoring and bioactive compounds. In particular, an increased concentration of antimicrobial compounds, a larger spectrum of bioactive VOCs and a typical flavoring profile was evidenced in comparison to standard products. Furthermore, an increase of fermentation metabolites was observed in comparison to a standard dough, relating to abundances of 2-butanone-3-hydroxy, acetic acid, ethanol, and 1,4-butanediol. This study provides new insights on the evolution of flavoring and bioactive hemp seed flour constituents during sourdough fermentation, evidencing their retention in baked goods, and describes a new approach that could guide the formulation of innovative, fermented food with enhanced nutritional value.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI - Interdepartamental Centre of Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy; (L.N.); (A.G.)
| | - Alessandra Bordoni
- CIRI - Interdepartamental Centre of Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy; (L.N.); (A.G.)
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Piazza Goidanich, 60–47521 Cesena (FC), Italy
- Correspondence:
| | - Andrea Gianotti
- CIRI - Interdepartamental Centre of Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy; (L.N.); (A.G.)
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Piazza Goidanich, 60–47521 Cesena (FC), Italy
| |
Collapse
|
88
|
Bao L, Gao H, Zheng Z, Zhao X, Zhang M, Jiao F, Su C, Qian Y. Integrated Transcriptomic and Un-Targeted Metabolomics Analysis Reveals Mulberry Fruit ( Morus atropurpurea) in Response to Sclerotiniose Pathogen Ciboria shiraiana Infection. Int J Mol Sci 2020; 21:E1789. [PMID: 32150966 PMCID: PMC7084804 DOI: 10.3390/ijms21051789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
Mulberry sclerotiniose caused by Ciboria shiraiana is a devastating disease of mulberry (Morus alba L.) fruit in Northwest China. At present, no disease-resistant varieties are used in production, as the molecular mechanisms of this disease are not well understood. In this study, to explore new prevention methods and provide direction for molecular breeding, transcriptomic sequencing and un-targeted metabolomics were performed on healthy (CK), early-stage diseased (HB1), and middle-stage diseased (HB2) mulberry fruits. Functional annotation, gene ontology, a Kyoto encyclopedia of genes and genomes (KEGG) analysis, and a Mapman analysis of the differentially expressed genes revealed differential regulation of genes related to plant hormone signal transduction, transcription factors, and phenylpropanoid biosynthesis. A correspondence between the transcript pattern and metabolite profile was observed in the phenylpropanoid biosynthesis pathway. It should be noted that the log2 ratio of eugenol (isoeugenol) in HB1 and HB2 are 85 times and 23 times higher than CK, respectively. Our study shows that phenylpropanoid biosynthesis may play an essential role in response to sclerotiniose pathogen infection and eugenol(isoeugenol) enrichment in mulberry fruit, which may provide a novel method for mulberry sclerotiniose control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chao Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (L.B.); (H.G.); (Z.Z.); (X.Z.); (M.Z.); (F.J.)
| | - Yonghua Qian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (L.B.); (H.G.); (Z.Z.); (X.Z.); (M.Z.); (F.J.)
| |
Collapse
|
89
|
Ju J, Xie Y, Yu H, Guo Y, Cheng Y, Chen Y, Ji L, Yao W. Synergistic properties of citral and eugenol for the inactivation of foodborne molds in vitro and on bread. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|