51
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
52
|
Nguyen AM, Zhou J, Sicairos B, Sonney S, Du Y. Upregulation of CD73 Confers Acquired Radioresistance and is Required for Maintaining Irradiation-selected Pancreatic Cancer Cells in a Mesenchymal State. Mol Cell Proteomics 2020; 19:375-389. [PMID: 31879272 PMCID: PMC7000112 DOI: 10.1074/mcp.ra119.001779] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms underlying exceptional radioresistance in pancreatic cancer remain elusive. In the present study, we established a stable radioresistant pancreatic cancer cell line MIA PaCa-2-R by exposing the parental MIA PaCa-2 cells to fractionated ionizing radiation (IR). Systematic proteomics and bioinformatics analysis of protein expression in MIA PaCa-2 and MIA PaCa-2-R cells revealed that several growth factor-/cytokine-mediated pathways, including the OSM/STAT3, PI3K/AKT, and MAPK/ERK pathways, were activated in the radioresistant cells, leading to inhibition of apoptosis and increased epithelial-mesenchymal plasticity. In addition, the radioresistant cells exhibited enhanced capabilities of DNA repair and antioxidant defense compared with the parental cells. We focused functional analysis on one of the most up-regulated proteins in the radioresistant cells, ecto-5'-nucleotidase (CD73), which is a cell surface protein that is overexpressed in different types of cancer. Ectopic overexpression of CD73 in the parental cells resulted in radioresistance and conferred resistance to IR-induced apoptosis. Knockdown of CD73 re-sensitized the radioresistant cells to IR and IR-induced apoptosis. The effect of CD73 on radioresistance and apoptosis is independent of the enzymatic activity of CD73. Further studies demonstrate that CD73 up-regulation promotes Ser-136 phosphorylation of the proapoptotic protein BAD and is required for maintaining the radioresistant cells in a mesenchymal state. Our findings suggest that expression alterations in the IR-selected pancreatic cancer cells result in hyperactivation of the growth factor/cytokine signaling that promotes epithelial-mesenchymal plasticity and enhancement of DNA repair. Our results also suggest that CD73, potentially a novel downstream factor of the enhanced growth factor/cytokine signaling, confers acquired radioresistance by inactivating proapoptotic protein BAD via phosphorylation of BAD at Ser-136 and by maintaining the radioresistant pancreatic cancer cells in a mesenchymal state.
Collapse
Affiliation(s)
- Anna M Nguyen
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Jianhong Zhou
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Brihget Sicairos
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Sangeetha Sonney
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Yuchun Du
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas.
| |
Collapse
|
53
|
Ashrafizadeh M, Mohammadinejad R, Samarghandian S, Yaribeygi H, Johnston TP, Sahebkar A. Anti-Tumor Effects of Osthole on Different Malignant Tissues: A Review of Molecular Mechanisms. Anticancer Agents Med Chem 2020; 20:918-931. [PMID: 32108003 DOI: 10.2174/1871520620666200228110704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/09/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Cancer management and/or treatment require a comprehensive understanding of the molecular and signaling pathways involved. Recently, much attention has been directed to these molecular and signaling pathways, and it has been suggested that a number of biomolecules/players involved in such pathways, such as PI3K/Akt, NF-kB, STAT, and Nrf2 contribute to the progression, invasion, proliferation, and metastasis of malignant cells. Synthetic anti-tumor agents and chemotherapeutic drugs have been a mainstay in cancer therapy and are widely used to suppress the progression and, hopefully, halt the proliferation of malignant cells. However, these agents have some undesirable side-effects and, therefore, naturally-occurring compounds with high potency and fewer side-effects are now of great interest. Osthole is a plant-derived chemical compound that can inhibit the proliferation of malignant cells and provide potent anti-cancer effects in various tissues. Therefore, in this review, we presented the main findings concerning the potential anti-tumor effects of osthole and its derivatives and described possible molecular mechanisms by which osthole may suppress malignant cell proliferation in different tissues.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, United States
| | | |
Collapse
|
54
|
Hasan Abdali M, Afshar S, Sedighi Pashaki A, Dastan D, Gholami MH, Mahmoudi R, Saidijam M. Investigating the effect of radiosensitizer for Ursolic Acid and Kamolonol Acetate on HCT-116 cell line. Bioorg Med Chem 2020; 28:115152. [PMID: 31771799 DOI: 10.1016/j.bmc.2019.115152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/10/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study was evaluating the cytotoxic and radiosensitizing effects of Ursolic Acid (UA) and Kamolonol Acetate (KA) on HCT116 cell line and finally investigating the functional role of NF-κB and CCND1 genes in the radiosensitizing activity of UA and KA. MATERIALS AND METHOD The cytotoxic effects of UA and KA by MTT assay was evaluated on HCT-116. Clonogenic assay was performed to investigate of radiosensitizing effects of UA and KA on HCT116. To assessment the expression levels of NF-κB and CCND1 genes, real-time PCR method was used. RESULTS The results of MTT assay revealed that UA and KA have cytotoxic effects on HCT116 cell line. According to clonogenic assay, survival fraction of treated cells with UA and KA has been decreased compared to the survival fraction of untreated cells. UA and KA lead to the decrease in the expression level of NF-κB. Synergistic effect of radiosensitizing agents with radiation was only approved for UA and 2 Gy of radiation. CONCLUSION Based on our study, UA and KA have cytotoxic effects on HCT116 cell line. Furthermore, UA may lead to radiosensitization of human colorectal tumor cells by NF-κB1 and CCND1signaling pathways.
Collapse
Affiliation(s)
- Maede Hasan Abdali
- Department of Medical Physics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
55
|
Wang E, Sorolla A. Sensitizing endometrial cancer to ionizing radiation by multi-tyrosine kinase inhibition. J Gynecol Oncol 2019; 31:e29. [PMID: 31912683 PMCID: PMC7189072 DOI: 10.3802/jgo.2020.31.e29] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 02/03/2023] Open
Abstract
Objective Endometrial carcinoma is the most frequent gynecological cancer. About 15% of these cancers are of high risk and radiotherapy still remains the most suitable treatment. In this context, agents able to promote radiosensitization are of great interest. Here, we describe for the first time the radiosensitization ability of sunitinib in endometrial carcinoma. Methods Four endometrial carcinoma cell lines were used for the study. The activation of apoptosis signalling pathways and tyrosine kinase receptors were analysed by Western blot, luciferase assays and Immunoprecipitation. Radiosensitization effects were assessed using clonogenic assays. p65 and phosphatase and tensin homolog (PTEN) were upregulated by lentiviral transduction. Results We discovered that ionizing radiation activates the pro-oncogenic proteins and signalling pathways KIT, protein kinase B (AKT), and nuclear factor kappa B (NF-κB) and these activations were abrogated by sunitinib, resulting in a radiosensitization effect. We found out that AKT pathway is greatly involved in this process as PTEN restoration in the PTEN-deficient cell line RL95-2 is sufficient to inhibit AKT, rendering these cells more susceptible to ionizing radiation and sunitinib-induced radiosensitization. In Ishikawa 3-H-12 cells, radiosensitization effects and inhibition of AKT were achieved by PTEN restoration plus treatment with the phosphoinositide-3-kinase inhibitor LY294002. This suggests that endometrial tumors could have different sensitivity degree to radiotherapy and susceptibility to sunitinib-induced radiosensitization depending on their AKT activation levels. Conclusions Our results provide the rationale of using sunitinib as neoadjuvant treatment prior radiotherapy which could be a starting point for the implementation of sunitinib and radiotherapy in the clinic for the treatment of recalcitrant endometrial cancers.
Collapse
Affiliation(s)
- Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
56
|
Yuan BY, Chen YH, Wu ZF, Zhuang Y, Chen GW, Zhang L, Zhang HG, Cheng JCH, Lin Q, Zeng ZC. MicroRNA-146a-5p Attenuates Fibrosis-related Molecules in Irradiated and TGF-beta1-Treated Human Hepatic Stellate Cells by Regulating PTPRA-SRC Signaling. Radiat Res 2019; 192:621-629. [PMID: 31560641 DOI: 10.1667/rr15401.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bao-Ying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Han Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Feng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gen-Wen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Ge Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Li Q, Zong Y, Li K, Jie X, Hong J, Zhou X, Wu B, Li Z, Zhang S, Wu G, Meng R. Involvement of endothelial CK2 in the radiation induced perivascular resistant niche (PVRN) and the induction of radioresistance for non-small cell lung cancer (NSCLC) cells. Biol Res 2019; 52:22. [PMID: 30992075 PMCID: PMC6466699 DOI: 10.1186/s40659-019-0231-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/06/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tumor microenvironment (TME) plays a vital role in determining the outcomes of radiotherapy. As an important component of TME, vascular endothelial cells are involved in the perivascular resistance niche (PVRN), which is formed by inflammation or cytokine production induced by ionizing radiation (IR). Protein kinase CK2 is a constitutively active serine/threonine kinase which plays a vital role in cell proliferation and inflammation. In this study, we investigated the potential role of CK2 in PVRN after IR exposure. RESULT Specific CK2 inhibitors, Quinalizarin and CX-4945, were employed to effectively suppressed the kinase activity of CK2 in human umbilical vein endothelial cells (HUVECs) without affecting their viability. Results showing that conditioned medium from IR-exposed HUVECs increased cell viability of A549 and H460 cells, and the pretreatment of CK2 inhibitors slowed down such increment. The secretion of IL-8 and IL-6 in HUVECs was induced after exposure with IR, but significantly inhibited by the addition of CK2 inhibitors. Furthermore, IR exposure elevated the nuclear phosphorylated factor-κB (NF-κB) p65 expression in HUVECs, which was a master factor regulating cytokine production. But when pretreated with CK2 inhibitors, such elevation was significantly suppressed. CONCLUSION This study indicated that protein kinase CK2 is involved in the key process of the IR induced perivascular resistant niche, namely cytokine production, by endothelial cells, which finally led to radioresistance of non-small cell lung cancer cells. Thus, the inhibition of CK2 may be a promising way to improve the outcomes of radiation in non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Li
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaxin Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoshu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
58
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF‐κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 2019; 234:17187-17204. [DOI: 10.1002/jcp.28504] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department School of Paramedical Sciences, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology Faculty of Paramedical Sciences, Kashan University of Medical Sciences Kashan Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center Faculty of Pharmacy, Mazandaran University of Medical Sciences Sari Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology College of Medicine, University of Misan Misan Iraq
| | - Ahmed E. Musa
- Department of Medical Physics Tehran University of Medical Sciences (International Campus) Tehran Iran
| |
Collapse
|
59
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
60
|
Ozpiskin OM, Zhang L, Li JJ. Immune targets in the tumor microenvironment treated by radiotherapy. Am J Cancer Res 2019; 9:1215-1231. [PMID: 30867826 PMCID: PMC6401500 DOI: 10.7150/thno.32648] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT), the major anti-cancer modality for more than half of cancer patients after diagnosis, has the advantage of local tumor control with relatively less systematic side effects comparing to chemotherapy. However, the efficacy of RT is limited by acquired tumor resistance leading to the risks of relapse and metastasis. To further enhance the efficacy of RT, with the renaissances of targeted immunotherapy (TIT), increasing interests are raised on RT combined with TIT including cancer vaccines, T-cell therapy, and antibody-based immune checkpoint blockers (ICB) such as anti-CTLA-4 and anti-PD1/PD-L1. In achieving a significant synergy between RT and TIT, the dynamics of radiation-induced response in tumor cells and stromal cells, especially the cross-talk between tumor cells and immune cells in the irradiated tumor microenvironment (ITME) as highlighted in recent literature are to be elucidated. The abscopal effect refereeing the RT-induced priming function outside of ITME could be compromised by the immune-suppressive factors such as CD47 and PD-L1 on tumor cells and Treg induced or enhanced in the ITME. Cell surface receptors temporally or permanently induced and bioactive elements released from dead cells could serve antigenic source (radiation-associated antigenic proteins, RAAPs) to the host and have functions in immune regulation on the tumor. This review is attempted to summarize a cluster of factors that are inducible by radiation and targetable by antibodies, or have potential to be immune regulators to synergize tumor control with RT. Further characterization of immune regulators in ITME will deepen our understanding of the interplay among immune regulators in ITME and discover new effective targets for the combined modality with RT and TIT.
Collapse
|
61
|
Murad LB, da Silva Nogueira P, de Araújo WM, Sousa-Squiavinato ACM, Rocha MR, de Souza WF, de-Freitas-Junior J, Barcellos-de-Souza P, Bastos LG, Morgado-Díaz JA. Docosahexaenoic acid promotes cell cycle arrest and decreases proliferation through WNT/β-catenin modulation in colorectal cancer cells exposed to γ-radiation. Biofactors 2019; 45:24-34. [PMID: 30521071 DOI: 10.1002/biof.1455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
The effects of radiation are known to be potentiated by N-3 polyunsaturated fatty acids, which modulate several signaling pathways, but the molecular mechanisms through which these fatty acids enhance the anticancer effects of irradiation in colorectal cancer (CRC) treatment remain poorly elucidated. Here, we aimed to ascertain whether the fatty acid docosahexaenoic acid (DHA) exerts a modulating effect on the response elicited by radiation treatment (RT). Two CRC cell lines, Caco-2 and HT-29, were exposed to RT, DHA, or both (DHA + RT) for various times, and then cell viability, proliferation, and clonogenicity were assessed. Moreover, cell cycle, apoptosis, and necrosis were analyzed using flow cytometry, and the involvement of WNT/β-catenin signaling was investigated by immunofluorescence to determine nuclear β-catenin, GSK3β phosphorylation status, and TCF/LEF-activity reporter. DHA and RT applied separately diminished the viability of both HT-29 and Caco-2 cells, and DHA + RT caused a further reduction in proliferation mainly in HT-29 cells, particularly in terms of colony formation. Concomitantly, our results verified cell cycle arrest in G0/G1 phase, a reduction of cyclin D1 expression, and a decrease in GSK3β phosphorylation after the combined treatment. Furthermore, immunofluorescence quantification revealed that nuclear β-catenin was increased in RT-exposed cells, but this effect was abrogated in cells exposed to DHA + RT, and the results of TCF/LEF-activity assays confirmed that DHA attenuated the increase in nuclear β-catenin activity induced by irradiation. Our finding shows that DHA applied in combination with RT enhanced the antitumor effects of irradiation on CRC cells, and that the underlying mechanism involved the WNT/β-catenin pathway. © 2018 BioFactors, 45(1):24-34, 2019.
Collapse
Affiliation(s)
- Leonardo Borges Murad
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Perôny da Silva Nogueira
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Wallace Martins de Araújo
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | | | - Murilo Ramos Rocha
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | | | - Júlio de-Freitas-Junior
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Pedro Barcellos-de-Souza
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Lilian Gonçalves Bastos
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Jose Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
62
|
Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem Cell Biol 2018; 107:38-52. [PMID: 30529656 DOI: 10.1016/j.biocel.2018.12.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Breast cancer remains to be a dreadful disease even with several advancements in radiation and chemotherapies, owing to the drug resistance and tumor relapse caused by breast cancer stem cells. Cancer stem cells are a minute population of cells of solid tumors which show self-renewal and differentiation properties as well as tumorigenic potential. Several signaling pathways including Notch, Hippo, Wnt and Hedgehog and tumor-stroma exchanges play a critical role in the self-renewal and differentiation of cancer stem cells in breast cancer. Cancer stem cells can grow anchorage-independent manner so they disseminate to different parts of the body to form secondary tumors. Cancer stem cells promote angiogenesis by dedifferentiating to endothelial cells as well as secreting proangiogenic and angiogenic factors. Moreover, multidrug resistance genes and drug efflux transporters expressed in breast cancer stem cells confer resistance to various conventional chemotherapeutic drugs. Indeed, these therapies are recognised to enhance the percent of cancer stem cell population in tumors leading to cancer relapse with increased aggressiveness. Hence, devising the therapeutic interventions to target cancer stem cells would be useful in increasing patients' survival rates. In addition, targeting the self-renewal pathways and tumor-stromal cross-talk helps in eradicating this population. Reversal of the cancer stem cell-mediated drug resistance would increase the sensitivity to various conventional drugs for the effective management of breast cancer. In this review, we have discussed the cancer stem cell origin and their involvement in angiogenesis, metastasis and therapy-resistance. We have also summarized different therapeutic approaches to eradicate the same for the successful treatment of breast cancer.
Collapse
Affiliation(s)
- Ramesh Butti
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | | | - Totakura V S Kumar
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Pinaki Banerjee
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| | - Gopal C Kundu
- National Centre for Cell Science, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
63
|
Yu CC, Chen CA, Fu SL, Lin HY, Lee MS, Chiou WY, Su YC, Hung SK. Andrographolide enhances the anti-metastatic effect of radiation in Ras-transformed cells via suppression of ERK-mediated MMP-2 activity. PLoS One 2018; 13:e0205666. [PMID: 30359388 PMCID: PMC6201887 DOI: 10.1371/journal.pone.0205666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/30/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Activation of Ras oncogene in human tumors is associated with radiation-associated metastatic potential. Although ionizing radiation is one important method of cancer treatments, it has been shown to enhance matrix metalloproteinases (MMPs) activity and facilitates a more aggressive cancer phenotype. Our previous studies showed that andrographolide with lower dose rates of radiation could inhibit RAS-transformed cancer metastasis in vivo; however, the molecular mechanisms are not yet clear. In this study, we aimed to explore the anti-metastatic effect of andrographolide combined with radiation on Ras-transformed cells. METHODS RAS-transformed cells were treated with andrographolide in the presence or absence of irradiation (2-4 Gy) or angiotensin II to examine cell invasion. In vivo tumorigenesis assays were also performed. The MMP-2 activity was detected by using Gelatin zymography. Signal transduction of NF-κB subunit, p65 and phosphor-ERK 1/2, were examined by using Western blotting analysis. RESULTS Treatment with andrographolide inhibited migration of Ras-transformed cells. Andrographolide treatment with radiation significantly inhibited cancer metastasis in vivo. We found that andrographolide exhibited anti-migration and anti-invasive ability against cancer metastasis via inhibition of MMP2 activity rather than affected MMP-9 and EMT. In addition, combined andrographolide with radiation appeared to be more effective in reducing MMP-2 expression, and this effect was accompanied by suppression of ERK activation that inhibits cancer cell migration and invasion. CONCLUSIONS These findings suggest that andrographolide enhances the anti-metastatic effect of radiation in Ras-transformed cells via suppression of ERK-mediated MMP-2 activity.
Collapse
Affiliation(s)
- Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
| | - Chien-An Chen
- Department of Radiation Oncology, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Yu-Chieh Su
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
64
|
Zhang Y, Xu Z, Ding J, Tan C, Hu W, Li Y, Huang W, Xu Y. HZ08 suppresses RelB-activated MnSOD expression and enhances Radiosensitivity of prostate Cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:174. [PMID: 30053873 PMCID: PMC6062957 DOI: 10.1186/s13046-018-0849-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022]
Abstract
Background The development of radioresistance is one of main causes for therapeutic failure of prostate cancer (PCa). The present study aims to investigate the function and the related mechanism by which HZ08 sensitizes radiotherapeutic efficiency to treat aggressive PCa cells. Methods PCa cells were pretreated with HZ08 (6,7-dimethoxy-1-(3,4-dimethoxy) benzyl-2-(N-n-octyl-N′-cyano) guanyl-1,2,3,4-tetrahydroisoquinoline) and followed by ionizing radiation (IR) treatment. Cytotoxicity in the treated cells was analyzed to assess the radiosensitization capacity of HZ08 by flow cytometry, MTT and colony survival assays. The cellular levels of reactive oxygen species (ROS) and oxygen consumption rates (OCR) were measured using specific ROS detection probes and a Seahorse XF96 Analyzer, respectively. RelB binding to the NF-κB intronic enhancer region of the human SOD2 gene was determined using a ChIP assay. The levels of phosphorylation of PI3K, Akt and IKKα were quantified and further confirmed using a PI3K inhibitor. Finally, the synergistic effect of HZ08 on radiosensitization of PCa cells was validated using a mouse xenograft tumor model. Results HZ08 enhanced radiosensitivity of PCa cells through increasing ROS and declining mitochondrial respiration due to suppression of mitochondrial antioxidant enzyme MnSOD. Mechanistically, HZ08 appeared to inhibit PI3K/Akt/IKKα signaling axis, resulting in transcriptional repression of MnSOD expression by preventing RelB nuclear translocation. Conclusions HZ08 can serve as a useful radiosensitizing agent to improve radiotherapy for treating aggressive PCa cells with high level of constitutive RelB. The present study suggests a promising approach for enhancing radiotherapeutic efficiency to treat advanced PCa by inhibiting antioxidant defense function. Electronic supplementary material The online version of this article (10.1186/s13046-018-0849-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, People's Republic of China
| | - Zhi Xu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, People's Republic of China
| | - Jiaji Ding
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, People's Republic of China
| | - Chunli Tan
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, People's Republic of China
| | - Weizi Hu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wenlong Huang
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yong Xu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
65
|
Conti S, Vexler A, Edry-Botzer L, Kalich-Philosoph L, Corn BW, Shtraus N, Meir Y, Hagoel L, Shtabsky A, Marmor S, Earon G, Lev-Ari S. Combined acetyl-11-keto-β-boswellic acid and radiation treatment inhibited glioblastoma tumor cells. PLoS One 2018; 13:e0198627. [PMID: 29969452 PMCID: PMC6029770 DOI: 10.1371/journal.pone.0198627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and most aggressive subtype of malignant gliomas. The current standard of care for newly diagnosed GBM patients involves maximal surgical debulking, followed by radiation therapy and temozolomide chemotherapy. Despite the advances in GBM therapy, its outcome remains poor with a median survival of less than two years. This poor outcome is partly due to the ability of GBM tumors to acquire adaptive resistance to therapy and in particular to radiation. One of the mechanisms contributing to GBM tumor progression and resistance is an aberrant activation of NF-ĸB, a family of inducible transcription factors that play a pivotal role in regulation of many immune, inflammatory and carcinogenic responses. Acetyl-11-keto-β-boswellic acid (AKBA) is a pentacyclic terpenoid extracted from the gum Ayurvedic therapeutic plant Boswellia serrata. AKBA is anti-inflammatory agent that exhibits potent cytotoxic activities against various types of tumors including GBM. One of the mechanisms underlying AKBA anti-tumor activity is its ability to modulate the NF-ĸB signaling pathway. The present study investigated in vitro and in vivo the effect of combining AKBA with ionizing radiation in the treatment of GBM and assessed AKBA anti-tumor activity and radio-enhancing potential. The effect of AKBA and/or radiation on the survival of cultured glioblastoma cancer cells was evaluated by XTT assay. The mode of interaction of treatments tested was calculated using CalcuSyn software. Inducing of apoptosis following AKBA treatment was evaluated using flow cytometry. The effect of combined treatment on the expression of PARP protein was analysed by Western blot assay. Ectopic (subcutaneous) GBM model in nude mice was used for the evaluation of the effect of combined treatment on tumor growth. Immunohistochemical analysis of formalin-fixed paraffin-embedded tumor sections was used to assess treatment-related changes in Ki-67, CD31, p53, Bcl-2 and NF-ĸB-inhibitor IĸB-α. AKBA treatment was found to inhibit the survival of all four tested cell lines in a dose dependent manner. The combined treatment resulted in a more significant inhibitory effect compared to the effect of treatment with radiation alone. A synergistic effect was detected in some of the tested cell lines. Flow cytometric analysis with Annexin V-FITC/PI double staining of AKBA treated cells indicated induction of apoptosis. AKBA apoptotic activity was also confirmed by PARP cleavage detected by Western blot analysis. The combined treatment suppressed tumor growth in vivo compared to no treatment and each treatment alone. Immunohistochemical analysis showed anti-angiogenic and anti-proliferative activity of AKBA in vivo. It also demonstrated a decrease in p53 nuclear staining and in Bcl-2 staining and an increase in IĸB-α staining following AKBA treatment both alone and in combination with radiotherapy. In this study, we demonstrated that AKBA exerts potent anti-proliferative and apoptotic activity, and significantly inhibits both the survival of glioblastoma cells in vitro and the growth of tumors generated by these cells. Combination of AKBA with radiotherapy was found to inhibit factors which involved in cell death regulation, tumor progression and radioresistence, therefore it may serve as a novel approach for GBM patients.
Collapse
Affiliation(s)
- Sefora Conti
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Akiva Vexler
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Liat Edry-Botzer
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lital Kalich-Philosoph
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Benjamin W. Corn
- Institute of Radiotherapy, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Natan Shtraus
- Institute of Radiotherapy, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yaron Meir
- Institute of Radiotherapy, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Hagoel
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alexander Shtabsky
- Pathology Department, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sylvia Marmor
- Pathology Department, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Earon
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shahar Lev-Ari
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
66
|
Che Y, Li J, Li Z, Li J, Wang S, Yan Y, Zou K, Zou L. Osthole enhances antitumor activity and irradiation sensitivity of cervical cancer cells by suppressing ATM/NF‑κB signaling. Oncol Rep 2018; 40:737-747. [PMID: 29989651 PMCID: PMC6072300 DOI: 10.3892/or.2018.6514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023] Open
Abstract
Osthole (7-methoxy-8-isopentenoxycoumarin) is an O-methylated coumarin, originally extracted from Chinese herbal medicine. It has been demonstrated that osthole has antitumor effects in various cancer cells in vitro. The present study assessed the effects of osthole on the regulation of cervical cancer cell viability, apoptosis, and radiation sensitization. HeLa, SiHa, C-33A and CaSki cervical cancer cell lines were cultured and treated with osthole and/or irradiation and then subjected to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide cell viability, colony formation, apoptosis, acridine orange/ethidium bromide fluorescence staining, wound-healing, Transwell migration and invasion, immunofluorescence, Comet and western blot assays. The data showed that osthole dose-dependently reduced cervical cancer cell viability, proliferation, and migration and invasion, but induced apoptosis. At the protein level, osthole affected the expression of cervical cancer cell epithelial-mesenchymal transition markers, which showed that the expression of E-cadherin was increased, whereas that of vimentin was decreased. Osthole treatment also sensitized cervical cancer cells to irradiation, showing increased DNA damage as assessed by the Comet assay, and inhibited nuclear factor-κB signaling. In conclusion, osthole is an herbal agent that may offer potential for used as an adjuvant treatment for cervical cancer.
Collapse
Affiliation(s)
- Yilin Che
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Zongjuan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Jing Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shuai Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Ying Yan
- Department of Radiotherapy Oncology, The General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, P.R. China
| | - Kun Zou
- Department of Radiotherapy Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lijuan Zou
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
67
|
Rajendra J, Datta KK, Ud Din Farooqee SB, Thorat R, Kumar K, Gardi N, Kaur E, Nair J, Salunkhe S, Patkar K, Desai S, Goda JS, Moiyadi A, Dutt A, Venkatraman P, Gowda H, Dutt S. Enhanced proteasomal activity is essential for long term survival and recurrence of innately radiation resistant residual glioblastoma cells. Oncotarget 2018; 9:27667-27681. [PMID: 29963228 PMCID: PMC6021241 DOI: 10.18632/oncotarget.25351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/25/2018] [Indexed: 02/05/2023] Open
Abstract
Therapy resistance and recurrence in Glioblastoma is due to the presence of residual radiation resistant cells. However, because of their inaccessibility from patient biopsies, the molecular mechanisms driving their survival remain unexplored. Residual Radiation Resistant (RR) and Relapse (R) cells were captured using cellular radiation resistant model generated from patient derived primary cultures and cell lines. iTRAQ based quantitative proteomics was performed to identify pathways unique to RR cells followed by in vitro and in vivo experiments showing their role in radio-resistance. 2720 proteins were identified across Parent (P), RR and R population with 824 and 874 differential proteins in RR and R cells. Unsupervised clustering showed proteasome pathway as the most significantly deregulated pathway in RR cells. Concordantly, the RR cells displayed enhanced expression and activity of proteasome subunits, which triggered NFkB signalling. Pharmacological inhibition of proteasome activity led to impeded NFkB transcriptional activity, radio-sensitization of RR cells in vitro, and significantly reduced capacity to form orthotopic tumours in vivo. We demonstrate that combination of proteasome inhibitor with radio-therapy abolish the inaccessible residual resistant cells thereby preventing GBM recurrence. Furthermore, we identified first proteomic signature of RR cells that can be exploited for GBM therapeutics.
Collapse
Affiliation(s)
- Jacinth Rajendra
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Keshava K. Datta
- 2 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sheikh Burhan Ud Din Farooqee
- 3 Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Rahul Thorat
- 5 Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Kiran Kumar
- 2 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Nilesh Gardi
- 4 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Ekjot Kaur
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Jyothi Nair
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Sameer Salunkhe
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Ketaki Patkar
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
| | - Sanket Desai
- 4 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Jayant Sastri Goda
- 8 Department of Radiation Oncology, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Aliasgar Moiyadi
- 6 Department of neurosurgery Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Amit Dutt
- 4 Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Prasanna Venkatraman
- 3 Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Harsha Gowda
- 2 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Shilpee Dutt
- 1 Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
- 7 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
68
|
Prack Mc Cormick B, Langle Y, Belgorosky D, Vanzulli S, Balarino N, Sandes E, Eiján AM. Flavonoid silybin improves the response to radiotherapy in invasive bladder cancer. J Cell Biochem 2018; 119:5402-5412. [PMID: 29363820 DOI: 10.1002/jcb.26693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/22/2018] [Indexed: 11/11/2022]
Abstract
Conservative treatment for invasive bladder cancer (BC) involves a complete transurethral tumor resection combined with chemotherapy (CT) and radiotherapy (RT). The major obstacles of chemo-radiotherapy are the addition of the toxicities of RT and CT, and the recurrence due to RT and CT resistances. The flavonoid Silybin (Sb) inhibits pathways involved in cell survival and resistance mechanisms, therefore the purpose of this paper was to study in vitro and in vivo, the ability of Sb to improve the response to RT, in two murine BC cell lines, with different levels of invasiveness, placing emphasis on radio-sensitivity, and pathways involved in radio-resistance and survival. In vitro, Sb radio-sensitized murine invasive cells through the inhibition of RT-induced NF-κB and PI3K pathways, and the increase of oxidative stress, while non-invasive cells did not show to be sensitized. In vivo, Sb improved RT-response and overall survival in invasive murine tumors. As Sb is already being tested in clinical trials for other urological cancers and it improves RT-response in invasive BC, these results could have translational relevance, supporting further research.
Collapse
Affiliation(s)
- Barbara Prack Mc Cormick
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área de Investigaciones, Ciudad de Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina.,Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de Suelos, Buenos Aires, Argentina
| | - Yanina Langle
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área de Investigaciones, Ciudad de Buenos Aires, Argentina
| | - Denise Belgorosky
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área de Investigaciones, Ciudad de Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - Silvia Vanzulli
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área de Investigaciones, Ciudad de Buenos Aires, Argentina.,Academia Nacional de Medicina, Ciudad de Buenos Aires, Argentina
| | - Natalia Balarino
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área de Investigaciones, Ciudad de Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - Eduardo Sandes
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área de Investigaciones, Ciudad de Buenos Aires, Argentina
| | - Ana M Eiján
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área de Investigaciones, Ciudad de Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| |
Collapse
|
69
|
Wagner VP, Martins MAT, Martins MD, Warner KA, Webber LP, Squarize CH, Nör JE, Castilho RM. Overcoming adaptive resistance in mucoepidermoid carcinoma through inhibition of the IKK-β/IκBα/NFκB axis. Oncotarget 2018; 7:73032-73044. [PMID: 27682876 PMCID: PMC5341961 DOI: 10.18632/oncotarget.12195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/15/2016] [Indexed: 01/22/2023] Open
Abstract
Patients with mucoepidermoid carcinoma (MEC) experience low survival rates and high morbidity following treatment, yet the intrinsic resistance of MEC cells to ionizing radiation (IR) and the mechanisms underlying acquired resistance remain unexplored. Herein, we demonstrated that low doses of IR intrinsically activated NFκB in resistant MEC cell lines. Moreover, resistance was significantly enhanced in IR-sensitive cell lines when NFκB pathway was stimulated. Pharmacological inhibition of the IKK-β/IκBα/NFκB axis, using a single dose of FDA-approved Emetine, led to a striking sensitization of MEC cells to IR and a reduction in cancer stem cells. We achieved a major step towards better understanding the basic mechanisms involved in IR-adaptive resistance in MEC cell lines and how to efficiently overcome this critical problem.
Collapse
Affiliation(s)
- Vivian P Wagner
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marco A T Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Manoela D Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kristy A Warner
- Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Liana P Webber
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Experimental Pathology Unit, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan Ann Arbor, MI, USA
| | - Jacques E Nör
- Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan Ann Arbor, MI, USA.,Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
70
|
Carbonic Anhydrase IX (CAIX), Cancer, and Radiation Responsiveness. Metabolites 2018; 8:metabo8010013. [PMID: 29439394 PMCID: PMC5874614 DOI: 10.3390/metabo8010013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
Carbonic anhydrase IX has been under intensive investigation as a therapeutic target in cancer. Studies demonstrate that this enzyme has a key role in pH regulation in cancer cells, allowing these cells to adapt to the adverse conditions of the tumour microenviroment. Novel CAIX inhibitors have shown efficacy in both in vitro and in vivo pre-clinical cancer models, adversely affecting cell viability, tumour formation, migration, invasion, and metastatic growth when used alone. In co-treatments, CAIX inhibitors may enhance the effects of anti-angiogenic drugs or chemotherapy agents. Research suggests that these inhibitors may also increase the response of tumours to radiotherapy. Although many of the anti-tumour effects of CAIX inhibition may be dependent on its role in pH regulation, recent work has shown that CAIX interacts with several of the signalling pathways involved in the cellular response to radiation, suggesting that pH-independent mechanisms may also be an important basis of its role in tumour progression. Here, we discuss these pH-independent interactions in the context of the ability of CAIX to modulate the responsiveness of cancer to radiation.
Collapse
|
71
|
Yu N, Wang S, Song X, Gao L, Li W, Yu H, Zhou C, Wang Z, Li F, Jiang Q. Low-Dose Radiation Promotes Dendritic Cell Migration and IL-12 Production via the ATM/NF-KappaB Pathway. Radiat Res 2018; 189:409-417. [PMID: 29420126 DOI: 10.1667/rr14840.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For dendritic cells (DCs) to initiate an immune response, their ability to migrate and to produce interleukin-12 (IL-12) is crucial. It has been previously shown that low-dose radiation (LDR) promoted IL-12 production by DCs, resulting in increased DC activity that contributed to LDR hormesis in the immune system. However, the molecular mechanism of LDR-induced IL-12 production, as well as the effect of LDR on DC migration capacity require further elucidation. Using the JAWSII immortalized mouse dendritic cell line, we showed that in vitro X-ray irradiation (0.2 Gy) of DCs significantly increased DC migration and IL-12 production, and upregulated CCR7. The neutralizing antibody against CCR7 has been shown to abolish LDR-enhanced DC migration, demonstrating that CCR7 mediates LDR-promoting DC migration. We identified nuclear factor kappaB (NF-κB) as the central signaling pathway that mediated LDR-enhanced expression of IL-12 and CCR7 based on findings that 0.2 Gy X-ray irradiation activated NF-κB, showing increased nuclear p65 translocation and NF-κB DNA-binding activity, while an NF-κB inhibitor blocked LDR-enhanced expression of IL-12 and CCR7, as well as DC migration. Finally, we demonstrated that 0.2 Gy X-ray irradiation promoted ATM phosphorylation and reactive oxygen species generation; however, only the ATM inhibitor abolished the LDR-induced NF-κB-mediated expression of IL-12 and CCR7. Altogether, our data show that exposure to LDR resulted in a hormetic effect on DCs regarding CCR7-mediated migration and IL-12 production by activating the ATM/NF-κB pathway.
Collapse
Affiliation(s)
- Nan Yu
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Sinian Wang
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xiujun Song
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Ling Gao
- b Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, China Centers for Disease Control, Beijing 100088, China
| | - Wei Li
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Huijie Yu
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Chuanchuan Zhou
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Zhenxia Wang
- c Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China
| | - Fengsheng Li
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Qisheng Jiang
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| |
Collapse
|
72
|
González-Ponce HA, Rincón-Sánchez AR, Jaramillo-Juárez F, Moshage H. Natural Dietary Pigments: Potential Mediators against Hepatic Damage Induced by Over-The-Counter Non-Steroidal Anti-Inflammatory and Analgesic Drugs. Nutrients 2018; 10:E117. [PMID: 29364842 PMCID: PMC5852693 DOI: 10.3390/nu10020117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022] Open
Abstract
Over-the-counter (OTC) analgesics are among the most widely prescribed and purchased drugs around the world. Most analgesics, including non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen, are metabolized in the liver. The hepatocytes are responsible for drug metabolism and detoxification. Cytochrome P450 enzymes are phase I enzymes expressed mainly in hepatocytes and they account for ≈75% of the metabolism of clinically used drugs and other xenobiotics. These metabolic reactions eliminate potentially toxic compounds but, paradoxically, also result in the generation of toxic or carcinogenic metabolites. Cumulative or overdoses of OTC analgesic drugs can induce acute liver failure (ALF) either directly or indirectly after their biotransformation. ALF is the result of massive death of hepatocytes induced by oxidative stress. There is an increased interest in the use of natural dietary products as nutritional supplements and/or medications to prevent or cure many diseases. The therapeutic activity of natural products may be associated with their antioxidant capacity, although additional mechanisms may also play a role (e.g., anti-inflammatory actions). Dietary antioxidants such as flavonoids, betalains and carotenoids play a preventive role against OTC analgesics-induced ALF. In this review, we will summarize the pathobiology of OTC analgesic-induced ALF and the use of natural pigments in its prevention and therapy.
Collapse
Affiliation(s)
- Herson Antonio González-Ponce
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands.
| | - Ana Rosa Rincón-Sánchez
- Department of Molecular Biology and Genomics, University Center of Health Sciences, Universidad de Guadalajara, Guadalajara 44340, Mexico.
| | - Fernando Jaramillo-Juárez
- Department of Physiology and Pharmacology, Basic Science Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico.
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands.
| |
Collapse
|
73
|
Xie SY, Li G, Han C, Yu YY, Li N. RKIP reduction enhances radioresistance by activating the Shh signaling pathway in non-small-cell lung cancer. Onco Targets Ther 2017; 10:5605-5619. [PMID: 29200875 PMCID: PMC5703172 DOI: 10.2147/ott.s149200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is exceptionally deadly because the tumors lack sensitive early-stage diagnostic biomarkers and are resistant to radiation and chemotherapy. Here, we investigated the role and mechanism of Raf kinase inhibitory protein (RKIP) in NSCLC radioresistance. The clinical data showed that the RKIP expression level was generally lower in radioresistant NSCLC tissues than in radiosensitive tissues. Reduced RKIP expression was related to NSCLC radioresistance and poor prognosis. In vitro experiments showed that RKIP knockdown increased radioresistance and metastatic ability in NSCLC cell lines. Mechanistically, RKIP reduction activated the Shh signaling pathway by derepressing Smoothened (Smo) and initiating glioma-associated oncogene-1 (Gli1)-mediated transcription in NSCLC. In addition, the inappropriately activated Shh–Gli1 signaling pathway then enhanced cancer stem cell (CSC) expression in the cell lines. The increasing quantity of CSCs in the tumor ultimately promotes the radiation resistance of NSCLC. Together, these results suggest that RKIP plays a vital role in radiation response and metastasis in NSCLC. RKIP reduction enhances radioresistance by activating the Shh signaling pathway and initiating functional CSCs. This role makes it a promising therapeutic target for improving the efficacy of NSCLC radiation treatment.
Collapse
Affiliation(s)
- Shi-Yang Xie
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Chong Han
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Yang-Yang Yu
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| | - Nan Li
- Department of Radiation Oncology, The First Affiliated Hospital of Chi Medical University, Shenyang, China
| |
Collapse
|
74
|
Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, van Dam PA. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 2017; 120:141-150. [PMID: 29198328 DOI: 10.1016/j.critrevonc.2017.11.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022] Open
Abstract
Background The Nuclear Factor kappaB (NF-kB) family consists of transcription factors that play a complex and essential role in the regulation of immune responses and inflammation. NF-kB has recently generated considerable interest as it has been implicated in human cancer initiation, progression and resistance to treatment. In the present comprehensive review the different aspects of NF-kB signaling in the carcinogenesis of cancer of the uterine cervix are discussed. NF-kB functions as part of a network, which determines the pattern of its effects on the expression of several other genes (such as crosstalks with reactive oxygen species, p53, STAT3 and miRNAS) and thus its function. Activation of NF-kB triggered by a HPV infection is playing an important role in the innate and adaptive immune response of the host. The virus induces down regulation of NF-kB to liquidate the inhibitory activity for its replication triggered by the immune system leading a status of persistant HPV infection. During the progression to high grade intraepithelial neoplasia and cervical cancer NF-KB becomes constitutionally activated again. Mutations in NF-kB genes are rare in solid tumors but mutations of upstream signaling molecules such as RAS, EGFR, PGF, HER2 have been implicated in elevated NF-kB signaling. NF-kB can stimulate transcription of proliferation regulating genes (eg. cyclin D1 and c-myc), genes involved in metastasis, VEGF dependent angiogenesis and cell immortality by telomerase. NF-kB activation can also induce the expression of activation-induced cytodine deaminase (AID) and the APOBEC proteins, providing a mechanistic link between the NF-kB pathway and mutagenic characteristic of cervical cancer. Inhibition of NF-kB has the potential to be used to reverse resistance to radiotherapy and systemic anti-cancer medication, but currently no clinicaly active NF-kB targeting strategies are available.
Collapse
Affiliation(s)
- Sam Tilborghs
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Jerome Corthouts
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - David Arias
- Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Christian Rolfo
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Xuan Bich Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium.
| |
Collapse
|
75
|
Kataoka T, Etani R, Kanzaki N, Kobashi Y, Yunoki Y, Ishida T, Sakoda A, Ishimori Y, Yamaoka K. Radon inhalation induces manganese-superoxide dismutase in mouse brain via nuclear factor-κB activation. JOURNAL OF RADIATION RESEARCH 2017; 58:887-893. [PMID: 28992350 PMCID: PMC5710606 DOI: 10.1093/jrr/rrx048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/19/2017] [Indexed: 06/01/2023]
Abstract
Although radon inhalation increases superoxide dismutase (SOD) activities in mouse organs, the mechanisms and pathways have not yet been fully clarified. The aim of this study was to determine the details of SOD activation in mouse brain tissue following the inhalation of radon at concentrations of 500 or 2000 Bq/m3 for 24 h. After inhalation, brains were removed quickly for analysis. Radon inhalation increased the manganese (Mn)-SOD level and mitochondrial SOD activity. However, the differences were not significant. There were no changes in the Cu/Zn-SOD level or cytosolic SOD activity. Radon inhalation increased the brain nuclear factor (NF)-κB content, which regulates the induction of Mn-SOD, in the nuclear and cytosolic compartments. The level of inhibitor of nuclear factor κB kinase subunit β (IKK-β), which activates NF-κB, was slightly increased by radon inhalation. The expression of cytoplasmic ataxia-telangiectasia mutated kinase in mice inhaling radon at 500 Bq/m3 was 50% higher than in control mice. In addition, NF-κB-inducing kinase was slightly increased after inhaling radon at 2000 Bq/m3. These findings suggest that radon inhalation might induce Mn-SOD protein via NF-κB activation that occurs in response to DNA damage and oxidative stress.
Collapse
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Reo Etani
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
- Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita City, Oita 870-1201Japan
| | - Norie Kanzaki
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Yusuke Kobashi
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Yuto Yunoki
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Tsuyoshi Ishida
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Akihiro Sakoda
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Yuu Ishimori
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Kiyonori Yamaoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
76
|
Liamina D, Sibirnyj W, Khokhlova A, Saenko V, Rastorgueva E, Fomin A, Saenko Y. Radiation-Induced Changes of microRNA Expression Profiles in Radiosensitive and Radioresistant Leukemia Cell Lines with Different Levels of Chromosome Abnormalities. Cancers (Basel) 2017; 9:cancers9100136. [PMID: 29027959 PMCID: PMC5664075 DOI: 10.3390/cancers9100136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
Abstract
In our study, we estimate an effect from chromosome aberrations and genome mutations on changes in microRNA expression profiles in cancer cell lines demonstrating different radiosensitivity. Here, cell viability and microRNA spectrum have been estimated 1, 4, and 24 h after irradiation. MiSeq high-throughput sequencing system (Illumina, San Diego, CA, USA) is employed to perform microRNA spectrum estimation. In the K562 cell line, the number of expressed microRNAs in chromosomes demonstrates a more pronounced variation. An analysis of microRNA effects on signaling pathway activity demonstrates differences in post-transcriptional regulation of the expression of genes included into 40 signaling pathways. In the K562 cell line, microRNA dynamics analyzed for their dependence on chromosome localization show a wider scattering of microRNA expression values for a pair of chromosomes compared to the HL-60 cell line. An analysis of microRNAs expression in the K562 and HL-60 cell lines after irradiation has shown that chromosome abnormalities can affect microRNA expression changes. A study of radiation-induced changes of microRNA expression profiles in the K562 and HL-60 cell lines has revealed a dependence of microRNA expression changes on the number of chromosome aberrations and genome mutations.
Collapse
Affiliation(s)
- Daria Liamina
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, 42 Lva Tolstogo St., Ulyanovsk 432017, Russia.
| | - Wladimir Sibirnyj
- Department of Bioenergetics and Food Analysis, Faculty of Biology and Agriculture, University of Rzeszow, Ćwiklińskiej St., 35-601 Rzeszów, Poland.
| | - Anna Khokhlova
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, 42 Lva Tolstogo St., Ulyanovsk 432017, Russia.
| | - Viacheslav Saenko
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, 42 Lva Tolstogo St., Ulyanovsk 432017, Russia.
| | - Eugenia Rastorgueva
- Department of General and Clinical Pharmacology and Microbiology, Faculty of Medicine, Ulyanovsk State University, 42 Lva Tolstogo St., Ulyanovsk 432017, Russia.
| | - Aleksandr Fomin
- S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, 42 Lva Tolstogo St., Ulyanovsk 432017, Russia.
| | - Yury Saenko
- Laboratory of Molecular and Cell Biology, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University, 42 Lva Tolstogo St., Ulyanovsk 432017, Russia.
| |
Collapse
|
77
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604. [PMID: 29163854 PMCID: PMC5685775 DOI: 10.18632/oncotarget.21234] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.,CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
78
|
Wen JJ, Porter C, Garg NJ. Inhibition of NFE2L2-Antioxidant Response Element Pathway by Mitochondrial Reactive Oxygen Species Contributes to Development of Cardiomyopathy and Left Ventricular Dysfunction in Chagas Disease. Antioxid Redox Signal 2017; 27:550-566. [PMID: 28132522 PMCID: PMC5567598 DOI: 10.1089/ars.2016.6831] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS We investigated the effects of mitochondrial reactive oxygen species (mtROS) on nuclear factor (erythroid 2)-like 2 (NFE2L2) transcription factor activity during Trypanosoma cruzi (Tc) infection and determined whether enhancing the mtROS scavenging capacity preserved the heart function in Chagas disease. RESULTS C57BL/6 wild type (WT, female) mice infected with Tc exhibited myocardial loss of mitochondrial membrane potential, complex II (CII)-driven coupled respiration, and ninefold increase in mtROS production. In vitro and in vivo studies showed that Tc infection resulted in an ROS-dependent decline in the expression, nuclear translocation, antioxidant response element (ARE) binding, and activity of NFE2L2, and 35-99% decline in antioxidants' (gamma-glutamyl cysteine synthase [γGCS], heme oxygenase-1 [HO1], glutamate-cysteine ligase modifier subunit [GCLM], thioredoxin (Trx), glutathione S transferase [GST], and NAD(P)H dehydrogenase, quinone 1 [NQO1]) expression. An increase in myocardial and mitochondrial oxidative adducts, myocardial interventricular septum thickness, and left ventricle (LV) mass, a decline in LV posterior wall thickness, and disproportionate synthesis of collagens (COLI/COLIII), αSMA, and SM22α were noted in WT.Tc mice. Overexpression of manganese superoxide dismutase (MnSOD) in cultured cells (HeLa or cardiomyocytes) and MnSODtg mice preserved the NFE2L2 transcriptional activity and antioxidant/oxidant balance, and cardiac oxidative and fibrotic pathology were significantly decreased in MnSODtg.Tc mice. Importantly, echocardiography finding of a decline in LV systolic (stroke volume, cardiac output, ejection fraction) and diastolic (early/late peak filling ratio, myocardial performance index) function in WT.Tc mice was abolished in MnSODtg.Tc mice. Innovation and Conclusion: The mtROS inhibition of NFE2L2/ARE pathway constitutes a key mechanism in signaling the fibrotic gene expression and evolution of chronic cardiomyopathy. Preserving the NFE2L2 activity arrested the mitochondrial and cardiac oxidative stress, cardiac fibrosis, and heart failure in Chagas disease. Antioxid. Redox Signal. 27, 550-566.
Collapse
Affiliation(s)
- Jake Jianjun Wen
- 1 Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB) , Galveston, Texas
| | - Craig Porter
- 2 Metabolism Unit, Shriners Hospital for Children , Galveston, Texas.,3 Department of Surgery, University of Texas Medical Branch (UTMB) , Galveston, Texas
| | - Nisha Jain Garg
- 1 Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB) , Galveston, Texas.,4 Department of Pathology, University of Texas Medical Branch (UTMB) , Galveston, Texas.,5 Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB) , Galveston, Texas
| |
Collapse
|
79
|
Yim JH, Yun JM, Kim JY, Nam SY, Kim CS. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells. Int J Radiat Biol 2017; 93:1197-1206. [DOI: 10.1080/09553002.2017.1350302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ji-Hye Yim
- Department of Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Seoul, Korea
| | - Jung Mi Yun
- Department of Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Seoul, Korea
| | - Ji Young Kim
- Department of Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Seoul, Korea
| | - Seon Young Nam
- Department of Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Seoul, Korea
| | - Cha Soon Kim
- Department of Molecular Biology Radiation Epidemiology Team, KHNP Radiation Health Institute, Seongnam-si, Gyeonggi-do, Korea
| |
Collapse
|
80
|
Li LN, Xiao T, Yi HM, Zheng Z, Qu JQ, Huang W, Ye X, Yi H, Lu SS, Li XH, Xiao ZQ. MiR-125b Increases Nasopharyngeal Carcinoma Radioresistance by Targeting A20/NF-κB Signaling Pathway. Mol Cancer Ther 2017; 16:2094-2106. [PMID: 28698199 DOI: 10.1158/1535-7163.mct-17-0385] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 11/16/2022]
Abstract
Radioresistance poses a major challenge in nasopharyngeal carcinoma (NPC) treatment, but little is known about how miRNA regulates this phenomenon. In this study, we investigated the function and mechanism of miR-125b in NPC radioresistance, one of upregulated miRNAs in the radioresistant NPC cells identified by our previous microarray analysis. We observed that miR-125b was frequently upregulated in the radioresistant NPCs, and its increment was significantly correlated with NPC radioresistance, and was an independent predictor for poor patient survival. In vitro radioresponse assays showed that miR-125b inhibitor decreased, whereas miR-125b mimic increased NPC cell radioresistance. In a mouse model, therapeutic administration of miR-125b antagomir dramatically sensitized NPC xenografts to irradiation. Mechanistically, we confirmed that A20 was a direct target of miR-125b and found that miR-125b regulated NPC cell radioresponse by targeting A20/NF-κB signaling. With a combination of loss-of-function and gain-of-function approaches, we further showed that A20 overexpression decreased while A20 knockdown increased NPC cell radioresistance both in vitro and in vivo Moreover, A20 was significantly downregulated while p-p65 (RelA) significantly upregulated in the radioresistant NPCs relative to radiosensitive NPCs, and miR-125b expression level was negatively associated with A20 expression level, whereas positively associated with p-p65 (RelA) level. Our data demonstrate that miR-125b and A20 are critical regulators of NPC radioresponse, and high miR-125b expression enhances NPC radioresistance through targeting A20 and then activating the NF-κB signaling pathway, highlighting the therapeutic potential of the miR-125b/A20/NF-κB axis in clinical NPC radiosensitization. Mol Cancer Ther; 16(10); 2094-106. ©2017 AACR.
Collapse
Affiliation(s)
- Li-Na Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Ta Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Mei Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Zheng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Quan Qu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Oncology, Qianjiang Central Hospital of Chongqing, Jishou University, Hunan, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Ye
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Hui Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Qiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
81
|
Soubannier V, Stifani S. NF-κB Signalling in Glioblastoma. Biomedicines 2017; 5:biomedicines5020029. [PMID: 28598356 PMCID: PMC5489815 DOI: 10.3390/biomedicines5020029] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor regulating a wide array of genes mediating numerous cellular processes such as proliferation, differentiation, motility and survival, to name a few. Aberrant activation of NF-κB is a frequent event in numerous cancers, including glioblastoma, the most common and lethal form of brain tumours of glial cell origin (collectively termed gliomas). Glioblastoma is characterized by high cellular heterogeneity, resistance to therapy and almost inevitable recurrence after surgery and treatment. NF-κB is aberrantly activated in response to a variety of stimuli in glioblastoma, where its activity has been implicated in processes ranging from maintenance of cancer stem-like cells, stimulation of cancer cell invasion, promotion of mesenchymal identity, and resistance to radiotherapy. This review examines the mechanisms of NF-κB activation in glioblastoma, the involvement of NF-κB in several mechanisms underlying glioblastoma propagation, and discusses some of the important questions of future research into the roles of NF-κB in glioblastoma.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada.
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada.
| |
Collapse
|
82
|
Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences. Int J Mol Sci 2017; 18:ijms18061166. [PMID: 28561779 PMCID: PMC5485990 DOI: 10.3390/ijms18061166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 01/05/2023] Open
Abstract
In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.
Collapse
|
83
|
Morel KL, Ormsby RJ, Bezak E, Sweeney CJ, Sykes PJ. Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues In Vivo. Radiat Res 2017; 187:501-512. [PMID: 28398879 DOI: 10.1667/rr14710.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.
Collapse
Affiliation(s)
- Katherine L Morel
- a Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia
| | - Rebecca J Ormsby
- a Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia
| | - Eva Bezak
- b Medical Radiation, School of Health Sciences, University of South Australia, Adelaide, South Australia
| | | | - Pamela J Sykes
- a Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia
| |
Collapse
|
84
|
Guo Q, He J, Shen F, Zhang W, Yang X, Zhang C, Zhang Q, Huang JX, Wu ZD, Sun XC, Dai SB. TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo. Oncol Lett 2016; 13:949-954. [PMID: 28356983 DOI: 10.3892/ol.2016.5515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/22/2016] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to investigate the radiosensitization effect of triciribine (TCN) on human esophageal squamous cell carcinoma (ESCC) in normoxia or hypoxia and its mechanism. The cytotoxicity and radiosensitization mechanism of TCN were investigated by Cell Counting Kit 8, clonogenic assay, flow cytometry, western blotting (WB) and immunofluorescence staining of phospho-histone H2A.X, Ser139 (γ-H2AX) in ESCC in vitro, while the protein expression levels of AKT, phosphorylated (p)-AKT, hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) were evaluated by WB in vivo. The cytotoxicity of TCN was dose dependent. Upon exposure to TCN, ESCC cells in hypoxia treated with 4-Gy radiotherapy exhibited an evidently higher apoptotic rate than cells subjected to other treatments. TCN could significantly inhibit the protein expression of p-AKT, HIF-1α and VEGF in vitro and in vivo. The present results suggested that TCN can effectively inhibit AKT, p-AKT, HIF-1α and VEGF, thus conferring radiosensitivity to ESCC in vitro and vivo. TCN is considered as an adjuvant in radiotherapy of ESCC in clinical application.
Collapse
Affiliation(s)
- Qing Guo
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China; Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Jia He
- Department of Radiotherapy, People's Hospital of Jiangyin, Wuxi, Jiangsu 214400, P.R. China
| | - Feng Shen
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China; Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Zhang
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Xi Yang
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chi Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qu Zhang
- Department of Radiotherapy, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Jun-Xing Huang
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Zheng-Dong Wu
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Xin-Chen Sun
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Sheng-Bin Dai
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
85
|
Dadey DYA, Kapoor V, Khudanyan A, Urano F, Kim AH, Thotala D, Hallahan DE. The ATF6 pathway of the ER stress response contributes to enhanced viability in glioblastoma. Oncotarget 2016; 7:2080-92. [PMID: 26716508 PMCID: PMC4811517 DOI: 10.18632/oncotarget.6712] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
Therapeutic resistance is a major barrier to improvement of outcomes for patients with glioblastoma. The endoplasmic reticulum stress response (ERSR) has been identified as a contributor to chemoresistance in glioblastoma; however the contributions of the ERSR to radioresistance have not been characterized. In this study we found that radiation can induce ER stress and downstream signaling associated with the ERSR. Induction of ER stress appears to be linked to changes in ROS balance secondary to irradiation. Furthermore, we observed global induction of genes downstream of the ERSR in irradiated glioblastoma. Knockdown of ATF6, a regulator of the ERSR, was sufficient to enhance radiation induced cell death. Also, we found that activation of ATF6 contributes to the radiation-induced upregulation of glucose regulated protein 78 (GRP78) and NOTCH1. Our results reveal ATF6 as a potential therapeutic target to enhance the efficacy of radiation therapy.
Collapse
Affiliation(s)
- David Y A Dadey
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arpine Khudanyan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fumihiko Urano
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
86
|
Wang B, Ge Y, Gu X. Analysis of esophageal cancer cell lines exposed to X-ray based on radiosensitivity influence by tumor necrosis factor-α. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2016; 24:761-769. [PMID: 27127936 DOI: 10.3233/xst-160573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Assess the effects of tumor necrosis factor-α (TNF-α) in enhancing the radiosensitivity of esophageal cancer cell line in vitro. Three esophageal cancer cell line cells were exposed to X-ray with or without TNF-α treatment. MTT assay was used to evaluate the cell growth curve, and flow cytometry was performed to assess the cell apoptosis. The radiosensitizing effects of TNF-α were detected by cell colony formation assay. Western blotting was applied to observe the expression of NF-κB and caspase-3 protein in the exposed cells. Our results indicated that cellular inhibition rate increased over time, the strongest is combined group (P < 0.05). Western blotting showed that the decline expression of NF-κB protein was stated between only rhTNF-α and only X-ray radiation group and the maximum degree was manifested in combined group. Caspase-3 protein content expression just works opposite. Three kinds of cells in the NF-κB protein were similar without rhTNF-α. Then SEG1 NF-κB protein content was reduced more than other two kinds. We concluded that the cells treated with TNF-α showed significantly suppressed cell proliferation, increasing the cell apoptosis, and caspase-3 protein expression after X-ray exposure. TNF-α can enhance the radiosensitivity of esophageal cancer to enhancing the effect of the former.
Collapse
Affiliation(s)
- Buhai Wang
- Department of Oncology of Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Yizhi Ge
- Research Center of Cancer Prevention and Treatment, Medical College of Yangzhou University
| | - Xiang Gu
- Research Center of Cancer Prevention and Treatment, Medical College of Yangzhou University
| |
Collapse
|
87
|
Akleyev AV. NORMAL TISSUE REACTIONS TO CHRONIC RADIATION EXPOSURE IN MAN. RADIATION PROTECTION DOSIMETRY 2016; 171:107-16. [PMID: 27473696 PMCID: PMC5675050 DOI: 10.1093/rpd/ncw207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents an overview of radiobiological dependences governing the occurrence of tissue (organ) reactions that determine the outcomes of chronic exposure to low-LET ionizing radiation (IR) in humans. The mechanisms involved in the development of tissue reactions (TRs) to long-term exposures to IR and radioadaptation are considered. The overview describes the reactions of the haematopoietic, immune, nervous, reproductive and endocrine systems, lungs, skin and crystalline lens to chronic radiation exposure, which are of fundamental importance in view of radiation protection. It is shown that the individual's physiological tissue (organ) reserve, and also that induced by radiation exposure at low-dose rates are of great significance in the context of TR development.
Collapse
Affiliation(s)
- A V Akleyev
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russian Federation, Chelyabinsk State University, No. 68-A, Vorovsky St., 454076 Chelyabinsk, Russia
| |
Collapse
|
88
|
Xu Y, Wu D, Fan Y, Li P, Du H, Shi J, Wang D, Zhou X. Novel recombinant protein FlaA N/C increases tumor radiosensitivity via NF-κB signaling in murine breast cancer cells. Oncol Lett 2016; 12:2632-2640. [PMID: 27703525 PMCID: PMC5038907 DOI: 10.3892/ol.2016.4957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/20/2016] [Indexed: 12/21/2022] Open
Abstract
The recombinant protein flagellin A (FlaA) N/C, derived from the flagellin protein of Legionella pneumophila, has been shown to increase the expression of cytoprotective cytokines, activate the nuclear factor-κB (NF-κB) signaling pathway, and increase the survival of mice following total body irradiation. Determi ning whether FlaA N/C has a sensitizing effect on tumor radiation or a direct tumoricidal effect is critical for its application as an effective radiation protection agent. The present study investigated the molecular mechanism underlying the tumor radiosensitivity of FlaA N/C. FlaA N/C was found to increase tumor apoptosis and autophagy, regulate the cell cycle and increase radiosensitivity in 4T1 tumor cells. Furthermore, FlaA N/C was found to promote radiosensitivity by activating NF-κB signaling. Finally, the present study analyzed FlaA N/C-enhanced radiosensitivity in animal models, and FlaA N/C was found to significantly prolong the survival period of mice after total body radiation. This indicates that FlaA N/C might be a novel radiation sensitizer in tumor radiation therapy.
Collapse
Affiliation(s)
- Ying Xu
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Dongming Wu
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Yuanchun Fan
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Peigeng Li
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Hongfei Du
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Jiao Shi
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Dan Wang
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoping Zhou
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
89
|
Abstract
HYPOTHESIS Dexamethasone (DXM) protects against radiation-induced loss of auditory hair cells (HCs) in rat organ of Corti (OC) explants by reducing levels of oxidative stress and apoptosis. BACKGROUND Radiation-induced sensorineural hearing loss (HL) is progressive, dose-dependent, and irreversible. Currently, there are no preventative therapeutic modalities for radiation-induced HL. DXM is a synthetic steroid that can potentially target many of the pathways involved in radiation-induced ototoxicity. METHODS Whole OC explants were dissected from 3-day-old rat cochleae exposed to specific dosages of single-fraction radiation (0, 2, 5, 10, or 20 Gy), were either untreated or treated with DXM (75, 150, 300 μg/mL), and then cultured for 48 or 96 hours. Confocal microscopy for oxidative stress (CellRox, 48 h) and apoptosis (TUNEL assay, 96 h) and fluorescent microscopy for viable HC counts (fluorescein isothiocyanate-phalloidin, 96 h) were performed. Analysis of variance and Tukey post hoc testing were used for statistical analysis. RESULTS Radiation exposure initiated dose-dependent losses of inner and outer HCs, predominantly in the basal turns of the OC explants. DXM protected against radiation-induced HC losses in a dose-dependent manner. DXM significantly reduced levels of oxidative stress and apoptosis in radiation-injured OC explants (p < 0.001). CONCLUSIONS Radiation-initiated HC losses were dose-dependent in OC explants. DXM treatment protected explant HCs against radiation-initiated losses by decreasing the levels of oxidative stress and apoptosis. DXM may potentially be a therapeutic modality for preventing radiation-induced HL; further in vivo studies are necessary.
Collapse
|
90
|
Mitochondrial Redox Signaling and Tumor Progression. Cancers (Basel) 2016; 8:cancers8040040. [PMID: 27023612 PMCID: PMC4846849 DOI: 10.3390/cancers8040040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as “tumor suppressors” or prevent excessive ROS to act as “tumor promoter”. Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent.
Collapse
|
91
|
Son B, Jun SY, Seo H, Youn H, Yang HJ, Kim W, Kim HK, Kang C, Youn B. Inhibitory effect of traditional oriental medicine-derived monoamine oxidase B inhibitor on radioresistance of non-small cell lung cancer. Sci Rep 2016; 6:21986. [PMID: 26906215 PMCID: PMC4764943 DOI: 10.1038/srep21986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/03/2016] [Indexed: 02/07/2023] Open
Abstract
Increased survival of cancer cells mediated by high levels of ionizing radiation (IR) reduces the effectiveness of radiation therapy for non-small cell lung cancer (NSCLC). In the present study, danshensu which is a selected component of traditional oriental medicine (TOM) compound was found to reduce the radioresistance of NSCLC by inhibiting the nuclear factor-κB (NF-κB) pathway. Of the various TOM compounds reported to inhibit the IR activation of NF-κB, danshensu was chosen as a final candidate based on the results of structural comparisons with human metabolites and monoamine oxidase B (MAOB) was identified as the putative target enzyme. Danshensu decreased the activation of NF-κB by inhibiting MAOB activity in A549 and NCI-H1299 NSCLC cells. Moreover, it suppressed IR-induced epithelial-to-mesenchymal transition, expressions of NF-κB-regulated prosurvival and proinflammatory genes, and in vivo radioresistance of mouse xenograft models. Taken together, this study shows that danshensu significantly reduces MAOB activity and attenuates NF-κB signaling to elicit the radiosensitization of NSCLC.
Collapse
Affiliation(s)
- Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Se Young Jun
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - HyunJeong Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - HyeSook Youn
- Nuclear Science Research Institute, Pusan National University, Busan, Republic of Korea
| | - Hee Jung Yang
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Wanyeon Kim
- Nuclear Science Research Institute, Pusan National University, Busan, Republic of Korea.,Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Hyung Kook Kim
- Department of Nanomaterial Engineering and Nanoconvergence Technology, Pusan National University, Miryang, Republic of Korea
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea.,Department of Chemistry, Washington State University, Pullman, Washington, USA.,Nuclear Science Research Institute, Pusan National University, Busan, Republic of Korea.,Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
92
|
Stankova K, Savova G, Nikolov V, Boteva R. HSP90 Inhibitor Geldanamycin as a Radiation Response Modificator in Human Blood Cells. Dose Response 2015; 13:10.2203_dose-response.14-039.Stankova. [PMID: 26674599 PMCID: PMC4674165 DOI: 10.2203/dose-response.14-039.stankova] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone, involved in the folding, assembly, stabilization and activation of numerous proteins with unrelated amino acid sequences and functions. Geldanamycin (GA), a natural benzoquinone, can inhibit the chaperone activity of Hsp90. It has been shown that GA can produce superoxide anions and increase the intracellular oxidative stress, which, in addition to the direct inhibition of Hsp90, might also contribute to the modifying effects of the inhibitor on the early response in human mononuclear cells exposed to ionizing radiation. The present study shows that GA antagonizes the radiation-induced suppression on MnSOD and catalase, key enzymes of the radical scavenging systems. By significantly up-regulating catalase levels over the entire range of doses from 0.5 to 4 Gy, the inhibitor of Hsp90 exerted adaptive protection and modified the early radiation response of the human blood cells.
Collapse
Affiliation(s)
- Katia Stankova
- National Center of Radiobiology and Radiation Protection, Georgi Sofiyski 3, Sofia1606, Bulgaria
| | - Gergana Savova
- National Center of Radiobiology and Radiation Protection, Georgi Sofiyski 3, Sofia1606, Bulgaria
| | - Vladimir Nikolov
- National Center of Radiobiology and Radiation Protection, Georgi Sofiyski 3, Sofia1606, Bulgaria
| | - Rayna Boteva
- National Center of Radiobiology and Radiation Protection, Georgi Sofiyski 3, Sofia1606, Bulgaria
| |
Collapse
|
93
|
Shirai Y, Shiba H, Iwase R, Haruki K, Fujiwara Y, Furukawa K, Uwagawa T, Ohashi T, Yanaga K. Dual inhibition of nuclear factor kappa-B and Mdm2 enhance the antitumor effect of radiation therapy for pancreatic cancer. Cancer Lett 2015; 370:177-84. [PMID: 26546875 DOI: 10.1016/j.canlet.2015.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Radiation therapy, alone or in combination with chemotherapy, is effective for patients with locally advanced and recurrent pancreatic cancer. Ionizing radiation induces cell cycle arrest and cell apoptosis through enhancement several signals such as p53, p21(Waf1/Cip1), and caspase. However, the therapeutic efficacy is attenuated by radiation-induced activation of NF-κB. Nafamostat mesilate, a synthetic serine protease inhibitor, inhibits NF-κB activation in pancreatic cancer. Therefore, we hypothesized that nafamostat mesilate inhibited radiation-induced activation of NF-κB and improves therapeutic outcome. RESULTS In combination group, NF-κB activation was significantly inhibited in comparison with that of radiation group. Nafamostat mesilate obviously down-regulated the expression levels of Mdm2 compared with control cells or irradiated cells. Consequently, p53 expression was stabilized inversely in correlation with Mdm2 protein expression level. The expression levels of p53, p21(Waf1/Cip1), cleaved caspase-3 and -8 were the highest in the combination group. Nafamostat mesilate enhanced ionizing radiation-induced cell apoptosis and G2/M cell cycle arrest. In combination group, cell proliferation and tumor growth were significantly slower than those in other groups. CONCLUSION Combination therapy of radiation with nafamostat mesilate exerts enhanced anti-tumor effect against human pancreatic cancer.
Collapse
Affiliation(s)
- Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hiroaki Shiba
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryota Iwase
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Fujiwara
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
94
|
Lam RKK, Han W, Yu KN. Unirradiated cells rescue cells exposed to ionizing radiation: Activation of NF-κB pathway in irradiated cells. Mutat Res 2015; 782:23-33. [PMID: 26524645 DOI: 10.1016/j.mrfmmm.2015.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/29/2022]
Abstract
We studied the involvement of NF-κB pathway activation in the rescue effect in HeLa and NIH/3T3 cells irradiated by α particles. Firstly, upon irradiation by 5 cGy of α particles, for both cell lines, the numbers of 53BP1 foci/cell at 12 h post-irradiation were significantly smaller when only 2.5% of the cell population was irradiated as compared to 100% irradiation, which demonstrated the rescue effect. Secondly, we studied the effect of NF-κB on the rescue effect through the use of the NF-κB activation inhibitor BAY-11-7082. Novel experimental setup and procedures were designed to prepare the medium (CM) which had conditioned the bystander cells previously partnered with irradiated cells, to ensure physical separation between rescue and bystander signals. BAY-11-7082 itself did not inflict DNA damages in the cells or have effects on activation of the NF-κB response pathway in the irradiated cells through direct irradiation. The rescue effect was induced in both cell lines by the CM, which was abrogated if BAY-11-7082 was added to the CM. Thirdly, we studied the effect of NF-κB on the rescue effect through staining for phosphorylated NF-κB (p-NF-κB) expression using the anti-NF-κB p65 (phospho S536) antibody. When the fraction of irradiated cells dropped from 100% to 2.5%, the p-NF-κB expression in the cell nuclei of irradiated NIH/3T3 cells increased significantly, while that in the cell nuclei of irradiated HeLa cells also increased although not significantly. Moreover, the p-NF-κB expression in the cell nuclei of irradiated HeLa cells and NIH/3T3 cells treated with CM also increased significantly.
Collapse
Affiliation(s)
- R K K Lam
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
| | - Wei Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
95
|
Huang W, Eickhoff JC, Ghomi FM, Church DR, Wilding G, Basu HS. Expression of spermidine/spermine N(1) -acetyl transferase (SSAT) in human prostate tissues is related to prostate cancer progression and metastasis. Prostate 2015; 75:1150-9. [PMID: 25893668 PMCID: PMC4475436 DOI: 10.1002/pros.22996] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/05/2015] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) in many patients remains indolent for the rest of their lives, but in some patients, it progresses to lethal metastatic disease. Gleason score is the current clinical method for PCa prognosis. It cannot reliably identify aggressive PCa, when GS is ≤ 7. It is shown that oxidative stress plays a key role in PCa progression. We have shown that in cultured human PCa cells, an activation of spermidine/spermine N(1) -acetyl transferase (SSAT; EC 2.3.1.57) enzyme initiates a polyamine oxidation pathway and generates copious amounts of reactive oxygen species in polyamine-rich PCa cells. METHOD We used RNA in situ hybridization and immunohistochemistry methods to detect SSAT mRNA and protein expression in two tissue microarrays (TMA) created from patient's prostate tissues. We analyzed 423 patient's prostate tissues in the two TMAs. RESULTS Our data show that there is a significant increase in both SSAT mRNA and the enzyme protein in the PCa cells as compared to their benign counterpart. This increase is even more pronounced in metastatic PCa tissues as compared to the PCa localized in the prostate. In the prostatectomy tissues from early-stage patients, the SSAT protein level is also high in the tissues obtained from the patients who ultimately progress to advanced metastatic disease. DISCUSSION Based on these results combined with published data from our and other laboratories, we propose an activation of an autocrine feed-forward loop of PCa cell proliferation in the absence of androgen as a possible mechanism of castrate-resistant prostate cancer growth.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison WI
| | - Jens C Eickhoff
- Department of Biostatistics, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison WI
| | - Farideh Mehraein Ghomi
- Department of Medicine, University of Wisconsin Carbone Cancer Center University of Wisconsin, Madison, WI
| | - Dawn R. Church
- Department of Medicine, University of Wisconsin Carbone Cancer Center University of Wisconsin, Madison, WI
| | - George Wilding
- Department of Medicine, University of Wisconsin Carbone Cancer Center University of Wisconsin, Madison, WI
| | - Hirak S. Basu
- Department of Medicine, University of Wisconsin Carbone Cancer Center University of Wisconsin, Madison, WI
- To whom all communications should be directed at: Room #7068, Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI, 53705,
| |
Collapse
|
96
|
Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, Zou JX, Zhang T, Juma S, Jin C, Li RF, Perks J, Sun LQ, Vaughan ATM, Hai CX, Gius DR, Li JJ. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol Cancer Ther 2015; 14:2090-102. [PMID: 26141949 DOI: 10.1158/1535-7163.mct-15-0017] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/19/2015] [Indexed: 01/05/2023]
Abstract
Tumor adaptive resistance to therapeutic radiation remains a barrier for further improvement of local cancer control. SIRT3, a member of the sirtuin family of NAD(+)-dependent protein deacetylases in mitochondria, promotes metabolic homeostasis through regulation of mitochondrial protein deacetylation and plays a key role in prevention of cell aging. Here, we demonstrate that SIRT3 expression is induced in an array of radiation-treated human tumor cells and their corresponding xenograft tumors, including colon cancer HCT-116, glioblastoma U87, and breast cancer MDA-MB231 cells. SIRT3 transcriptional activation is due to SIRT3 promoter activation controlled by the stress transcription factor NF-κB. Posttranscriptionally, SIRT3 enzymatic activity is further enhanced via Thr150/Ser159 phosphorylation by cyclin B1-CDK1, which is also induced by radiation and relocated to mitochondria together with SIRT3. Cells expressing Thr150Ala/Ser159Ala-mutant SIRT3 show a reduction in mitochondrial protein lysine deacetylation, Δψm, MnSOD activity, and mitochondrial ATP generation. The clonogenicity of Thr150Ala/Ser159Ala-mutant transfectants is lower and significantly decreased under radiation. Tumors harboring Thr150Ala/Ser159Ala-mutant SIRT3 show inhibited growth and increased sensitivity to in vivo local irradiation. These results demonstrate that enhanced SIRT3 transcription and posttranslational modifications in mitochondria contribute to adaptive radioresistance in tumor cells. CDK1-mediated SIRT3 phosphorylation is a potential effective target to sensitize tumor cells to radiotherapy.
Collapse
Affiliation(s)
- Rui Liu
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Ming Fan
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Demet Candas
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Lili Qin
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Xiaodi Zhang
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Angela Eldridge
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - June X Zou
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Tieqiao Zhang
- Center for Biophotonics Science and Technology, University of California Davis School of Medicine, Sacramento, California
| | - Shuaib Juma
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Cuihong Jin
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Robert F Li
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Julian Perks
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California. NCI-designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, California
| | - Lun-Quan Sun
- Center for Molecular Imaging, Central South University, Changsha, Hunan, China
| | - Andrew T M Vaughan
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California. NCI-designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, California
| | - Chun-Xu Hai
- Department of Toxicology, Fourth Military Medical University, Xian, Shaanxi, China
| | - David R Gius
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University, Chicago, Illinois
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California. NCI-designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, California.
| |
Collapse
|
97
|
Penthala NR, Crooks PA, Freeman ML, Sekhar KR. Development and validation of a novel assay to identify radiosensitizers that target nucleophosmin 1. Bioorg Med Chem 2015; 23:3681-6. [PMID: 25922180 PMCID: PMC4418231 DOI: 10.1016/j.bmc.2015.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/21/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
A series of indole analogs that are synthesized using the scaffold of a potent radiosensitizer, YTR107, were tested for their ability to alter the solubility of phosphorylated nucleophosmin 1 (pNPM1). NPM1 is critical for DNA double strand break (DSB) repair. In response to formation of DNA DSBs, phosphorylated T199 NPM1 binds to ubiquitinated chromatin, in a RNF8/RNF168-dependent manner, forming irradiation-induced foci (IRIF) that promote repair of DNA DSBs. A Western blot assay was developed using lead molecule, YTR107, for the purpose of screening newly synthesized molecules that target pNPM1 in irradiated cells. A colony formation assay was used to demonstrate the radiosensitization properties of the compounds. Compounds that enhanced the extractability of pNPM1 upon radiation treatment possessed radiosensitization properties.
Collapse
Affiliation(s)
- Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University School Medicine, Nashville, TN 37232, USA
| | - Konjeti R Sekhar
- Department of Radiation Oncology, Vanderbilt University School Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
98
|
Chen N, Wu L, Yuan H, Wang J. ROS/Autophagy/Nrf2 Pathway Mediated Low-Dose Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell. Int J Biol Sci 2015; 11:833-44. [PMID: 26078725 PMCID: PMC4466464 DOI: 10.7150/ijbs.10564] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/05/2015] [Indexed: 12/26/2022] Open
Abstract
Low-dose ionizing radiation (LDIR) can induce radio-resistance to following high dose radiation in various mammalian cells. The protective role of LDIR has been thought to be associated with the overall outcomes of cancer radiotherapy. NF-E2 related factor 2 (Nrf2) is a transcription factor that plays pivotal roles in maintaining cellular oxidative equilibrium. Since oxidative stress has been indicated to be a mediator of LDIR induced radio-resistance, the role of Nrf2 in this process was investigated in this research. Our results showed that in human lung adenocarcinoma A549 cell, 5cGy alpha particle induced radio-resistance to following 75cGy alpha particle radiation. The expression level of Nrf2 and its target Heme Oxygenase-1(HO-1) increased after 5cGy radiation. Both the shRNA of Nrf2 and the chemical inhibitor of HO-1 suppressed the induced radio-resistance, indicating the involvement of Nrf2 antioxidant pathway in this process. Further, we found 5cGy radiation stimulated autophagy process in A549. Inhibition of the autophagy process resulted in suppression of the radio-resistance and the induced expression of Nrf2 and HO-1. ROS scavenger N-acetyl-L-cysteine (NAC) blocked the autophagy process induced by 5cGy alpha particle, the upregulation of Nrf2 and HO-1, as well as the induced radio-resistance. In conclusion, ROS elevation caused by LDIR promoted Autophagy/Nrf2-HO-1 and conferred radio-resistance in A549.
Collapse
Affiliation(s)
- Ni Chen
- 1. School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, PR China; ; 2. Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Science, Chinese Academy of Sciences and Anhui Province, No. 350 of Shushanhu Road, Hefei 230031, PR China
| | - Lijun Wu
- 1. School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, PR China; ; 2. Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Science, Chinese Academy of Sciences and Anhui Province, No. 350 of Shushanhu Road, Hefei 230031, PR China
| | - Hang Yuan
- 2. Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Science, Chinese Academy of Sciences and Anhui Province, No. 350 of Shushanhu Road, Hefei 230031, PR China
| | - Jun Wang
- 2. Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Science, Chinese Academy of Sciences and Anhui Province, No. 350 of Shushanhu Road, Hefei 230031, PR China
| |
Collapse
|
99
|
CHENG WEI, XIAO LEI, AINIWAER AIMUDULA, WANG YUNLIAN, WU GE, MAO RUI, YANG YING, BAO YONGXING. Molecular responses of radiation-induced liver damage in rats. Mol Med Rep 2015; 11:2592-600. [PMID: 25483171 PMCID: PMC4337597 DOI: 10.3892/mmr.2014.3051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 11/11/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the molecular responses involved in radiation‑induced liver damage (RILD). Sprague‑Dawley rats (6‑weeks‑old) were irradiated once at a dose of 20 Gy to the right upper quadrant of the abdomen. The rats were then sacrificed 3 days and 1, 2, 4, 8 and 12 weeks after irradiation and rats, which were not exposed to irradiation were used as controls. Weight measurements and blood was obtained from the rats and liver tissues were collected for histological and apoptotic analysis. Immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis were performed to measure the expression levels of mRNAs and proteins, respectively. The serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were increased significantly in the RILD rats. Histological investigation revealed the proliferation of collagen and the formation of fibrotic tissue 12 weeks after irradiation. Apoptotic cells were observed predominantly 2 and 4 weeks after irradiation. The immunohistochemistry, RT‑qPCR and western blot analysis all revealed the same pattern of changes in the expression levels of the molecules assessed. The expression levels of transforming growth factor‑β1 (TGF‑β1), nuclear factor (NF)‑κB65, mothers against decapentaplegic homolog 3 (Smad3) and Smad7 and connective tissue growth factor were increased during the recovery period following irradiation up to 12 weeks. The expression levels of tumor necrosis factor‑α, Smad7 and Smad4 were only increased during the early phase (first 4 weeks) of recovery following irradiation. In the RILD rat model, the molecular responses indicated that the TGF‑β1/Smads and NF‑κB65 signaling pathways are involved in the mechanism of RILD recovery.
Collapse
Affiliation(s)
- WEI CHENG
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - LEI XIAO
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - AIMUDULA AINIWAER
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - YUNLIAN WANG
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - GE WU
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - RUI MAO
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - YING YANG
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - YONGXING BAO
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
100
|
Singh V, Gupta D, Arora R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova) 2015; 3:e35. [PMID: 32309561 PMCID: PMC7159829 DOI: 10.15190/d.2015.27] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor (NF)-κB is a transcription factor that plays significant role in immunity, cellular survival and inhibition of apoptosis, through the induction of genetic networks. Depending on the stimulus and the cell type, the members of NF-κB related family (RelA, c-Rel, RelB, p50, and p52), forms different combinations of homo and hetero-dimers. The activated complexes (Es) translocate into the nucleus and bind to the 10bp κB site of promoter region of target genes in stimulus specific manner. In response to radiation, NF-κB is known to reduce cell death by promoting the expression of anti-apoptotic proteins and activation of cellular antioxidant defense system. Constitutive activation of NF-κB associated genes in tumour cells are known to enhance radiation resistance, whereas deletion in mice results in hypersensitivity to IR-induced GI damage. NF-κB is also known to regulate the production of a wide variety of cytokines and chemokines, which contribute in enhancing cell proliferation and tissue regeneration in various organs, such as the GI crypts stem cells, bone marrow etc., following exposure to IR. Several other cytokines are also known to exert potent pro-inflammatory effects that may contribute to the increase of tissue damage following exposure to ionizing radiation. Till date there are a series of molecules or group of compounds that have been evaluated for their radio-protective potential, and very few have reached clinical trials. The failure or less success of identified agents in humans could be due to their reduced radiation protection efficacy.
In this review we have considered activation of NF-κB as a potential marker in screening of radiation countermeasure agents (RCAs) and cellular radiation responses. Moreover, we have also focused on associated mechanisms of activation of NF-κB signaling and their specified family member activation with respect to stimuli. Furthermore, we have categorized their regulated gene expressions and their function in radiation response or modulation. In addition, we have discussed some recently developed radiation countermeasures in relation to NF-κB activation
Collapse
Affiliation(s)
- Vijay Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Rajesh Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|