51
|
Navya PV, Gayathri V, Samanta D, Sampath S. Bacterial cellulose: A promising biopolymer with interesting properties and applications. Int J Biol Macromol 2022; 220:435-461. [PMID: 35963354 DOI: 10.1016/j.ijbiomac.2022.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
The ever-increasing demands for materials with desirable properties led to the development of materials that impose unfavorable influences on the environment and the ecosystem. Developing a low-cost, durable, and eco-friendly functional material with biological origins has become necessary to avoid these consequences. Bacterial cellulose generated by bacteria dispenses excellent structural and functional properties and satisfies these requirements. BC and BC-derived materials are essential in developing pure and environmentally safe functional materials. This review offers a detailed understanding of the biosynthesis of BC, properties, various functionalization methods, and applicability in biomedical, water treatment, food storage, energy conversion, and energy storage applications.
Collapse
Affiliation(s)
- P V Navya
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610101, India.
| | - Varnakumar Gayathri
- Polymer Science and Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Debasis Samanta
- Polymer Science and Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Srinivasan Sampath
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610101, India.
| |
Collapse
|
52
|
Xiang N, Yao Y, Yuen JSK, Stout AJ, Fennelly C, Sylvia R, Schnitzler A, Wong S, Kaplan DL. Edible films for cultivated meat production. Biomaterials 2022; 287:121659. [PMID: 35839585 DOI: 10.1016/j.biomaterials.2022.121659] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Biomaterial scaffolds are critical components in cultivated meat production for enabling cell adhesion, proliferation, differentiation and orientation. Currently, there is limited information on the fabrication of edible/biodegradable scaffolds for cultivated meat applications. In the present work, several abundant, naturally derived biomaterials (gelatin, soy, glutenin, zein, cellulose, alginate, konjac, chitosan) were fabricated into films without toxic cross-linking or stabilizing agents. These films were investigated for support of the adhesion, proliferation and differentiation of murine and bovine myoblasts. These biomaterials supported cell viability, and the protein-based films showed better cell adhesion than the polysaccharide-based films. Surface patterns induced cell alignment and guided myoblast differentiation and organization on the glutenin and zein films. The mechanical properties of the protein films were also assessed and suggested that a range of properties can be achieved to meet food-related goals. Overall, based on adherence, proliferation, differentiation, mechanics, and material availability, protein-based films, particularly glutenin and zein, showed the most promise for cultivated meat applications. Ultimately, this work presents a comparison of suitable biomaterials for cultivated meat applications and suggests future efforts to optimize scaffolds for efficacy and cost.
Collapse
Affiliation(s)
- Ning Xiang
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - Ya Yao
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - Andrew J Stout
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155
| | - Colin Fennelly
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, MA, USA, 1803
| | - Ryan Sylvia
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, MA, USA, 1803
| | | | - Shou Wong
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, MA, USA, 1803
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, USA, 02155.
| |
Collapse
|
53
|
Transdermal therapeutic system: Study of cellulose nanocrystals influenced methylcellulose-chitosan bionanocomposites. Int J Biol Macromol 2022; 218:556-567. [PMID: 35905757 DOI: 10.1016/j.ijbiomac.2022.07.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022]
Abstract
Over the past few years, there is a drive toward the fabrication and application of bio-based non-cytotoxic drug carriers. Cellulose nanocrystals (CNCs) have gotten immense research attention as a promising bioderived material in the biomedical field due to its remarkable properties. The delivery of analgesic and anti-inflammatory drug, ketorolac tromethamine (KT) by transdermal route is stipulated herewith to fabricate suitable transdermal therapeutic systems. We have synthesized CNCs from jute fibers and aim to develop a non-cytotoxic polymer-based bionanocomposites (BNCs) transdermal patch, formulated with methylcellulose (MC), chitosan (CH), along with exploration of CNCs for sustained delivery of KT, where CNCs act as nanofiller and elegant nanocarrier. CNCs reinforced MCCH blends were prepared via the solvent evaporation technique. The chemical structure, morphology, and thermal stability of the prepared bionanocomposites formulations were studied by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), TGA, DSC, DMA, and SEM. The In vitro drug release studies were executed using Franz diffusion cells. The BNC patches showed in-vitro cytocompatibility and the drug release study revealed that BNC containing 1 wt% CNCs presented the best-sustained drug release profile. The bioderived CNCs appear to enhance the BNCs drug's bioavailability, which could have a broad prospect for TDD applications.
Collapse
|
54
|
A structural study of the self-association of different starches in presence of bacterial cellulose fibrils. Carbohydr Polym 2022; 288:119361. [PMID: 35450626 DOI: 10.1016/j.carbpol.2022.119361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022]
Abstract
A multi-analytical study was performed to analyse the effect of bacterial cellulose (BCF) on the self-association of starches with different amylose content (wheat, waxy-maize), assessing macrostructural properties (rheology, gel strength) and some nano and sub-nano level features (small and wide-angle X-ray scattering). Although pasting viscosities and G' were significantly increased by BCF in both starches, cellulose did not seem to promote the self-association of amylose in short-range retrogradation. A less elastic structure was reflected by a 2-3-fold increase in loss factor (G″/G') at the highest BCF concentration tested. This behavior agreed with the nano and sub-nano characterisation of the samples, which showed loss of starch lamellarity and incomplete full recovery of an ordered structure after storage at 4 °C for 24 h. The gel strength data could be explained by the contribution of BCF to the mechanical response of the sample. The information gained in this work is relevant for tuning the structure of tailored starch-cellulose composites.
Collapse
|
55
|
Rai R, Dhar P. Biomedical engineering aspects of nanocellulose: a review. NANOTECHNOLOGY 2022; 33:362001. [PMID: 35576914 DOI: 10.1088/1361-6528/ac6fef] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cellulose is one of the most abundant renewable biopolymer in nature and is present as major constituent in both plant cell walls as well as synthesized by some microorganisms as extracellular products. In both the systems, cellulose self-assembles into a hierarchical ordered architecture to form micro to nano-fibrillated structures, on basis of which it is classified into various forms. Nanocellulose (NCs) exist as rod-shaped highly crystalline cellulose nanocrystals to high aspect ratio cellulose nanofibers, micro-fibrillated cellulose and bacterial cellulose (BC), depending upon the origin, structural and morphological properties. Moreover, NCs have been processed into diversified products ranging from composite films, coatings, hydrogels, aerogels, xerogels, organogels, rheological modifiers, optically active birefringent colored films using traditional-to-advanced manufacturing techniques. With such versatility in structure-property, NCs have profound application in areas of healthcare, packaging, cosmetics, energy, food, electronics, bioremediation, and biomedicine with promising commercial potential. Herein this review, we highlight the recent advancements in synthesis, fabrication, processing of NCs, with strategic chemical modification routes to tailor its properties for targeted biomedical applications. We also study the basic mechanism and models for biosynthesis of cellulose in both plant and microbial systems and understand the structural insights of NC polymorphism. The kinetics study for both enzymatic/chemical modifications of NCs and microbial growth behavior of BC under various reactor configurations are studied. The challenges associated with the commercial aspects as well as industrial scale production of pristine and functionalized NCs to meet the growing demands of market are discussed and prospective strategies to mitigate them are described. Finally, post chemical modification evaluation of biological and inherent properties of NC are important to determine their efficacy for development of various products and technologies directed for biomedical applications.
Collapse
Affiliation(s)
- Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
56
|
Efficiency Assessment of Bacterial Cellulose on Lowering Lipid Levels In Vitro and Improving Lipid Metabolism In Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113495. [PMID: 35684437 PMCID: PMC9182494 DOI: 10.3390/molecules27113495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/30/2023]
Abstract
Bacterial cellulose (BC) is well known as a high-performance dietary fiber. This study investigates the adsorption capacity of BC for cholesterol, sodium cholate, unsaturated oil, and heavy metal ions in vitro. Further, a hyperlipidemia mouse model was constructed to investigate the effects of BC on lipid metabolism, antioxidant levels, and intestinal microflora. The results showed that the maximum adsorption capacities of BC for cholesterol, sodium cholate, Pb2+ and Cr6+ were 11.910, 16.149, 238.337, 1.525 and 1.809 mg/g, respectively. Additionally, BC reduced the blood lipid levels, regulated the peroxide levels, and ameliorated the liver injury in hyperlipidemia mice. Analysis of the intestinal flora revealed that BC improved the bacterial community of intestinal microflora in hyperlipidemia mice. It was found that the abundance of Bacteroidetes was increased, while the abundance of Firmicutes and Proteobacteria was decreased at the phylum level. In addition, increased abundance of Lactobacillus and decreased abundance of Lachnospiraceae and Prevotellaceae were obtained at the genus level. These changes were supposed to be beneficial to the activities of intestinal microflora. To conclude, the findings prove the role of BC in improving lipid metabolism in hyperlipidemia mice and provide a theoretical basis for the utilization of BC in functional food.
Collapse
|
57
|
Babayekhorasani F, Hosseini M, Spicer PT. Molecular and Colloidal Transport in Bacterial Cellulose Hydrogels. Biomacromolecules 2022; 23:2404-2414. [PMID: 35544686 DOI: 10.1021/acs.biomac.2c00178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial cellulose biofilms are complex networks of strong interwoven nanofibers that control transport and protect bacterial colonies in the film. The design of diverse applications of these bacterial cellulose films also relies on understanding and controlling transport through the fiber mesh, and transport simulations of the films are most accurate when guided by experimental characterization of the structures and the resultant diffusion inside. Diffusion through such films is a function of their key microstructural length scales, determining how molecules, as well as particles and microorganisms, permeate them. We use microscopy to study the unique bacterial cellulose film via its pore structure and quantify the mobility dynamics of various sizes of tracer particles and macromolecules. Mobility is hindered within the films, as confinement and local movement strongly depend on the void size relative to diffusing tracers. The biofilms have a naturally periodic structure of alternating dense and porous layers of nanofiber mesh, and we tune the magnitude of the spacing via fermentation conditions. Micron-sized particles can diffuse through the porous layers but cannot penetrate the dense layers. Tracer mobility in the porous layers is isotropic, indicating a largely random pore structure there. Molecular diffusion through the whole film is only slightly reduced by the structural tortuosity. Knowledge of transport variations within bacterial cellulose networks can be used to guide the design of symbiotic cultures in these structures and enhance their use in applications like biomedical implants, wound dressings, lab-grown meat, clothing textiles, and sensors.
Collapse
Affiliation(s)
| | - Maryam Hosseini
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Patrick T Spicer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
58
|
Effects of the interaction between bacterial cellulose and soy protein isolate on the oil-water interface on the digestion of the Pickering emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
59
|
Wood J, van der Gast C, Rivett D, Verran J, Redfern J. Reproducibility of Bacterial Cellulose Nanofibers Over Sub-Cultured Generations for the Development of Novel Textiles. Front Bioeng Biotechnol 2022; 10:876822. [PMID: 35547175 PMCID: PMC9081875 DOI: 10.3389/fbioe.2022.876822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022] Open
Abstract
The textile industry is in crisis and under pressure to minimize the environmental impact on its practices. Bacterial cellulose (BC), a naturally occurring form of cellulose, displays properties superior to those of its cotton plant counterpart, such as enhanced purity, crystallinity, tensile strength, and water retention and is thus suitable for an array of textile applications. It is synthesized from a variety of microorganisms but is produced in most abundance by Komagataeibacter xylinus. K. xylinus is available as a type strain culture and exists in the microbial consortium commonly known as Kombucha. Whilst existing literature studies have described the effectiveness of both K. xylinus isolates and Kombucha in the production of BC, this study investigated the change in microbial communities across several generations of sub-culturing and the impact of these communities on BC yield. Using Kombucha and the single isolate strain K. xylinus as inocula in Hestrin and Schramm liquid growth media, BC pellicles were propagated. The resulting pellicles and residual liquid media were used to further inoculate fresh liquid media, and this process was repeated over three generations. For each generation, the thickness of the pellicles and their appearance under SEM were recorded. 16S rRNA sequencing was conducted on both pellicles and liquid media samples to assess changes in communities. The results indicated that the genus Komagataeibacter was the most abundant species in all samples. Cultures seeded with Kombucha yielded thicker cellulose pellicles than those seeded with K. xylinus, but all the pellicles had similar nanofibrillar structures, with a mix of liquid and pellicle inocula producing the best yield of BC after three generations of sub-culturing. Therefore, Kombucha starter cultures produce BC pellicles which are more reproducible across generations than those created from pure isolates of K. xylinus and could provide a reproducible sustainable model for generating textile materials.
Collapse
Affiliation(s)
- Jane Wood
- Manchester Fashion Institute, Faculty of Arts and Humanities, Manchester Metropolitan University, Manchester, United Kingdom
| | - Christopher van der Gast
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Damian Rivett
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Joanna Verran
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - James Redfern
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
- *Correspondence: James Redfern,
| |
Collapse
|
60
|
Lin S. Dietary fiber in bakery products: Source, processing, and function. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:37-100. [PMID: 35595397 DOI: 10.1016/bs.afnr.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bakery products are prevalently consumed foods in the world, and they have been regarded as convenient dietary vehicles for delivering nutritive ingredients into people's diet, of which, dietary fiber (DF) is one of the most popular items. The food industry attempts to produce fiber-enriched bakery products with both increasing nutritional value and appealing palatability. As many new sources of DFs become available, and consumers are moving towards healthier diets, studies of using these DFs as functional ingredients in baked goods are becoming vast. Besides, the nutrition value of DF is commonly accepted, and many investigations have also revealed the health benefits of fiber-enriched bakery products. Thus, this chapter presents an overview of (1) trends in supplementation of DF from various sources, (2) impact of DF on dough processing, quality and physiological functionality of bakery products, and (3) technologies used to improve the compatibility of DF in bakery products.
Collapse
Affiliation(s)
- Suyun Lin
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
61
|
Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K. Cellulose Nanopaper: Fabrication, Functionalization, and Applications. NANO-MICRO LETTERS 2022; 14:104. [PMID: 35416525 PMCID: PMC9008119 DOI: 10.1007/s40820-022-00849-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 05/07/2023]
Abstract
Cellulose nanopaper has shown great potential in diverse fields including optoelectronic devices, food packaging, biomedical application, and so forth, owing to their various advantages such as good flexibility, tunable light transmittance, high thermal stability, low thermal expansion coefficient, and superior mechanical properties. Herein, recent progress on the fabrication and applications of cellulose nanopaper is summarized and discussed based on the analyses of the latest studies. We begin with a brief introduction of the three types of nanocellulose: cellulose nanocrystals, cellulose nanofibrils and bacterial cellulose, recapitulating their differences in preparation and properties. Then, the main preparation methods of cellulose nanopaper including filtration method and casting method as well as the newly developed technology are systematically elaborated and compared. Furthermore, the advanced applications of cellulose nanopaper including energy storage, electronic devices, water treatment, and high-performance packaging materials were highlighted. Finally, the prospects and ongoing challenges of cellulose nanopaper were summarized.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Ting Zheng
- Department of Automotive Engineering, Clemson University, Greenville, SC, 29607, USA
| | - Ning Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Bo Pang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
62
|
Current Research on the Effects of Non-Digestible Carbohydrates on Metabolic Disease. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metabolic diseases (MDs), including cardiovascular diseases (CVDs) and diabetes, occur when the body’s normal metabolic processes are disrupted. Behavioral risk factors such as obesity, physical inactivity, and dietary habits are strongly associated with a higher risk of MD. However, scientific evidence strongly suggests that balanced, healthy diets containing non-digestible carbohydrates (NDCs), such as dietary fiber and resistant starch, can reduce the risk of developing MD. In particular, major properties of NDCs, such as water retention, fecal bulking, viscosity, and fermentation in the gut, have been found to be important for reducing the risk of MD by decreasing blood glucose and lipid levels, increasing satiety and insulin sensitivity, and modifying the gut microbiome. Short chain fatty acids produced during the fermentation of NDCs in the gut are mainly responsible for improvement in MD. However, the effects of NDCs are dependent on the type, source, dose, and duration of NDC intake, and some of the mechanisms underlying the efficacy of NDCs on MD remain unclear. In this review, we briefly summarize current studies on the effects of NDCs on MD and discuss potential mechanisms that might contribute to further understanding these effects.
Collapse
|
63
|
da Silva IGR, Pantoja BTDS, Almeida GHDR, Carreira ACO, Miglino MA. Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073955. [PMID: 35409314 PMCID: PMC8999934 DOI: 10.3390/ijms23073955] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are considered the leading cause of death in the world, accounting for approximately 85% of sudden death cases. In dogs and cats, sudden cardiac death occurs commonly, despite the scarcity of available pathophysiological and prevalence data. Conventional treatments are not able to treat injured myocardium. Despite advances in cardiac therapy in recent decades, transplantation remains the gold standard treatment for most heart diseases in humans. In veterinary medicine, therapy seeks to control clinical signs, delay the evolution of the disease and provide a better quality of life, although transplantation is the ideal treatment. Both human and veterinary medicine face major challenges regarding the transplantation process, although each area presents different realities. In this context, it is necessary to search for alternative methods that overcome the recovery deficiency of injured myocardial tissue. Application of biomaterials is one of the most innovative treatments for heart regeneration, involving the use of hydrogels from decellularized extracellular matrix, and their association with nanomaterials, such as alginate, chitosan, hyaluronic acid and gelatin. A promising material is bacterial cellulose hydrogel, due to its nanostructure and morphology being similar to collagen. Cellulose provides support and immobilization of cells, which can result in better cell adhesion, growth and proliferation, making it a safe and innovative material for cardiovascular repair.
Collapse
Affiliation(s)
- Izabela Gabriela Rodrigues da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
- NUCEL-Cell and Molecular Therapy Center, School of Medicine, Sao Paulo University, Sao Paulo 05508-270, Brazil
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
- Correspondence:
| |
Collapse
|
64
|
León-López A, Pérez-Marroquín XA, Estrada-Fernández AG, Campos-Lozada G, Morales-Peñaloza A, Campos-Montiel RG, Aguirre-Álvarez G. Milk Whey Hydrolysates as High Value-Added Natural Polymers: Functional Properties and Applications. Polymers (Basel) 2022; 14:polym14061258. [PMID: 35335587 PMCID: PMC8955172 DOI: 10.3390/polym14061258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
There are two types of milk whey obtained from cheese manufacture: sweet and acid. It retains around 55% of the nutrients of the milk. Milk whey is considered as a waste, creating a critical pollution problem, because 9 L of whey are produced from every 10 L of milk. Some treatments such as hydrolysis by chemical, fermentation process, enzymatic action, and green technologies (ultrasound and thermal treatment) are successful in obtaining peptides from protein whey. Milk whey peptides possess excellent functional properties such as antihypertensive, antiviral, anticancer, immunity, and antioxidant, with benefits in the cardiovascular, digestive, endocrine, immune, and nervous system. This review presents an update of the applications of milk whey hydrolysates as a high value-added peptide based on their functional properties.
Collapse
Affiliation(s)
- Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Xóchitl Alejandra Pérez-Marroquín
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Ana Guadalupe Estrada-Fernández
- Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Carretera Apan-Tepeapulco Km 3.5, Colonia Las Peñitas, Apan C.P. 43900, Hidalgo, Mexico;
| | - Gieraldin Campos-Lozada
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Alejandro Morales-Peñaloza
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan s/n, Colonia Chimalpa Tlalayote, Apan C.P. 43920, Hidalgo, Mexico;
| | - Rafael G. Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, Tulancingo C.P. 43684, Hidalgo, Mexico
- Correspondence: ; Tel.: +52-775-145-9265
| |
Collapse
|
65
|
Abral H, Kurniawan A, Rahmadiawan D, Handayani D, Sugiarti E, Muslimin AN. Highly antimicrobial and strong cellulose-based biocomposite film prepared with bacterial cellulose powders, Uncaria gambir, and ultrasonication treatment. Int J Biol Macromol 2022; 208:88-96. [PMID: 35304197 DOI: 10.1016/j.ijbiomac.2022.02.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
This work characterized bacterial cellulose (BC)/Uncaria gambir (G) biocomposite film prepared with ultrasonication treatment. Films were prepared from BC powder suspensions in distilled water without and with various loadings (0.05 g, 0.1 g, 0.2 g, 2 g) of G powder then treated using an ultrasonic probe at 1000 W for one hour. The results revealed that the ultrasonication treatment of the suspension greatly increased tensile strength (TS), elongation at break (EB), and toughness (TN) of a BC film by 3097%, 644%, and 32,600%, respectively, compared to non-sonicated BC film. After adding 0.05 g G into the sonicated BC powder suspension, TS, EB, and TN of the biocomposite film were improved to 105.6 MPa, 14.3%, and 8.7 MJ/m3, respectively. The addition of the G increased in antimicrobial activity of the film. This study indicates that biocomposite film is potentially useful for nanopaper production with good antimicrobial and high tensile properties.
Collapse
Affiliation(s)
- Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia.
| | - Arif Kurniawan
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia
| | - Dieter Rahmadiawan
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Padang, Indonesia
| | - Dian Handayani
- Laboratory of Sumatran Biota, Faculty of Pharmacy, Andalas University, 25163 Padang, Sumatera Barat, Indonesia
| | - Eni Sugiarti
- Laboratory of High-Temperature Coating, Research Center for Physics Indonesian Institute of Sciences (LIPI) Serpong, Indonesia
| | - Ahmad Novi Muslimin
- Laboratory of High-Temperature Coating, Research Center for Physics Indonesian Institute of Sciences (LIPI) Serpong, Indonesia
| |
Collapse
|
66
|
Sar T, Yesilcimen Akbas M. Potential use of olive oil mill wastewater for bacterial cellulose production. Bioengineered 2022; 13:7659-7669. [PMID: 35264062 PMCID: PMC8974174 DOI: 10.1080/21655979.2022.2050492] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this study, olive oil mill wastewater (OOMW), an important waste in the Mediterranean basin, was evaluated to produce bacterial cellulose (BC). For this purpose, the effects of different ratios of OOMW fractions (25–100%) and some additional nutrients (yeast extract, peptone and Hestrin-Schramm medium (HS) components) on BC productions were investigated. Unsupplemented OOMW medium (75% and 100%) yielded as much as BC obtained in HS medium (0.65 g/L), while enrichment of OOMW medium (%100) with yeast extract (5 g/L) and peptone (5 g/L) increased the amount of BC by 5.5 times, reaching to 5.33 g/L. In addition, produced BCs were characterized by FT-IR, TGA, XRD and SEM analyses. BC from OOMW medium (100% OOMW with supplementation) has a high thermal decomposition temperature (316.8°C), whereas it has lower crystallinity index (57%). According to the FT-IR analysis, it was observed that the components of OOMW might be absorbed by BCs. Thus, higher yield productions of BCs from OOMW media compared to BC obtained from HS medium indicate that olive oil industry wastes can be integrated into BC production for industrial applications.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| |
Collapse
|
67
|
Mishra S, Singh PK, Pattnaik R, Kumar S, Ojha SK, Srichandan H, Parhi PK, Jyothi RK, Sarangi PK. Biochemistry, Synthesis, and Applications of Bacterial Cellulose: A Review. Front Bioeng Biotechnol 2022; 10:780409. [PMID: 35372299 PMCID: PMC8964354 DOI: 10.3389/fbioe.2022.780409] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
The potential of cellulose nanocomposites in the new-generation super-performing nanomaterials is huge, primarily in medical and environment sectors, and secondarily in food, paper, and cosmetic sectors. Despite substantial illumination on the molecular aspects of cellulose synthesis, various process features, namely, cellular export of the nascent polysaccharide chain and arrangement of cellulose fibrils into a quasi-crystalline configuration, remain obscure. To unleash its full potential, current knowledge on nanocellulose dispersion and disintegration of the fibrillar network and the organic/polymer chemistry needs expansion. Bacterial cellulose biosynthesis mechanism for scaled-up production, namely, the kinetics, pathogenicity, production cost, and product quality/consistency remain poorly understood. The bottom-up bacterial cellulose synthesis approach makes it an interesting area for still wider and promising high-end applications, primarily due to the nanosynthesis mechanism involved and the purity of the cellulose. This study attempts to identify the knowledge gap and potential wider applications of bacterial cellulose and bacterial nanocellulose. This review also highlights the manufacture of bacterial cellulose through low-cost substrates, that is, mainly waste from brewing, agriculture, food, and sugar industries as well as textile, lignocellulosic biorefineries, and pulp mills.
Collapse
Affiliation(s)
- Snehasish Mishra
- BDTC, Bioenergy Lab, School of Biotechnology, KIIT Deemed University, Bhubaneswar, India
| | - Puneet Kumar Singh
- BDTC, Bioenergy Lab, School of Biotechnology, KIIT Deemed University, Bhubaneswar, India
| | - Ritesh Pattnaik
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, India
| | - Subrat Kumar
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, India
| | - Sanjay Kumar Ojha
- Professor Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Haragobinda Srichandan
- BDTC, Bioenergy Lab, School of Biotechnology, KIIT Deemed University, Bhubaneswar, India
| | | | - Rajesh Kumar Jyothi
- Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geosciences and Mineral Resources (KIGAM), Daejeon, Korea
| | | |
Collapse
|
68
|
Choi SM, Rao KM, Zo SM, Shin EJ, Han SS. Bacterial Cellulose and Its Applications. Polymers (Basel) 2022; 14:polym14061080. [PMID: 35335411 PMCID: PMC8949969 DOI: 10.3390/polym14061080] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
The sharp increase in the use of cellulose seems to be in increasing demand in wood; much more research related to sustainable or alternative materials is necessary as a lot of the arable land and natural resources use is unsustainable. In accordance, attention has focused on bacterial cellulose as a new functional material. It possesses a three-dimensional, gelatinous structure consisting of cellulose with mechanical and thermal properties. Moreover, while a plant-originated cellulose is composed of cellulose, hemi-cellulose, and lignin, bacterial cellulose attributable to the composition of a pure cellulose nanofiber mesh spun is not necessary in the elimination of other components. Moreover, due to its hydrophilic nature caused by binding water, consequently being a hydrogel as well as biocompatibility, it has only not only used in medical fields including artificial skin, cartilage, vessel, and wound dressing, but also in delivery; some products have even been commercialized. In addition, it is widely used in various technologies including food, paper, textile, electronic and electrical applications, and is being considered as a highly versatile green material with tremendous potential. However, many efforts have been conducted for the evolution of novel and sophisticated materials with environmental affinity, which accompany the empowerment and enhancement of specific properties. In this review article, we summarized only industry and research status regarding BC and contemplated its potential in the use of BC.
Collapse
Affiliation(s)
- Soon Mo Choi
- Research Institute of Cell Culture, Yeung-Nam University, Gyengsan-si 38541, Korea;
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Sun Mi Zo
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Eun Joo Shin
- Department of Organic Materials and Polymer Engineering, Dong-A University, Busan 49315, Korea
- Correspondence: (E.J.S.); (S.S.H.); Tel.: +82-51-2007343 (E.J.S.); +82-53-8103892 (S.S.H.); Fax: +82-51-2007540 (E.J.S.); +82-53-8104686 (S.S.H.)
| | - Sung Soo Han
- Research Institute of Cell Culture, Yeung-Nam University, Gyengsan-si 38541, Korea;
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
- Correspondence: (E.J.S.); (S.S.H.); Tel.: +82-51-2007343 (E.J.S.); +82-53-8103892 (S.S.H.); Fax: +82-51-2007540 (E.J.S.); +82-53-8104686 (S.S.H.)
| |
Collapse
|
69
|
A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorg Chem Appl 2022; 2022:7557825. [PMID: 35287316 PMCID: PMC8917952 DOI: 10.1155/2022/7557825] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background. Food nanopackaging helps maintain food quality against physical, chemical, and storage instability factors. Copper oxide nanoparticles (CuONPs) can improve biopolymers’ mechanical features and barrier properties. This will lead to antimicrobial and antioxidant activities in food packaging to extend the shelf life. Scope and Approach. Edible coatings based on carbohydrate biopolymers have improved the quality of packaging. Several studies have addressed the role of carbohydrate biopolymers and incorporated nanoparticles to enhance food packets’ quality as active nanopackaging. Combined with nanoparticles, these biopolymers create film coatings with an excellent barrier property against transmissions of gases such as O2 and CO2. Key Findings and Conclusions. This review describes the CuO-biopolymer composites, including chitosan, agar, cellulose, carboxymethylcellulose, cellulose nanowhiskers, carrageenan, alginate, starch, and polylactic acid, as food packaging films. Here, we reviewed different fabrication techniques of CuO biocomposites and the impact of CuONPs on the physical, mechanical, barrier, thermal stability, antioxidant, and antimicrobial properties of carbohydrate-based films.
Collapse
|
70
|
Huang WM, Chen JH, Nagarajan D, Lee CK, Varjani S, Lee DJ, Chang JS. Immobilization of Chlorella sorokiniana AK-1 in bacterial cellulose by co-culture and its application in wastewater treatment. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
71
|
Thongwai N, Futui W, Ladpala N, Sirichai B, Weechan A, Kanklai J, Rungsirivanich P. Characterization of Bacterial Cellulose Produced by Komagataeibacter maltaceti P285 Isolated from Contaminated Honey Wine. Microorganisms 2022; 10:microorganisms10030528. [PMID: 35336103 PMCID: PMC8955979 DOI: 10.3390/microorganisms10030528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Bacterial cellulose (BC), a biopolymer, is synthesized by BC-producing bacteria. Almost all producing strains are classified in the family Acetobacteraceae. In this study, bacterial strain P285 was isolated from contaminated honey wine in a honey factory in northern Thailand. Based on 16S rRNA gene sequence identification, the strain P285 revealed 99.8% identity with Komagataeibacter maltaceti LMG 1529 T. K. maltaceti P285 produced the maximum BC production at 20–30 °C and an initial media pH of 9.0. The highest BC production in modified mineral salt medium (MSM) was exhibited when glucose (16%, w/v) and yeast extract (3.2%, w/v) were applied as carbon and nitrogen sources, respectively. When sugarcane (8–16%, w/v) or honey (ratio of honey to water = 1: 4) supplemented with yeast extract was used, the BC production was greater. The characterization of BC synthesized by K. maltaceti P285 was undertaken using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometry. Meanwhile, X-ray diffraction results confirmed the presence of crystalline cellulose (2θ = 18.330, 21.390 and 22.640°). The maximum temperature of BC degradation was observed at 314 °C. Tensile properties analysis of hydrated and dried BC showed breaking strength of 1.49 and 0.66 MPa, respectively. These results demonstrated that K. maltaceti P285 has a high potential for BC production especially when grown in high initial media pH. Therefore, the strain would be suitable as an agent to make BC, the value-added product in the related factories.
Collapse
Affiliation(s)
- Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.T.); (P.R.); Tel.: +66-53-941-946-50 (N.T. & P.R.); Fax: +66-53-892-259 (N.T. & P.R.)
| | - Wirapong Futui
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthiwa Ladpala
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Benjamat Sirichai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Anuwat Weechan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Jirapat Kanklai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.T.); (P.R.); Tel.: +66-53-941-946-50 (N.T. & P.R.); Fax: +66-53-892-259 (N.T. & P.R.)
| |
Collapse
|
72
|
Sustainable Production of Stiff and Crystalline Bacterial Cellulose from Orange Peel Extract. SUSTAINABILITY 2022. [DOI: 10.3390/su14042247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, a potentially economic and environmentally friendly method for the synthesis of bacterial cellulose (BC) by Gluconacetobacter xylinus from a biomass containing orange peel extract was evaluated. Orange peel extract was used as a culture medium without any hydrolysis treatment, thus speeding up the synthesis procedure. The efficacy of orange peel as a carbon source was compared with that of sucrose. The orange peel extract formed thicker cellulose gels than those formed using sucrose. X-ray diffraction (XRD) revealed both a high crystallinity index and crystallite size of BC nanofibers in samples obtained from orange peel (BC_Orange). Field emission scanning electron microscopy (FE-SEM) revealed a highly densely packed nanofibrous structure (50 nm in diameter). BC_Orange presented a two-fold increase in water holding capacity (WHC), and dynamic mechanical analysis (DMA) showed a 44% increase in storage modulus compared to sucrose derived BC. These results showed that the naturally available carbon sources derived from orange peel extract can be effectively used for BC production. The orange-based culture medium can be considered a profitable alternative to the generation of high-value products in a virtuous circular economy model.
Collapse
|
73
|
Ho YS, Fahad Halim AFM, Islam MT. The Trend of Bacterial Nanocellulose Research Published in the Science Citation Index Expanded From 2005 to 2020: A Bibliometric Analysis. Front Bioeng Biotechnol 2022; 9:795341. [PMID: 35111736 PMCID: PMC8801885 DOI: 10.3389/fbioe.2021.795341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
To gain insight into the trend of bacterial nanocellulose research, a bibliometric analysis was performed using the Science Citation Index Expanded database from 2005 to 2020. The study concentrated on the publication's performance in terms of annual outputs and citations, mainstream journals, categories of the Web of Sciences, leading countries, prominent institutions, and trends in research. Current research priorities and future trends were analyzed after summarizing the most commonly used keywords extracted from words in the paper title analysis, authors' keyword analysis, and KeyWords Plus. The findings revealed that the annual output in the form of scholarly articles on bacterial nanocellulose research steadily increased during the first quartile of the study period, followed by a very rapid increase in the last five-years of the study. Increasing mechanical strength would remain the main future focus of bacterial nanocellulose research to create its scope in different field of applications.
Collapse
Affiliation(s)
- Yuh-Shan Ho
- Trend Research Centre, Asia University, Taichung, Taiwan
| | | | - Mohammad Tajul Islam
- Department of Textile Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| |
Collapse
|
74
|
Volova TG, Prudnikova SV, Kiselev EG, Nemtsev IV, Vasiliev AD, Kuzmin AP, Shishatskaya EI. Bacterial Cellulose (BC) and BC Composites: Production and Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:192. [PMID: 35055211 PMCID: PMC8780924 DOI: 10.3390/nano12020192] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
The synthesis of bacterial cellulose (BC) by Komagataeibacter xylinus strain B-12068 was investigated on various C-substrates, under submerged conditions with stirring and in static surface cultures. We implemented the synthesis of BC on glycerol, glucose, beet molasses, sprat oil, and a mixture of glucose with sunflower oil. The most productive process was obtained during the production of inoculum in submerged culture and subsequent growth of large BC films (up to 0.2 m2 and more) in a static surface culture. The highest productivity of the BC synthesis process was obtained with the growth of bacteria on molasses and glycerol, 1.20 and 1.45 g/L per day, respectively. We obtained BC composites with silver nanoparticles (BC/AgNPs) and antibacterial drugs (chlorhexidine, baneocin, cefotaxime, and doripenem), and investigated the structure, physicochemical, and mechanical properties of composites. The disc-diffusion method showed pronounced antibacterial activity of BC composites against E. coli ATCC 25922 and S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Tatiana G. Volova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Svetlana V. Prudnikova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
| | - Evgeniy G. Kiselev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Alexander D. Vasiliev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Andrey P. Kuzmin
- School of Petroleum and Gas Engineering, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| | - Ekaterina I. Shishatskaya
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|
75
|
Potential Applications of Biopolymers in Fisheries Industry. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
76
|
OLIVEIRA AAN, MESQUITA EDFMD, FURTADO AAL. Use of bacterial cellulose as a fat replacer in emulsified meat products: review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.42621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
77
|
Basiri S. Applications of Microbial Exopolysaccharides in the Food Industry. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Exopolysaccharides (EPSs) are high molecular weight polysaccharides secreted by microorganisms in the surrounding environment. In addition to the favorable benefits of these compounds for microorganisms, including microbial cell protection, they are used in various food, pharmaceutical, and cosmetic industries. Investigating the functional and health-promoting characteristics of microbial EPS, identifying the isolation method of these valuable compounds, and their applications in the food industry are the objectives of this study. EPS are used in food industries as thickeners, gelling agents, viscosifiers, and film formers. The antioxidative, anticancer, prebiotic, and cholesterol-lowering effects of some of these compounds make it possible to use them in functional food production.
Collapse
Affiliation(s)
- Sara Basiri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
78
|
Ecofriendly green biosynthesis and characterization of novel bacteriocin-loaded bacterial cellulose nanofiber from Gluconobacter cerinus HDX-1. Int J Biol Macromol 2021; 193:693-701. [PMID: 34737079 DOI: 10.1016/j.ijbiomac.2021.10.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/04/2021] [Accepted: 10/23/2021] [Indexed: 12/27/2022]
Abstract
A new strain of bacterial cellulose (BC)-producing Gluconobacter cerinus HDX-1 was isolated and identified, and a simple, low-cost complexation method was used to biosynthesis Lactobacillus paracasei 1∙7 bacteriocin BC (BC-B) nanofiber. The structure and antibacterial properties of the nanofibers were evaluated. Solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR) and x-ray diffraction (XRD) analysis showed that BC and BC-B nanofibers had typical crystalline form of the cellulose I. X-ray photoelectron spectrometer (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM) revealed that the bacteriocin and BC were successfully compounded, and the structure of BC-B nanofiber was tighter than BC nanofiber, with lower porosity, swelling ratio and water vapor transmission rate (WVTR). The tensile strength and Young's modulus of BC-B nanofibers were 13.28 ± 1.26 MPa and 132.10 ± 4.92 MPa, respectively, higher than that of BC nanofiber (6.12 ± 0.87 MPa and 101.59 ± 5.87 MPa), indicating that bacteriocin enhance the mechanical properties of BC nanofiber. Furthermore, the BC-B nanofibers exhibited significant thermal stability, antioxidant capacity and antibacterial activity than BC nanofiber. Therefore, bacteriocin-loaded BC nanofiber may be used as antimicrobial agents in active food packaging and medical material.
Collapse
|
79
|
Rybchyn MS, Biazik JM, Charlesworth J, le Coutre J. Nanocellulose from Nata de Coco as a Bioscaffold for Cell-Based Meat. ACS OMEGA 2021; 6:33923-33931. [PMID: 34926939 PMCID: PMC8675045 DOI: 10.1021/acsomega.1c05235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
The three-dimensional formation of bio-engineered tissue for applications such as cell-based meat requires critical interaction between the bioscaffold and cellular biomass. To explore the features underlying this interaction, we have assessed the commercially available bacterial nanocellulose (BNC) product from Cass Materials for its suitability to serve as a bioscaffold for murine myoblast attachment, proliferation, and differentiation. Rigorous application of both scanning electron microscopy and transmission electron microscopy reveals cellular details of this interaction. While the retention rate of myoblast cells appears low, BNC is able to provide effective surface parameters for the formation of anchor points to form mature myotubes. Understanding the principles that govern this interaction is important for the successful scaling of these materials into edible, commercially viable, and nutritious biomass.
Collapse
Affiliation(s)
- Mark S. Rybchyn
- School
of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2033, Australia
| | - Joanna M. Biazik
- Electron
Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2033, Australia
| | - James Charlesworth
- School
of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2033, Australia
| | - Johannes le Coutre
- School
of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2033, Australia
| |
Collapse
|
80
|
Karanicola P, Patsalou M, Stergiou PY, Kavallieratou A, Evripidou N, Christou P, Panagiotou G, Damianou C, Papamichael EM, Koutinas M. Ultrasound-assisted dilute acid hydrolysis for production of essential oils, pectin and bacterial cellulose via a citrus processing waste biorefinery. BIORESOURCE TECHNOLOGY 2021; 342:126010. [PMID: 34852446 DOI: 10.1016/j.biortech.2021.126010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
An orange peel waste biorefinery was developed employing a design of experiments approach to optimize the ultrasound-assisted dilute acid hydrolysis process applied for production of useful commodities. Central composite design-based response surface methodology was used to approximate the combined effects of process parameters in simultaneous production of essential oils, pectin and a sugar-rich hydrolyzate. Application of a desirability function determined the optimal conditions required for maximal production efficiency of essential oils, pectin and sugars as 5.75% solid loading, 1.21% acid concentration and 34.2 min duration. Maximum production yields of 0.12% w/w essential oils, 45% w/w pectin and 40% w/w sugars were achieved under optimized conditions in lab- and pilot-scale facilities. The hydrolyzate formed was applied in bacterial cellulose fermentations producing 5.82 g biopolymer per 100 g waste. Design of experiments was efficient for process analysis and optimization providing a systems platform for the study of biomass-based biorefineries.
Collapse
Affiliation(s)
- Panayiota Karanicola
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus; KEAN Soft Drinks Ltd, 35 Promachon Eleftherias, 4103, Agios Athanasios, Limassol, Cyprus
| | - Maria Patsalou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | | | - Alexandra Kavallieratou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Panagiotis Christou
- KEAN Soft Drinks Ltd, 35 Promachon Eleftherias, 4103, Agios Athanasios, Limassol, Cyprus
| | - George Panagiotou
- KEAN Soft Drinks Ltd, 35 Promachon Eleftherias, 4103, Agios Athanasios, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | | | - Michalis Koutinas
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus.
| |
Collapse
|
81
|
Lotfy VF, Basta AH, Abdel-Monem MO, Abdel-Hamed GZ. Utilization of bacteria in rotten Guava for production of bacterial cellulose from isolated and protein waste. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
82
|
Diaz-Ramirez J, Urbina L, Eceiza A, Retegi A, Gabilondo N. Superabsorbent bacterial cellulose spheres biosynthesized from winery by-products as natural carriers for fertilizers. Int J Biol Macromol 2021; 191:1212-1220. [PMID: 34624377 DOI: 10.1016/j.ijbiomac.2021.09.203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
Soil contamination, sustainable management of water resources and controlled release of agrochemicals are the main challenges of modern agriculture. In this work, the synthesis of sphere-like bacterial cellulose (BC) using agitated culture conditions and Komagateibacter medellinensis bacterial strain ID13488 was optimized and characterized from grape pomace (GP). First, a comparative study was carried out between agitated and static cultures using different nitrogen sources and applying alternative GP treatments. Agitation of the cultures resulted in higher BC production yield compared to static culture conditions. Additionally, Water holding capacity (WHC) assays evidenced the superabsorbent nature of the BC biopolymer, being positively influenced by the spherical shape as it was observed an increase of 60% in contrast to the results obtained for the BC membranes under static culture conditions. Moreover, it was found that sphere-like BCs were capable of retaining urea up to 375% of their dry weight, rapidly releasing the fertilizer in the presence of water. According to our findings, sphere-like BCs represent suitable systems with great potential for actual agricultural hazards and grape pomace valorisation.
Collapse
Affiliation(s)
- Julen Diaz-Ramirez
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Leire Urbina
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Arantxa Eceiza
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Aloña Retegi
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Nagore Gabilondo
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| |
Collapse
|
83
|
The new generation fibers: a review of high performance and specialty fibers. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
84
|
Zikmanis P, Kolesovs S, Ruklisha M, Semjonovs P. Production of bacterial cellulose from glycerol: the current state and perspectives. BIORESOUR BIOPROCESS 2021; 8:116. [PMID: 38650300 PMCID: PMC10992469 DOI: 10.1186/s40643-021-00468-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/20/2021] [Indexed: 11/10/2022] Open
Abstract
Current research in industrial microbiology and biotechnology focuses on the production of biodegradable microbial polymers as an environmentally friendly alternative to the still dominant fossil hydrocarbon-based plastics. Bacterial cellulose (BC) is important among microbial polymers due to its valuable properties and broad applications in variety of fields from medical to industrial technologies. However, the increase in BC production and its wider deployment is still limited by high costs of traditionally used raw materials. It is therefore necessary to focus on less expensive inputs, such as agricultural and industrial by-products or waste including the more extended use of glycerol. It is the environmentally harmful by-product of biofuel production and reducing it will also reduce the risk of environmental pollution. The experimental data obtained so far confirm that glycerol can be used as the renewable carbon source to produce BC through more efficient and environmentally friendly bioprocesses. This review summarizes current knowledge on the use of glycerol for the production of commercially prospective BC, including information on producer cultures, fermentation modes and methods used, nutrient medium composition, cultivation conditions, and bioprocess productivity. Data on the use of some related sugar alcohols, such as mannitol, arabitol, xylitol, for the microbial synthesis of cellulose are also considered, as well as the main methods and applications of glycerol pre-treatment briefly described.
Collapse
Affiliation(s)
- Peteris Zikmanis
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia
| | - Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia
| | - Maija Ruklisha
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, 4, Ojara Vaciesa Str., Riga, LV-1004, Latvia.
| |
Collapse
|
85
|
Mahmoud YAG, El-Naggar ME, Abdel-Megeed A, El-Newehy M. Recent Advancements in Microbial Polysaccharides: Synthesis and Applications. Polymers (Basel) 2021; 13:polym13234136. [PMID: 34883639 PMCID: PMC8659985 DOI: 10.3390/polym13234136] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Polysaccharide materials are widely applied in different applications including food, food packaging, drug delivery, tissue engineering, wound dressing, wastewater treatment, and bioremediation sectors. They were used in these domains due to their efficient, cost-effective, non-toxicity, biocompatibility, and biodegradability. As is known, polysaccharides can be synthesized by different simple, facile, and effective methods. Of these polysaccharides are cellulose, Arabic gum, sodium alginate, chitosan, chitin, curdlan, dextran, pectin, xanthan, pullulan, and so on. In this current article review, we focused on discussing the synthesis and potential applications of microbial polysaccharides. The biosynthesis of polysaccharides from microbial sources has been considered. Moreover, the utilization of molecular biology tools to modify the structure of polysaccharides has been covered. Such polysaccharides provide potential characteristics to transfer toxic compounds and decrease their resilience to the soil. Genetically modified microorganisms not only improve yield of polysaccharides, but also allow economically efficient production. With the rapid advancement of science and medicine, biosynthesis of polysaccharides research has become increasingly important. Synthetic biology approaches can play a critical role in developing polysaccharides in simple and facile ways. In addition, potential applications of microbial polysaccharides in different fields with a particular focus on food applications have been assessed.
Collapse
Affiliation(s)
- Yehia A.-G. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Mehrez E. El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Cairo 12622, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt;
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| |
Collapse
|
86
|
Solar radiation-induced synthesis of bacterial cellulose/silver nanoparticles (BC/AgNPs) composite using BC as reducing and capping agent. Bioprocess Biosyst Eng 2021; 45:257-268. [PMID: 34665338 DOI: 10.1007/s00449-021-02655-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
In the present work, a simple, novel, and ecofriendly method for synthesis of silver nanoparticles (AgNPs) and BC/AgNP composite using bacterial cellulose (BC) nanofibers soaked in AgNO3 solution under induction action of solar radiation. The photochemical reduction of silver Ag + ions into silver nanoparticles (Ago) was confirmed using UV visible spectra; the surface plasmon resonance of synthesized AgNPs was localized around 425 nm. The mean diameter of AgNPs obtained by DLS analysis was 52.0 nm with a zeta potential value of - 9.98 mV. TEM images showed a spherical shape of AgNPs. The formation of BC/AgNP composite was confirmed by FESEM, EDX, FTIR, and XRD analysis. FESEM images for BC showed the 3D structures of BC nanofibers and the deposited AgNPs in the BC crystalline nanofibers. XRD measurements revealed the high crystallinity of BC and BC/AgNP composite with crystal sizes of 5.13 and 5.6 nm, respectively. BC/AgNP composite and AgNPs exhibited strong antibacterial activity against both Gram-positive and Gram-negative bacteria. The present work introduces a facile green approach for BC/AgNP composite synthesis and its utility as potential food packaging and wound dressings, as well as sunlight indicator application.
Collapse
|
87
|
Abidi W, Torres-Sánchez L, Siroy A, Krasteva PV. Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiol Rev 2021; 46:6388354. [PMID: 34634120 PMCID: PMC8892547 DOI: 10.1093/femsre/fuab051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cellulose is the most abundant biological compound on Earth and while it is the predominant building constituent of plants, it is also a key extracellular matrix component in many diverse bacterial species. While bacterial cellulose was first described in the 19th century, it was not until this last decade that a string of structural works provided insights into how the cellulose synthase BcsA, assisted by its inner-membrane partner BcsB, senses c-di-GMP to simultaneously polymerize its substrate and extrude the nascent polysaccharide across the inner bacterial membrane. It is now established that bacterial cellulose can be produced by several distinct types of cellulose secretion systems and that in addition to BcsAB, they can feature multiple accessory subunits, often indispensable for polysaccharide production. Importantly, the last years mark significant progress in our understanding not only of cellulose polymerization per se but also of the bigger picture of bacterial signaling, secretion system assembly, biofilm formation and host tissue colonization, as well as of structural and functional parallels of this dominant biosynthetic process between the bacterial and eukaryotic domains of life. Here, we review current mechanistic knowledge on bacterial cellulose secretion with focus on the structure, assembly and cooperativity of Bcs secretion system components.
Collapse
Affiliation(s)
- Wiem Abidi
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.,École doctorale 'Innovation thérapeutique: du fundamental à l'appliqué' (ITFA), Université Paris-Saclay, 92296, Chatenay-Malabry, France
| | - Lucía Torres-Sánchez
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.,École doctorale 'Innovation thérapeutique: du fundamental à l'appliqué' (ITFA), Université Paris-Saclay, 92296, Chatenay-Malabry, France
| | - Axel Siroy
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Petya Violinova Krasteva
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| |
Collapse
|
88
|
Zhang TZ, Liu LP, Ye L, Li WC, Xin B, Xie YY, Jia SR, Wang TF, Zhong C. The production of bacterial cellulose in Gluconacetobacter xylinus regulated by luxR overexpression of quorum sensing system. Appl Microbiol Biotechnol 2021; 105:7801-7811. [PMID: 34581846 DOI: 10.1007/s00253-021-11603-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022]
Abstract
Quorum sensing is a mechanism that facilitates cell-to-cell communication. Through signal molecular density for signal recognition, which leads to the regulation of some physiological and biochemical functions. Gluconacetobacter xylinus CGMCC 2955, which produces bacterial cellulose (BC), synthesizes the LuxR protein belonging to the LuxI/LuxR type QS system. Here, a luxR overexpression vector was transformed into G. xylinus CGMCC 2955. The overexpression of luxR increased the yield of BC by 15.6% after 16 days static culture and reduced the cell density by 15.5% after 120-h-agitated culture. The glucose was used up by G. xylinus-pMV24-luxR at 72-h-agitated fermentation, which 12 h earlier than the wild-type (WT). The total N-acylhomoserine lactones (AHL) content of the luxR-overexpressing strain and the WT strain attained 1367.9 ± 57.86 mg/L and 842.9 ± 54.22 mg/L, respectively. The C12-HSL and C14-HSL contents of G. xylinus-pMV24-luxR were 202 ± 21.66 mg/L and 409.6 ± 0.91 mg/L, which were significantly lower than that of WT. In contrast, C6-HSL showed opposite results. The difference of AHL content proved that overexpression of luxR improved the binding of AHL and showed preference for some specific AHL. The metabolic results demonstrated that upon glucose exhaustion, the consumption of gluconic acid was promoted by luxR overexpression, and the content of D- ( +)-trehalose, an antiretrograde metabolite, increased significantly. KEY POINTS: • The overexpression of luxR increased the yield of bacterial cellulose • The content of signal molecules was significantly different • Differential metabolites were involved in multiple metabolic pathways.
Collapse
Affiliation(s)
- Tian-Zhen Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Ling-Pu Liu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Li Ye
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Wen-Chao Li
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Bo Xin
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yan-Yan Xie
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Shi-Ru Jia
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Teng-Fei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China.
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
89
|
Assessing effectiveness of Komagataeibacter strains for producing surface-microstructured cellulose via guided assembly-based biolithography. Sci Rep 2021; 11:19311. [PMID: 34588564 PMCID: PMC8481549 DOI: 10.1038/s41598-021-98705-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, a medical device made of surface microstructured bacterial cellulose was produced using cellulose-producing acetic acid bacteria wild-type strains in combination with guided assembly-based biolithography. The medical device aims at interfering with the cell's focal adhesion establishment and maturation around implantable devices placed in soft tissues by the symmetrical array on its surface. A total of 25 Komagataeibacter strains was evaluated over a three-step selection. In the first step, the ability of strains to produce a suitable bacterial cellulose layer with high production yield was examined, then nine strains, with a uniform and smooth layer of bacterial cellulose, were cultured in a custom-made silicone bioreactor and finally the characteristics of the symmetrical array of topographic features on the surface were analysed. Selected strains showed high inter and intra species variability in bacterial cellulose production. The devices obtained by K2G30, K1G4, DSM 46590 (Komagataeibacter xylinus), K2A8 (Komagataeibacter sp.) and DSM 15973T (Komagataeibacter sucrofermentas) strains were pouched-formed with hexagonal surface pattern required for reducing the formation of fibrotic tissue around devices, once they are implanted in soft tissues. Our findings revealed the effectiveness of the selected Komagataeibacter wild-type strains in producing surface microstructured bacterial cellulose pouches for making biomedical devices.
Collapse
|
90
|
Film Properties, Water Retention, and Growth Promotion of Derivative Carboxymethyl Cellulose Materials from Cotton Straw. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/5582912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three kinds of derivative carboxymethyl cellulose (DCMC) materials, CMC-Na, CMC-K, and CMC-NH4, were prepared from cotton straw fiber. Their chemical structure, film morphology, water retention, biodegradability, and growth promotion were investigated with infrared spectroscopy (IR), scanning electron microscope (SEM), and field experiments. The results showed that the infrared absorption peaks of the three materials were similar. It was observed that the DCMC materials could form films after being sprayed at the amount of 4.00 g/m2 and 12.00 g/m2, and the film thickness was showed in the order of CMC-K, CMC-NH4, and CMC-Na. The largest water holding capacity increased significantly after DCMC was sprayed on the soil. The water retention of CMC-Na, CMC-K, and CMC-NH4 increased by 47.74%, 72.85%, and 61.40% severally while sprayed with 12.00 g/m2 compared to the control group (CK), and the water retention rate increased with 6.93, 9.75, and 8.67 times, respectively, on the seventh day. The total number of soil microorganisms increased with the DCMC materials being sprayed; the number in the upper layer increased by 92.31%, 123.08%, and 138.46%, respectively, compared with CK. When the three materials were used to the cornfield at the amount of 100.00 kg/hm2, the corn yield increased by 33.11%, 70.93%, and 50.60%, respectively. The DCMC materials, as the sole carbon source, could be degraded by soil microorganisms. The nutrient elements such as NH4+ in the materials could further promote the growth of microorganisms and crops. This study might provide a new way to apply straw-based DCMC in soil water retention, soil amendment, and high value-added transformation of straws in arid areas.
Collapse
|
91
|
Singhania RR, Patel AK, Tsai ML, Chen CW, Di Dong C. Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered 2021; 12:6793-6807. [PMID: 34519629 PMCID: PMC8806912 DOI: 10.1080/21655979.2021.1968989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bacterial cellulose (BC) is higher in demand due to its excellent properties which is attributed to its purity and nano size. Komagataeibacter xylinum is a model organism where BC production has been studied in detail because of its higher cellulose production capacity. BC production mechanism shows involvement of a series of sequential reactions with enzymes for biosynthesis of cellulose. It is necessary to know the mechanism to understand the involvement of regulatory proteins which could be the probable targets for genetic modification to enhance or regulate yield of BC and to alter BC properties as well. For the industrial production of BC, controlled synthesis is desired so as to save energy, hence genetic manipulation opens up avenues for upregulating or controlling the cellulose synthesis in the bacterium by targeting genes involved in cellulose biosynthesis. In this review article genetic modification has been presented as a tool to introduce desired changes at genetic level resulting in improved yield or properties. There has been a lack of studies on genetic modification for BC production due to limited availability of information on whole genome and genetic toolkits; however, in last few years, the number of studies has been increased on this aspect as whole genome sequencing of several Komagataeibacter strains are being done. In this review article, we have presented the mechanisms and the targets for genetic modifications in order to achieve desired changes in the BC production titer as well as its characteristics.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
92
|
Tang KY, Heng JZX, Lin M, Li Z, Ye E, Loh XJ. Kombucha SCOBY Waste as a Catalyst Support. Chem Asian J 2021; 16:2939-2946. [PMID: 34355858 DOI: 10.1002/asia.202100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Indexed: 11/05/2022]
Abstract
It is established that food waste can be repurposed to extend its lifecycle and decrease its carbon footprint. In this work, SCOBY (symbiotic culture of bacteria and yeast) waste from kombucha tea production has been repurposed as a catalyst support. Copper nanoparticles (Cu NPs) have been embedded in a piece of treated SCOBY via an in-situ method which enabled the catalyst, inCu/t-SCOBY, to be easily recycled. In addition, inCu/t-SCOBY catalyzed the full reduction of 4-nitrophenol in an excess of sodium borohydride (NaBH4 ) within 20 minutes. After 6 additional catalytic cycles, the catalyst maintained up to 50% of its performance in the first cycle. Characterization of the catalyst has also been done to understand the mechanism of action and interactions occurring between t-SCOBY and Cu NPs. The results of this work clearly present a proof-of-concept in utilizing porous wastes materials such as SCOBY as catalyst supports, allowing metallic NPs to be efficacious and practical heterogenous catalysts.
Collapse
Affiliation(s)
- Karen Yuanting Tang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jerry Zhi Xiong Heng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| |
Collapse
|
93
|
Cielecka I, Ryngajłło M, Maniukiewicz W, Bielecki S. Response surface methodology-based improvement of the yield and differentiation of properties of bacterial cellulose by metabolic enhancers. Int J Biol Macromol 2021; 187:584-593. [PMID: 34324907 DOI: 10.1016/j.ijbiomac.2021.07.147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
This study aims to examine the effect of ethanol and lactic acid on the production of bacterial cellulose, and determine the optimal composition of a co-supplemented culture using response surface methodology. Both ethanol and lactic acid, when added separately or jointly, affected the yield and properties of the biomaterial. Optimization resulted in an increase of 470% in the yield, compared to the Schramm-Hestrin medium. Culture growth profiles, substrate consumption and by-products generation, were examined. The growth rate was increased for cultures supplemented with lactic acid and both lactic acid and ethanol, while the production of gluconic acid was diminished for all modified cultures. The properties of BNC, such as the structure, crystallinity, water holding capacity and tensile strength, were also determined. BNC produced in optimal conditions is more porous and characterized by wider fibers. Despite a decrease in crystallinity, by the addition of ethanol, lactic acid and both additives, the ratio of cellulose Iα was almost unchanged. The stress, strain, young modulus and toughness were improved 2.8-4.2 times, 1-1.9 times, 2.4-3.5 times and 2.5-6.8 times, respectively. The new approach to improving BNC yields and properties presented here could contribute to more economical production and wider application of this biopolymer.
Collapse
Affiliation(s)
- Izabela Cielecka
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland.
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland.
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, Łódź, Poland.
| | - Stanisław Bielecki
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland.
| |
Collapse
|
94
|
Zhang L, Zhang W, Peng F, Chen H, Shu G. Effects of bacterial cellulose on glucose metabolism in an
in vitro
chyme model and its rheological evaluation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Le‐Le Zhang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021 China
| | - Wen Zhang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021 China
| | - Fa‐Bo Peng
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021 China
| | - He Chen
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021 China
| | - Guo‐Wei Shu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’an 710021 China
| |
Collapse
|
95
|
Atta OM, Manan S, Ahmed AAQ, Awad MF, Ul-Islam M, Subhan F, Ullah MW, Yang G. Development and Characterization of Yeast-Incorporated Antimicrobial Cellulose Biofilms for Edible Food Packaging Application. Polymers (Basel) 2021; 13:polym13142310. [PMID: 34301067 PMCID: PMC8309339 DOI: 10.3390/polym13142310] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023] Open
Abstract
The unique properties and advantages of edible films over conventional food packaging have led the way to their extensive exploration in recent years. Moreover, the incorporation of bioactive components during their production has further enhanced the intrinsic features of packaging materials. This study was aimed to develop edible and bioactive food packaging films comprising yeast incorporated into bacterial cellulose (BC) in conjunction with carboxymethyl cellulose (CMC) and glycerol (Gly) to extend the shelf life of packaged food materials. First, yeast biomass and BC hydrogels were produced by Meyerozyma guilliermondii (MT502203.1) and Gluconacetobacter xylinus (ATCC53582), respectively, and then the films were developed ex situ by mixing 30 wt.% CMC, 30 wt.% Gly, 2 wt.% yeast dry biomass, and 2 wt.% BC slurry. FE-SEM observation showed the successful incorporation of Gly and yeast into the fibrous cellulose matrix. FTIR spectroscopy confirmed the development of composite films through chemical interaction between BC, CMC, Gly, and yeast. The developed BC/CMC/Gly/yeast composite films showed high water solubility (42.86%). The yeast-incorporated films showed antimicrobial activities against three microbial strains, including Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces aureus, by producing clear inhibition zones of 16 mm, 10 mm, and 15 mm, respectively, after 24 h. Moreover, the films were non-toxic against NIH-3T3 fibroblast cells. Finally, the coating of oranges and tomatoes with BC/CMC/Gly/yeast composites enhanced the shelf life at different storage temperatures. The BC/CMC/Gly/yeast composite film-coated oranges and tomatoes demonstrated acceptable sensory features such as odor and color, not only at 6 °C but also at room temperature and further elevated temperatures at 30 °C and 40 °C for up to two weeks. The findings of this study indicate that the developed BC/CMC/Gly/yeast composite films could be used as edible packaging material with high nutritional value and distinctive properties related to the film component, which would provide protection to foods and extend their shelf life, and thus could find applications in the food industry.
Collapse
Affiliation(s)
- Omar Mohammad Atta
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (O.M.A.); (S.M.); (A.A.Q.A.)
- Department of Botany and Microbiology, College of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Sehrish Manan
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (O.M.A.); (S.M.); (A.A.Q.A.)
| | - Abeer Ahmed Qaed Ahmed
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (O.M.A.); (S.M.); (A.A.Q.A.)
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman;
| | - Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (O.M.A.); (S.M.); (A.A.Q.A.)
- Correspondence: (M.W.U.); (G.Y.)
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (O.M.A.); (S.M.); (A.A.Q.A.)
- Correspondence: (M.W.U.); (G.Y.)
| |
Collapse
|
96
|
Souza E, Gottschalk L, Freitas-Silva O. Overview of Nanocellulose in Food Packaging. Recent Pat Food Nutr Agric 2021; 11:154-167. [PMID: 31322079 DOI: 10.2174/2212798410666190715153715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/07/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The rising concern with environmental preservation has led to increasing interest in biodegradable polymer composites from renewable sources, such as cellulose and its derivatives. The use of nanocellulose is an innovative food packaging trend. DISCUSSION This paper presents an overview and discusses the state of the art of different nanocellulose materials used in food and food packaging, and identifies important patents related to them. It is important to consider that before marketing, new products must be proven safe for consumers and the environment. CONCLUSION Several packaging materials using nanocellulose have been developed and shown to be promising for use as active and intelligent materials for food packaging. Other nanocellulose products are under investigation for packaging and may enter the market in the near future. Many countries have been adjusting their regulatory frameworks to deal with nanotechnologies, including nanocellulose packaging.
Collapse
Affiliation(s)
- Erika Souza
- Embrapa Food Agroindustry. Av. Das Americas, 29501, 23020-470, Rio de Janeiro, Brazil
| | - Leda Gottschalk
- Embrapa Food Agroindustry. Av. Das Americas, 29501, 23020-470, Rio de Janeiro, Brazil
| | - Otniel Freitas-Silva
- Embrapa Food Agroindustry. Av. Das Americas, 29501, 23020-470, Rio de Janeiro, Brazil
| |
Collapse
|
97
|
Wu Y, Huang TY, Li ZX, Huang ZY, Lu YQ, Gao J, Hu Y, Huang C. In-situ fermentation with gellan gum adding to produce bacterial cellulose from traditional Chinese medicinal herb residues hydrolysate. Carbohydr Polym 2021; 270:118350. [PMID: 34364598 DOI: 10.1016/j.carbpol.2021.118350] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
In this study, bacterial cellulose was synthesized by Taonella mepensis from traditional Chinese medicinal herb residues hydrolysate. To overcome the inhibitory effect of fermentation environment, in-situ fermentation with gellan gum adding was carried out for the first time. After 10 days' static fermentation, both high-acyl gellan gum and low-acyl gellan gum adding showed certain beneficial effects for bacterial cellulose production that the highest bacterial cellulose yield (0.866 and 0.798 g/L, respectively) was 59% and 47% higher than that (0.543 g/L) without gellan gum adding. Besides, gellan gum based bacterial cellulose showed some better texture characteristics. Gellan gum was loaded in the nano network of bacterial cellulose, and gellan gum adding had some influence on the crystal structure and thermal degradation behaviors of bacterial cellulose but affected little on its functional groups. Overall, this in-situ fermentation technology is attractive for bacterial cellulose production from low-cost but inhibitory substrates.
Collapse
Affiliation(s)
- Yi Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Tu-Yu Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Zhi-Xuan Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Zhong-Ying Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Yan-Qing Lu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Jing Gao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China.
| |
Collapse
|
98
|
Dzyazko Y, Ogenko V. Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
99
|
Ahmad Khorairi ANS, Sofian-Seng NS, Othaman R, Abdul Rahman H, Mohd Razali NS, Lim SJ, Wan Mustapha WA. A Review on Agro-industrial Waste as Cellulose and Nanocellulose Source and Their Potentials in Food Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Noor-Soffalina Sofian-Seng
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Rizafizah Othaman
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Hafeedza Abdul Rahman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Noorul Syuhada Mohd Razali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| |
Collapse
|
100
|
Mamat Razali NA, Ismail MF, Abdul Aziz F. Characterization of nanocellulose from
Indica
rice straw as reinforcing agent in epoxy‐based nanocomposites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nur Amira Mamat Razali
- Department of Physics, Centre For Defence Foundation Studies National Defence University of Malaysia Kuala Lumpur Malaysia
| | - Muhamad Fareez Ismail
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry MAHSA University Selangor Malaysia
| | - Fauziah Abdul Aziz
- Department of Physics, Centre For Defence Foundation Studies National Defence University of Malaysia Kuala Lumpur Malaysia
| |
Collapse
|