51
|
Moens AL, Kietadisorn R, Lin JY, Kass D. Targeting endothelial and myocardial dysfunction with tetrahydrobiopterin. J Mol Cell Cardiol 2011; 51:559-63. [PMID: 21458460 DOI: 10.1016/j.yjmcc.2011.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/11/2011] [Accepted: 03/16/2011] [Indexed: 11/24/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is an essential cofactor for aromatic amino acid hydroxylases and for all three nitric oxide synthase (NOS) isoforms. It also has a protective role in the cell as an antioxidant and scavenger of reactive nitrogen and oxygen species. Experimental studies in humans and animals demonstrate that decreased BH(4)-bioavailability, with subsequent uncoupling of endothelial NOS (eNOS) plays an important role in the pathogenesis of endothelial dysfunction, hypertension, ischemia-reperfusion injury, and pathologic cardiac remodeling. Synthetic BH(4) is clinically approved for the treatment of phenylketonuria, and experimental studies support its capacity for ameliorating cardiovascular pathophysiologies. To date, however, the translation of these studies to human patients remains limited, and early results have been mixed. In this review, we discuss the pathophysiologic role of decreased BH(4) bioavailability, molecular mechanisms regulating its metabolism, and its potential therapeutic use as well as pitfalls as an NOS-modulating drug. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''
Collapse
Affiliation(s)
- An L Moens
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Dept. of Cardiology, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
52
|
Kar S, Kavdia M. Modeling of biopterin-dependent pathways of eNOS for nitric oxide and superoxide production. Free Radic Biol Med 2011; 51:1411-27. [PMID: 21742028 PMCID: PMC3184605 DOI: 10.1016/j.freeradbiomed.2011.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction is associated with increase in oxidative stress and low NO bioavailability. The endothelial NO synthase (eNOS) uncoupling is considered an important factor in endothelial cell oxidative stress. Under increased oxidative stress, the eNOS cofactor tetrahydrobiopterin (BH(4)) is oxidized to dihydrobiopterin, which competes with BH(4) for binding to eNOS, resulting in eNOS uncoupling and reduction in NO production. The importance of the ratio of BH(4) to oxidized biopterins versus absolute levels of total biopterin in determining the extent of eNOS uncoupling remains to be determined. We have developed a computational model to simulate the kinetics of the biochemical pathways of eNOS for both NO and O(2)(•-) production to understand the roles of BH(4) availability and total biopterin (TBP) concentration in eNOS uncoupling. The downstream reactions of NO, O(2)(•-), ONOO(-), O(2), CO(2), and BH(4) were also modeled. The model predicted that a lower [BH(4)]/[TBP] ratio decreased NO production but increased O(2)(•-) production from eNOS. The NO and O(2)(•-) production rates were independent above 1.5μM [TBP]. The results indicate that eNOS uncoupling is a result of a decrease in [BH(4)]/[TBP] ratio, and a supplementation of BH(4) might be effective only when the [BH(4)]/[TBP] ratio increases. The results from this study will help us understand the mechanism of endothelial dysfunction.
Collapse
Affiliation(s)
- Saptarshi Kar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
53
|
Abstract
Hypertension is a major contributor to the development of renal failure, cardiovascular disease, and stroke. These pathologies are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility, and vascular remodeling. Central to these phenomena is oxidative stress. Factors that activate pro-oxidant enzymes, such as NADPH oxidase, remain poorly defined, but likely involve angiotensin II, mechanical stretch, and inflammatory cytokines. Reactive oxygen species influence vascular, renal, and cardiac function and structure by modulating cell growth, contraction/dilatation, and inflammatory responses via redox-dependent signaling pathways. Compelling data from molecular and cellular experiments, together with animal studies, implicate a role for oxidative stress in hypertension. However, the clinical evidence is still controversial. This review provides current insights on the mechanisms of the generation of reactive oxygen species and the vascular effects of oxidative stress and discusses the significance of oxidative damage in experimental and clinical hypertension.
Collapse
|
54
|
Duan DD, Kwan CY. A molecular switch of "yin and yang": S-glutathionylation of eNOS turns off NO synthesis and turns on superoxide generation. Acta Pharmacol Sin 2011; 32:415-6. [PMID: 21441949 DOI: 10.1038/aps.2011.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
55
|
Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med 2011; 50:777-93. [PMID: 21236334 PMCID: PMC3049876 DOI: 10.1016/j.freeradbiomed.2011.01.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
The heart has complex mechanisms that facilitate the maintenance of an oxygen supply-demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation-contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved-where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases.
Collapse
Key Words
- aif, apoptosis-inducing factor
- arc, apoptosis repressor with caspase recruitment domain
- camkii, calmodulin kinase ii
- ctgf, connective tissue growth factor
- eb, embryoid body
- ecc, excitation–contraction coupling
- er, endoplasmic reticulum
- es, embryonic stem
- etc, electron transport chain
- g6pdh, glucose-6-phosphate dehydrogenase
- gpcr, g-protein-coupled receptor
- hdac, histone deacetylase
- hif, hypoxia-inducible factor
- mao-a, monoamine oxidase-a
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mptp, mitochondrial permeability transition pore
- mtdna, mitochondrial dna
- ncx, na/ca exchanger
- nos, nitric oxide synthase
- phd, prolyl hydroxylase dioxygenase
- pka, protein kinase a
- pkc, protein kinase c
- pkg, protein kinase g
- ros, reactive oxygen species
- ryr, ryanodine receptor
- serca, sarcoplasmic reticulum calcium atpase
- sr, sarcoplasmic reticulum
- trx1, thioredoxin1
- tnfα, tumor necrosis factor-α
- vegf, vascular endothelial growth factor
- cardiac myocyte
- reactive oxygen species
- redox signaling
- hypertrophy
- heart failure
- nadph oxidase
- mitochondria
- free radicals
Collapse
|
56
|
Footitt EJ, Heales SJ, Mills PB, Allen GFG, Oppenheim M, Clayton PT. Pyridoxal 5'-phosphate in cerebrospinal fluid; factors affecting concentration. J Inherit Metab Dis 2011; 34:529-38. [PMID: 21305354 DOI: 10.1007/s10545-011-9279-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 01/04/2011] [Accepted: 01/11/2011] [Indexed: 01/19/2023]
Abstract
Analysis of pyridoxal 5'-phosphate (PLP) concentration in 256 cerebrospinal fluid (CSF) samples from patients with neurological symptoms showed that the variance is greater than indicated by previous studies. The age-related lower reference limit has been revised to detect inborn errors of metabolism that lead to PLP depletion without a high false positive rate: < 30 days, 26 nmol/L; 30 days to 12 months, 14 nmol/L; 1-2 years, 11 nmol/L; > 3 years, 10 nmol/L. Inborn errors leading to PLP concentrations below these values include pyridoxine-dependent epilepsy due to antiquitin deficiency, and molybdenum cofactor deficiency that leads to the accumulation of sulfite, a nucleophile capable of reacting with PLP. Low PLP levels were also seen in a group of children with transiently elevated urinary excretion of sulfite and/or sulfocysteine, suggesting that there may be other situations in which sulfite accumulates and inactivates PLP. There was no evidence that seizures or the anticonvulsant drugs prescribed for patients in this study led to significant lowering of CSF PLP. A small proportion of patients receiving L-dopa therapy were found to have a CSF PLP concentration below the appropriate reference range. This may have implications for monitoring and treatment. A positive correlation was seen between the CSF PLP and 5-methyl-tetrahydrofolate (5-MTHF) and tetrahydrobiopterin (BH(4)) concentrations. All are susceptible to attack by nucleophiles and oxygen-derived free-radicals, and CSF has relatively low concentrations of other molecules that can react with these compounds. Further studies of CSF PLP levels in a wide range of neurological diseases might lead to improved understanding of pathogenesis and possibilities for treatment.
Collapse
Affiliation(s)
- Emma J Footitt
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London, WC1N 1EH, UK.
| | | | | | | | | | | |
Collapse
|
57
|
Del Vecchio L, Locatelli F, Carini M. What We Know About Oxidative Stress in Patients with Chronic Kidney Disease on Dialysis-Clinical Effects, Potential Treatment, and Prevention. Semin Dial 2011; 24:56-64. [PMID: 21299632 DOI: 10.1111/j.1525-139x.2010.00819.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology, Dialysis, and Renal Transplant, A Manzoni Hospital, Lecco, Italy
| | | | | |
Collapse
|
58
|
Shaw CA, Taylor EL, Fox S, Megson IL, Rossi AG. Differential susceptibility to nitric oxide-evoked apoptosis in human inflammatory cells. Free Radic Biol Med 2011; 50:93-101. [PMID: 20837134 DOI: 10.1016/j.freeradbiomed.2010.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/09/2010] [Accepted: 08/29/2010] [Indexed: 01/22/2023]
Abstract
Apoptosis of neutrophils and their subsequent phagocytosis is critical to the successful resolution of inflammation. During inflammation, activated inflammatory cells generate reactive oxygen and nitrogen species, including nitric oxide (NO) and superoxide anion (O(2)(•-)), which rapidly combine to generate peroxynitrite (ONOO(-)). NO and ONOO(-) are proapoptotic in human neutrophils. This study examines the effects of NO and ONOO(-) on caspase activation and mitochondrial permeability in human neutrophils and determines the ability of these species to evoke apoptosis in human monocyte-derived macrophages (MDMs). NO or ONOO(-) release from donor compounds was characterized by electrochemistry and electron paramagnetic resonance. Neutrophils and MDMs isolated from the peripheral blood of healthy volunteers were exposed to NO or ONOO(-) before analysis of apoptosis by caspase activation, mitochondrial permeability, and annexin V binding. Both NO and ONOO(-) induced apoptosis via rapid activation of caspases 2 and 3 in neutrophils. In contrast, only ONOO(-) promoted apoptosis in MDMs, whereas a variety of NO donors were ineffective at inducing apoptosis in this cell type. We propose that human macrophages are refractory to NO-stimulated apoptosis in order that they persist long enough within the inflammatory focus to phagocytose apoptotic neutrophils, thereby ensuring successful resolution of inflammation.
Collapse
Affiliation(s)
- Catherine A Shaw
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | | | | | | | | |
Collapse
|
59
|
Rubio-Guerra AF, Vargas-Robles H, Ramos-Brizuela LM, Escalante-Acosta BA. Is tetrahydrobiopterin a therapeutic option in diabetic hypertensive patients? Integr Blood Press Control 2010; 3:125-32. [PMID: 21949628 PMCID: PMC3172060 DOI: 10.2147/ibpc.s7479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Indexed: 12/31/2022] Open
Abstract
Nitric oxide (NO) is an important regulator of vascular tone, and is also an antithrombotic, anti-inflammatory, antiproliferative, and antiatherogenic factor. Endothelial function is altered in patients with coronary artery disease, stroke, and peripheral artery disease, and endothelial dysfunction correlates with the risk factor profile for a patient. Hypertension and type 2 diabetes are risk factors for vascular disease, and are both pathologies characterized by loss of NO activity. Indeed, endothelial dysfunction is usually present in diabetic and/or hypertensive patients. Tetrahydrobiopterin is an essential cofactor for the NO synthase enzyme, and insufficiency of this cofactor leads to uncoupling of the enzyme, release of superoxide, endothelial dysfunction, progression of hypertension, and finally, proatherogenic effects. Tetrahydrobiopterin is also an important mediator of NO synthase regulation in type 2 diabetes and hypertension, and may be a rational therapeutic target to restore endothelial function and prevent vascular disease in these patients. The aim of this paper is to review the rationale for therapeutic strategies directed to biopterins as a target for vascular disease in type 2 diabetic hypertensive patients.
Collapse
|
60
|
FENG L, YAN A, CHEN L, WAN Y. Determination of isoxanthopterin in human urine by solid phase extraction-high performance anion-exchange chromatography coupled with integrated pulsed amperometric detection. Se Pu 2010; 28:408-12. [DOI: 10.3724/sp.j.1123.2010.00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
61
|
Tang EHC, Vanhoutte PM. Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflugers Arch 2010; 459:995-1004. [PMID: 20127126 DOI: 10.1007/s00424-010-0786-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Endothelial dysfunction is a common feature of hypertension, and it results from the imbalanced release of endothelium-derived relaxing factors (EDRFs; in particular, nitric oxide) and endothelium-derived contracting factors (EDCFs; angiotensin II, endothelins, uridine adenosine tetraphosphate, and cyclooxygenase-derived EDCFs). Thus, drugs that increase EDRFs (using direct nitric oxide releasing compounds, tetrahydrobiopterin, or L-arginine supplementation) or decrease EDCF release or actions (using cyclooxygenase inhibitor or thromboxane A2/prostanoid receptor antagonists) would prevent the dysfunction. Many conventional antihypertensive drugs, including angiotensin-converting enzyme inhibitors, calcium channel blockers, and third-generation beta-blockers, possess the ability to reverse endothelial dysfunction. Their use is attractive, as they can address arterial blood pressure and vascular tone simultaneously. The severity of endothelial dysfunction correlates with the development of coronary artery disease and predicts future cardiovascular events. Thus, endothelial dysfunction needs to be considered as a strategic target in the treatment of hypertension.
Collapse
Affiliation(s)
- Eva H C Tang
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB741, Boston, MA 02115, USA.
| | | |
Collapse
|
62
|
|
63
|
Harrison DG, Chen W, Dikalov S, Li L. Regulation of endothelial cell tetrahydrobiopterin pathophysiological and therapeutic implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:107-32. [PMID: 21081217 DOI: 10.1016/b978-0-12-385061-4.00005-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is a critical cofactor for the nitric oxide synthases. In the absence of BH(4), these enzymes become uncoupled, fail to produce nitric oxide, and begin to produce superoxide and other reactive oxygen species (ROS). BH(4) levels are modulated by a complex biosynthetic pathway, salvage enzymes, and by oxidative degradation. The enzyme GTP cyclohydrolase-1 catalyzes the first step in the de novo synthesis of BH(4) and new evidence shows that this enzyme is regulated by phosphorylation, which reduces its interaction with its feedback regulatory protein (GFRP). In the setting of a variety of common diseases, such as atherosclerosis, hypertension, and diabetes, reactive oxygen species promote oxidation of BH(4) and inhibit expression of the salvage enzyme dihydrofolate reductase (DHFR), promoting accumulation of BH(2) and NOS uncoupling. There is substantial interest in therapeutic approaches to increasing tissue levels of BH(4), largely by oral administration of this agent. BH(4) treatment has proved effective in decreasing atherosclerosis, reducing blood pressure, and preventing complications of diabetes in experimental animals. While these basic studies have been very promising, there are only a few studies showing any effect of BH(4) therapy in humans in treatment of these common problems. Whether BH(4) or related agents will be useful in treatment of human diseases needs additional study.
Collapse
Affiliation(s)
- David G Harrison
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
| | | | | | | |
Collapse
|
64
|
Giroud C, Moreau M, Mattioli TA, Balland V, Boucher JL, Xu-Li Y, Stuehr DJ, Santolini J. Role of arginine guanidinium moiety in nitric-oxide synthase mechanism of oxygen activation. J Biol Chem 2009; 285:7233-45. [PMID: 19951943 DOI: 10.1074/jbc.m109.038240] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nitric-oxide synthases (NOS) are highly regulated heme-thiolate enzymes that catalyze two oxidation reactions that sequentially convert the substrate L-Arg first to N(omega)-hydroxyl-L-arginine and then to L-citrulline and nitric oxide. Despite numerous investigations, the detailed molecular mechanism of NOS remains elusive and debatable. Much of the dispute in the various proposed mechanisms resides in the uncertainty concerning the number and sources of proton transfers. Although specific protonation events are key features in determining the specificity and efficiency of the two catalytic steps, little is known about the role and properties of protons from the substrate, cofactors, and H-bond network in the vicinity of the heme active site. In this study, we have investigated the role of the acidic proton from the L-Arg guanidinium moiety on the stability and reactivity of the ferrous heme-oxy complex intermediate by exploiting a series of L-Arg analogues exhibiting a wide range of guanidinium pK(a) values. Using electrochemical and vibrational spectroscopic techniques, we have analyzed the effects of the analogues on the heme, including characteristics of its proximal ligand, heme conformation, redox potential, and electrostatic properties of its distal environment. Our results indicate that the substrate guanidinium pK(a) value significantly affects the H-bond network near the heme distal pocket. Our results lead us to propose a new structural model where the properties of the guanidinium moiety finely control the proton transfer events in NOS and tune its oxidative chemistry. This model may account for the discrepancies found in previously proposed mechanisms of NOS oxidation processes.
Collapse
Affiliation(s)
- Claire Giroud
- Laboratoire Stress Oxydants et Detoxication, Commissariat à l'Energie Atomique Saclay, Institut de Biologie et de Technologies de Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|