51
|
Poggioni L, Romi M, Guarnieri M, Cai G, Cantini C. Nutraceutical profile of goji (Lycium barbarum L.) berries in relation to environmental conditions and harvesting period. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
52
|
Zhou W, Yang T, Xu W, Huang Y, Ran L, Yan Y, Mi J, Lu L, Sun Y, Zeng X, Cao Y. The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier. Carbohydr Polym 2022; 291:119626. [DOI: 10.1016/j.carbpol.2022.119626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022]
|
53
|
Jiang CL, Li XY, Shen WD, Pan LH, Li QM, Luo JP, Zha XQ. Bioactive polysaccharides and their potential health benefits in reducing the risks of atherosclerosis: A review. J Food Biochem 2022; 46:e14337. [PMID: 35945814 DOI: 10.1111/jfbc.14337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis is a kind of lipid-driven chronic inflammatory disease of arteries and is the principal pathological basis of life-threatening cardiovascular disease events, such as strokes and heart attacks. Clinically, statins are the most commonly prescribed drugs for the treatment of atherosclerosis, but prolonged use of these drugs exhibit many adverse reactions and have limited efficacy. Polysaccharides are important natural biomacromolecules widely existing in plants, animals, microorganisms and algae. They have drawn considerable attention worldwide due to their multiple healthy functions, along with their non-toxic property. Importantly, a growing number of studies have demonstrated that bioactive polysaccharides exhibit prominent efficiency in controlling atherosclerotic risk factors like hyperlipemia, hypertension, oxidative stress, and inflammation. In recent decades, various bioactive polysaccharides with different structural features and anti-atherosclerotic potential from natural sources have been isolated, purified, and characterized. The aim of this review is to focus on the research progress of natural polysaccharides in reducing the risks of atherosclerosis based on evidence of in vitro and in vivo studies from 1966 to 2022. PRACTICAL APPLICATIONS: In the future, it is still necessary to strengthen the research on the development and mechanism of polysaccharides with anti-atherosclerotic potential. These anti-atherosclerotic polysaccharides with different structural characteristics and physiochemical properties from different sources will constitute a huge source of materials for future applications, especially in functional foods and drugs. The information summarized here may serve as useful reference materials for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Chao-Li Jiang
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Wen-Di Shen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, People's Republic of China
| |
Collapse
|
54
|
Lycium Genus Polysaccharide: An Overview of its Extraction, Structures, Pharmacological Activities and Biological Applications. SEPARATIONS 2022. [DOI: 10.3390/separations9080197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polysaccharide is considered to be the main active ingredient of the genus Lycium L., which is taken from the dried fruit of the famous Chinese herbal medicine and precious tonic known as wolfberry. Traditional uses include nourishing the liver and kidney and improving eyesight, with widespread use in the clinical practice of traditional Chinese medicine. Many studies have focused on the isolation and identification of the genus Lycium L. polysaccharide and its biological activities. However, the variety of raw materials and the mechanisms of polysaccharides differ. After extraction, the structure and biological activity of the obtained polysaccharides also differ. To date, approximately 58 kinds of polysaccharides have been isolated and purified from the Lycium genus, including water-soluble polysaccharides; homogeneous polysaccharides; pectin polysaccharides; acidic heteropolysaccharides; and arabinogalactans, which are composed of arabinose, glucosamine, galactose, glucose, xylose, mannose, fructose, ribose, galacturonic acid, and glucuronic acid. Pharmacological studies have shown that LBPs exhibit a variety of important biological activities, such as protection of nerves; promotion of reproduction; and anti-inflammatory, hepatoprotective, hypoglycemic, and eyesight-improving activities. The aim this paper is to summarize previous and current references to the isolation process, structural characteristics, and biological activities of the genus Lycium L. polysaccharide. This review will provide a useful reference for further research and application of the genus Lycium L. polysaccharide in the field of functional food and medicine.
Collapse
|
55
|
Dawan J, Ahn J. Application of DNA barcoding for ensuring food safety and quality. Food Sci Biotechnol 2022; 31:1355-1364. [PMID: 36060568 PMCID: PMC9433498 DOI: 10.1007/s10068-022-01143-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
With increasing international food trade, food quality and safety are high priority worldwide. The consumption of contaminated and adulterated food can cause serious health problems such as infectious diseases and allergies. Therefore, the authentication and traceability systems are needed to improve food safety. The mitochondrial DNA can be used for species authentication of food and food products. Effective DNA barcode markers have been developed to correctly identify species. The US FDA approved to the use of DNA barcoding for various food products. The DNA barcoding technology can be used as a regulatory tool for identification and authenticity. The application of DNA barcoding can reduce the microbiological and toxicological risks associated with the consumption of food and food products. DNA barcoding can be a gold-standard method in food authenticity and fraud detection. This review describes the DNA barcoding method for preventing food fraud and adulteration in meat, fish, and medicinal plants.
Collapse
|
56
|
Nutrition, Bioactive Components, and Hepatoprotective Activity of Fruit Vinegar Produced from Ningxia Wolfberry. Molecules 2022; 27:molecules27144422. [PMID: 35889295 PMCID: PMC9319210 DOI: 10.3390/molecules27144422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Wolfberry (Lycium barbarum L.) is a nutritious and medicinal fruit, and deeply processed products of wolfberry needs to be improved. In this study, nutrition, bioactive compounds, and hepaprotective activity were explored in wolfberry vinegar (WFV). The contents of nutrients including total sugar and protein in WFV samples were 2.46 and 0.27 g/100 mL, respectively. Total phenolic and flavonoid contents in WFV were 2.42 mg GAE/mL and 1.67 mg RE/mL, respectively. p-Hydroxybenzoic acid and m-hydroxycinnamic acid were the main polyphenols in WFV. The antioxidant activity of WFV were 20.176 mM Trolox/L (ABTS), 8.614 mM Trolox/L (FRAP), and 26.736 mM Trolox/L (DPPH), respectively. In addition, WFV treatment effectively alleviated liver injury by improving histopathological changes and reducing liver biochemical indexes in CCl4-treated mice. WFV alleviated oxidative damage by inhibiting oxidative levels and increasing antioxidant levels. These results suggest that WFV can be utilized as a functional food to prevent oxidative liver injury.
Collapse
|
57
|
Guo L, Guan Q, Duan W, Ren Y, Zhang XJ, Xu HY, Shi JS, Wang FZ, Lu R, Zhang HL, Xu ZH, Li H, Geng Y. Dietary Goji Shapes the Gut Microbiota to Prevent the Liver Injury Induced by Acute Alcohol Intake. Front Nutr 2022; 9:929776. [PMID: 35898713 PMCID: PMC9309278 DOI: 10.3389/fnut.2022.929776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Diet is a major driver of the structure and function of the gut microbiota, which influences the host physiology. Alcohol abuse can induce liver disease and gut microbiota dysbiosis. Here, we aim to elucidate whether the well-known traditional health food Goji berry targets gut microbiota to prevent liver injury induced by acute alcohol intake. The results showed that Goji supplementation for 14 days alleviated acute liver injury as indicated by lowering serum aspartate aminotransferase, alanine aminotransferase, pro-inflammatory cytokines, as well as lipopolysaccharide content in the liver tissue. Goji maintained the integrity of the epithelial barrier and increased the levels of butyric acid in cecum contents. Furthermore, we established the causal relationship between gut microbiota and liver protection effects of Goji with the help of antibiotics treatment and fecal microbiota transplantation (FMT) experiments. Both Goji and FMT-Goji increased glutathione (GSH) in the liver and selectively enriched the butyric acid-producing gut bacterium Akkermansia and Ruminococcaceae by using 16S rRNA gene sequencing. Metabolomics analysis of cecum samples revealed that Goji and its trained microbiota could regulate retinoyl β-glucuronide, vanillic acid, and increase the level of glutamate and pyroglutamic acid, which are involved in GSH metabolism. Our study highlights the communication among Goji, gut microbiota, and liver homeostasis.
Collapse
Affiliation(s)
- Lin Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qijie Guan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Wenhui Duan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yilin Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Juan Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Hong-Yu Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | | | - Ran Lu
- Ningxia Red Power Goji Co., Ltd, Zhongwei, China
| | - Hui-Ling Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Huazhong Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Huazhong Li
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Yan Geng
| |
Collapse
|
58
|
Tsunenaga M, Xu W, Myojin T, Nakamura T, Kon T, Nakamura Y, Ueda O. Modulating effects of oral administration of Lycii Fructus extracts on UVB‑induced skin erythema: A Randomized, placebo‑controlled study. Biomed Rep 2022; 17:62. [PMID: 35719836 PMCID: PMC9198991 DOI: 10.3892/br.2022.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
Severe UV exposure induces skin inflammation, causing erythema. Lycii Fructus (Lycium barbarum and Lycium chinense) is a potential antioxidant agent with a high content of polyphenols, including rutin and chlorogenic acid. This study examined the effects of Lycii Fructus extract (LFE) on UVB-induced skin erythema in humans. Healthy volunteers were randomly assigned to one of two groups and received UVB irradiation at 1.5 minimal erythemal dose (MED) on day 0 at three designated sites on their backs, and the skin color was measured until day 7. After an 8-week treatment with LFE (900 mg/day) or placebo, UVB irradiation (l.5 MED) was applied again at different sites on day 63. Skin color was continuously measured in each group until day 69. LFE tablet administration for 8 weeks significantly inhibited UVB-induced erythema formation and increased the MED by 13%. Erythema formation peaked on the first day after UVB irradiation, but gradually dissipated over the next several days. LFE tended to accelerate erythema disappearance. To determine the polyphenol responsible for the protection against UVB-induced skin damage, the effects of LFE-derived polyphenols and their metabolites on UVB-induced cytotoxicity were examined in vitro. The major intestinal metabolite of rutin and LFE significantly attenuated phototoxicity and in human keratinocyte HaCaT cells. Quercetin enhanced intracellular glutathione levels in HaCaT cells, even though LFE did not increase it. Together, the results showed that LFE inhibited erythema formation and accelerated erythema dissipation, possibly through its direct antioxidative action.
Collapse
Affiliation(s)
- Makoto Tsunenaga
- Shiseido Co., Ltd. MIRAI Technology Institute, Frontier Business Research and Development Center, Yokohama, Kanagawa 220‑0011, Japan
| | - Wensi Xu
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700‑8530 Japan
| | - Takumi Myojin
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700‑8530 Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700‑8530 Japan
| | - Tatsuya Kon
- Shiseido Co., Ltd. MIRAI Technology Institute, Frontier Business Research and Development Center, Yokohama, Kanagawa 220‑0011, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700‑8530 Japan
| | - Osamu Ueda
- Shiseido Co., Ltd. MIRAI Technology Institute, Frontier Business Research and Development Center, Yokohama, Kanagawa 220‑0011, Japan
| |
Collapse
|
59
|
The anti-aging activity of Lycium barbarum polysaccharide extracted by yeast fermentation: In vivo and in vitro studies. Int J Biol Macromol 2022; 209:2032-2041. [PMID: 35500780 DOI: 10.1016/j.ijbiomac.2022.04.184] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
Abstract
Lycium barbarum polysaccharide (LBP) is an important active substance in Lycium barbarum. In this study, LBP was extracted by the hot water method and yeast fermentation method to obtain products called LBP-W and LBP-Y, respectively. Both LBPs have a strong ability to scavenge DPPH, hydroxyl, and superoxide anion free radicals and have a total antioxidant capacity. Both LBPs prolong the lifespan of C. elegans under normal conditions, oxidative stress and heat stress and do not affect fertility, LBPs could prolong the lifespan of C. elegans by upregulating the expression of daf-16, sod-3 and hsp-16.2 genes, and LBP-Y is more efficacious. The molecular weight of the LBPs was characterized by gel permeation chromatography (GPC), and the results showed that LBP-Y is smaller and more uniform than LBP-W. The skin penetration experiment showed that the absorption effect of LBP-Y is better than that of LBP-W. These lines of evidence suggest that the yeast fermentation extraction of LBP produces better antioxidant and anti-aging effects than those obtained with the traditional hot water extraction, which is more suitable for obtaining raw materials with anti-aging functions that can potentially be used in the food and cosmetic industries.
Collapse
|
60
|
Yu J, Guo M, Liu G, Zhang J, Fan N, Li X, Sun Y, Yuan J, Huang R. Lycium barbarum polysaccharide inhibits lipid
oxidation and protein degradation in Tan sheep meatballs during frozen
storage. Food Sci Anim Resour 2022; 42:580-592. [PMID: 35855275 PMCID: PMC9289809 DOI: 10.5851/kosfa.2022.e23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to evaluate the effectiveness of Lycium barbarum polysaccharide (LBP) on lipid oxidation and protein degradation in Tan sheep meatballs during the frozen period. The meatballs were treated with LBP at 0.01%, 0.02%, and 0.03% and stored at –18±1°C for 0, 3, 6, 9, and 12 weeks. The effects of LBP treatment were investigated using the contents of total volatile basic nitrogen (TVB-N), texture profile (TP), thiobarbituric acid reactive substances (TBARS), colour, and pH values, compared with 0.02% butylated hydroxytoluene treatment and the blank control. The results showed that LBP treatment significantly decreased TBARS content compared with the control, which confirmed LBP to be a highly effective component in preventing lipid oxidation of Tan sheep meatballs during frozen storage, and protein degradation in Tan sheep meatballs had a significant inhibition effect because of TVB-N value reduction. In addition, the colour, TP and pH values of meatballs treated with LBP were improved dramatically. To further determine the quality changes of the blank control and all treated groups during storage, the comprehensive score evaluation equation based on principal component analysis was obtained: Y=0.51632Y1+0.29589Y2 (cumulative contribution rate=81.221%), and the 0.02% LBP-treated group had a higher comprehensive score than the other groups, and the quality of LBP-treated meatballs was better as well. In summary, LBP may reduce or inhibit lipid oxidation and protein degradation, and enhance overall quality and shelf-life in prepared meat products.
Collapse
Affiliation(s)
- Jiangyong Yu
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
- Wuzhong Grain and Oil Product Quality Inspection Station, Wuzhong Food and Strategic Reserves Administration, Wuzhong 751100, Ningxia, China
| | - Mei Guo
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
- Corresponding author: Guishan Liu, School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China, Tel: +86-13519502762, E-mail:
| | - Jingjing Zhang
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Naiyun Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiaorui Li
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Yourui Sun
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Jiangtao Yuan
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Rui Huang
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
- Wuzhong Grain and Oil Product Quality Inspection Station, Wuzhong Food and Strategic Reserves Administration, Wuzhong 751100, Ningxia, China
| |
Collapse
|
61
|
Alhalili Z, Souli H, Smiri M. Effect of LEO (Lycium Essential Oils) as Green Inhibitors of Calcium Carbonate Scale on Nanoparticles-Doped Ultrafiltration Membrane (UFM) and Water Treatment. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
62
|
Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: A review. Food Res Int 2022; 159:111408. [PMID: 35940747 DOI: 10.1016/j.foodres.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
63
|
Properties of selenium nanoparticles stabilized by Lycium barbarum polysaccharide-protein conjugates obtained with subcritical water. Int J Biol Macromol 2022; 205:672-681. [PMID: 35240216 DOI: 10.1016/j.ijbiomac.2022.02.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/02/2023]
Abstract
Selenium nanoparticles (SeNPs) in an aqueous solution have poor stability and tend to aggregate when stored for a long time. In the present study, SeNPs were stabilized by using Lycium barbarum polysaccharide (LBP) and Lycium barbarum protein (LBPr) conjugates (LBPP) as a stabilizer and dispersing agent. Particularly, the LBPP1 was obtained with subcritical water treatment. In addition, the physical stability, re-dispersity and antitumor activity of LBPP1-SeNPs were investigated. The results showed the particle size of LBPP1-SeNPs was maintained at 111.5-117 nm, which was stable at PH 6, 4 °C and darkness for at least 40 days. Besides, the result of TEM showed that the dispersion of LBPP1-SeNPs had more clear layers and smoother surfaces. Moreover, LBPP1-SeNPs had excellent re-dispersibility and exhibited a significant inhibitory effect on HepG-2 cells and Caco-2 cells, respectively (p < 0.05). Therefore, LBPP1-SeNPs can be used as potential selenium nutritional supplements for food and medical applications.
Collapse
|
64
|
DU X, Zhang J, Liu L, Xu B, Han H, Dai W, Pei X, Fu X, Hou S. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells. J Zhejiang Univ Sci B 2022; 23:286-299. [PMID: 35403384 DOI: 10.1631/jzus.b2100748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most malignant tumors and is associated with high mortality rates among women. Lycium barbarum polysaccharide (LBP) is an extract from the fruits of the traditional Chinese herb, L. barbarum. LBP is a promising anticancer drug, due to its high activity and low toxicity. Although it has anticancer properties, its mechanisms of action have not been fully established. Ferroptosis, which is a novel anticancer strategy, is a cell death mechanism that relies on iron-dependent lipid reactive oxygen species (ROS) accumulation. In this study, human breast cancer cells (Michigan Cancer Foundation-7 (MCF-7) and MD Anderson-Metastatic Breast-231 (MDA-MB-231)) were treated with LBP. LBP inhibited their viability and proliferation in association with high levels of ferroptosis. Therefore, we aimed to ascertain whether LBP reduced cell viability through ferroptosis. We found that the structure and function of mitochondria, lipid peroxidation, and expression of solute carrier family 7 member 11 (SLC7A11, also known as xCT, the light-chain subunit of cystine/glutamate antiporter system Xc-) and glutathione peroxidase 4 (GPX4) were altered by LBP. Moreover, the ferroptosis inhibitor, Ferrostatin-1 (Fer-1), rescued LBP-induced ferroptosis-associated events including reduced cell viability and glutathione (GSH) production, accumulation of intracellular free divalent iron ions and malondialdehyde (MDA), and down-regulation of the expression of xCT and GPX4. Erastin (xCT inhibitor) and RSL3 (GPX4 inhibitor) inhibited the expression of xCT and GPX4, respectively, which was lower after the co-treatment of LBP with Erastin and RSL3. These results suggest that LBP effectively prevents breast cancer cell proliferation and promotes ferroptosis via the xCT/GPX4 pathway. Therefore, LBP exhibits novel anticancer properties by triggering ferroptosis, and may be a potential therapeutic option for breast cancer.
Collapse
Affiliation(s)
- Xing DU
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.,Department of Clinical Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Shaozhang Hou
- Department of Clinical Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China. ,
| |
Collapse
|
65
|
Parameter Optimization of the Harvest Method in the Standardized Hedge Cultivation Mode of Lycium barbarum Using Response Surface Methodology. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In a previously published study, to optimize the vibrating and comb-brushing harvesting, the main factors and their parameter values were obtained based on the FEM and RSM. However, the study was based on the extensive cultivation mode which need to be improve. To realize the mechanization of the harvesting of Lycium barbarum L., as well as to face the standardized hedge cultivation mode, a vibrating and comb-brushing harvester machine was designed, which was primarily composed of an execution system, a motion system, and a control system. The mathematical model between the harvest effect index and the operation parameters was established based on response surface methodology (RSM). The effects of various parameters on the harvest index were analyzed, and the best parameter combination was determined: a vibration frequency of 38.73 Hz, a brush speed of 14.21 mm/s, and an insertion depth of 26.07 mm. The field experiment showed that the harvesting rate of ripe fruit was 83.65%, the harvesting rate of unripe fruit was 7.22%, the damage rate of the ripe fruit was 11.49%, and the comprehensive picking index was 87.85. The findings provided a reference for the development of L. barbarum harvesting mechanization in a standardized hedge cultivation mode.
Collapse
|
66
|
Gong H, Rehman F, Li Z, Liu J, Yang T, Liu J, Li H, Hu Z, Ma Q, Wu Z, A B, Yang M, Gao H, Zhi H, Qu H, Di D, Wang Y. Discrimination of Geographical Origins of Wolfberry ( Lycium barbarum L.) Fruits Using Stable Isotopes, Earth Elements, Free Amino Acids, and Saccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2984-2997. [PMID: 35179024 DOI: 10.1021/acs.jafc.1c06207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To develop sophisticated approaches for distinguishing goji origins, 325 wolfberry fruit samples of a certain cultivar, plant age, drying method, and collection season were gathered from 26 producing areas across Northwest China in 2017 and 2018. We employed 49 indices, including stable isotopes, earth elements, soluble amino acids, and saccharides, to identify the regions of origin of these goji fruits. Analysis of variance (ANOVA) and heritability analysis were used to assess the effects of the environment (producing areas), cultivar, plant age, drying process, and collection season. Samples from the same place can be classified and partially discriminated using principal component analysis (PCA). We were able to distinguish fruits produced in Zhongning County from those produced in the other five producing provinces using orthogonal projection to latent structure-discriminant analysis (OPLS-DA). Calcium (Ca), manganese (Mn), ornithine (Orn), cystine (Cys-Cys), glutamate (Glu), phenylalanine (Phe), phosphoserine (Ps), serine (Ser), lysine (Lys), taurine (Tau), proline (Pro), and tyrosine (Tyr) indices were chosen using S-plots and heritability analysis, and their repeatability was established with samples collected in 2018. The indices selected in this study can distinguish goji berries produced in Zhongning County from fruits originating from five other Provinces with high repeatability, which was validated with various cultivars, drying methods, harvest seasons, and plant ages and with heritability analysis.
Collapse
Affiliation(s)
- Haiguang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Fazal Rehman
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Zhong Li
- Bairuiyuan Company, Yinchuan 750000, P. R. China
| | - Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Tianshun Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Juan Liu
- Zhongning County Goji Industry Development Service Bureau, Zhongwei 755100, Ningxia, P. R. China
| | - Haoran Li
- Zhongning County Goji Industry Development Service Bureau, Zhongwei 755100, Ningxia, P. R. China
| | - Zhongqing Hu
- Zhongning County Goji Industry Development Service Bureau, Zhongwei 755100, Ningxia, P. R. China
| | - Qihu Ma
- Beijing TongRenTang Health-Pharmaceutical (Ningxia) Co., Ltd., Yinchuan 750000, Ningxia, P. R. China
| | - Zhigeng Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Biao A
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Meizhen Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, P. R. China
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Hongxia Qu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- Center of Resource Chemical and New Material, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao 266100, P. R. China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
- Gannan Normal University, Ganzhou, Jinagxi 341000, P. R. China
| |
Collapse
|
67
|
Cui C, Zhao D, Huang J, Hao J. Progress on research and development of goji berry drying: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2046054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chaojing Cui
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang PR China
| | - Dandan Zhao
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang PR China
| | - Jin Huang
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang PR China
| | - Jianxiong Hao
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang PR China
| |
Collapse
|
68
|
Zhao WH, Shi YP. Comprehensive analysis of phenolic compounds in four varieties of goji berries at different ripening stages by UPLC–MS/MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
69
|
Zhu B, Zhang W, Qin Y, Zhao J, Li S. Quality evaluation of Lycium barbarum L. fruits from different regions in China based on 2-O-β-D-glucopyranosyl-L-ascorbic acid. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
70
|
Li Y, Chen K, Liu S, Liang X, Wang Y, Zhou X, Yin Y, Cao Y, An W, Qin K, Sun Y. Diversity and spatiotemporal dynamics of fungal communities in the rhizosphere soil of Lycium barbarum L.: a new insight into the mechanism of geoherb formation. Arch Microbiol 2022; 204:197. [PMID: 35217917 PMCID: PMC8881256 DOI: 10.1007/s00203-022-02781-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/14/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
Abstract
Lycium barbarum L. is a well-known traditional geoherb in Ningxia, China. The fruits of L. barbarum contain several dietary constituents, and thus, they exert many beneficial effects on human health. However, a few studies have been conducted on the geoherb L. barbarum and its rhizosphere soil fungal community. In this study, we determined the physicochemical properties and fungal community structure of rhizosphere soil of L. barbarum from three regions of China, namely Ningxia (NX), Qinghai (QH), and Xinjiang (XJ), during three development stages of L. barbarum. Soil pH varied between 7.56 and 8.60 across the three regions, indicating that alkaline soil is conducive to the growth of L. barbarum. The majority of soil properties in NX, an authentic geoherb-producing area, were substantially inferior to those in XJ and QH during all three developmental stages. Total sugar, polysaccharide (LBP), and flavonoid contents were the highest in wolfberry fruits from NX. High-throughput sequencing showed that the abundance of the soil fungal population in NX was higher than that in QH and XJ during the flowering and fruiting stage and summer dormant stage. Moreover, the soil fungal diversity increased with the development of wolfberry. Ascomycota and Mortierellomycota were the predominant phyla in the rhizosphere fungal communities in all samples. Redundancy analysis showed a significant correlation of the soil-available phosphorus and LBP of wolfberry fruits with the fungal community composition. The characteristics of rhizosphere fungal communities determined in the present study provide insights into the mechanism of geoherb formation in NX wolfberry.
Collapse
Affiliation(s)
- Yuekun Li
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Kaili Chen
- The College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Siyang Liu
- The College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yajun Wang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xuan Zhou
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Wei An
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ken Qin
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Yanfei Sun
- The College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
71
|
Widely-Targeted Metabolic Profiling in Lycium barbarum Fruits under Salt-Alkaline Stress Uncovers Mechanism of Salinity Tolerance. Molecules 2022; 27:molecules27051564. [PMID: 35268665 PMCID: PMC8911562 DOI: 10.3390/molecules27051564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Wolfberry (Lycium barbarum L.) is an important economic crop widely grown in China. The effects of salt-alkaline stress on metabolites accumulation in the salt-tolerant Ningqi1 wolfberry fruits were evaluated across 12 salt-alkaline stress gradients. The soil pH, Na+, K+, Ca2+, Mg2+, and HCO3− contents decreased at a gradient across the salt-alkaline stress gradients. Based on the widely-targeted metabolomics approach, we identified 457 diverse metabolites, 53% of which were affected by salt-alkaline stress. Remarkably, soil salt-alkaline stress enhanced metabolites accumulation in wolfberry fruits. Amino acids, alkaloids, organic acids, and polyphenols contents increased proportionally across the salt-alkaline stress gradients. In contrast, nucleic acids, lipids, hydroxycinnamoyl derivatives, organic acids and derivatives and vitamins were significantly reduced by high salt-alkaline stress. A total of 13 salt-responsive metabolites represent potential biomarkers for salt-alkaline stress tolerance in wolfberry. Specifically, we found that constant reductions of lipids and chlorogenic acids; up-regulation of abscisic acid and accumulation of polyamines are essential mechanisms for salt-alkaline stress tolerance in Ningqi1. Overall, we provide for the first time some extensive metabolic insights into salt-alkaline stress tolerance and key metabolite biomarkers which may be useful for improving wolfberry tolerance to salt-alkaline stress.
Collapse
|
72
|
Chen YS, Lian YZ, Chen WC, Chang CC, Tinkov AA, Skalny AV, Chao JCJ. Lycium barbarum Polysaccharides and Capsaicin Inhibit Oxidative Stress, Inflammatory Responses, and Pain Signaling in Rats with Dextran Sulfate Sodium-Induced Colitis. Int J Mol Sci 2022; 23:ijms23052423. [PMID: 35269566 PMCID: PMC8910612 DOI: 10.3390/ijms23052423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease with chronic relapsing symptoms. This study investigated the effects of Lycium barbarum polysaccharides (LBP) and capsaicin (CAP) in dextran sulfate sodium (DSS)-induced UC rats. Rats were divided into normal, DSS-induced UC, and UC treated with 100 mg LBP/kg bw, 12 mg CAP/kg bw, or 50 mg LBP/kg bw and 6 mg CAP/kg bw. Rats were fed LBP or CAP orally by gavage for 4 weeks, and UC model was established by feeding 5% DSS in drinking water for 6 days during week 3. Oral CAP and mixture significantly reduced disease activity index. Oral LBP significantly decreased serum malondialdehyde, interleukin (IL)-6, colonic tumor necrosis factor (TNF)-α levels, and protein expression of transient receptor potential cation channel V1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1), but increased serum catalase activity. Oral CAP significantly suppressed serum IL-6, colonic TRPV1 and TRPA1 protein expression, but elevated IL-10 levels, serum superoxide dismutase and catalase activities. The mixture of LBP and CAP significantly reduced serum IL-6, colonic TNF-α and TRPA1 protein. In conclusion, administration of LBP and/or CAP attenuate DSS-induced UC symptoms through inhibiting oxidative stress, proinflammatory cytokines, and protein expression of TRPV1 and TRPA1.
Collapse
Affiliation(s)
- Yu-Shan Chen
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; (Y.-S.C.); (Y.Z.L.)
- Department of Dietetics, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Yu Zhi Lian
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; (Y.-S.C.); (Y.Z.L.)
| | - Wen-Chao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan; (W.-C.C.); (C.-C.C.)
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan; (W.-C.C.); (C.-C.C.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Alexey A. Tinkov
- Laboratory of Molecular Dietetics, I.M. Sechenov First Moscow State Medical University, 2–4 Bolshaya Pirogovskaya Street, 119435 Moscow, Russia; (A.A.T.); (A.V.S.)
- Institute of Bioelementology, Orenburg State University, Pobedy Avenue, 13, 460018 Orenburg, Russia
| | - Anatoly V. Skalny
- Laboratory of Molecular Dietetics, I.M. Sechenov First Moscow State Medical University, 2–4 Bolshaya Pirogovskaya Street, 119435 Moscow, Russia; (A.A.T.); (A.V.S.)
- Institute of Bioelementology, Orenburg State University, Pobedy Avenue, 13, 460018 Orenburg, Russia
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, 9 Yanvarya Street, 29, 460000 Orenburg, Russia
| | - Jane C.-J. Chao
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; (Y.-S.C.); (Y.Z.L.)
- Master Program in Global Health and Development, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, 252 Wu-Hsing Street, Taipei 110301, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6548); Fax: +886-2-2737-3112
| |
Collapse
|
73
|
Genome-Wide Comparative Analysis of the R2R3-MYB Gene Family in Five Solanaceae Species and Identification of Members Regulating Carotenoid Biosynthesis in Wolfberry. Int J Mol Sci 2022; 23:ijms23042259. [PMID: 35216373 PMCID: PMC8875911 DOI: 10.3390/ijms23042259] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The R2R3-MYB is a large gene family involved in various plant functions, including carotenoid biosynthesis. However, this gene family lacks a comprehensive analysis in wolfberry (Lycium barbarum L.) and other Solanaceae species. The recent sequencing of the wolfberry genome provides an opportunity for investigating the organization and evolutionary characteristics of R2R3-MYB genes in wolfberry and other Solanaceae species. A total of 610 R2R3-MYB genes were identified in five Solanaceae species, including 137 in wolfberry. The LbaR2R3-MYB genes were grouped into 31 subgroups based on phylogenetic analysis, conserved gene structures, and motif composition. Five groups only of Solanaceae R2R3-MYB genes were functionally divergent during evolution. Dispersed and whole duplication events are critical for expanding the R2R3-MYB gene family. There were 287 orthologous gene pairs between wolfberry and the other four selected Solanaceae species. RNA-seq analysis identified the expression level of LbaR2R3-MYB differential gene expression (DEGs) and carotenoid biosynthesis genes (CBGs) in fruit development stages. The highly expressed LbaR2R3-MYB genes are co-expressed with CBGs during fruit development. A quantitative Real-Time (qRT)-PCR verified seven selected candidate genes. Thus, Lba11g0183 and Lba02g01219 are candidate genes regulating carotenoid biosynthesis in wolfberry. This study elucidates the evolution and function of R2R3-MYB genes in wolfberry and the four Solanaceae species.
Collapse
|
74
|
Agradi S, Draghi S, Cotozzolo E, Barbato O, Castrica M, Quattrone A, Sulce M, Vigo D, Menchetti L, Ceccarini MR, Andoni E, Riva F, Marongiu ML, Curone G, Brecchia G. Goji Berries Supplementation in the Diet of Rabbits and Other Livestock Animals: A Mini-Review of the Current Knowledge. Front Vet Sci 2022; 8:823589. [PMID: 35174242 PMCID: PMC8841604 DOI: 10.3389/fvets.2021.823589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, several nutraceutical substances have received great attention for their potential role in the prevention and treatment of different diseases as well as for their beneficial effects in promoting the health of humans and animals. Goji berries (GBs) are the fruit of Lycium barbarum and other species of Lycium, used in traditional Chinese medicine, and they have recently become very popular in the Occidental world because of their properties, such as anti-aging, antioxidant, anticancer, neuroprotective, cytoprotective, antidiabetic, and anti-inflammatory activities. These effects are essentially evaluated in clinical trials in humans; in experimental animal models, such as mice and rats; and in cell lines in in vitro studies. Only recently has scientific research evaluated the effects of GBs diet supplementation in livestock animals, including rabbits. Although studies in the zootechnical field are still limited and the investigation of the GB mechanisms of action is in an early stage, the results are encouraging. This review includes a survey of the experimental trials that evaluated the effects of the GBs supplementation on reproductive and productive performances, immune system, metabolic homeostasis, and meat quality principally in the rabbit with also some references to other livestock animal species. Evidence supports the idea that GB supplementation could be used in rabbit breeding, although future studies should be conducted to establish the optimal dose to be administered and to assess the sustainability of the use of GBs in the diet of the rabbit.
Collapse
Affiliation(s)
- Stella Agradi
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Susanna Draghi
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Elisa Cotozzolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Marta Castrica
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Milan, Italy
| | - Alda Quattrone
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Majlind Sulce
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Tirana, Albania
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Laura Menchetti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Laura Menchetti ;
| | | | - Egon Andoni
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Tirana, Albania
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | | | - Giulio Curone
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | | |
Collapse
|
75
|
Vidović BB, Milinčić DD, Marčetić MD, Djuriš JD, Ilić TD, Kostić AŽ, Pešić MB. Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants (Basel) 2022; 11:248. [PMID: 35204130 PMCID: PMC8868247 DOI: 10.3390/antiox11020248] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Goji berries have long been used for their nutritional value and medicinal purposes in Asian countries. In the last two decades, goji berries have become popular around the world and are consumed as a functional food due to wide-range bioactive compounds with health-promoting properties. In addition, they are gaining increased research attention as a source of functional ingredients with potential industrial applications. This review focuses on the antioxidant properties of goji berries, scientific evidence on their health effects based on human interventional studies, safety concerns, goji berry processing technologies, and applications of goji berry-based ingredients in developing functional food products.
Collapse
Affiliation(s)
- Bojana B. Vidović
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Danijel D. Milinčić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| | - Mirjana D. Marčetić
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Jelena D. Djuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Tijana D. Ilić
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Aleksandar Ž. Kostić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| | - Mirjana B. Pešić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| |
Collapse
|
76
|
Characterization and Evaluation of Antioxidant and Anti-Inflammatory Activities of Flavonoids from the Fruits of Lycium barbarum. Foods 2022; 11:foods11030306. [PMID: 35159457 PMCID: PMC8834156 DOI: 10.3390/foods11030306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
The fruits of Lycium barbarum are rich in flavonoids, which may contribute to the health-promoting function of Lycium barbarum. However, the composition of flavonoids in the fruits of Lycium barbarum (LBFs) has received little attention. Thus, the goal of this work was to identify more kinds of flavonoids from fruits of Lycium barbarum by liquid chromatography–mass spectrometry. The potential antioxidant and anti-inflammatory activities of LBFs in vitro were also investigated. Thirteen flavonoid compounds were identified in LBFs, of which daphnetin, 6,7-dihydroxycoumarin, astragalin, taxifolin, eriodictyol, naringenin, and chrysoeriol were identified for the first time in the fruits of Lycium barbarum, which greatly enriched the variety of flavonoids in the fruits of Lycium barbarum. LBFs showed a similar superior antioxidant activity to vitamin C. Furthermore, LBFs exhibited an anti-inflammatory activity by suppressing the production of nitric oxide and pro-inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1β, and interleukin-6, in lipopolysaccharide-treated RAW264.7 macrophage cells. This study demonstrated the potential development of LBFs as functional foods.
Collapse
|
77
|
Zhang Y, Qin J, Wang Y, Zhou T, Feng N, Ma C, Zhu M. Levels and health risk assessment of pesticides and metals in Lycium barbarum L. from different sources in Ningxia, China. Sci Rep 2022; 12:561. [PMID: 35022452 PMCID: PMC8755795 DOI: 10.1038/s41598-021-04599-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
The berries of Lycium barbarum L. (Goji) are widely used as a Chinese traditional herbal medicine and functional food because of their reported beneficial pharmacological effects. However, there are reports of Goji berries being contaminated by chemical residues that could pose a hazard to humans. In this study, samples of L. barbarum L. berries were collected from plantations in a genuine production area and supermarkets in Ningxia, China. The major hazardous chemicals, including pesticides (dichlorvos, omethoate, cypermethrin, fenvalerate, malathion, and deltamethrin) and metals (lead (Pb), cadmium (Cd), copper (Cu), nickel (Ni), zinc (Zn), and arsenic (As)), were quantified by gas chromatography and inductively coupled plasma-optical emission spectrometry. In addition, associated daily exposures and health risks were determined using deterministic and probabilistic assessments. The levels of five pesticides from the plantation samples were considerably lower than the maximum residue limits; only dichlorvos was detected in the supermarket samples, and deltamethrin was not detected in any samples. Cu, Zn, As, Pb, Ni and Cd were detected in samples from both sources. The hazard quotient values of individual hazardous chemicals and the hazard index of combined hazardous chemicals were considerably less than 1, indicating the absence of a non-carcinogenic effect of hazardous chemical exposures through Goji berry consumption. The R value of As was much less than 10-6, which shows that consumption of the Goji berries had no obvious carcinogenic risks. The potentially harmful effects of the L. barbarum L. are more likely from berries obtained from plantations than those from supermarkets, and metal exposure is more dangerous than pesticide exposure. However, on the basis of our analysis, no population would be exposed hazardous chemicals exceeding existing standards, and the factors most affecting the health risk were exposure frequency and As content.
Collapse
Affiliation(s)
- Yahong Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiaqi Qin
- College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
| | - Yan Wang
- College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
| | - Tongning Zhou
- College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
| | - Ningchuan Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.,College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Caihong Ma
- College of Resources and Environmental Science, Ningxia University, Yinchuan, 750021, China
| | - Meilin Zhu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China. .,College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China. .,College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
78
|
Sun Q, Du M, Kang Y, Zhu MJ. Prebiotic effects of goji berry in protection against inflammatory bowel disease. Crit Rev Food Sci Nutr 2022:1-25. [PMID: 34991393 DOI: 10.1080/10408398.2021.2015680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of inflammatory bowel disease (IBD) is increasing, which is concerning because IBD is a known risk factor for the development of colorectal cancer. Emerging evidence highlights environmental factors, particularly dietary factors and gut microbiota dysbiosis, as pivotal inducers of IBD onset. Goji berry, an ancient tonic food and a nutraceutical supplement, contains a range of phytochemicals such as polysaccharides, carotenoids, and polyphenols. Among these phytochemicals, L. barbarum polysaccharides (LBPs) are the most important functional constituents, which have protective effects against oxidative stress, inflammation, and neurodegeneration. Recently, the beneficial effects of goji berry and associated LBPs consumption were linked to prebiotic effects, which can prevent dysbiosis associated with IBD. This review assessed pertinent literature on the protective effects of goji berry against IBD focusing on the gut microbiota and their metabolites in mediating the observed beneficial effects.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, Washington, USA
| | - Yifei Kang
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
79
|
XING L, WANG Y, LUO R, LI X, ZOU L. Determination of 31 pesticide residues in wolfberry by LC-MS/MS and dietary risk assessment of wolfberry consumption. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.61921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lijie XING
- Xinjiang Academy of Agriculture and Reclamation Science, China; Xinjiang Academy of Agriculture and Reclamation Science, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shihezi), China
| | - Yuan WANG
- Xinjiang Academy of Agriculture and Reclamation Science, China; Xinjiang Academy of Agriculture and Reclamation Science, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shihezi), China; Shihezi University, China
| | - Ruifeng LUO
- Xinjiang Academy of Agriculture and Reclamation Science, China; Xinjiang Academy of Agriculture and Reclamation Science, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shihezi), China
| | - Xianyi LI
- Xinjiang Academy of Agriculture and Reclamation Science, China; Xinjiang Academy of Agriculture and Reclamation Science, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shihezi), China
| | - Liangjun ZOU
- Xinjiang Academy of Agriculture and Reclamation Science, China; Xinjiang Academy of Agriculture and Reclamation Science, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shihezi), China
| |
Collapse
|
80
|
dos Santos GS, de Almeida Veiga A, Carlotto J, Mello RG, Serrato RV, de Souza LM. Identification and fingerprint analysis of novel multi-isomeric Lycibarbarspermidines and Lycibarbarspermines from Lycium barbarum L. by liquid chromatography with high-resolution mass spectrometry (UHPLC-Orbitrap). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
81
|
Effects of Lycium barbarum polysaccharides on the proliferation and differentiation of primary Sertoli cells in young rats. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
82
|
Lactic acid bacteria incubation and aging drives flavor enhancement of goji berry juice. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
83
|
Sanghavi A, Srivatsa A, Adiga D, Chopra A, Lobo R, Kabekkodu SP, Gadag S, Nayak U, Sivaraman K, Shah A. Goji berry (Lycium barbarum) inhibits the proliferation, adhesion, and migration of oral cancer cells by inhibiting the ERK, AKT, and CyclinD cell signaling pathways: an in-vitro study. F1000Res 2022; 11:1563. [PMID: 36761830 PMCID: PMC9887205 DOI: 10.12688/f1000research.129250.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Background: Lycium barbarum (L. barbarum), popularly referred to as Goji berry, is a promising herb known for its powerful anti-antioxidant, antibacterial, and anti-inflammatory properties. It is used in traditional Chinese medicine for treating inflammatory and infectious diseases. It has also shown good anti-cancer properties and has been tested against liver, colon, prostate, breast, and cervical cancers. However, no study has yet evaluated the role of goji berries against oral cancer. Hence, the present paper aims to evaluate the anticancer properties of L. barbarum against oral squamous cell carcinoma. Method: Ethanolic extract of L. barbarum (EELB) was tested for its anticancer properties by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, colony formation, cell proliferation, and scratch wound test. The impact of EELB on the signaling transduction pathways of Extracellular signal-regulated kinase (ERK1/2), protein kinase (AKT1), cyclin D1 and epithelial-mesenchymal transition (EMT) was also assessed by western blot. Results: The results showed that EELB can impede CAL-27 cell growth, proliferation and migration in-vitro. It even reduced the phosphorylation of ERK1/2 and AKT1 with concomitant downregulation of cyclin D1 (CCND1), cadherin 2 (CDH2), and vimentin (VIM) and upregulation of cadherin 1 (CDH1) expression suggesting its anti-proliferative and anti-EMT effects in oral cancer. Conclusion: Goji berry has good antiproliferative and anti-invasive properties. It affects potential EMT markers and signaling transduction pathways involved in oral cancers. Hence goji berry can be tried as a potential anticancer agent to manage oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Amee Sanghavi
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ananth Srivatsa
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aditi Chopra
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Richard Lobo
- Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shivaprasada Gadag
- Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Nayak
- Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik Sivaraman
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashmeet Shah
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
84
|
Wang H, Han H, Rao P, Ke L, Zhou J, Ding W, Shang X. Preparation and characterization of Goji berry edible gel from its boiling water extract. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hailin Wang
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Huan Han
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Pingfan Rao
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Lijing Ke
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Jianwu Zhou
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Wei Ding
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Xiaoya Shang
- Beijing Key Laboratory of Bioactive Substance and Functional Foods Beijing Union University Beijing China
| |
Collapse
|
85
|
Zeng X, Zhao W, Xu Y, Zhang C, Wu J, Xia L, Tian Z, Ren J. Efficacy of Lycium barbarum L. on plasma lipid concentration in adults: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e28172. [PMID: 34889292 PMCID: PMC8663874 DOI: 10.1097/md.0000000000028172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Dyslipidemia is an important risk factor for atherosclerotic cardiovascular disease. Lycium barbarum L. are widely used as medicinal and functional food and may be particularly beneficial for patients with dyslipidemia. This systematic review protocol is designed to be used to evaluate the effects of Lycium barbarum L. on plasma lipid concentration through systematic reviews and meta-analysis. METHODS The Following electronic databases will be searched from inception to October 2021: the China National Knowledge Infrastructure, PubMed, Cochrane Library, Web of Science, and Wan-fang database. All randomized controlled trial designs evaluated the effects of Lycium barbarum L. on plasma concentrations of lipids will be included. Two researchers will operate literature retrieval, screening, information extraction, quality assessment, and data analysis independently. The analysis will be conducted using Rstudio software (Version 1.4.1717). RESULTS The findings will be submitted to a peer-reviewed publication. CONCLUSION This study will provide practical and targeted evidence in investigating the impact of Lycium barbarum L. on plasma lipid concentration in adults. REGISTRATION NUMBER INPLASY2021110043.
Collapse
Affiliation(s)
- Xueyuan Zeng
- Chinese Medicine Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, PR China
| | - Weimin Zhao
- Department of Prevention, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, PR China
| | - Yunlong Xu
- Department of Prevention, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, PR China
| | - Chengwei Zhang
- Chinese Medicine Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, PR China
| | - Junliang Wu
- Chinese Medicine Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, PR China
| | - Libo Xia
- Chinese Medicine Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, PR China
| | - Ziyue Tian
- Chinese Medicine Academy, Changchun University of Chinese Medicine, Changchun, Jilin Province, PR China
| | - Jixiang Ren
- Department of Prevention, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, PR China
| |
Collapse
|
86
|
Goji Berry Intake Increases Macular Pigment Optical Density in Healthy Adults: A Randomized Pilot Trial. Nutrients 2021; 13:nu13124409. [PMID: 34959963 PMCID: PMC8708314 DOI: 10.3390/nu13124409] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is the third leading cause of blindness worldwide. Macular pigment optical density (MPOD), a biomarker for AMD, is a non-invasive measure to assess risk. The macula xanthophyll pigments lutein (L) and zeaxanthin (Z) protect against blue light and provide oxidant defense, which can be indexed by MPOD. This study examined the effects of Z-rich goji berry intake on MPOD and skin carotenoids in healthy individuals. A randomized, unmasked, parallel-arm study was conducted with 27 participants, aged 45–65, who consumed either 28 g of goji berries or a supplement containing 6 mg L and 4 mg Z (LZ), five times weekly for 90 days. After 90 days, MPOD was significantly increased in the goji berry group at 0.25 and 1.75 retinal eccentricities (p = 0.029 and p = 0.044, respectively), while no changes were noted in the LZ group. Skin carotenoids were significantly increased in the goji berry group at day 45 (p = 0.025) and day 90 (p = 0.006), but not in the LZ group. Regular intake of goji berries in a healthy middle-aged population increases MPOD may help prevent or delay the development of AMD.
Collapse
|
87
|
Liu J, Xu D, Chen S, Yuan F, Mao L, Gao Y. Superfruits in China: Bioactive phytochemicals and their potential health benefits - A Review. Food Sci Nutr 2021; 9:6892-6902. [PMID: 34925817 PMCID: PMC8645738 DOI: 10.1002/fsn3.2614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
The term "superfruit" usually refers to certain fruits, which are rich in antioxidant components, therefore, are beneficial to human health. In China, there has been the concept of health preservation and dietary therapy through food intake in a long history. However, some other superfruits growing mainly in China have not attracted extensive attention, such as Cili, Goji berry, and sea buckthorn. Many studies suggested all of these superfruits showed strong antioxidant effects and anti-inflammatory activity in common. However, there are various other advantages and functions in different fruits. This article reviewed the research findings from the existing literature published about major antioxidant bioactive compounds and the potential health benefits of these fruits. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More studies are needed to validate the health benefits of these superfruits. It would provide essential information for further research and functional food development.
Collapse
Affiliation(s)
- Jinfang Liu
- Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant ResourcesKey Laboratory of Healthy BeveragesChina National Light IndustryCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business UniversityBeijingChina
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business UniversityBeijingChina
| | - Shuai Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant ResourcesKey Laboratory of Healthy BeveragesChina National Light IndustryCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Fang Yuan
- Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant ResourcesKey Laboratory of Healthy BeveragesChina National Light IndustryCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Like Mao
- Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant ResourcesKey Laboratory of Healthy BeveragesChina National Light IndustryCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Yanxiang Gao
- Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant ResourcesKey Laboratory of Healthy BeveragesChina National Light IndustryCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
88
|
The mature fruit of Lycium chinense Miller attenuates cisplatin-induced renal damage in mice via regulation of oxidant and antioxidant enzymes. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
89
|
Toh DWK, Low JHM, Kim JE. Cardiovascular disease risk reduction with wolfberry consumption: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2021; 61:1177-1186. [PMID: 34839399 DOI: 10.1007/s00394-021-02750-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Wolfberry is rich in bioactive compounds which may lower cardiovascular disease risk. This meta-analysis aimed to systematically evaluate the effects of wolfberry-based randomized controlled trials (RCTs) on overall cardiovascular health. METHODS Four online databases (PubMed, CINAHL Plus, Medline and Cochrane Library) were searched to shortlist relevant RCTs. Outcomes of interests included blood lipids and lipoproteins, blood pressure, biomarkers of oxidative stress, inflammation and other cardiovascular health-related indicators. Random-effects models were used to provide a weighted mean difference (WMD) and/or Hedges' g for quantitative synthesis. This was coupled with subcategory analyses which stratified RCTs according to the form in which wolfberry was administered (whole wolfberry versus wolfberry extract). RESULTS From the 785 articles identified, 10 were selected for meta-analysis. Compared to the control, groups which consumed wolfberry showed a reduction in blood triglycerides [WMDpooled (95% confidence interval): - 0.14 (- 0.19, - 0.09) mmol/L] and increased blood high-density lipoprotein cholesterol [WMDpooled: 0.06 (0.02, 0.09) mmol/L]. Notably, effects for both triglycerides [WMDwhole: - 0.14 (- 0.19, - 0.09) mmol/L; WMDextract: - 0.07 (- 0.30, 0.16) mmol/L] and high-density lipoprotein cholesterol [WMDwhole: 0.06 (0.02, 0.09) mmol/L; WMDextract: 0.05 (- 0.02, 0.13) mmol/L] were more prominent after whole wolfberry interventions. Additionally, blood malondialdehyde equivalents were also significantly decreased in wolfberry consuming groups [Hedges' gpooled: - 1.45 (- 2.75, - 0.16)]. No changes were observed for the other lipids and lipoproteins as well as blood pressure. CONCLUSIONS Wolfberry consumption is effective in improving blood lipids and lipoproteins profile and lowering oxidative stress. This supports the incorporation of wolfberry, particularly as whole fruits, into dietary patterns targeted at improving cardiovascular health.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jasmine Hui Min Low
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
90
|
Zhao WH, Zhang YD, Shi YP. Visualizing the spatial distribution of endogenous molecules in wolfberry fruit at different development stages by matrix-assisted laser desorption/ionization mass spectrometry imaging. Talanta 2021; 234:122687. [PMID: 34364486 DOI: 10.1016/j.talanta.2021.122687] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Wolfberry fruit has been attracting attention for centuries in Asian countries as a traditional herbal medicine and valuable nourishing tonic. Revealing the spatial distribution changes of important endogenous molecules during plant development is of great significance for investigating the physiological roles, nutritional and potential functional values of phytochemicals in wolfberry fruit. However, their spatial distribution information during fruit development has not been extensively explored due to the lack of efficient analytical techniques. In this work, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was performed to visualize the spatial distribution of the endogenous molecules during fruit development. From the mass spectrum imaging, the choline, betaine and citric acid were distributed evenly throughout the entire fruit at all development stages. The hexose was distributed in the endocarp and flesh tissue, while sucrose was located in the seeds. Additionally, several phenolic acids and flavonoids were accumulated in the exocarp during fruit development, which indicated that they seemingly played protective roles in wolfberry fruit growth progress against abiotic and biotic stress. From the collected data, we found that the signal intensities of citric acid were decreased, while choline, betaine, hexose and sucrose were increased with fruit development. These results indicate that MALDI-MSI may become a favorable tool for studying of the spatial distribution and effective use of endogenous molecules, which provide a simple and intuitive way for authenticity identification, classification of drug food homologous foods and further understanding the physiological roles of endogenous molecules.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, PR China.
| |
Collapse
|
91
|
Chai T, Zhang WH, Jiao H, Qiang Y. Hydroxycinnamic Acid Amide Dimers from Goji Berry and Their Potential Anti-AD Activity. Chem Biodivers 2021; 18:e2100436. [PMID: 34664781 DOI: 10.1002/cbdv.202100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
Three undescribed hydroxycinnamic acid amide dimers 1-3 were isolated and identified from an extract of Goji berry. Their molecular structures were elucidated based on NMR, MS, and IR spectra analysis. Compounds 1-3 were hydroxycinnamic acid amide dimers, which possess a cyclic butane moiety formed by head-to-head connection. These compounds at 25 μM showed the disaggregation potency on the copper-mediated Aβ1-42 aggregation ranging from 27.3±3.2 to 31.0±2.9 %. This study provides new information on the antiaging traditional usage of goji berry.
Collapse
Affiliation(s)
- Tian Chai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wen-Han Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hui Jiao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yin Qiang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
92
|
Zhao X, Zhang X, Liu J, Li D, Tao Y, Tian Y, Li P, Sun S, Liu D. Identification of key enzymes involved in the accumulation of carotenoids during fruit ripening of
Lycium barbarum
L. by a proteomic approach. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaolu Zhao
- School of Food & Wine Ningxia University Yinchuan 750021 China
| | - Xikang Zhang
- School of Agriculture Ningxia University Yinchuan 750021 China
| | - Jun Liu
- School of Agriculture Ningxia University Yinchuan 750021 China
| | - Dongdong Li
- School of Agriculture Ningxia University Yinchuan 750021 China
| | - Yingmei Tao
- School of Agriculture Ningxia University Yinchuan 750021 China
| | - Yutan Tian
- School of Food & Wine Ningxia University Yinchuan 750021 China
| | - Peipei Li
- School of Food & Wine Ningxia University Yinchuan 750021 China
| | - Shaoyi Sun
- School of Food & Wine Ningxia University Yinchuan 750021 China
| | - Dunhua Liu
- School of Food & Wine Ningxia University Yinchuan 750021 China
- School of Agriculture Ningxia University Yinchuan 750021 China
| |
Collapse
|
93
|
Parameter Optimization of Vibrating and Comb-Brushing Harvesting of Lycium barbarum L. Based on FEM and RSM. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current mechanical harvesting methods of Lycium barbarum L. are labor intensive and cause too much damage, but vibrating and comb-brushing harvesting can increase the efficiency while minimizing the damage. However, optimizing the main factors and their parameter values of vibrating and comb-brushing harvesting is challenging. To achieve the high-efficiency and low-damage harvesting of L. barbarum, firstly, the mechanical models of the materials used in the experiments were established based on the physical tests. Then, the vibrating and comb-brushing harvesting simulations were conducted based on FEM to acquire the ranges of the parameter values. The effects of the rotating speed, material, and amplitude on the harvesting rate of ripe fruit and harvesting rate of unripe fruit, as well as the damage rate of ripe fruit were determined based on RSM. Finally, the optimized parameters were obtained and verified using the field experiments. The field experiments showed that the harvesting rate of ripe fruit was 85.8%, the harvesting rate of unripe fruit was 10.5%, and the damage rate of ripe fruit was 9.7%. The findings provided the optimal parameter values, which were a design basis for the vibrating and comb-brushing harvesters of L. barbarum.
Collapse
|
94
|
Carotenoid Contents of Lycium barbarum: A Novel QAMS Analyses, Geographical Origins Discriminant Evaluation, and Storage Stability Assessment. Molecules 2021; 26:molecules26175374. [PMID: 34500806 PMCID: PMC8433794 DOI: 10.3390/molecules26175374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Given the standard substances of zeaxanthin and its homologues obtained from Lycium barbarum L. (LB) are extremely scarce and unstable, a novel quantitative analysis of carotenoids by single marker method, named QAMS, was established. Four carotenoids including lutein, zeaxanthin, β-carotene, and zeaxanthin dipalmitate were determined simultaneously by employing trans-β-apo-8′-carotenal, a carotenoid component which did not exist in LB, as standard reference. Meanwhile, β-carotene, another carotenoid constituent which existed in LB, was determined as contrast. The QAMS methods were fully verified and exhibited low standard method difference with the external standard method (ESM), evidenced by the contents of four carotenoids in 34 batches of LB samples determined using ESM and QAMS methods, respectively. HCA, PCA, and OPLS-DA analysis disclosed that LB samples could be clearly differentiated into two groups: one contained LB samples collected from Ningxia and Gansu; the other was from Qinghai, which was directly related to the different geographical location. Once exposed under high humidity (RH 75 ± 5%) at a high temperature (45 ± 5 °C) as compared with ambient temperature (25 ± 5 °C), from day 0 to day 28, zeaxanthin dipalmitate content was significantly decreased, and ultimately, all the decrease rates reached about 80%, regardless of the storage condition. Our results provide a good basis for improving the quality control of LB.
Collapse
|
95
|
Nutritional Profile and Potential Health Benefits of Super Foods: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13169240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advancement within the food and nutrition sector has resulted in the development of a special category of food, particularly referred to as “superfoods”. Superfoods are special kind of foods capable of exhibiting different positive effects involving prevention of different ailments, provide impetus to the immune system, and essential macro- and micro-nutrients in ample quantities. Nowadays, these are gaining considerable attention due to the increased health consciousness of consumers. In contrast to their exceptional health or even medicinal benefits, which are based on their long history of use, the concept of superfoods is still little understood. The category of superfoods mainly comprises different types of fruits, vegetables, grains, etc. This review sheds light on the nutritional composition as well as the possible intervention in the prevention of various chronic ailments of some significant superfoods. This manuscript could help consumers to use superfoods as part of their diet more often and very effectively.
Collapse
|
96
|
Yao R, Heinrich M, Zhao X, Wang Q, Wei J, Xiao P. What's the choice for goji: Lycium barbarum L. or L. chinense Mill.? JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114185. [PMID: 33964363 DOI: 10.1016/j.jep.2021.114185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For over one millennium, goji berries have been used traditionally as food and medicine in eastern Asia. In recent decades, it has become increasingly popular globally. However, the biocultural development of goji is poorly known. The botanical origin of goji is controversial: in many but not all modern regional or international quality standards, L. barbarum is accepted exclusively as the botanical origin of goji. AIM OF THE STUDY Focusing on historical, biogeographical, botanical, phytochemical and pharmacological data, the overarching aim is to understand the biological origin of goji's historical uses, as well as whether the two species can be used interchangeably. MATERIALS AND METHODS The taxonomic literature on L. barbarum and L. chinense were analysed, followed by a study of botanical specimens and fieldwork. Historical herbals and gazetteers were employed to define the historical producing areas and medical properties of goji. An identification of the species used in history was carried out. In a final step the phytochemical and pharmacological literature on the species was compared. RESULTS AND DISCUSSION Due to their morphological similarity and different accessibility, fruits of both L. barbarum and L. chinense have been used interchangeably as food and medicine at least since 682 CE. While the fruit of L. barbarum was recognized to be superior in quality, the fruit of L. chinense was commonly used as an equivalent because of its easier accessibility. Cultivation of L. barbarum in China since 1960s improved its availability, which likely lead to its exclusive use as source of goji in China. The long-term safe use with no reported major safety concerns supports that these two species both are useful sources for medicinal Lycium. CONCLUSIONS Medicinal plants had been used traditionally long before they were named in scientific nomenclature system. Therefore, the understanding of traditional herbal knowledge and the adequate use of those traditional medicines require a reliable identification based on archival records. This study developed an approach for the identification of species used historically, with an integrated analysis of specimens, historical herbals, and national gazetteers. Additionally, their different chemical profiles and pharmacological activities indicate that they should not be used interchangeably. Further scientific evidence is required for their safe and effective use.
Collapse
Affiliation(s)
- Ruyu Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Michael Heinrich
- Research Group 'Pharmacognosy and Phytotherapy', UCL School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N1AX, United Kingdom; 'Graduate Institute of Integrated Medicine, College of Chinese Medicine', and 'Chinese Medicine Research Center', China Medical University, Taichung, 406040, Taiwan
| | - Xinning Zhao
- Farmers' Daily, Huixin West Street 15, Beijing, 100029, China
| | - Qiuling Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
97
|
Encapsulation of Polyphenols from Lycium barbarum Leaves into Liposomes as a Strategy to Improve Their Delivery. NANOMATERIALS 2021; 11:nano11081938. [PMID: 34443768 PMCID: PMC8398605 DOI: 10.3390/nano11081938] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022]
Abstract
This study is focused on the encapsulation of polyphenols from Lycium barbarum leaves into liposomes as a strategy to improve their delivery. Liposomes loaded with Lycium barbarum leaves extract were obtained and characterized for particle size, polydispersity, entrapment efficiency, and stability. Liposomes presented entrapment efficiency higher than 75%, nanometric particle size, narrow polydispersity, and good stability over three months at 4 °C. The liposomes containing Lycium barbarum offered a slower release of polyphenols with attenuated burst effect compared with the dissolution of free Lycium barbarum extract in phosphate buffer solution at pH 7.4. Moreover, an in vitro pretreatment of 24 h with loaded liposomes showed a cytoprotective effect against H2O2-induced cytotoxicity on L-929 mouse fibroblasts cells. These preliminary findings imply that liposomes could be successfully employed as carriers for polyphenols in pharmaceutical applications.
Collapse
|
98
|
Wang P, Wang J, Zhang H, Wang C, Zhao L, Huang T, Qing K. Chemical Composition, Crystal Morphology, and Key Gene Expression of the Cuticular Waxes of Goji ( Lycium barbarum L.) Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7874-7883. [PMID: 34251203 DOI: 10.1021/acs.jafc.1c02009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cuticular wax of fruit is closely related to quality, storability, and pathogen susceptibility after harvest. However, little is known about the cuticular wax of goji berry (Lycium barbarum L.) cultivars. In the present study, the chemical composition, crystal structures, and expression levels of associated genes of the cuticular wax of six goji cultivars were investigated. We detected 70 epicuticular wax compounds in six goji cultivars. Among them, fatty acids, alkanes, and primary alcohols were the major components of the cuticular wax of goji berries, which were related to the formation of irregular lamellar crystal structures. The terpenoid compounds in the cuticular wax of goji berries were highly resistant to Alternaria rot. Moreover, the CER1, CER6, LACS1, MAH1, LTP4, ABC11, MYB96, and WIN1 genes in goji berries might be closely related to wax synthesis. These results provide valuable information for breeding and screening goji cultivars suitable for postharvest storage.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Junjie Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Huaiyu Zhang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Cong Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Lunaike Zhao
- Key Laboratory of Storage and Processing of Plant Agro-Products, College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Ting Huang
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Ken Qing
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
99
|
Hao Z, Li Z, Huo J, Chu Y, Li J, Yu X, Liu F, Yin P. Effects of Chinese wolfberry and astragalus extracts on growth performance, pork quality, and unsaturated fatty acid metabolism regulation in Tibetan fragrant pigs. Anim Sci J 2021; 92:e13581. [PMID: 34236125 DOI: 10.1111/asj.13581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022]
Abstract
We studied the effects of wolfberry and astragalus extract on the growth performance, carcass traits, and meat quality of Tibetan fragrant pigs, and we want to explain the mechanism of the difference from the level of RNA Seq. Twelve healthy 120-day-old Tibetan fragrant pigs weighing 35 ± 2 kg were divided randomly into two groups, each with six pigs. The control group was fed a basal diet, and the wolfberry and astragalus extract (WAE) group was fed a basal diet +1‰ of WAE. The experimental period was 90 days. Compared with the control group, the growth performance of the WAE group was significantly improved (p < .05), pork marble score significantly improved (p < .05), vitamin E content significantly increased (p < .05), unsaturated fatty acid content significantly increased (p < .05). A total of 256 differentially expressed genes were obtained by transcriptome sequencing, among which 114 were up-regulated and 142 were down-regulated. GO analysis showed that the differentially expressed genes were related to biological functions, such as monounsaturated fatty acid biosynthesis, fatty acid metabolism, lipoprotein decomposition, and lipase activity. Pathway analysis showed that these differentially expressed genes were mainly involved in unsaturated fatty acid biosynthesis regulation, glycerin metabolism, and lipopolysaccharide regulation in fat. WAE improved Tibetan fragrant pigs growth performance. By intervening in key genes related to fatty acid metabolism, the unsaturated fatty acid contents in pork were regulated, which improved the nutritional value of the pork.
Collapse
Affiliation(s)
- Zhuang Hao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zhen Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jinjin Huo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yaocheng Chu
- Animal Science and Technology College, Hebei North University, Zhangjiakou, China
| | - Jiandong Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaohong Yu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Fenghua Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Peng Yin
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
100
|
Andoni E, Curone G, Agradi S, Barbato O, Menchetti L, Vigo D, Zelli R, Cotozzolo E, Ceccarini MR, Faustini M, Quattrone A, Castrica M, Brecchia G. Effect of Goji Berry ( Lycium barbarum) Supplementation on Reproductive Performance of Rabbit Does. Animals (Basel) 2021; 11:ani11061672. [PMID: 34205213 PMCID: PMC8227310 DOI: 10.3390/ani11061672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Infectious diseases represent serious problems for the reproductive performance of livestock animals because they negatively affect not only the welfare of the animals, but also the profitability of the farm. Moreover, the European Community continues to promote the reduction of the use of antibiotics and hormones in animal breeding. In this context, it is necessary to find new nutritional approaches to reduce the negative energy balance, and at the same time, to reinforce the immune system of the animals. In this research, the effect of goji berry supplementation on the reproductive activity and productive performance of rabbits is evaluated. Lycium barbarum fruit is considered a nutraceutical natural product containing various biologically active substances that show health benefits for both humans and animals. In particular, the berry can modulate hormones and metabolites involved in energy balance and reproduction, stimulate and balance the immune system activity, contributing to the defense of the organism against pathogens. Our results suggest that the integration with goji berry in the rabbit diet at 1% affects the reproductive activity, influencing the pattern secretion of luteinizing hormone (LH) and estrogens, as well as the sexual receptivity. Moreover, the fruit induced a higher milk production, improving the productive performance of young rabbits. Abstract Goji berry shows a wide range of beneficial properties in human health, but only a few studies evaluated its effects in livestock animals. The objective of this research was to assess the effects of goji berry supplementation on the hormonal profile, productive, and reproductive performance of does. Two months before artificial insemination, 105 nulliparous does were randomly divided into three groups (n = 35) based on the dietary treatment: commercial diet (C), or a diet supplemented with either 1% (G1), or 3% (G3) of goji berry, respectively. The results showed that receptivity was higher in G1 than in the C group (p < 0.05). Trends toward significance for differences between the G1 and G3 groups in marginal means of LH concentrations (p = 0.059), and between G1 and C in LH AUC values (p = 0.078), were evidenced. Estrogen concentrations showed a more fluctuating trend but a significant interaction effect (p < 0.001). The G1 group showed higher litter weight than C at birth (p = 0.008) and weaning (p < 0.001), as well as higher litter size at weaning (p = 0.020). The G1 group also exhibited the highest mean milk production (p < 0.01). In conclusion, goji berry influenced reproductive and productive performance, probably via modulating hormonal patterns and milk production in rabbits. However, further studies are needed to validate these preliminary results.
Collapse
Affiliation(s)
- Egon Andoni
- Faculty of Veterinary Medicine, Agricultural University of Albania, 1029 Kamez, Albania;
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milano, 26900 Lodi, Italy; (G.C.); (S.A.); (D.V.); (M.F.); (G.B.)
| | - Stella Agradi
- Department of Veterinary Medicine, University of Milano, 26900 Lodi, Italy; (G.C.); (S.A.); (D.V.); (M.F.); (G.B.)
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, 06121 Perugia, Italy; (O.B.); (R.Z.); (A.Q.)
| | - Laura Menchetti
- Department of Agricultural and Food Sciences, University of Bologna, 40137 Bologna, Italy
- Correspondence: ; Tel.: +39-02-503-34583
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milano, 26900 Lodi, Italy; (G.C.); (S.A.); (D.V.); (M.F.); (G.B.)
| | - Riccardo Zelli
- Department of Veterinary Medicine, University of Perugia, 06121 Perugia, Italy; (O.B.); (R.Z.); (A.Q.)
| | - Elisa Cotozzolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy;
| | | | - Massimo Faustini
- Department of Veterinary Medicine, University of Milano, 26900 Lodi, Italy; (G.C.); (S.A.); (D.V.); (M.F.); (G.B.)
| | - Alda Quattrone
- Department of Veterinary Medicine, University of Perugia, 06121 Perugia, Italy; (O.B.); (R.Z.); (A.Q.)
| | - Marta Castrica
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milano, 20133 Milan, Italy;
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, 26900 Lodi, Italy; (G.C.); (S.A.); (D.V.); (M.F.); (G.B.)
| |
Collapse
|